Local scale-invariance and ageing phenomena: where do we stand ?

Malte Henkel

Groupe de Physique Statistique, Départment de Physique de la Matière et des Matériaux, Institut Jean Lamour, CNRS – Nancy Université, France

collaborators:

R. Cherniha, S.B. Dutta, X. Durang, J.Y. Fortin, M. Pleimling, S. Stoimenov

Workshop NEQ, University of Warwick, the 11th of January, 2010 I. Why local dynamical scaling?

physical ageing; scaling behaviour and exponents; tests of dynamical scaling; theoretical formulation

II. Local scale-invariance for $z \neq 2$

axioms of LSI; classifications; mass terms; relation to integrability; computation of responses and correlators

III. How to test the foundations of LSI

kinds of tests; Ising model; in which models responses and correlators were compared with LSI-predictions?

IV. Conclusions

Reviews : MH, J. Phys. Cond. Matt. **19**, 065101 (2007) MH & Baumann, J. Stat. Mech. P07015 (2007) MH & Pleimling, *Non-equilibrium phase transitions 2* (2010)

I. Why local dynamical scaling?

- non-equilibrium systems naturally display dynamical scaling
- a common example : ageing phenomena
 - slow relaxation (non-exponential)
 - Ø breaking of time-translation-invariance
 - Optimized and the second se
- which (reversible) microscopic processes lead to such macroscopic effects ?
- physical ageing known since (pre-)historical times, but systematic studies first in glassy systems

Struik 78

- a priori, behaviour prehistory-dependent
- but evidence for reproducible and universal behaviour
- for better conceptual understanding : study ageing in simpler systems without disorder (i.e. ferromagnets)

Question : what is the current evidence for larger,

local scaling symmetries ?

for symmetry analysis : simple ageing systems without disorder consider a simple magnet (ferromagnet, i.e. lsing model)

() prepare system initially at high temperature $T \gg T_c > 0$

2 quench to temperature
$$T < T_c$$
 (or $T = T_c$)

- ightarrow non-equilibrium state
- \bigcirc fix T and observe dynamics

competition :

at least 2 equivalent ground states local fields lead to rapid local ordering no global order, relaxation time ∞

formation of ordered domains, of linear size $L = L(t) \sim t^{1/z}$ dynamical exponent z

Scaling behaviour & exponents

single relevant time-dependent length scale $L(t) \sim t^{1/z}$

Bray 94, Janssen et al. 92, Cugliandolo & Kurchan 90
s, Godrèche & Luck 00, \ldots

 $\phi(t, \mathbf{r})$ – space-time-dependent order-parameter (magnetisation)

correlator
$$C(t, s; \mathbf{r}) := \langle \phi(t, \mathbf{r}) \phi(s, \mathbf{0}) \rangle = s^{-b} f_C(t/s, |\mathbf{r}|^z/(t-s))$$

response $R(t, s; \mathbf{r}) := \left. \frac{\delta \langle \phi(t, \mathbf{r}) \rangle}{\delta h(s, \mathbf{0})} \right|_{h=0} = s^{-1-a} f_R(t/s, |\mathbf{r}|^z/(t-s))$

No fluctuation-dissipation theorem : $R(t, s; \mathbf{r}) \neq T \ \partial C(t, s; \mathbf{r}) / \partial s$ values of exponents : equilibrium correlator \rightarrow classes **S** and **L**

$$C_{eq}(\mathbf{r}) \sim \begin{cases} \exp(-|\mathbf{r}|/\xi) \\ |\mathbf{r}|^{-(d-2+\eta)} \end{cases} \Longrightarrow \begin{cases} class \mathbf{S} \\ class \mathbf{L} \end{cases} \Longrightarrow \begin{cases} a = 1/z \\ a = (d-2+\eta)/z \end{cases}$$

if $T < T_c : z = 2$ and $b = 0$ if $T = T_c : z = z_c$ and $b = a$
for $y \to \infty : f_{C,R}(y) \sim y^{-\lambda_{C,R}/z}$, $\lambda_{C,R}$ independent exponents

Test of dynamical scaling : 3D Ising model, $T < T_c$

C(t, s): autocorrelation function, quenched to $T < T_c$ scaling regime : $t, s \gg \tau_{\text{micro}}$ and $t - s \gg \tau_{\text{micro}}$ Question : how to find the scaling functions $f_R(y)$ and $f_C(y)$?

