Evolutionary Dynamics and Pattern Formation in Communities Exhibiting Cyclic Dominance

Mauro Mobilia

Department of Applied Mathematics, School of Mathematics University of Leeds

Workshop on "Non-equilibrium dynamics of spatially extended interacting particle systems"
University of Warwick, 12 January 2010

Outline

Most of the work done in collaboration with T. Reichenbach (Rockefeller) and E. Frey (LMU Munich)

- Biological motivation: Experiments on microbial populations
- The rock-paper-scissors games in well-mixed populations
 - The zero-sum case
 - General case
 - The effect of mutations
- Spatial stochastic effects in the May-Leonard model
 - Co-evolution, mobility & pattern formation
 - Mathematical modelling & the impact of noise
 - Spiral waves and phase diagram

Outline

- Biological motivation: Experiments on microbial populations
- The rock-paper-scissors games in well-mixed populations
 - The zero-sum case
 - General case
 - The effect of mutations
- Spatial stochastic effects in the May-Leonard model
 - Co-evolution, mobility & pattern formation
 - Mathematical modelling & the impact of noise
 - Spiral waves and phase diagram

Role of fluctuations & spatial degrees of freedom?

How do they affect the co-evolution?

Microbial laboratory communities

Colicinogenic Bacteria & Rock-paper-scissors Game

Central question in biology & ecology:

Mechanisms allowing the maintenance of biodiversity?

Colicinogenic Bacteria & Rock-paper-scissors Game

Mechanisms allowing the maintenance of biodiversity?

Example of cyclic competition in microbial communities:

- C: Toxin producing (colicinogenic) E.coli carry a 'col' plasmid: genes encoding the colicin (toxin), a colicin-specific immunity protein (no 'suicide') and a lysis protein (→ release of the colicin)
- S: Colicin-sensitive bacteria (no cost for poison & antidote)
- R: Resistant bacteria are mutations of S with alterate membrane proteins that bind & translocate colicin (cost for antidote)

Colicinogenic Bacteria & Rock-paper-scissors Game

Mechanisms allowing the maintenance of biodiversity?

Example of cyclic competition in microbial communities:

- C: Toxin producing (colicinogenic) E.coli carry a 'col' plasmid: genes encoding the colicin (toxin), a colicin-specific immunity protein (no 'suicide') and a lysis protein (→ release of the colicin)
- S: Colicin-sensitive bacteria (no cost for poison & antidote)
- R: Resistant bacteria are mutations of S with alterate membrane proteins that bind & translocate colicin (cost for antidote)

C-S-R community satisfies a "rock-paper-scissors" relationship: rock crushes scissors, scissors cut paper and paper wraps rock

Experimental observations

Co-evolution vs extinction in communities of colicinogenic bacteria

The role of the spatial environment:

Dynamics on Petri dishes (spatial structure) and in flasks (well-mixed)

Spatial structure & local interactions matter!

"... ecologists have increasingly turned, since G. F. Gause's work in the 1930s, to manipulating mini-worlds inhabitated by microbial species. The paper by Kerr et al. gives a new impetus to such investigations, by stressing the importance of the geometry of neighbourhoods. Many habitats resemble the surface of a pizza more than a well-stirred bowl of soup"

M. A. Nowak and K. Sigmund, 'news and views' in Nature 418, 138 (2002)

Spatial structure & local interactions matter!

"... ecologists have increasingly turned, since G. F. Gause's work in the 1930s, to manipulating mini-worlds inhabitated by microbial species. The paper by Kerr et al. gives a new impetus to such investigations, by stressing the importance of the geometry of neighbourhoods. Many habitats resemble the surface of a pizza more than a well-stirred bowl of soup"

M. A. Nowak and K. Sigmund, 'news and views' in Nature 418, 138 (2002)

Central questions:

- Is there a transition between population's uniformity and biodiversity?
- What is the role of mobility and "intrinsic noise"?
- Can we understand the spatio-temporal patterns?

