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Most of the work done in collaboration with T. Reichenbach
(Rockefeller) and E. Frey (LMU Munich)

@ Biological motivation: Experiments on microbial populations
@ The rock-paper-scissors games in well-mixed populations

@ The zero-sum case

o General case

@ The effect of mutations
@ Spatial stochastic effects in the May-Leonard model

e Co-evolution, mobility & pattern formation

e Mathematical modelling & the impact of noise

e Spiral waves and phase diagram
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@ Biological motivation: Experiments on microbial populations
@ The rock-paper-scissors games in well-mixed populations

@ The zero-sum case

o General case

e The effect of mutations
@ Spatial stochastic effects in the May-Leonard model

e Co-evolution, mobility & pattern formation
e Mathematical modelling & the impact of noise
e Spiral waves and phase diagram

Role of fluctuations & spatial degrees of freedom?
How do they affect the co-evolution?
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Microbial laboratory communities J
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Colicinogenic Bacteria & Rock-paper-scissors Game

Central question in biology & ecology:
Mechanisms allowing the maintenance of biodiversity? J
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Colicinogenic Bacteria & Rock-paper-scissors Game

Mechanisms allowing the maintenance of biodiversity? J

Example of cyclic competition in microbial communities:

@ C: Toxin producing (colicinogenic) E.coli carry a ‘col’ plasmid:
genes encoding the colicin (toxin), a colicin-specific immunity
protein (no ‘suicide’) and a lysis protein (— release of the colicin)

@ S: Colicin-sensitive bacteria (no cost for poison & antidote)

@ R: Resistant bacteria are mutations of S with alterate membrane
proteins that bind & translocate colicin (cost for antidote)
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Colicinogenic Bacteria & Rock-paper-scissors Game

Mechanisms allowing the maintenance of biodiversity? J

Example of cyclic competition in microbial communities:

@ C: Toxin producing (colicinogenic) E.coli carry a ‘col’ plasmid:
genes encoding the colicin (toxin), a colicin-specific immunity
protein (no ‘suicide’) and a lysis protein (— release of the colicin)

@ S: Colicin-sensitive bacteria (no cost for poison & antidote)

@ R: Resistant bacteria are mutations of S with alterate membrane
proteins that bind & translocate colicin (cost for antidote)

C-S-R community satisfies a “rock-paper-scissors” relationship:
rock crushes scissors, scissors cut paper and paper wraps rock

Cc

3
R outgrows C: C kills S .\.{j
no cost for ‘col’ .

R S >

>

S outgrows R: better \ ﬁ -
nutrient uptake
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Experimental observations

Co-evolution vs extinction in communities of colicinogenic bacteria
The role of the spatial environment:
Dynamics on Petri dishes (spatial structure) and in flasks (well-mixed)

B. Kerr et al., Nature 418, 171 (2002) Statio Plat
I Plate
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Reproduced from Nature 418, 171 (2002)
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Spatial structure & local interactions matter !

“... ecologists have increasingly turned, since G. F. Gause’s work in
the 1930s, to manipulating mini-worlds inhabitated by microbial
species. The paper by Kerr et al. gives a new impetus to such
investigations, by stressing the importance of the geometry of
neighbourhoods. Many habitats resemble the surface of a pizza
more than a well-stirred bowl of soup”

M. A. Nowak and K. Sigmund, ‘news and views’ in Nature 418, 138 (2002)
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Spatial structure & local interactions matter !

“... ecologists have increasingly turned, since G. F. Gause’s work in
the 1930s, to manipulating mini-worlds inhabitated by microbial
species. The paper by Kerr et al. gives a new impetus to such
investigations, by stressing the importance of the geometry of
neighbourhoods. Many habitats resemble the surface of a pizza
more than a well-stirred bowl of soup”

M. A. Nowak and K. Sigmund, ‘news and views’ in Nature 418, 138 (2002)

Central questions:
@ Is there a transition between population’s uniformity and
biodiversity?
@ What is the role of mobility and “intrinsic noise”?
@ Can we understand the spatio-temporal patterns?
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Deterministic well-mixed rock-paper-scissors

Rock-paper-scissors (RPS):
metaphor for co-evolutionary dynamics with cyclic dominance J

N individuals of 3 species in an “urn”

ABK—‘%AA, B EBB, Ake @ absorbing fixed point

® - oo ° @ reactive (center) fixed point
@’ @

Ce O|Ce O

‘e Vol @“ @

Rate (replicator) equations for the
densities a, b and

a = a[kcb— kg ] =04
b = blkac—keal=op
co= [kBa — kAb] =03
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Well-mixed rock-paper-scissors: stochastic evolution

Yet, in experiments there is always extinction in finite time

N < « = finite-size fluctuations are important !

