Growth of Population in Catastrophic Environments

P. Visco, R. J. Allen, S. N. Majumdar and M. R. Evans

School of Physics and Astronomy, University of Edinburgh

Summary

- Phase variation and 'bet hedging'
- Model system of catastrophes:
 Piecewise deterministic Markov Process
- Exact stationary distribution of 'fitness'
- Optimal strategies for growth

Phase variation

- Populations of cells (especially bacteria) are very heterogeneous even if environmentally and genetically identical
- This may be important in surviving stresses coming from environment it is called phase variation (e.g.: fimbriae on E. coli bacteria)
- How can a population be heterogeneous in gene expression?
 - \Rightarrow "genetic switches"

Examples of phase variation

- "Once and for all" Population splits into groups with long lived phenotypes i.e. bistability
 - "bet hedging" small fraction of population in unfit "persistor state" which can survive catstophes e.g. antibiotics
- Defence against immune response small fraction of population in fit state since too successful a population would evoke an immune response

General scenario

 Population of bacteria, say, with two possibles states for individuals:

Fit state has fast growth Unfit (persistor) state has slow growth but withstands catastrophes

- Catastrophes occur stochastically, coupled to growth of population
- Question: what is best 'strategy' of population to maximise growth?

Model

1 Deterministic growth:

Two subpopulations n_A and n_B . Exponential growth rates $\gamma_A > \gamma_B$ Individuals switch states with rates k_A , k_B

$$\frac{\mathrm{d}n_A}{\mathrm{d}t} = \gamma_A n_A + k_B n_B - k_A n_A ,$$

$$\frac{\mathrm{d}n_B}{\mathrm{d}t} = \gamma_B n_B + k_A n_A - k_B n_B .$$

2 Stochastic catastrophes:

Catastrophe rate $\beta(n_A, n_B)$ environmental response function

When a catastrophe occurs $n_A \rightarrow n'_A < n_A$, with probability density $\nu(n'_A|n_A)$.

Fitness

Biological definition: instantaneous growth rate of population

Here f is fraction of population in fit state

$$f = \frac{n_A}{n_A + n_B}$$

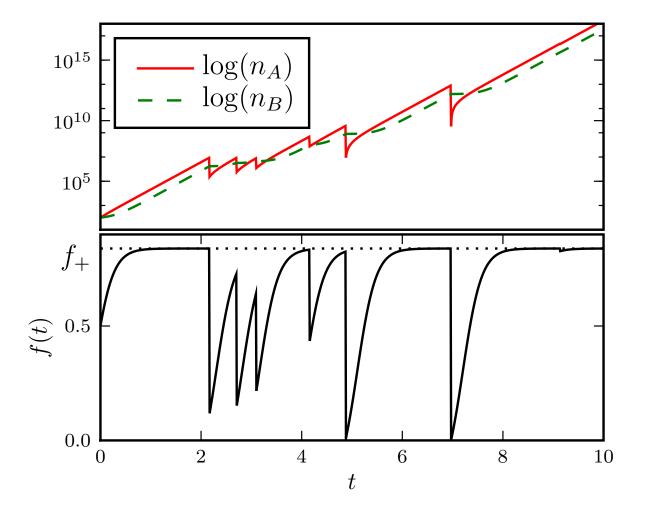
 $\frac{\mathrm{d}n}{\mathrm{d}t} = \gamma_A n_A + \gamma_B n_B = (\gamma_B + \Delta \gamma f)n$

Deterministic growth:

$$\frac{\mathrm{d}f}{\mathrm{d}t} = v(f) = \Delta\gamma(f_+ - f)(f - f_-) \;,$$

where f_{\pm} are the roots of

$$f^2 - \left(1 - \frac{k_A + k_B}{\Delta \gamma}\right) f - \frac{k_B}{\Delta \gamma} = 0$$
.



Piecewise Deterministic Markov Processes

M. H. A. Davis

Piecewise-deterministic Markov processes: a general class of non-diffusion stochastic models,

J Royal Statist Soc (B) 46 (1984) 353-388

Used extensively in context of queueing theory

Recent interest:

Dynamics of gene expression under feedback O Pulkkinen and J Berg. ArXiv: 0807.3521

Autocatalytic genetic networks modeled by piecewise-deterministic Markov processes Zeiser S, Franz U, Liebscher V J. Math. Biology 60: 207-246 (2010)

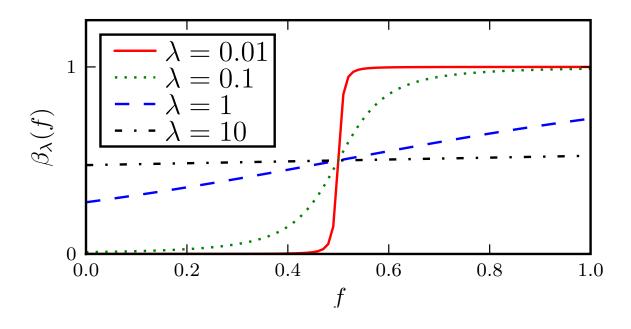
Non-equilibrium Thermodynamics of Piecewise Deterministic Markov Processes Faggionato A, Gabrielli D, Crivellari MR J. Stat. Phys. 137: 259-304 (2009)

Characterisation of Catastrophes

Environmental response function (catastrophe rate)

$$\beta_{\lambda}(f) = \frac{1}{2} \left(1 + \frac{f - f^*}{\sqrt{\lambda^2 + (f - f^*)^2}} \right) .$$