Deterministic well-mixed rock-paper-scissors

Rock-paper-scissors (RPS):

metaphor for co-evolutionary dynamics with cyclic dominance

N individuals of 3 species in an "urn"

Rate (replicator) equations for the densities *a*, *b* and *c*:

$$\dot{\mathbf{a}} = \mathbf{a}[k_C b - k_B c] \equiv \alpha_1$$

 $\dot{\mathbf{b}} = \mathbf{b}[k_A c - k_C \mathbf{a}] \equiv \alpha_2$

 $\dot{c} = c[k_B a - k_A b] \equiv \alpha_3$

- absorbing fixed point
- reactive (center) fixed point

Well-mixed rock-paper-scissors: stochastic evolution

Yet, in experiments there is always extinction in finite time

 $N < \infty \Rightarrow$ finite-size fluctuations are important!

Description in terms of probability distribution: $P(a, b, c; t) = P(\mathbf{x}, t)$

- $K = a^{k_A} b^{k_B} c^{k_C}$ no longer a constant of motion
- "Random walk" in the phase portrait
- → boundary is always reached: extinction

Stochasticity causes loss of coexistence

Extinction probability

Probability $P_{ext}(t)$ of having 2 species extinct at time t?

- Rate equations say: $P_{ext}(t) = 0$ (always coexistence)
- ullet Microbial populations in flasks: $P_{ext}
 ightarrow 1$ quickly (loss of biodiversity)

Finite-size fluctuations are responsible for $P_{\text{ext}} \rightarrow 1$ in finite time

Fokker-Planck equation $(k_A = k_B = k_C = 1)$ in polar coordinates for RPS: $\partial_t P = -\omega_0 \partial_\phi P + \frac{1}{12N} \left[\frac{1}{r^2} \partial_\phi^2 + \frac{1}{r} \partial_r + \partial_r^2 \right] P$, with absorbing boundary (starting from the fixed point)

Extinction probability

Probability $P_{ext}(t)$ of having 2 species extinct at time t?

- Rate equations say: $P_{ext}(t) = 0$ (always coexistence)
- ullet Microbial populations in flasks: $P_{ext}
 ightarrow 1$ quickly (loss of biodiversity)

Finite-size fluctuations are responsible for $P_{\text{ext}} \rightarrow 1$ in finite time

Fokker-Planck equation $(k_A = k_B = k_C = 1)$ in polar coordinates for RPS: $\partial_t P = -\omega_0 \partial_\phi P + \frac{1}{12N} \left[\frac{1}{r^2} \partial_\phi^2 + \frac{1}{r} \partial_r + \partial_r^2 \right] P$, with absorbing boundary (starting from the fixed point)

1st-passage problem \rightarrow $P_{ext}(u) \approx 1 - (1+u)e^{-u}$, which is scaling function of $u = \frac{24}{(1+\sqrt{3})^2} \frac{t}{N}$

Average extinction time T_{ex} scales linearly with N: $T_{ex} \propto N$

Well-mixed RPS dynamics: the general case

General game-theoretic formulation: interactions specified by the payoff matrix ${\mathscr P}$

$$\mathcal{P} = \begin{array}{ccc} A & C & B \\ O & -\varepsilon & 1 \\ 1 & O & -\varepsilon \\ -\varepsilon & 1 & 0 \end{array}$$

When A plays against B, payoffs are 1 and $-\varepsilon < 0$ (resp.) Mean-field description (replicator equations): $\dot{s_i} = s_i[(\mathscr{P}\mathbf{s})_i - \mathbf{s}.\mathscr{P}\mathbf{s}]$, where $\mathbf{s} = (a,b,c)$ and $(\mathscr{P}\mathbf{s})_i$ is the fitness (reproductive potential) of species i, while $\mathbf{s}.\mathscr{P}\mathbf{s}$ is the population's average payoff. Interior fixed point $\mathbf{s}^* = (1/3,1/3,1/3)$ is (i) an attractor if $\varepsilon < 1$; (ii) unstable if $\varepsilon > 1 \Rightarrow$ emergence of heteroclinic cycles; (iii) a center if $\varepsilon = 1$ (corresponds to the zero-sum game case just discussed) When $N < \infty$ finite-size fluctuations cause the extinction of two species after average time T_{ex} (starting from \mathbf{s}^*), where