Description in terms of probability distribution: P(a, b,c;t) = P(x,) J

Stochasticity causes loss of
coexistence

)

@ Intrinsic fluctuations of the
densities (noise strength
o Nf1/2)

@ K = a"bscke no longer a
constant of motion

@ “Random walk” in the phase
portrait

@ — boundary is always
reached: extinction
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Extinction probability

Probability P.,:(t) of having 2 species extinct at time {?
@ Rate equations say: Pext(t) = 0 (always coexistence)
@ Microbial populations in flasks: Peyx; — 1 quickly (ioss of biodiversity)

Finite-size fluctuations are responsible for P, — 1 in finite time

Fokker-Planck equation (k. = ks = kc = 1) in polar coordinates for RPS:
OtP = —wdy P+ 125 [:—2 02 + o + 8,2} P, with absorbing boundary

(starting from the fixed point)

Phys. Rev. E 74, 051907 (2006)
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Extinction probability

Probability P.,:(t) of having 2 species extinct at time {?
@ Rate equations say: Pext(t) = 0 (always coexistence)
@ Microbial populations in flasks: Peyx; — 1 quickly (ioss of biodiversity)

Finite-size fluctuations are responsible for P, — 1 in finite time

Fokker-Planck equation (k. = ks = kc = 1) in polar coordinates for RPS:
OtP = —wdy P+ 125 [:—2 02 + o + 8,2} P, with absorbing boundary

(starting from the fixed point)

1

1st-passage problem —

Pext(U) ~1—(14+u)e Y, o8
which is scaling function of 06
U— 24 t

(1+v3)2 N Rut 04
Average extinction time Ty 0z
scales linearly with N: Tg < N o

0 02 04 06 08 1 12 14
N

Phys. Rev. E 74, 051907 (2006)
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Well-mixed RPS dynamics: the general case

General game-theoretic formulation: interactions specified by the
payoff matrix &2

When A plays against B, payoffs are 1 and —e < 0 (resp.)

Mean-field description (replicator equations): s; = s;[(£?s); —s.#s],
where s = (a,b,c) and (s); is the fitness (reproductive potential) of
species i, while s.#s is the population’s average payoff.

Interior fixed point s* = (1/3,1/3,1/3) is (i) an attractor if € < 1; (ii)
unstable if € > 1 = emergence of heteroclinic cycles; (iii) a center if
e =1 (corresponds to the zero-sum game case just discussed)
When N < o finite-size fluctuations cause the extinction of two
species after average time T,y (starting from s*), where

@ Tox < exp(constant x N), when € < 1
@ Tgxo<log(N), when & > 1
@ Texe< N, ife=1
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RPS with mutations in a well-mixed population

In addition to cyclic dominance, individuals can now switch from one
strategy (species) to another with some small rate y. (arxiv:0912.5179) J

A )b A w A
) ) B

a = alb—ec—(1—¢){ab+bc+ac}]+u(1—3a)

b = blc—ea—(1—¢){ab+bc+ac}]+u(1—3b),
withc=1—-a—bands*=(1/3,1/3,1/3) is interior fixed point.
Bifurcation diagram: 3 scenarios depending on whether
A=(e—1—-18u)/6and pare >00r <0

<0
(a) Stable interior fixed point
lows spiralling inwards)

" (e 1)/18

Stable oscillations
A>0 ® Robust cycles
oL——o_ - T =

1 7 e
11=0), £>- 1: heteroclinic cycles
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Limit cycle in the RPS game with mutations
Normal form (supercrit. Hopf bifurcation) in polar coordinates:

= r(A+Br?
® = wy—ar?
. _ 18 (1+2v3wp)
with o = (1+¢)/(2v3), « 7(1+€2)+e(13—9u)+9u(1+9u) °
ﬁ’—1—8—( 6 (1+2¢Vv3ay)
7(1+€2)+e(13—9u)+9u(1+9u

))<ommmuu
= when A > 0, limit cycle of radius r.. =

Vil

0.05f

Xg(0)

-0.05¢

=-0.15¢

-0.10

0 ’ 0.10
X
()
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Stochastic dynamics of the RPS game with mutations