How to understand these scaling forms \rightarrow mean-field

Langevin eq. for order parameter m(t)

$$rac{\mathrm{d} m(t)}{\mathrm{d} t} = 3\lambda^2 m(t) - m(t)^3 + \eta(t) \ , \ \langle \eta(t)\eta(s)
angle = 2 T \delta(t-s)$$

contrôle parameter λ^2 : $\begin{array}{l}
\left(1) \ \lambda^2 > 0 : \ T < T_c, \ (2) \ \lambda^2 = 0 : \ T = T_c, \ (3) \ \lambda^2 < 0 : \ T > T_c\end{array}\right)$ two-time observables : **response** R(t,s), **correlation** C(t,s)

$$R(t,s) = \left. \frac{\delta \langle m(t) \rangle}{\delta h(s)} \right|_{h=0} = \frac{1}{2T} \langle m(t) \eta(s) \rangle \ , \ C(t,s) = \langle m(t) m(s) \rangle$$

mean-field equation of motion (cumulants neglected) :

$$\partial_t R(t,s) = 3 (\lambda^2 - v(t)) R(t,s) + \delta(t-s)$$

$$\partial_s C(t,s) = 3 (\lambda^2 - v(s)) C(t,s) + 2TR(t,s)$$

with variance $v(t) = \langle m(t)^2 \rangle$,

 $\dot{v}(t) = 6(\lambda^2 - v(t))v(t)$

 $R(t,s) \simeq \begin{cases} 1 \\ \sqrt{s/t} \\ e^{-3|\lambda^2|(t-s)} \end{cases}; \ C(t,s) \simeq T \begin{cases} 2\min(t,s) & ; \ \lambda^2 > 0 \\ s\sqrt{s/t} & ; \ \lambda^2 = 0 \\ \frac{1}{(3|\lambda^2|)}e^{-3|\lambda^2||t-s|} & ; \ \lambda^2 < 0 \end{cases}$

fluctuation-dissipation ratio measures distance from equilibrium

$$X(t,s) = \frac{TR(t,s)}{\partial_s C(t,s)} \simeq \begin{cases} 1/2 + O(e^{-6\lambda^2 s}) & ; \ \lambda^2 > 0\\ 2/3 & ; \ \lambda^2 = 0\\ 1 + O(e^{-|\lambda^2||t-s|}) & ; \ \lambda^2 < 0 \end{cases}$$

relaxation far from equilibrium, when $X \neq 1$, if $\lambda^2 \ge 0$ ($T \le T_c$)

Consequences :

If $\lambda^2 > 0$: free random walk, the system never reaches equilibrium ! If $\lambda^2 = 0$: slow relaxation, because of critical fluctuations

In both situations : observe

- slow dynamics (non-exponential relaxation)
- 2 time-translation-invariance broken
- **3** dynamical scaling behaviour
- \longrightarrow the conditions for **physical ageing** are **all satisfied** if $T \leq T_c$
- \longrightarrow the system remains out of equilibrium

If $\lambda^2 < {\rm 0}$: rapid relaxation, with finite relaxation time $\tau_{\rm rel} \sim 1/|\lambda^2|$, towards unique equilibrium state

II. Local scale-invariance for $z \neq 2$

Extend known cases $z = 1, 2 \implies$ axioms of LSI :