- $T_{ex} \propto \exp(\operatorname{constant} \times N)$, when $\varepsilon < 1$
- $T_{ex} \propto \log(N)$, when $\varepsilon > 1$
- $T_{ex} \propto N$, if $\varepsilon = 1$

RPS with mutations in a well-mixed population

In addition to cyclic dominance, individuals can now switch from one strategy (species) to another with some small rate μ . (arXiv:0912.5179)

$$A \xrightarrow{\mu} \begin{cases} B \\ C \end{cases} , \quad B \xrightarrow{\mu} \begin{cases} A \\ C \end{cases} , \quad C \xrightarrow{\mu} \begin{cases} A \\ B \end{cases}$$

$$\dot{a} = a[b - \varepsilon c - (1 - \varepsilon)\{ab + bc + ac\}] + \mu(1 - 3a)$$

$$\dot{b} = b[c - \varepsilon a - (1 - \varepsilon)\{ab + bc + ac\}] + \mu(1 - 3b),$$

with c=1-a-b and $\mathbf{s}^*=(1/3,1/3,1/3)$ is interior fixed point. Bifurcation diagram: 3 scenarios depending on whether $\lambda=(\varepsilon-1-18\mu)/6$ and μ are >0 or <0

Limit cycle in the RPS game with mutations

Normal form (supercrit. Hopf bifurcation) in polar coordinates:

$$\begin{array}{rcl} \dot{r} &=& r(\lambda+\beta r^2)\\ \dot{\omega} &=& \omega_0-\alpha r^2,\\ \\ \text{with } \omega_0 &=& (1+\epsilon)/(2\sqrt{3}), \quad \alpha = \frac{18\omega_0(1+2\sqrt{3}\omega_0)}{7(1+\epsilon^2)+\epsilon(13-9\mu)+9\mu(1+9\mu)}\;,\\ \beta &=& 1-\epsilon - \left(\frac{6\lambda(1+2\epsilon\sqrt{3}\omega_0)}{7(1+\epsilon^2)+\epsilon(13-9\mu)+9\mu(1+9\mu)}\right) < 0\; \textit{(small μ)}\\ \Rightarrow \textit{when $\lambda > 0$, limit cycle of radius $r_\infty = \sqrt{\frac{\lambda}{|\beta|}}$ } \end{array}$$

Stochastic dynamics of the RPS game with mutations

Moran Process with rates $T^{i o j} = \left(1 + \{f_j - \overline{f}\}\right) s_i s_j + \mu s_i$, with $i, j \in (A, B, C)$, $f_A = c - \varepsilon b$, $f_B = a - \varepsilon c$, $f_C = b - \varepsilon a$ and $\overline{f} = (1 - \varepsilon)(ab + bc + ac)$

Van Kampen expansion in $x_i = s_i - 1/3$: $\partial_t P(x,t) = -\partial_{x_i} \left[x_j \mathscr{A}_{ij}(s^*) P(x,t) \right] + \frac{1}{2} \mathscr{B}_{ij}(s^*) \partial_{x_i} \partial_{x_i} P(x,t),$

where

$$\mathscr{A} = \begin{pmatrix} -\frac{1}{3} - 3\mu & -\frac{1}{3}(1+\epsilon) \\ \frac{1+\epsilon}{3} & \frac{\epsilon}{3} - 3\mu \end{pmatrix}$$

$$\mathscr{B} = \frac{2(1+3\mu)}{9N} \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$$