Moran Process with rates

T~/ = (1+{f;—f}) s;sj+us;, with
i,je (A B,C), fa=c—eb,
fg=a—ec, fc=b—eaand
f=(1—-¢)(ab+bc+ ac)

o
2]

o
~

o
w

Van Kampen expansion in
X,':S,'—1/3:

8tP(X7 t) = _aX,‘ [XJ‘Q‘(IJ(S*)P(X7 t)] + O%ime—de%gndem c?éérﬁsity of CA)'5
%‘%U(S*)axiaxjp(xv t)v

where

Y <—;1:3u —1@ +£)>

o
)

Time—-dependent density of B

o
3
]

°
Y
g

o
e
&

€
3

2(1+3u) (2 -1
Z=""9Nn <1 2)

—3u

Wl )

Time—dependent density
o
@
8

o
@
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Quasi-cycles in the RPS game with mutations

When A < 0, fluctuations e« N~1/2
with large amplitude:

resonance amplification (McKane and
Newman PRL94, 218102 (2005)) &
“Phase-forgetting” quasi-cycles

Fourier transform x(2) & power
spectrum (VK expansion):
P(Q) = (X(Q)]?) =
8(1+3) Q2+0?

N (a2-02)’+(2202’
902 =1+2v3ewy+9u(9u+1—¢)
Amplification at frequency

5 1/2
0 =0 (2 1—(9%) —1>
Autocorrelations (7 — oo):
(Xa(T+t)xa(7)) =

4(143u) o IAlt
(3+Nu) em cos (apt)
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Time-dependent density
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Average Escape time from the interior fixed point

From the fixed point s* = (1/3,1/3,1/3), what is the time Tes: to
reach a cycle on which oscillations are of amplitude R?

J

400 S0 60 700 800 S0 1000 500
N

1000 1500 2000 2500 3000
N

Backward Kolmogorov equation & van Kampen expansion about s*:

[AP + <1+3“> ] Tesc(p) + (%) Tosc(p) = —1
+ absorbing/reflecting boundaries at p = Rand p =0 =
3NR2A
Tesc(R) = 57 fy ™ %(1 - e¥) = Asymptotics (large [A|NR?):

. 3|A|RN
@ A <0: Tege ~ (%) exp( |1-|%3ll )

© 1> 0: Toso = 7 [In(%EN) +057721. ]
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Spatial population model in cyclic competition

Spatial May-Leonard model
@ Warm-up: well-mixed system
@ Interacting-particle (individual-based) approach
@ Spatio-temporal properties & pattern formation
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May-Leonard model: dynamic rules

Cyclic competition of 3 species A,B, C and empty sites ©
@ Selection: cyclic dominance, rate &
@ Reproduction, rate u
@ Bacteria swim and tumble =

Mobility: exchange among nearest neighbours, rate ¢

@ Finite carrying capacity: at most occupied 1 individual per site

Selection processes  Reproduction processes

AlBut | BN | el |
Hc—HE HE BN
a

Individuals can move

birth

.
e HEE EEE
dominance ..= ==.

exchange
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Well-mixed May-Leonard model (warm-up)

Cyclic co-evolutionary dynamics J

Selection:  Reproduction:

ABZ oA AoL AA

BCZ%oB BotBB
AS o

R. May & W. Leonard, SIAM J. Appl. Math. 29,
243 (1975)
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Well-mixed May-Leonard model (warm-up)

Cyclic co-evolutionary dynamics |
Selection:  Reproduction: Dynamics restricted on an
ABS oA Ao AA invariant manifold:
BCZ%oB BotBB c
AS o

@ Reactive fixed point is
unstable

@ Heteroclinic cycles around the
boundary of the phase portrait

@ Finite-size fluctuations: again,

extinction in finite time
(Tex/N < )

R. May & W. Leonard, SIAM J. Appl. Math. 29,
243 (1975)
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Well-mixed May-Leonard model (warm-up)

Cyclic co-evolutionary dynamics

Selection:  Reproduction: Dynamics restricted on an
ABS oA Ao AA invariant manifold:
BCZ%oB BotBB c

AS o

@ Reactive fixed point is
unstable

@ Heteroclinic cycles around the
boundary of the phase portrait

@ Finite-size fluctuations: again,

extinction in finite time
(Tex/N < )

Without spatial structure,
coexistence is unstable

.. . R. May & W. Leonard, SIAM J. Appl. Math. 29,
— loss of biodiversity | y P

243 (1975)
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Cyclic Competition on Square Lattices (N =L

Known:
@ Well-mixed: loss of biodiversity in finite time [May & Leonard, 1975]
@ Immobile individuals on lattices: noisy patches [Durrett & Levin, 1998]

Here: stochastic co-evolution of N mobile individuals in cyclic
competition J

Diffusion constant: D = ¢/2L?
How does the system’s
behaviour depend on D?

