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Introduction

• Interacting particles described by Markov process

– Configurations σ(t)

– Transition rates wσ′,σ

– Non-equilibrium systems characterized by (time-integrated) currents Qt

– Typically have large deviation principle

Prob(Qt/t = j) ∼ e−êw(j)t

• But memoryless assumption not good for many real systems...

– Consider class of process where rates wσ′,σ depend on σ, σ′ and Qt/t

– Includes analogues of “elephant random walk” [Schütz & Trimper ’04]

– Non-Markovian process but Markovian in joint current/configuration space

– How does memory effect the current large deviation principle?



Temporal additivity principle

• Conjecture:

Prob(Qt/t = j) ∼ exp

[

−min
q(τ)

∫ t

t0

êw(q)(q + τq′) dτ

]

where integral is minimized over all q(τ ) with q(t0) = j0 and q(t) = j

• General idea: Look for most probable path q(τ ) satisfying boundary conditions

• Temporal analogue of additivity principle of [Bodineau & Derrida ’04]

If Markovian rate function is known, can find large deviation principle for system with

current-dependent rates by minimizing relevant integral...

• Analytically (Euler-Lagrange, Gaussian approximation)

• Numerically



Example: Activity-dependent random walk

• Random walk, count separately jumps to right and left so that

Qt = Q+,t −Q−,t

• Consider rates proportional to “activity”

a(q+ + q−)c(q+ + q−)

•Without loss of generality take a > c, i.e., drive to right

• For a + c < 1, find

Prob(Qt/t = j) ∼
{

exp[−jta+c
0

(

a+c
a−c

)

t1−a−c] for j ≥ 0

exp[j(ln a
c)t + jta+c

0

(

a+c
a−c

)

t1−a−c] for j < 0

• Leading term in exponent is different for currents in forward and backward directions

(modified “speed” in large deviation function seems to be generic effect of memory)



Fluctuation theorems

a(q+ + q−)c(q+ + q−)

• For activity-dependent random walk

Prob(Qt/t = −j)

Prob(Qt/t = +j)
∼ exp

[

−j
(

ln
a

c

)

t
]

i.e., fluctuation theorem still holds

• Expected here since relative bias is constant vR/vL = a/c

(also holds for a + c > 1 when there is no stationary state)

aq+ + baq− + d

• But for “generalized elephant” random walk

Prob(Qt/t = −j)

Prob(Qt/t = +j)
∼







exp
[

−j 2(b−d)(1−2a)
1−a t

]

for 0 < a < 1/2

exp
[

−j 2(b−d)(1−2a)
1−a t2a−1

0 t2−2a
]

for 1/2 < a < 1.

• For 1/2 < a < 1 symmetry apparently modified by superdiffusive spreading



Outlook

Summary:

• Proposed a general approach to calculate current fluctuations in systems with memory-

dependent rates

• Long-range temporal correlations in non-equilibrium systems can cause modified speed,

i.e., power of t, in current large deviation principle

(analogous to long-range spatial correlations in equilibrium)

• Insight into applicability of fluctuation theorems for non-Markovian systems

Current work:

•Many-particle systems

– Dynamical phase transitions, possibility of non-convex rate function

• Intrinsically non-Markovian systems where rates depend on complete current history

– cf. “Alzheimer random walk” [Cressoni et al. ’07, Kenkre ’07]



Stochastic Markovian dynamics

• Interacting particles described by Markov process

• Configurations (microstates) σ(t)
pq

• Stochastic approaches:

– Langevin: Differential equation for σ(t), deterministic + noisy forces

– Master equation:

∗ Transition rates wσ′,σ

∗ Deterministic evolution for probability distribution P (σ, t):

d

dt
P (σ, t) =

∑

σ′ 6=σ

[

wσ,σ′P (σ′, t)− wσ′,σP (σ, t)
]

∗ Or in “quantum Hamiltonian formalism”:

d

dt
|P (t)〉 = −H|P (t)〉



Ergodicity, stationarity

• Concentrate, for now, on time-independent rates

• Conservation of probability
∑

σ

P (σ, t) = 1 〈s|H = 0

• Ergodic system has unique stationary distribution

d

dt
P ∗(σ, t) = 0 H|P ∗〉 = 0

• Equilibrium, detailed balance

wσ,σ′P
∗(σ′) = wσ′,σP

∗(σ) P ∗HT (P ∗)−1 = H

• Non-equilibrium

– Broken detailed balance

– H has complex spectrum

– Stationary state characterized by non-zero currents



Currents

• Counter Qt, value increases by Θσ′,σ at each transition σ → σ′

• Θ is real and antisymmetric matrix

• Qt is a functional of history {σ(τ ), 0 ≤ τ ≤ t}.