Quasi-cycles in the RPS game with mutations

When $\lambda < 0$, fluctuations $\propto N^{-1/2}$ with large amplitude:

resonance amplification (McKane and Newman PRL94, 218102 (2005)) &

"Phase-forgetting" quasi-cycles

Fourier transform $\widetilde{\mathbf{x}}(\Omega)$ & power spectrum (VK expansion):

$$P(\Omega) = \langle |\widetilde{\mathbf{x}}(\Omega)|^2 \rangle = \frac{8(1+3\mu)}{9N} \frac{\Omega_0^2 + \Omega^2}{(\Omega^2 - \Omega_0^2)^2 + (2\lambda\Omega)^2}, \text{ with}$$

$$9\Omega_0^2 = 1 + 2\sqrt{3}\varepsilon\omega_0 + 9\mu(9\mu + 1 - \varepsilon)$$

Amplification at frequency

$$\Omega^* = \Omega_0 \left(2 \sqrt{1 - \left(\frac{\lambda}{\Omega_0}\right)^2} - 1 \right)^{1/2}$$
 Autocorrelations $(\tau \to \infty)$: $\langle x_A(\tau + t) x_A(\tau) \rangle =$

 $\frac{4(1+3\mu)}{3N} \frac{e^{-|\lambda|t}}{|\lambda|} \cos(\omega_0 t)$

Average Escape time from the interior fixed point

From the fixed point $\mathbf{s}^* = (1/3, 1/3, 1/3)$, what is the time T_{esc} to reach a cycle on which oscillations are of amplitude R?

Backward Kolmogorov equation & van Kampen expansion about s*:

$$\left[\lambda\rho + \left(\frac{1+3\mu}{6N}\right)\frac{1}{\rho}\right]T'_{esc}(\rho) + \left(\frac{1+3\mu}{6N}\right)T''_{esc}(\rho) = -1$$

+ absorbing/reflecting boundaries at ho=R and ho=0 \Rightarrow

$$T_{esc}(R) = rac{1}{2\lambda} \int_0^{-rac{3NR^2\lambda}{1+3\mu}} rac{du}{u} (1-e^u) \Rightarrow ext{Asymptotics (large } |\lambda|NR^2)$$
:

•
$$\lambda < 0$$
: $T_{esc} \simeq \left(\frac{1+3\mu}{6(\lambda R)^2 N}\right) \exp\left(\frac{3|\lambda|R^2 N}{1+3\mu}\right)$

•
$$\lambda > 0$$
: $T_{esc} \simeq \frac{1}{2\lambda} \left[\ln \left(\frac{3\lambda R^2 N}{1+3\mu} \right) + 0.57721... \right]$

Spatial population model in cyclic competition

Spatial May-Leonard model

- Warm-up: well-mixed system
- Interacting-particle (individual-based) approach
- Spatio-temporal properties & pattern formation

May-Leonard model: dynamic rules

Cyclic competition of 3 species A,B, C and empty sites ⊘

- Selection: cyclic dominance, rate σ
- Reproduction, rate μ
- Bacteria swim and tumble \Rightarrow Mobility: exchange among nearest neighbours, rate ε
- Finite carrying capacity: at most occupied 1 individual per site

Well-mixed May-Leonard model (warm-up)

Cyclic co-evolutionary dynamics

Selection: Reproduction:

$$\begin{array}{ccccc} AB \xrightarrow{\sigma} \oslash A & A \oslash \xrightarrow{\mu} AA \\ BC \xrightarrow{\sigma} \oslash B & B \oslash \xrightarrow{\mu} BB \\ CA \xrightarrow{\sigma} \oslash C & C \oslash \xrightarrow{\mu} CC \end{array}$$

Well-mixed May-Leonard model (warm-up)

Cyclic co-evolutionary dynamics

Selection: Reproduction:

$$\begin{array}{ccccc} AB \xrightarrow{\sigma} \oslash A & A \oslash \xrightarrow{\mu} AA \\ BC \xrightarrow{\sigma} \oslash B & B \oslash \xrightarrow{\mu} BB \\ CA \xrightarrow{\sigma} \oslash C & C \oslash \xrightarrow{\mu} CC \end{array}$$

- Reactive fixed point is unstable
- Heteroclinic cycles around the boundary of the phase portrait
- Finite-size fluctuations: again, extinction in finite time (T_{ex}/N < ∞)