Mobility: nearest-neighbour pair
exchanges

Snapshot for D=3x10"5 L =500,6 =u =1 Snapshot for D=3 x 1074, L =300,6 = u =1
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Cyclic Competition on Square Lattices (N =L

Known:
@ Well-mixed: loss of biodiversity in finite time [May & Leonard, 1975]
@ Immobile individuals on lattices: noisy patches [Durrett & Levin, 1998]

Here: stochastic co-evolution of N mobile individuals in cyclic
competition J

Diffusion constant: D = ¢/2L?
How does the system’s
behaviour depend on D?

Mobility: nearest-neighbour pair
exchanges

@ Size of the emerging spirals increases with the mobility

@ Existence of a mobility threshold =- Below: coexistence.
Above: giant spirals outgrow the lattice, loss of biodiversity

Nature 448, 1046 (2007)

Mauro Mobilia Stochastic dynamics of spatial rock-paper-scissors games



Cyclic Competition on Square Lattices

Stochastic co-dominant dynamics of N mobile individuals J

Mobility included:
nearest-neighbour exchanges
(rate €)

ABEBA ACSCA

Ao L A

Keep diffusion rate D = ¢/2L?
fixed and vary € and L

@ Small systems with low mobility — irregular & noisy patches
@ Larger L and ¢ (D finite) — entanglement of regular spiral waves
@ Transition: noisy patches — regular spirals already for finite €

selection rate=reproduction rate=1, D=10-°

L =200 E=08 L =500 £=5.0

L =300 E=1.8

L =100 g=0.2

Phys. Rev. Lett. 99, 238105 (2007) + J. Theor. Biol. 254, 368 (2008)
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Stability of Biodiversity

When is biodiversity stable and how is it preserved? J

@ Systems with well-mixed population: biodiversity is lost in finite
time!

@ For high mixing rate D: again the well-mixed scenario

@ Is there a critical value of the diffusivity D below which
biodiversity is maintained ?

@ If so, what are the spatio-temporal properties of the patterns
formed by the individuals?

Mauro Mobilia Stochastic dynamics of spatial rock-paper-scissors games



Stability of Biodiversity

When is biodiversity stable and how is it preserved?

@ Systems with well-mixed population: biodiversity is lost in finite
time!

@ For high mixing rate D: again the well-mixed scenario
@ Is there a critical value of the diffusivity D below which
biodiversity is maintained ?
@ If so, what are the spatio-temporal properties of the patterns
formed by the individuals?
How to descriminate between stable/unstable reactive steady states?
Let Tex be the average extinction time and N the size of the system
@ If Tex/N — O(1): neutral / marginal stability
@ If Tex/N — . super-extensive / stable
@ If Tex/N — 0:  sub-extensive / unstable
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Existence of a critical mobility threshold

Biodiversity is lost above a critical mobility threshold D,
Below D.: spiral waves emerge J

3x10°° 3% 107 3% 107%Dc

With Pey: = Prob{only one species after time t = N}

8 Biodiversi =200
o

= (=100
E us L=40
=

2 L=30
5 ogs
5 =20
=
E oo
5 , Uniformity
131078 1107t p, 1w 10—®
WMobility, D

Foro=p=1, D,=(45+05)x 10"
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Loss of biodiversity

@ For large systems, there is a well-defined critical/threshold value
D¢(o, u) for the mobility above which coexistence is (quickly) lost

@ Loss of biodiversity seems related to the size of the emerging
patterns (spiral waves)

How can we rationalise and understand these findings?
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Mathematical description

Description accounting for internal noise in terms of local
densities s(r,t) = (a(r,t), b(r,t),c(r,t))
in the continuum limit (N,e > 1 and D is finite)

Dominating noise contribution arises from reactions —

asi(r,t) = DAsi(r,t) + ai(s) + Ei(s)é

@ Stochastic partial differential equations (Ito)
@ With white noise: (&;(r,1)&;(r', 1)) = §;6(r—r)o(t—t')
@ Exchange of pairs — diffusive terms + noise o N~

@ Reactions — deterministic drift & multiplicative noise with
strength N—1/2

2 sources of noise but, for large systems, noise arising from
reactions dominates over noise due to mobility
Phys. Rev. Lett. 99, 238105 (2007) + J. Theor. Biol. 254, 368 (2008)
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Is such a description accurate?