Qt =
N−1
∑

n=1

Θσn+1,σn

• Generating function given by

〈

e−λQt
〉

=
〈

s
∣

∣

∣
e−H̃(λ)t

∣

∣

∣
P0

〉

H̃ is “modified Hamiltonian” with off-diagonal elements wσ,σ′ replaced by wσ,σ′e
−λΘσ,σ′

• Example: Integrated particle current across bond
∆Qt = −1 ∆Qt = +1

ll l+1l+1



Large deviations

• Long-time distribution of Qt often characterized by

ew(λ) := − lim
t→∞

1

t
ln

〈

e−λQt
〉

• Now consider time-averaged current Qt/t

• Distribution p(j, t) = Prob(Qt/t = j) has large deviation property

êw(j) := lim
t→∞
−1

t
ln p(j, t), p(j, t) ∼ e−êw(j)t

• ew(λ) and êw(j) are related by Legendre transform1

êw(j) = sup
λ
{ew(λ)− λj}, ew(λ) = inf

j
{êw(j) + λj}

• Rate function analogous to entropy of an equilibrium system.

1Strictly true only when ew(λ) is differentiable



Single particle on an infinite lattice

• Single particle hopping rightwards on an infinite lattice

v

• Let Qt count the number of jumps up to time t

• Large deviation function given by

ev(λ) = v(1− e−λ) ⇐⇒ êv(j) = v − j + j ln
j

v

• For example, v = 0.5:
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Driven many-particle systems: generic features

• For non-equilibrium systems, current distribution typically non-Gaussian

• Under general conditions, a fluctuation symmetry holds

[Gallavotti & Cohen ’95, Lebowitz & Spohn ’99]

Prob(Qt/t = −j)

Prob(Qt/t = +j)
∼ e−Ejt

But can have breakdown in systems with unbounded state space

• Current large deviations can show surprisingly complicated phase structure even in

simple models

• Example: Single-site ZRP with open boundaries [RJH, Rákos & Schütz ’06]

α δ

βγ

Initial condition:

|P0〉 = (1− x)
∞

∑

n=0

xn|n〉



Dynamical phase transitions in 1-site ZRP
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• Analogy to equilibrium:

– Phase transitions (both first order and continuous)

– Time t plays role of system size



Current-dependent rates

•Many ways to introduce memory

•We consider class of process where rates wσ′,σ depend explicitly on σ, σ′ and Qt/t

(To avoid singularities, assume observations start at t0, where 0≪ t0≪ t)

• Includes analogues of “elephant random walk” [Schütz and Trimper ’04]

• Non-Markovian process but Markovian in joint current/configuration space

• How does memory effect the current large deviation principle?

(i.e., do we still have form Prob(Qt/t = j) ∼ e−êw(j)t ?)



Temporal additivity principle

• Conjecture:

Prob(Qt/t = j) ∼ exp

[

−min
q(τ)

∫ t

t0

êw(q)(q + τq′) dτ

]

where integral is minimized over all q(τ ) with q(t0) = j0 and q(t) = j

• General idea: Look for most probable path q(τ ) satisfying boundary conditions

• Temporal analogue of additivity principle of [Bodineau and Derrida ’04]



Sketch of argument for temporal additivity principle

1. Divide interval [t0, t] into N subintervals of length ∆τ .

t0 t1 t2 tN−1 tN ≡ t

∆τ

2. Chapman-Kolmogorov equation for joint probabilities of being found in configuration

σi with average current qi:

p(qN , σN , t|q0, σ0, t0)

=
∑

q1,...,qN−1

σ1,...,σN−1

p(qN , σN , t|qN−1, σN−1, tN−1) · · · p(q2, σ2, t2|q1, σ1, t1)p(q1, σ1, t1|q0, σ0, t0)

3. If ∆τ ≫ 0, then assume p(qn+1, σn+1, tn+1|qn, σn, tn) independent of σn

(true for an ergodic system with finite state space)

p(qN , t|q0, t0) =
∑

q1,...,qN−1

p(qN , t|qN−1, tN−1) · · · p(q2, t2|q1, t1)p(q1, t1|q0, t0)



Sketch of argument for temporal additivity principle

4. Now take t and N large whilst preserving their ratio (so t≫ ∆τ ≫ 0);

q(τ ) almost constant in each timeslice (adiabatic approx.)