Dynamics restricted on an invariant manifold:

R. May & W. Leonard, SIAM J. Appl. Math. **29**, 243 (1975)

Well-mixed May-Leonard model (warm-up)

Cyclic co-evolutionary dynamics

Selection: Reproduction:

$$\begin{array}{cccc} AB \xrightarrow{\sigma} \oslash A & A \oslash \xrightarrow{\mu} AA \\ BC \xrightarrow{\sigma} \oslash B & B \oslash \xrightarrow{\mu} BB \\ CA \xrightarrow{\sigma} \oslash C & C \oslash \xrightarrow{\mu} CC \end{array}$$

- Reactive fixed point is unstable
- Heteroclinic cycles around the boundary of the phase portrait
- Finite-size fluctuations: again, extinction in finite time $(T_{ex}/N < \infty)$

Without spatial structure, coexistence is unstable

→ loss of biodiversity!

Dynamics restricted on an invariant manifold:

R. May & W. Leonard, SIAM J. Appl. Math. **29**, 243 (1975)

Cyclic Competition on Square Lattices ($N = L^2$)

Known:

- Well-mixed: loss of biodiversity in finite time [May & Leonard, 1975]
- Immobile individuals on lattices: noisy patches [Durrett & Levin, 1998]

Here: stochastic co-evolution of N mobile individuals in cyclic competition

Mobility: nearest-neighbour pair exchanges

Snapshot for
$$D = 3 \times 10^{-5}$$
, $L = 500$, $\sigma = \mu = 1$

Diffusion constant: $D = \varepsilon/2L^2$ How does the system's behaviour depend on D?

Snapshot for
$$D = 3 \times 10^{-4}, L = 300, \sigma = \mu = 1$$

Cyclic Competition on Square Lattices ($N = L^2$)

Known:

- Well-mixed: loss of biodiversity in finite time [May & Leonard, 1975]
- Immobile individuals on lattices: noisy patches [Durrett & Levin, 1998]

Here: stochastic co-evolution of N mobile individuals in cyclic competition

Mobility: nearest-neighbour pair exchanges

Diffusion constant: $D = \varepsilon/2L^2$ How does the system's behaviour depend on D?

- Size of the emerging spirals increases with the mobility
- Existence of a mobility threshold ⇒ Below: coexistence.
 Above: giant spirals outgrow the lattice, loss of biodiversity

Nature **448**, 1046 (2007)

Cyclic Competition on Square Lattices

Stochastic co-dominant dynamics of N mobile individuals

Mobility included: nearest-neighbour exchanges (rate ε)

$$\begin{array}{ccc} AB \xrightarrow{\varepsilon} BA & AC \xrightarrow{\varepsilon} CA \\ A \oslash \xrightarrow{\varepsilon} \oslash A & \dots \end{array}$$

Keep diffusion rate $D = \varepsilon/2L^2$ fixed and vary ε and L

- Small systems with low mobility → irregular & noisy patches
- Larger L and ε (D finite) \rightarrow entanglement of regular spiral waves
- ullet Transition: noisy patches o regular spirals already for *finite* arepsilon

Phys. Rev. Lett. 99, 238105 (2007) + J. Theor. Biol. 254, 368 (2008)

Stability of Biodiversity

When is biodiversity stable and how is it preserved?

- Systems with well-mixed population: biodiversity is lost in finite time!
- For high mixing rate D: again the well-mixed scenario
- Is there a critical value of the diffusivity D below which biodiversity is maintained?
- If so, what are the spatio-temporal properties of the patterns formed by the individuals?

Stability of Biodiversity

When is biodiversity stable and how is it preserved?

- Systems with well-mixed population: biodiversity is lost in finite time!
- For high mixing rate D: again the well-mixed scenario
- Is there a critical value of the diffusivity *D* below which biodiversity is maintained?
- If so, what are the spatio-temporal properties of the patterns formed by the individuals?