MH 97/02, BAUMANN & MH 07

1 Möbius transformations in time (generator X_n)

$$t\mapsto t'=rac{lpha t+eta}{\gamma t+\delta}$$
 ; $lpha\delta-eta\gamma=1$

require commutator : $[X_n, X_{n'}] = (n - n')X_{n+n'}$

- 2 Dilatation generator : $X_0 = -t\partial_t \frac{1}{z}\mathbf{r} \cdot \partial_\mathbf{r} \frac{x}{z}$ Implies simple power-law scaling $L(t) \sim t^{1/z}$ (no glasses !).
- **③** Spatial translation-invariance $\rightarrow 2^e$ family Y_m of generators.
- **4** X_n contain phase terms from the scaling dimension $x = x_\phi$
- **(** X_n, Y_m contain further 'mass terms' (**Galilei**!)
- **(**) finite number of independent conditions for *n*-point functions.

Theorem : LSI without 'masses'

Commutators $[X_n, X_{n'}] = (n - n')X_{n+n'}$, $[X_n, Y_m] = (\frac{n}{z} - m)Y_{n+m}$ with $n, n' \in \mathbb{Z}$ and $m \in \mathbb{Z} - 1/z$ have **only** the realisations :

$$\begin{array}{rcl} z & X_n & = & -t^{n+1}\partial_t - \frac{n+1}{z}t^n r\partial_r - \frac{(n+1)x}{z}t^n - \frac{n(n+1)}{2}B_{10}t^{n-1}r^z \\ & Y_{k-1/z} & = & -t^k\partial_r - \frac{z^2}{2}kB_{10}t^{k-1}r^{-1+z} \end{array} \\ \end{array} \\ \begin{array}{rcl} 2 & X_n & = & -t^{n+1}\partial_t - \frac{1}{2}(n+1)t^n r\partial_r - \frac{1}{2}(n+1)xt^n \\ & & -\frac{n(n+1)}{2}B_{10}t^{n-1}r^2 - \frac{(n^2-1)n}{6}B_{20}t^{n-2}r^4 \\ & Y_{k-1/2} & = & -t^k\partial_r - 2kB_{10}t^{k-1}r - \frac{4}{3}k(k-1)B_{20}t^{k-2}r^3 \end{array} \\ \end{array} \\ \begin{array}{rcl} 1 & X_n & = & -t^{n+1}\partial_t - A_{10}^{-1}[(t+A_{10}r)^{n+1} - t^{n+1}]\partial_r \\ & & -(n+1)xt^n - \frac{n+1}{2}\frac{B_{10}}{A_{10}}[(t+A_{10}r)^n - t^n] \\ & Y_{k-1} & = & -(t+A_{10}r)^k\partial_r - \frac{k}{2}B_{10}(t+A_{10}r)^{k-1} \end{array} \end{array}$$

free parameters (two in each case) : z, A₁₀, B₁₀, B₂₀

similar classification from a geometric point of view DUVAL & HORVATHY 09
1. generic z and
$$B_{10} = 0 : \implies [Y_m, Y_{m'}] = 0.$$
 MH 97
2. $\underline{z = 2}$. Find infinite-dimensional extension of $\mathfrak{sch}_1 :$
 $Z_n^{(0)} := -2t^n, \ Z_m^{(1)} := -2t^{m-1/2}r, \ Z_n^{(2)} := -nt^{n-1}r^2$ and
 $[Y_m, Y_{m'}] = (m - m')(4B_{20}Z_{m+m'}^{(2)} + B_{10}Z_{m+m'}^{(0)})$
 $[X_n, Z_{n'}^{(0,2)}] = -n'Z_{n+n'}^{(0,2)}, \ [X_n, Z_m^{(1)}] = -(n/2 - m)Z_{n+n'}^{(1)}$
 $[Y_m, Z_{m'}^{(1)}] = -Z_{m+m'}^{(0)}, \ [Y_m, Z_n^{(2)}] = -nZ_{m+n}^{(1)}$