5. Observed average current in timeslice (tn, tn+1] is

q
(n)
∆τ =

qn+1tn+1 − qntn
∆τ

6. So using Markovian large deviation principle have

p(qn+1, tn+1|qn, tn) ≈ Ane
−∆τ êw(qn)(q

(n)
∆τ )

7. Putting all the slices together gives

p(qN , t|q0, t0) ≈ A
∑

q1,...,qN−1

e−
∑N−1

n=0 ∆τIw(qn)(q
(n)
∆τ ).

8. Then pass to continuum limit N, t, ∆τ →∞, qn→ q(τ )

p(j, t|j0, t0) ∼
∫ q(t)=j

q(t0)=j0

D[q] e
−

∫ t
t0

êw(q)(q+τq′) dτ



Sketch of argument for temporal additivity principle

9. In t→∞ limit, path integral dominated by most probable path in q-space, so

Prob(Qt/t = j) ∼ exp

[

−min
q(τ)

∫ t

t0

êw(q)(q + τq′) dτ

]

where integral is minimized over all q(τ ) with q(t0) = j0 and q(t) = j

10. To make t-dependence more explicit write

Prob(Qt/t = q) ∼ e−tαF (j),

If F (j) exists and is not everywhere zero then have large deviation principle.

F (j) = lim
t→∞

min
q(τ)

1

tα

∫ t

t0

êw(q)(q + τq′) dτ.

If Markovian rate function is known, can find large deviation principle for system with

current-dependent rates by minimizing relevant integral...

• Analytically (Euler-Lagrange, Gaussian approximation)

• Numerically



Example 1: Uni-directional random walk

• Recall Markovian case of single particle hopping rightwards on an infinite lattice

êv(j) = v − j + j ln
j

v

• Now modify picture so that rate for hopping at time t depends on average current

q(t) up to t

v(q)

• Predict that distribution of number of jumps Qt has asymptotic form

Prob(Qt/t = j) ∼ exp

[

−min
q(τ)

∫ t

t0

êv(q)(q + τq′) dτ

]

•Minimizing integral gives Euler-Lagrange equation

dv

dq
− q

dv/dq

vR
− 2τq′

q + τq′
− τ 2q′′

q + τq′
= 0



Example 1: Uni-directional random walk

• Exactly solvable cases include v(q) = aq, i.e., rate for particle to move at given time

is directly proportional to average velocity up to that time

• In this case, solving E-L equation and carrying out integration gives

min
q(τ)

∫ t

t0

êv(q)(q + τq′) dτ ∼







jta0t
1−a for a < 1

(a− 1)j0t0 ln t for a > 1

• Crossover at a = 1:

– a > 1, escape regime: no large deviation principle

– a < 1, localized regime:

∗ System approaches state where particle has zero velocity

∗ Large deviation principle with “speed” t1−a:

Prob(Qt/t = j) ∼ e−jta0 t1−a
, for j > 0

∗ Can show

Var[Qt] ∼ (t/t0)
2a

so transition from subdiffusive regime to superdiffusive regime at a = 1/2



Example 2: Bi-directional random walk with activity dependent rates

• Bi-directional random walk, count separately jumps to right and left so that

Qt = Q+,t −Q−,t

• Consider rates proportional to “activity”

a(q+ + q−)c(q+ + q−)

•Without loss of generality take a > c, i.e., drive to right

• For a + c < 1, we find

Prob(Qt/t = j) ∼
{

exp[−jta+c
0

(

a+c
a−c

)

t1−a−c] for j ≥ 0

exp[j(ln a
c)t + jta+c

0

(

a+c
a−c

)

t1−a−c] for j < 0.

• Leading term in exponent is different for currents in forward and backward directions



Example 2: Bi-directional random walk with activity dependent rates

Comparison with simulation:
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Example 2: Bi-directional random walk with activity dependent rates

•What about fluctuation symmetry?