How to descriminate between stable/unstable reactive steady states? Let T_{ex} be the average extinction time and N the size of the system

- If $T_{ex}/N \rightarrow O(1)$: neutral / marginal stability
- If $T_{ex}/N \rightarrow \infty$: super-extensive / stable
- If $T_{ex}/N \rightarrow 0$: sub-extensive / unstable

Existence of a critical mobility threshold

Biodiversity is lost above a critical mobility threshold D_c Below D_c : spiral waves emerge

With $P_{ext} = Prob\{$ only one species after time $t = N\}$

For
$$\sigma = \mu = 1$$
, $D_c = (4.5 \pm 0.5) \times 10^{-4}$

Loss of biodiversity

- For large systems, there is a well-defined critical/threshold value $D_c(\sigma,\mu)$ for the mobility above which coexistence is (quickly) lost
- Loss of biodiversity seems related to the size of the emerging patterns (spiral waves)

How can we rationalise and understand these findings?

Mathematical description

Description accounting for internal noise in terms of local densities $\mathbf{s}(\mathbf{r},t)=(a(\mathbf{r},t),b(\mathbf{r},t),c(\mathbf{r},t))$ in the continuum limit $(N,\varepsilon\gg 1$ and D is finite)

Dominating noise contribution arises from reactions →

$$\partial_t s_i(\mathbf{r},t) = D\Delta s_i(\mathbf{r},t) + \alpha_i(\mathbf{s}) + \mathscr{C}_i(\mathbf{s})\xi_i$$

- Stochastic partial differential equations (Ito)
- With white noise: $\langle \xi_i(\mathbf{r},t)\xi_j(\mathbf{r}',t')\rangle = \delta_{ij}\delta(\mathbf{r}-\mathbf{r}')\delta(t-t')$
- Exchange of pairs → diffusive terms + noise ∝ N⁻¹
- Reactions \rightarrow deterministic drift & multiplicative noise with strength $N^{-1/2}$
- 2 sources of noise but, for large systems, noise arising from reactions dominates over noise due to mobility

Phys. Rev. Lett. 99, 238105 (2007) + J. Theor. Biol. 254, 368 (2008)

Is such a description accurate?

Here $\sigma = \mu = 1$ and $\varepsilon = 2 - 54$

Stochastic Lattice Simulations

Stochastic Partial Differential Equations

Is such a description accurate?

Description in terms of SPDE:

Expected to be valid for large system sizes and exchange rates (L, $\varepsilon \gg$ 1) with finite D = $\varepsilon/2L^2$

... But turns out to be valid also for *finite* ε

- Remarkable correspondence bewteen predictions of the SPDE and results of lattice simulations
- SPDE predict scaling: $D \rightarrow \lambda D$ implies a rescaling of the spatial coordinates: $x \rightarrow x/\sqrt{\lambda} \Rightarrow$ Magnification, or 'zoom in' effect, by factor $\sqrt{\lambda}$
- In the lattice simulations: found the same scaling
- Both descriptions seem to be statistically equivalent

Spatial correlations

Comparison of the spatial correlation functions $g_{ij}(r)$ obtained from lattice simulations and predicted by the SPDE

$$g_{ij}(r) = \lim_{t\to\infty} \langle s_i(\mathbf{r},t)s_j(\mathbf{0},t)\rangle - \langle s_i(\mathbf{r},t)\rangle \langle s_j(\mathbf{0},t)\rangle$$

- Excellent agreement between SPDE and lattice simulations
- Correlation length $\ell_{\rm corr} \propto \sqrt{D}$
- ⇔ Raising D the size of the spirals is increased

J. Theor. Biol. 254, 368 (2008)

Mini-summary

About the stochastic spatial May-Leonard model, we have learnt:

- Coexistence is stable or unstable, depending on the diffusion constant D
- In the coexistence phase (continuum limit), emergence of an entanglement spiral waves
- Stochastic dynamics: described by SPDE with (white) noise (from the *reactions*) of strength $\propto N^{-1/2}$
- \bullet Remarkable agreement between lattice simulations & SPDE ... Even for finite values of the exchange rate ε

Mini-summary

About the stochastic spatial May-Leonard model, we have learnt:

- Coexistence is stable or unstable, depending on the diffusion constant D
- In the coexistence phase (continuum limit), emergence of an entanglement spiral waves
- Stochastic dynamics: described by SPDE with (white) noise (from the *reactions*) of strength $\propto N^{-1/2}$
- \bullet Remarkable agreement between lattice simulations & SPDE ... Even for finite values of the exchange rate ε

Remaining questions:

- Role and influence of internal noise?
- Characterisation of the spatio-temporal patterns?
- State diagram: when do we have biodiversity/uniformity?