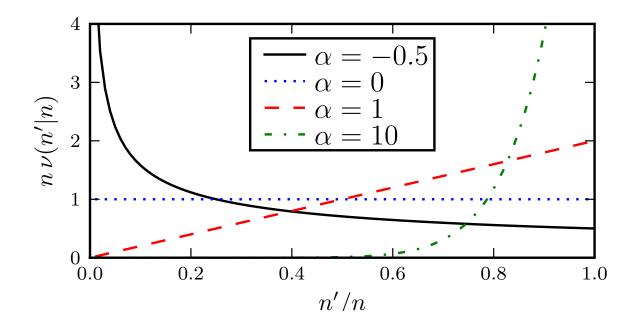
limits $\lambda \gg 1 \rightarrow 1/2$ (Poisson process) $\lambda \ll 1 \rightarrow \theta(f - f^*)$



Characterisation of Catastrophes

Take for catastrophe strength distribution

$$\nu(n'_A|n_A) = \theta(n_A - n'_A) \frac{(\alpha + 1)}{n_A} \left(\frac{n'_A}{n_A}\right)^{\alpha} \quad \alpha > -1$$

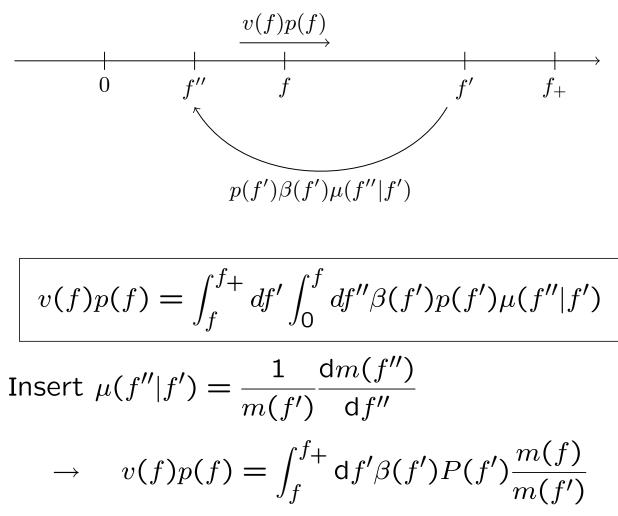


Then $f \to f' < f$ with distribution

$$\mu(f'|f) = \frac{1}{m(f)} \frac{\mathrm{d}m(f')}{\mathrm{d}f'} \quad m(f) = \left(\frac{f}{1-f}\right)^{1+\alpha}$$

Stationary distribution of p(f)

Probability flux balance:

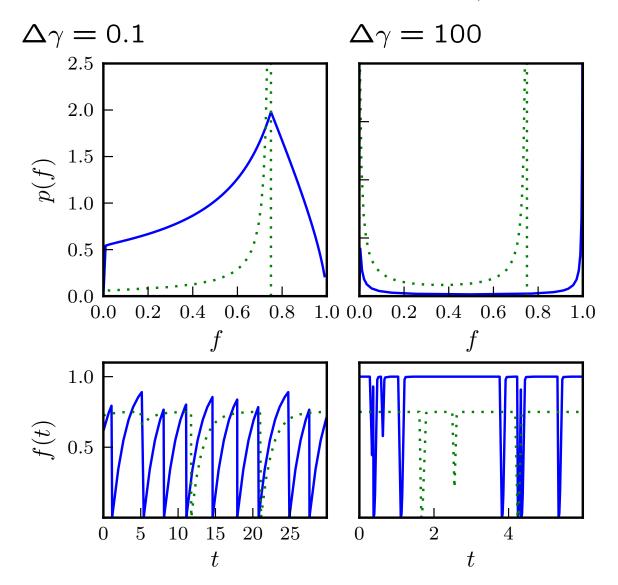


Solution

$$p(f) = C \frac{m(f)}{v(f)} \exp\left(-\int^f \mathrm{d}f' \; \frac{\beta(f')}{v(f')}\right)$$

Sample plots of p(f) for $\lambda = 0$

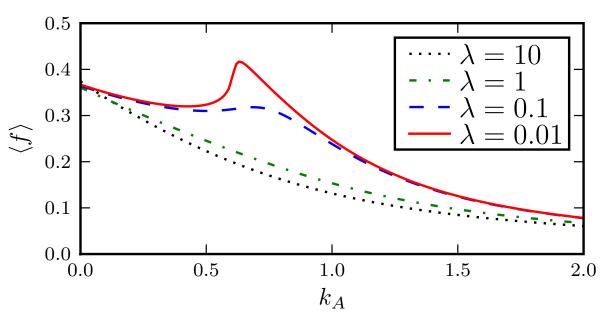
Solid line: $k_A = 0$ $f_+ = 1$ $f_- = -k_B/\Delta\gamma$ Dashed line: k_A chosen so that $f_+ = f^*$



Optimal strategies

We characterise the population strategy by the value of k_A , which is the control parameter for the population balance.

We define **Optimal Strategies** as the values of k_A which maximise the average fitness $\langle f \rangle$ in the stationary state.



Two optimal strategies emerge:

Optimal strategies cont.

- 1. $k_A = 0$ (no switching to unfit state)
- 2. $k_A \simeq k_A^*$ where k_A^* yields $f_+ = f^*$ (Saturation fitness = threshold response)