Hereoc=u=1ande=2-54

Stochastic Lattice Simulations
L=500, D=3x10-5 _L=300, D=3x10-*
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Is such a description accurate?

Description in terms of SPDE :

Expected to be valid for large system sizes and exchange rates
(L& > 1) with finite D = & /212

... But turns out to be valid also for finite &

@ Remarkable correspondence bewteen predictions of the SPDE
and results of lattice simulations

@ SPDE predict scaling:
D — A D implies a rescaling of the spatial coordinates:
x — x/\/A = Magnification, or ‘zoom in’ effect, by factor V4

@ In the lattice simulations: found the same scaling
@ Both descriptions seem to be statistically equivalent
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Spatial correlations

Comparison of the spatial correlation functions gj(r) obtained
from lattice simulations and predicted by the SPDE

(correlation) gaa(T)

gii(r) = lim;_(s;(r, 1)s;(0, 1)) —

(si(r,1))(s;(0,1))

02

p=o=1landD=3x10° L=1000

Lattice simulations
SPDE

01

@ Excellent agreement between
SPDE and lattice simulations

@ Correlation length £eor o< v/D

1e-06

1e-05

0.0001

(diffusion) D

@ < Raising D the size of the
spirals is increased

04

J. Theor. Biol. 254, 368 (2008)
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Mini-summary

About the stochastic spatial May-Leonard model, we have learnt: J

@ Coexistence is stable or unstable, depending on the diffusion
constant D

@ In the coexistence phase (continuum limit), emergence of an
entanglement spiral waves

@ Stochastic dynamics: described by SPDE with (white) noise
(from the reactions) of strength o< N=1/2

@ Remarkable agreement between lattice simulations & SPDE ...
Even for finite values of the exchange rate ¢
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Mini-summary

About the stochastic spatial May-Leonard model, we have learnt: J

@ Coexistence is stable or unstable, depending on the diffusion
constant D

@ In the coexistence phase (continuum limit), emergence of an
entanglement spiral waves

@ Stochastic dynamics: described by SPDE with (white) noise
(from the reactions) of strength o< N=1/2

@ Remarkable agreement between lattice simulations & SPDE ...
Even for finite values of the exchange rate ¢

Remaining questions:
@ Role and influence of internal noise ?
@ Characterisation of the spatio-temporal patterns ?
@ State diagram: when do we have biodiversity/uniformity ?
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Role and influence of internal noise

@ The SPDE provide a faithful description of the stochastic
dynamics in the continnum limit
@ In the SPDE, the noise strength is o« N~1/2 with N — oo
What happens if noise is ignored: d;s(r,t) = DASs;(r,t) + o(s) ?

D=3x10%ando=p=1.
Hi g initial diti Sligh_tl_y' h g initial

SPDE sendtlen - ppg @ Spiral waves in both cases:
share the same velocity and

wavelength

@ SPDE: entanglement of
spirals — robust features

@ PDE: geometrically ordered,
dependence on the initial
condition

Noise acts as a random source
of local inhomogeneities
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Characterisation of spatio-temporal patterns

@ The spiral waves resulting from the SPDE and the PDE share the
same velocity & frequency

@ The dynamics of the PDE, restricted on the

can be recast in the form of a Complex Ginzburg Landau
Equation (CGLE):

dz(r,t) = DAz(r, 1)+ (¢ —iw)z(r, 1) — ca(1 —ic3) | z(r,t) |2 z(r, 1)

@ Give rise to coherent structures, like
spiral waves

@ Travelling-wave ansatz:
z = Ze—iQt-iqr

@ Dispersion relation — velocity,
selected wavevector, frequency

@ Here, spiral waves are the stable
solutions

J. Theor. Biol. 254, 368 (2008)
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Characterisation of spatio-temporal patterns

@ The spiral waves resulting from the SPDE and the PDE share the
same velocity & frequency