Role and influence of internal noise

- The SPDE provide a faithful description of the stochastic dynamics in the continnum limit
- In the SPDE, the noise strength is $\propto N^{-1/2}$ with $N \to \infty$ What happens if noise is ignored: $\partial_t s_i(\mathbf{r},t) = D\Delta s_i(\mathbf{r},t) + \alpha_i(\mathbf{s})$?

Noise acts as a random source of local inhomogeneities

- Spiral waves in both cases: share the same velocity and wavelength
- SPDE: entanglement of spirals → robust features
- PDE: geometrically ordered, dependence on the initial condition

Characterisation of spatio-temporal patterns

- The spiral waves resulting from the SPDE and the PDE share the same velocity & frequency
- The dynamics of the PDE, restricted on the invariant manifold, can be recast in the form of a Complex Ginzburg Landau Equation (CGLE):

$$\partial_t z(\mathbf{r},t) = D\Delta z(\mathbf{r},t) + (c_1 - i\omega)z(\mathbf{r},t) - c_2(1 - ic_3) |z(\mathbf{r},t)|^2 z(\mathbf{r},t)$$

- Give rise to coherent structures, like spiral waves
- Travelling-wave ansatz: $z = Ze^{-i\Omega t i\mathbf{q} \cdot \mathbf{r}}$
- Dispersion relation → velocity, selected wavevector, frequency
- Here, spiral waves are the stable solutions

Characterisation of spatio-temporal patterns

- The spiral waves resulting from the SPDE and the PDE share the same velocity & frequency
- The dynamics of the PDE, restricted on the invariant manifold, can be recast in the form of a Complex Ginzburg Landau Equation (CGLE):

$$\partial_t z(\mathbf{r},t) = D\Delta z(\mathbf{r},t) + (c_1 - i\omega)z(\mathbf{r},t) - c_2(1 - ic_3) |z(\mathbf{r},t)|^2 z(\mathbf{r},t)$$

With
$$c_1 = \frac{\mu\sigma}{2(3\mu+\sigma)}$$
, $\omega = \frac{\sqrt{3}\mu\sigma}{2(3\mu+\sigma)}$, $c_2 = \frac{\sigma(3\mu+\sigma)(48\mu+11\sigma)}{56\mu(3\mu+2\sigma)}$ and $c_3 = \frac{\sqrt{3}(18\mu+5\sigma)}{48\mu+11\sigma}$

• Velocity: $v = 2\sqrt{c_1 D}$

• Wavelength:
$$\lambda = \frac{2\pi c_3\sqrt{D}}{\sqrt{c_1}\left(1-\sqrt{1+c_3^2}\right)}$$

• Frequency: $\Omega = \omega + 2\pi v/\lambda$,

J. Theor. Biol. 254, 368 (2008)

Spiral waves' spreading velocity

Deterministic predictions:
$$v=2\sqrt{c_1D}$$
 and $\lambda=\frac{2\pi c_3\sqrt{D}}{\sqrt{c_1}\left(1-\sqrt{1+c_3^2}\right)}$

Expected to be valid for the stochastic model in the continuum limit

- Agreement between Lattice simulations, SPDE and PDE/CGLE
- Velocity v scales as \sqrt{D}
- Wavelength λ scales as \sqrt{D}

State diagram

- Spiral waves in the coexistence phase: $\lambda \propto \sqrt{D}$
- Size of the spiral increases with $\propto \sqrt{D}$...
- ... for *D* up to $D_c(\mu, \sigma)$, where $\lambda = \lambda_c$
- When $D > D_c$: the spirals outgrow the system, biodiversity is lost