For $B_{20} = 0$ and $B_{10} = \mathcal{M}/2$ one is back to $\mathfrak{sv}_1 \supset \mathfrak{sch}_1$. **3.** $\underline{z} = \underline{1}$. Then $[Y_n, Y_{n'}] = A_{10}(n - n')Y_{n+n'}$, in d = 1 dimensions. If $A_{10} \neq 0$, isomorphic to $\mathfrak{vect}(S^1) \times \mathfrak{vect}(S^1)$. In the limit $A_{10} \rightarrow 0$, contraction to $\mathfrak{av}_1 \supset \mathfrak{alt}_1 = \mathrm{CGA}(1)$; $(\gamma \in \mathbb{R})$

$$X_n = -t^{n+1}\partial_t - (n+1)t^n r \partial_r - (n+1)t^n x - n(n+1)\gamma t^{n-1}r$$

$$Y_n = -t^{n+1}\partial_r - (n+1)\gamma t^n$$

two Virasoro-like independent central chargesOVSIENKO & ROGER 98For d = 2 so-called exotic central extension of \mathfrak{alt}_2 , but incompatiblewith ∞ -dim. extension $\mathfrak{alt}_2 \subset \mathfrak{av}_2$ Lukierski, Stichel, Zakrewski 06/07

consider *z* arbitrary, set $B_{10} = 0$. For the case *z* = 1, see Havas & Plebanski 78, Negro et al 97, MH 97 & 02; ...09-10.

Extend to $z \neq 1,2$ by generators with mass terms, for d = 1 :

$$Y_{1-1/z} := -t\partial_r - \mu zr \nabla_r^{2-z} - \gamma z(2-z)\partial_r \nabla_r^{-z}$$
 Galilei

$$X_{1} := -t^{2}\partial_{t} - \frac{2}{z}tr\partial_{r} - \frac{2(x+\xi)}{z}t - \mu r^{2}\nabla_{r}^{2-z} \qquad \text{special} \\ -2\gamma(2-z)r\partial_{r}\nabla_{r}^{-z} - \gamma(2-z)(1-z)\nabla_{r}^{-z} \end{cases}$$

- depend on two parameters γ, μ and on two dimensions x, ξ
- contains fractional derivative $(\hat{f} : \text{Fourier transform})$

$$abla^{lpha}_{\mathbf{r}} f(\mathbf{r}) := \mathrm{i}^{lpha} \int_{\mathbb{R}^d} rac{\mathrm{d} \mathbf{k}}{(2\pi)^d} |\mathbf{k}|^{lpha} e^{\mathrm{i} \mathbf{r} \cdot \mathbf{k}} \, \widehat{f}(\mathbf{k})$$

• some properties : $\nabla_{\mathbf{r}}^{\alpha} \nabla_{\mathbf{r}}^{\beta} = \nabla_{\mathbf{r}}^{\alpha+\beta}$, $[\nabla_{\mathbf{r}}^{\alpha}, r_i] = \alpha \partial_{r_i} \nabla_{\mathbf{r}}^{\alpha-2}$ $\nabla_{\mathbf{r}}^{\alpha} \exp(i\mathbf{q} \cdot \mathbf{r}) = i^{\alpha} |\mathbf{q}|^{\alpha} \exp(i\mathbf{q} \cdot \mathbf{r})$ Fact 1 : simple algebraic structure :

$$[X_n, X_{n'}] = (n - n')X_{n+n'}$$
, $[X_n, Y_m] = \left(\frac{n}{z} - m\right)Y_{n+m}$

 \rightarrow Generate Y_m from $Y_{-1/z} = -\partial_r$. Fact 2 : LSI-invariant Schrödinger operator :

 $\mathcal{S} := -\mu \partial_t + z^{-2} \nabla_{\mathbf{r}}^z$

Let $x_0 + \xi = 1 - 2/z + (2 - z)\gamma/\mu$. Then $[S, Y_m] = 0$ and

$$[S, X_0] = -S$$
, $[S, X_1] = -2tS + \frac{2\mu}{z}(x - x_0)$

 $\implies S\phi = 0$ is Isi-invariant equation, if $x_{\phi} = x_0$.

