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Summary

• Phase variation and ‘bet hedging’

• Model system of catastrophes:

Piecewise deterministic Markov Process

• Exact stationary distribution of ‘fitness’

• Optimal strategies for growth
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Phase variation

• Populations of cells (especially bacteria) are

very heterogeneous even if environmentally

and genetically identical

• This may be important in surviving stresses

coming from environment

it is called phase variation

(e.g.: fimbriae on E. coli bacteria)

• How can a population be heterogeneous in

gene expression?

⇒ “genetic switches”
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Examples of phase variation

“Once and for all” – Population splits into

groups with long lived phenotypes i.e. bista-

bility

“bet hedging” – small fraction of popula-

tion in unfit “persistor state” which can

survive catstophes e.g. antibiotics

Defence against immune response – small

fraction of population in fit state since too

successful a population would evoke an im-

mune response
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General scenario

• Population of bacteria, say, with two pos-

sibles states for individuals:

Fit state has fast growth

Unfit (persistor) state has slow growth

but withstands catastrophes

• Catastrophes occur stochastically, coupled

to growth of population

• Question: what is best ‘strategy’ of pop-

ulation to maximise growth?
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Model

1 Deterministic growth:

Two subpopulations nA and nB.

Exponential growth rates γA > γB

Individuals switch states with rates kA, kB

dnA

dt
= γAnA + kBnB − kAnA ,

dnB

dt
= γBnB + kAnA − kBnB .

2 Stochastic catastrophes:

Catastrophe rate β(nA, nB) environmental

response function

When a catastrophe occurs nA → n′A < nA,

with probability density ν(n′A|nA).
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Fitness

Biological definition: instantaneous growth

rate of population

Here f is fraction of population in fit state

f =
nA

nA + nB

dn

dt
= γAnA + γBnB = (γB + ∆γf)n

Deterministic growth:

df

dt
= v(f) = ∆γ(f+ − f)(f − f−) ,

where f± are the roots of

f2 −
(
1−

kA + kB

∆γ

)
f −

kB

∆γ
= 0 .
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Typical trajectory
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Piecewise Deterministic

Markov Processes

M. H. A. Davis
Piecewise-deterministic Markov processes:
a general class of non-diffusion stochastic mod-
els,
J Royal Statist Soc (B) 46 (1984) 353-388

Used extensively in context of queueing theory

Recent interest:

Dynamics of gene expression under feedback
O Pulkkinen and J Berg. ArXiv: 0807.3521

Autocatalytic genetic networks modeled by
piecewise-deterministic Markov processes
Zeiser S, Franz U, Liebscher V
J. Math. Biology 60: 207-246 (2010)

Non-equilibrium Thermodynamics of Piecewise
Deterministic Markov Processes
Faggionato A, Gabrielli D, Crivellari MR
J. Stat. Phys. 137: 259-304 (2009)
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Characterisation of Catastrophes

Environmental response function (catastrophe

rate)

βλ(f) =
1

2

1 +
f − f∗√

λ2 + (f − f∗)2

 .

limits λ � 1 → 1/2 (Poisson process)

λ � 1 → θ(f − f∗)
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Characterisation of Catastrophes

Take for catastrophe strength distribution

ν(n′A|nA) = θ(nA−n′A)
(α + 1)

nA

(
n′A
nA

)α

α > −1
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Then f → f ′ < f with distribution

µ(f ′|f) =
1

m(f)

dm(f ′)

df ′
m(f) =

(
f

1− f

)1+α
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Stationary distribution of p(f)

Probability flux balance:

0 f ′′ f f ′ f+

p(f ′)β(f ′)µ(f ′′|f ′)

v(f)p(f)

v(f)p(f) =
∫ f+

f
df ′

∫ f

0
df ′′β(f ′)p(f ′)µ(f ′′|f ′)

Insert µ(f ′′|f ′) =
1

m(f ′)

dm(f ′′)

df ′′

→ v(f)p(f) =
∫ f+

f
df ′β(f ′)P (f ′)

m(f)

m(f ′)
Solution

p(f) = C
m(f)

v(f)
exp

(
−
∫ f

df ′
β(f ′)

v(f ′)

)
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Sample plots of p(f) for λ = 0

Solid line: kA = 0 f+ = 1 f− = −kB/∆γ

Dashed line: kA chosen so that f+ = f∗

∆γ = 0.1 ∆γ = 100
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Optimal strategies

We characterise the population strategy by the

value of kA, which is the control parameter for

the population balance.

We define Optimal Strategies as the values

of kA which maximise the average fitness 〈f〉
in the stationary state.

Two optimal strategies emerge:
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Optimal strategies cont.

1. kA = 0 (no switching to unfit state)

2. kA ' k∗A where k∗A yields f+ = f∗

(Saturation fitness = threshold response)
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