To obtain the state diagram for $\sigma=1$ (unit of time), one exploits the scaling relation $\lambda(D,\mu) \propto \sqrt{D}$: $D_c(\mu) = \left(\frac{\lambda_c}{\lambda(D,\mu)}\right)^2 D$

- *D_c* monotonic function
- Small μ : $D_c \propto \mu$

Mathematical descriptions in terms of interacting particles, SPDE, PDE (analytic) all lead to the same state diagram

Nature 448, 1046 (2007)

Conclusion

Combining various mathematical and theoretical approaches:

- \bullet Well-mixed population: fluctuations (finite size effect) \rightarrow extinction and uniformity
- Oscillatory dynamics of the RPS game: limit cycle in the presence of mutations and quasi-cycles in the presence of demographic noise
- Local interactions: biodiversity and pattern formation
- Mobility mediates bewteen these scenarios: above a threshold D_c biodiversity is lost
- Continuum limit: stochastic dynamics aptly described by SPDE
- ullet Internal noise: random source of inhomogeneities o robustness
- Spirals: characterisation inferred from a proper CGLE

Conclusion

Combining various mathematical and theoretical approaches:

- \bullet Well-mixed population: fluctuations (finite size effect) \rightarrow extinction and uniformity
- Oscillatory dynamics of the RPS game: limit cycle in the presence of mutations and quasi-cycles in the presence of demographic noise
- Local interactions: biodiversity and pattern formation
- Mobility mediates bewteen these scenarios: above a threshold D_c biodiversity is lost
- Continuum limit: stochastic dynamics aptly described by SPDE
- \bullet Internal noise: random source of inhomogeneities \rightarrow robustness
- Spirals: characterisation inferred from a proper CGLE
- Bacteria in hard/soft agar have low/high mobility: Experimental confirmation of the existence of D_c?
- Spiral waves observed in other microbial communities: Myxobacteria and Dyctostelium

Conclusion

Combining various mathematical and theoretical approaches:

- \bullet Well-mixed population: fluctuations (finite size effect) \rightarrow extinction and uniformity
- Oscillatory dynamics of the RPS game: limit cycle in the presence of mutations and quasi-cycles in the presence of demographic noise
- Local interactions: biodiversity and pattern formation
- Mobility mediates bewteen these scenarios: above a threshold D_c biodiversity is lost
- Continuum limit: stochastic dynamics aptly described by SPDE
- ullet Internal noise: random source of inhomogeneities o robustness
- Spirals: characterisation inferred from a proper CGLE
- Bacteria in hard/soft agar have low/high mobility: Experimental confirmation of the existence of D_c?
- Spiral waves observed in other microbial communities: Myxobacteria and Dyctostelium
- Methods and approach can be applied to epidemiology, behavioural sciences, chemistry...

References

This presentation is based on the following papers:

- arXiv:0912.5179v1 (to appear in the Journal of Theoretical Biology)
- J. Theor. Biol. 254, 368-383 (2008)
- Banach Center Publications 80, 259-264 (2008)
- Phys. Rev. Lett. 99, 238105 (2007)
- Nature 448, 1046-1049 (2007)
- Phys. Rev. E 74, 051907 (2006)

Acknowledgments

Collaborators: Tobias Reichenbach & Erwin Frey

The following agencies and programs are gratefully acknowledged:

- Individual grants (M.M.): Advanced Research Fellowship (PA002-1119487, Swiss NSF) & Humboldt Fellowship (IV-SCZ/1119205)
- The German Excellence Initiative via the program "Nanosystems Initiative Munich"

It is a pleasure to thankfully acknowledge fruitful discussions with

Robin Ball (Warwick), Mark Bathe & Thomas Franosch (LMU Munich), Paul Krapivsky (Boston University), Robert MacKay (Warwick), Sid Redner (Boston University), Uwe Täuber (Virginia Tech)