Physical assumption (hidden & approximate) : equations of motion remain of first order in ∂_t , even after renormalisation.

Fact 3 : non-trivial conservation laws : iterated commutator with $G := Y_{1-1/z}$, ad $_{G.} = [., G]$

$$M_{\ell} := (\mathrm{ad}_{G})^{2\ell+1} Y_{-1/z} = a_{\ell} \mu^{2\ell+1} \nabla_{\mathsf{r}}^{(2\ell+1)(1-z)+1}$$

For z = 2, $a_{\ell} = 0$ if $\ell \ge 1$. For a *n*-point function $F^{(n)} = \langle \phi_1 \dots \phi_n \rangle$, $M_{\ell} F^{(n)} = 0$ gives in momentum space

$$\left(\sum_{i=1}^{n} \mu_i^{2\ell-1} |\mathbf{k}_i|^{2\ell-(2\ell-1)z}\right) \widehat{F}^{(n)}(\{t_i, \mathbf{k}_i\}) = 0$$
$$\left(\sum_{i=1}^{n} \mathbf{k}_i\right) \widehat{F}^{(n)}(\{t_i, \mathbf{k}_i\}) = 0$$

 $\implies \text{momentum conservation & conservation of } |\mathbf{k}|^{\alpha} !$ analogous to relativistic factorisable scattering ZAMOLODCHIKOV² 79, 89 equil. analogy : 2D Ising model at $T = T_c$ in magnetic field **Consequence** : a lsi-covariant 2*n*-point function $F^{(2n)}$ is only non-zero, if the 'masses' μ_i can be arranged in pairs $(\mu_i, \mu_{\sigma(i)})$ with i = 1, ..., n such that $\mu_i = -\mu_{\sigma(i)}$. generalised Galilei-invariance with $z \neq 2 \implies$ integrability **Corollary 1** : Bargman rule : $\langle \phi_1 ... \phi_n \widetilde{\phi}_1 ... \widetilde{\phi}_m \rangle_{\mathbf{0}} \sim \delta_{n,m}$ **Corollary 2** : derive reduction formulæ for averages : go to stochastic field-theory, action JANSSEN 92, DE DOMINICIS,...

$$\mathcal{J}[\phi, \widetilde{\phi}] = \mathcal{J}_{\mathbf{0}}[\phi, \widetilde{\phi}] \underbrace{-T \int \widetilde{\phi}^2 - \int \widetilde{\phi}_{t=0} C_{init} \widetilde{\phi}_{t=0}}_{+ \mathcal{J}_b[\widetilde{\phi}] : \text{noise}}$$

 $\widetilde{\phi} : \text{ response field }; \qquad C(t,s) = \langle \phi(t)\phi(s) \rangle, \ R(t,s) = \langle \phi(t)\widetilde{\phi}(s) \rangle \\ \underbrace{\text{averages}}_{\text{identify masses}} : \langle A \rangle_{\mathbf{0}} := \int \mathcal{D}\phi \mathcal{D}\widetilde{\phi} \ A[\phi,\widetilde{\phi}] \exp(-\mathcal{J}_{\mathbf{0}}[\phi,\widetilde{\phi}]) \\ \underbrace{\text{identify masses}}_{\text{identify masses}} (\text{generalised Bargman rule}) :$

$$\mu_\phi = -\mu_{\widetilde{\phi}}$$

application to the response

$$R(t,s) = \left\langle \phi(t)\widetilde{\phi}(s) \right\rangle = \left\langle \phi(t)\widetilde{\phi}(s)e^{-\mathcal{J}_{b}[\widetilde{\phi}]} \right\rangle_{0}$$
$$= \left\langle \phi(t)\widetilde{\phi}(s) \right\rangle_{0} = R_{0}(t,s)$$