@ The dynamics of the PDE, restricted on the ,
can be recast in the form of a Complex Ginzburg Landau
Equation (CGLE):

drz(r,t) = DAz(r, 1) + (¢ —iw)z(r,t) — co(1 —ic3) | z(r, 1) |? z(r, 1)

: _ uc _ 3uc _ o(3u+0)(48u+110)
With ¢ = 535767 @ = 2Bar0)0 ©2 = ~ seu(uize)  and
_ V/3(18u+50)
C3 = g 1io

@ Velocity: v=2v/¢1D

o Wavelength: A = —2%%VD

\/5(1—, [1+c2)
@ Frequency: Q=w+2nv/A,
J. Theor. Biol. 254, 368 (2008)
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Spiral waves’ spreading velocity

Deterministic predictions: v = 2y/¢;D and A = — 2%%VD

vei(1-y/1+)

Expected to be valid for the stochastic model in the continuum limit

Q g=1 P —
K PDEICGLE % o © ©
< s | ©:sPOE Q/‘{Qo/

el
&
3 025

=}
o
£ 9

0125

0008 004 02 1 5 25

(reproduction rate) p

E g=1

< 12

s

=

E'O 64

8

5

H —a

g 0: SPDE o

= 32 IppEICGLE ©
0008 004 02 1 5 25

(reproduction rate) p

@ Agreement between Lattice simulations, SPDE and PDE/CGLE
@ Velocity v scales as vD

@ Wavelength A scales as vD
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State diagram

@ Spiral waves in the coexistence phase: A o< /D

@ Size of the spiral increases with o< v/D ...

@ ... for Dup to D¢(u,o), where A = A¢

@ When D > D.: the spirals outgrow the system, biodiversity is lost

To obtain the state diagram for o = 1 (unit of time), one exploits the
2
scaling relation A(D, ) o< v/D: De(p) = (ﬁ) D

Lattice simulations SFDE PDE/CGLE (analytic)

@ D, monotonic function
@ Small u: Dg o<

1%10°8
Uniformity

g

Mathematical descriptions in
terms of interacting particles,
- SPDE, PDE (analytic) all lead
to the same state diagram

1x104

Critical mobility

1x10-5

0.01 1 100
Reproduction rate, Nature 448, 1046 (2007)

Mauro Mobilia Stochastic dynamics of spatial rock-paper-scissors games



Conclusion

Combining various mathematical and theoretical approaches:
@ Well-mixed population: fluctuations (finite size effect) —
extinction and uniformity

@ Oscillatory dynamics of the RPS game: limit cycle in the
presence of mutations and quasi-cycles in the presence of
demographic noise

@ Local interactions: biodiversity and pattern formation

@ Mobility mediates bewteen these scenarios: above a threshold
D, biodiversity is lost

@ Continuum limit: stochastic dynamics aptly described by SPDE
@ Internal noise: random source of inhomogeneities — robustness
@ Spirals: characterisation inferred from a proper CGLE
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Conclusion

Combining various mathematical and theoretical approaches:

@ Well-mixed population: fluctuations (finite size effect) —

extinction and uniformity

@ Oscillatory dynamics of the RPS game: limit cycle in the
presence of mutations and quasi-cycles in the presence of
demographic noise
Local interactions: biodiversity and pattern formation
Mobility mediates bewteen these scenarios: above a threshold
D, biodiversity is lost
Continuum limit: stochastic dynamics aptly described by SPDE
Internal noise: random source of inhomogeneities — robustness
Spirals: characterisation inferred from a proper CGLE
Bacteria in hard/soft agar have low/high mobility: Experimental
confirmation of the existence of D;?
Spiral waves observed in other microbial communities:
Myxobacteria and Dyctostelium
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Conclusion

Combining various mathematical and theoretical approaches:

Well-mixed population: fluctuations (finite size effect) —
extinction and uniformity

Oscillatory dynamics of the RPS game: limit cycle in the
presence of mutations and quasi-cycles in the presence of
demographic noise

Local interactions: biodiversity and pattern formation

Mobility mediates bewteen these scenarios: above a threshold
D, biodiversity is lost

Continuum limit: stochastic dynamics aptly described by SPDE
Internal noise: random source of inhomogeneities — robustness
Spirals: characterisation inferred from a proper CGLE

Bacteria in hard/soft agar have low/high mobility: Experimental
confirmation of the existence of D;?

Spiral waves observed in other microbial communities:
Myxobacteria and Dyctostelium

Methods and approach can be applied to epidemiology,
behavioural sciences , chemistry ...
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