Bargman rule ⇒ response function independent of noise ! **left side :** computed in stochastic models **right side : local scale-symmetry** of **deterministic** equation

Corollary 3 : response function noise-independent

$$R(t,s;\mathbf{r}) = R(t,s)\mathcal{F}^{(\mu_1,\gamma_1)}(|\mathbf{r}|(t-s)^{-1/z})$$

$$R(t,s) = r_0 s^{-a} \left(\frac{t}{s}\right)^{1+a'-\lambda_R/z} \left(\frac{t}{s}-1\right)^{-1-a'}$$

$$\mathcal{F}^{(\mu,\gamma)}(\mathbf{u}) = \int_{\mathbb{R}^d} \frac{\mathrm{d}\mathbf{k}}{(2\pi)^d} |\mathbf{k}|^{\gamma} \exp\left(\mathrm{i}\mathbf{u}\cdot\mathbf{k}-\mu|\mathbf{k}|^z\right)$$

choice of the (quasi-)primary operators ?

Finite transformation (spatial part here for z = 2): $t = \beta(t'), \mathbf{r} = \mathbf{r}' \sqrt{\frac{\mathrm{d}\beta(t')}{\mathrm{d}t'}}$ and $\beta(0) = 0$ $\phi(t,\mathbf{r}) = \dot{\beta}(t')^{-x/2} \quad \left(\frac{\mathrm{d}\ln\beta(t')}{\mathrm{d}\ln t'}\right)^{-\xi} \quad \exp\left[-\frac{\mathcal{M}\mathbf{r}'^2}{4}\frac{\mathrm{d}\ln\beta(t')}{\mathrm{d}t'}\right]\phi'(t',\mathbf{r}')$ extra transformation mass term reduce to usual Isi-primary operator $\Phi(t, \mathbf{r}) := t^{-2\xi/z} \phi(t, \mathbf{r})$. Then $\left| \Phi(t) = \dot{\beta}(t')^{-(x+2\xi)/z} \Phi'(t') \right|$, transforms as a primary. a) mean-field equation $\partial_t m = \Delta m + 3(\lambda^2 - v(t))m$ reduces to diffusion equation $\partial_t \Phi = \Delta \Phi$ via et.

$$m(t, \mathbf{r}) = \Phi(t, \mathbf{r}) \exp \int_0^1 d\tau \ 3(\lambda^2 - v(\tau))$$

two cases :
$$\begin{cases} \text{if } T = T_c \Leftrightarrow \lambda^2 = 0 : \quad \Phi(t) \sim t^{1/2} m(t) \\ \text{if } T < T_c \Leftrightarrow \lambda^2 > 0 : \quad \Phi(t) \sim 1 \cdot m(t) \end{cases}$$

⇒ magnetisation m(t) and primary operator $\Phi(t)$ distinct b) kinetic spherical model equation

$$\partial_t \phi(t) = \Delta \phi(t) - v(t) \phi(t) + \mathrm{noise} \ , \ v(t) \sim t^{-1}$$

gauge transformation $\Phi(t) = \phi(t) \exp\left[-\int_0^t d\tau v(\tau)\right]$, gives diffusion eq. for Φ

* 2nd-order ε -expansion disagrees with lattice data_{PLEIMLING} & GAMBASSI 05 * a' - a < 0 required to match LSI with lattice data, but still disagrees with FT

 \Rightarrow resum ε -expansion to be able to compare with lattice data?

Some known values of *a*, *a*' and λ_R/z at $T = T_c$.

model	d	а	a' — a	λ_R/z	Réf.
lsing	1	0	-1/2	1/2	Godrèche
					& Luck 00
	2	0.115	-0.17(2)	0.732(5)	Н & Р 03
	3	0.506	-0.022(5)	1.36(2)	Н & Р 03
$_{\rm EA}$ spin glass	3	0.060(4)	-0.76(3)	0.38(2)	Н & Р 05
FA	1	1	-3/2	2	Mayer et al 06
	> 2	1 + d/2	-2	2 + d/2	Mayer et al 06
contact proc.	1	-0.681	0.270(10)	1.76(5)	H, E & P 06
NEKIM	1	-0.430(2)	0.00(1)	1.9(2)	Odor 06
OJK model	≥ 2	(d - 1)/2	-1/2	<i>d</i> /4	Mazenko 04

 \implies : $a \neq a'$ should be the generic case.

 \implies : order-parameter m(t) does in general **not** transform in the most simple way !

Corollary 4 :

Correlators obtained from factorised 4-point responses :

$$\mathcal{C}(t,s)=\langle \phi(t)\phi(s)
angle =\langle \phi(t)\phi(s)e^{-\mathcal{J}_b[\widetilde{\phi}]}
angle_{m{0}}$$

example : contribution of 'initial' noise at time u :

$$C_{\text{init}}(t, s; \mathbf{r}) = \int_{\mathbb{R}^{2d}} d\mathbf{R} d\mathbf{R}' \underbrace{\mathcal{F}^{(4)}(t, s, u; \mathbf{r}, \mathbf{R}, \mathbf{R}')}_{\text{4-pt function}} \underbrace{\mathbf{C}(u, \mathbf{R} - \mathbf{R}')}_{\text{(initial' correlator)}}$$
$$= c_0 (ts)^{2\xi/z + \Gamma} s^{4\tilde{x}/z - 2\Gamma} (t - s)^{-2(2\xi + x)/z}$$
$$\times \int_{\mathbb{R}^d} d\mathbf{k} \, |\mathbf{k}|^{2\beta} \exp\left[i\mathbf{r} \cdot \mathbf{k} - \alpha |\mathbf{k}|^z (t - s)\right] \widehat{\mathbf{C}}(s, \mathbf{k})$$

where we have also sent $u \rightarrow s$. Relevant, e.g. for **phase-ordering kinetics** $\rightarrow z = 2_{\text{Bray & RUTENBERG 94}}$

Ising model, more precise 'initial' correlator : Ohta, Jasnow, Kawasaki '82

$$\mathbf{C}(t;\mathbf{r}) = \frac{2}{\pi} \arcsin\left(\exp\left[-\frac{\mathbf{r}^2}{L(t)^2}\right]\right)$$

theory is built on :

- a) simple scaling domain sizes $L(t) \sim t^{1/z}$
- b) invariance under Möbius transformation $t\mapsto t/(\gamma t+\delta)$
- c) Galilei-invariance generalised to $z \neq 2$

together with spatial translation-invariance

- \implies extended Bargman rules
- \implies factorisation of 2*n*-point functions

Möbius transformation	autoresponse $R(t,s)$
generalised Galilei-invariance	space-time response $R(t, s; \mathbf{r})$
factorisation	two-time correlation function

Example : lsing model, space-time behaviour (parameter-free !) :

spatio-temporally integrated response Ising model $T < T_c$ (a,b) 2D; $\mu = 1, 2, 4$ (c,d) 3D; $\mu = 1, 2, 4$ $\int_0^s du \int_0^{\sqrt{\mu s}} dr r^{d-1} R(t, u; \mathbf{r}) = s^{d/2-s} \rho^{(2)}(t/s, \mu)$

MH & M. Pleimling, Phys. Rev. E68, 065101(R) (2003)

analogous results in the q-states 2D Potts model, $T < T_c$

E. LORENZ & W. JANKE, EUROPHYS. LETT. 77, 10003 (2007)

2D Ising model, $T < T_c$: autocorrelator in the scaling limit

$$C(ys,s) = C_0 y^{\rho} (y-1)^{-\rho-\lambda_C/z} \int_0^\infty dx \ e^{-x} f_{\nu} \left(\sqrt{\frac{x}{y-1}} \right)$$
$$f_{\nu}(\sqrt{u}) = \int_0^\infty dv \ \arcsin\left(e^{-\nu v}\right) J_0(\sqrt{uv})$$

z = 2

of practical importance : 'good' choice of 'initial' correlations $C_{\rm ini}(\mathbf{r}) = c_0 \delta(\mathbf{r})$ not sufficient

Baumann & MH 10

 \implies for the first time, a theoretical calculation for C(t,s) reproduces the simulations for **all** t/s!

Tests of LSI for $z \neq 2$:

- spherical model with conserved order-parameter, $T = T_c$, z = 4 BAUMANN & MH 06
- Mullins-Herring model for surface growth, z = 4

RÖTHLEIN, BAUMANN, PLEIMLING 06

- spherical model with long-ranged interactions, $T \le T_c$, $0 < z = \sigma < 2$ Cannas et al. 01; Baumann, Dutta, MH 07; Dutta 08
- ferromagnets at their critical point (Ising, XY), $z \approx 2.0 2.2$ MH, ENSS, PLEIMLING 06; ABRIET & KAREVSKI 04
- critical particle-reaction models (DP ?, NEKIM), $z \approx 1.6-2$ $_{
 m ODOR\ 06}$
- particle-reaction models with Lévy-flight transport, $0 < z = \eta < 2$ Durang & MH 09

important : consideration of invariant differential equation

NB : all of the exactly solved models in this list are markovian !

What tests of LSI have been achieved?

1. $\mathbf{R}(t,s)$:

- $T < T_c, d = 2$: Ising, Potts, spherical (A&B), disord. Ising
- $T < T_c, d = 3$: Ising, XY, spherical (A&B)
- $T = T_c, d \le 2$: Ising, spherical (A&B), HvL, DP ?, NEKIM
- $T = T_c, d = 3$: Ising, spherical (A&B), BCPD/L, BPCPD
- growth : Edwards-Wilkinson, Mullins-Herring
- 2. $R(t, s; \mathbf{r})$:
 - $T < T_c$: Ising, Potts-3 & 8, spherical (A&B)
 - $T = T_c$: Ising 1D, spherical (A&B), BCPD/L, BPCDP
 - growth : Edwards-Wilkinson, Mullins-Herring

 $\ensuremath{\text{Difficulty}}$: oscillating dependence on $|\mathbf{r}|$

- 3. C(t,s):
 - $T < T_c$: Ising 2D, Potts 2D, spherical (A&B)
 - $T = T_c$: Ising 1D, spherical (A&B), BCPD/L, BPCPD
 - growth : Family, Edwards-Wilkinson, Mullins-Herring

Required : precise single-time correlator $C(t, \mathbf{r})$

IV. Conclusions

() look for extensions of dynamical scaling in ageing systems

recently, scaling derived for phase-ordering $\operatorname{ARENZON}$ ET AL. 07

- Phere : hypothesis of generalised Galilei-invariance
- leads to Bargman rule if z = 2 and further to 'integrability' if z ≠ 1,2.
- hidden dynamical symmetry of deterministic part of (linear & first-order !) Langevin equations
- **5** Tests : derive two-time response and correlation functions
- LSI exactly proven for linear Langevin equations very good numerical evidence for non-linear systems

Some questions (the list could/should be extended) :

- how to physically justify Galilei-invariance?
- how to extend to non-linear equations?
- non-markovian effects? choice of fractional derivative?
- what is the algebraic (non-Lie!) structure of LSI?
- treatment of master equations with LSI?

Vol. 2 – co-author M. **Pleimling** – will treat ageing phenomena in simple magnets and LSI (to appear still in 2010)