• Since

Prob(Qt/t = j) ∼
{

exp[−jta+c
0

(

a+c
a−c

)

t1−a−c] for j ≥ 0

exp[j(ln a
c)t + jta+c

0

(

a+c
a−c

)

t1−a−c] for j < 0.

then

Prob(Qt/t = −j)

Prob(Qt/t = +j)
∼ exp

[

−j
(

ln
a

c

)

t
]

i.e., fluctuation theorem still holds

• Expected here since relative bias is constant vR/vL = a/c

(also holds for a + c > 1 when there is obviously no stationary state)



Example 3: Generalized elephant

• Again consider bi-directional random walk but with rates

aq+ + bcq− + d

• For a, c < 1 have mean currents

q̄+ =
b

1− a
, q̄− =

d

1− c
and q̄ = q̄+ − q̄−

• Gaussian expansion (about means) and minimization of integral gives, for a = c:

– 0 < a < 1/2, diffusive behaviour:

Prob(Qt/t = j) ∼ exp

{

−
[

1

2

(

j − b−d
1−a

)2

b+d
(1−a)(1−2a)

]

t

}

– 1/2 < a < 1, superdiffusive behaviour:

Prob(Qt/t = j) ∼ exp

{

−
[

1

2

(

j − b−d
1−a

)2

b+d
(1−a)(2a−1)

]

t2a−1
0 t2−2a

}

(generalization of results for original symmetric discrete-time elephant)



Example 3: Generalized elephant

•Within this Gaussian approximation

Prob(Qt/t = −j)

Prob(Qt/t = +j)
∼







exp
[

−j 2(b−d)(1−2a)
1−a

t
]

for 0 < a < 1/2

exp
[

−j 2(b−d)(1−2a)
1−a

t2a−1
0 t2−2a

]

for 1/2 < a < 1.

• Both cases have well-defined mean stationary current...

• ...but only have usual fluctuation symmetry for 0 < a < 1/2

• For 1/2 < a < 1 symmetry is apparently modified by superdiffusive spreading about

the mean

– Logarithm of probabilities for forward and backward currents still asymptotically

proportional to j but sublinear in t

• Scenario merits closer investigation



Many-particle systems

• In general would need to minimize integral numerically to find large deviations for

memory-dependent case

• For example, Markovian 1-site open-boundary ZRP [RJH, Rákos & Schütz ’06]
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A: êw(j) = fj(α, γ)

B: êw(j) = fj

(

αβ
β+γ

, γδ
β+γ

)

C: êw(j) = fj(α, γ) + fj(β, δ)

D: êw(j) = fj(α, γ) + β(1− x) + δ
(

1− x−1
)

+ j lnx

with fj(a, b) = a + b−
√

j2 + 4ab + j ln
j+
√

j2+4ab

2a

• Particularly interested in effect of memory on dynamical phase transitions...



Non-convex rate functions

• For ew(λ) non-differentiable, Legendre transform only yields convex envelope of êw(j)

−ew(λ) êw(j)

λ j

êw(j) = supλ{ew(λ)− λj}

ew(λ) = infj{êw(j) + λj}

• For short-range temporal correlations then system can phase separate in time...

– Gives straight-line section of rate function

• ...But not necessarily so for systems with memory/long-range temporal correlations

– Non-convex rate functions are possible

• Analogy: long-range spatial correlations in equilibrium give non-concave entropies

• Can we demonstrate this explicitly in ZRP with appropriate current-dependent rates?



Harder problem

• Suppose rates at time t depend not on q(t) but on full history, i.e., q(τ ) for 0 ≤ τ ≤ t.

• Now have an intrinsically non-Markovian problem

• For example, take rates at time t which depend on q(t/2)

– cf. “Alzheimer random walk” [Cressoni et al. ’07, Kenkre ’07]

• In principle, can still use additivity-type approach but have to minimize non-local

integral...



Experiment: colloidal particle in optical trap

“Experimental Demonstration of Violations of the Second Law of Thermodynamics

for Small Systems and Short Time Scales”

G. Wang et al. Phys. Rev. Lett. 89 050601 (2002)



Non-equilibrium fluctuation theorems

“Relate the probability of observing a given entropy increase to the probability of observ-

ing the same magnitude of entropy decrease”

p(−X , t)

p(X , t)
∼ e−X t

1. Computer simulations of sheared fluids [D.Evans et al. ’93 ]

2. Steady state of deterministic systems [Gallavotti & Cohen ’95]:

• X is rate of phase space contraction

3. Stochastic systems (with bounded state space) [Lebowitz & Spohn ’99]

• X can often be identified with average particle current

• Symmetry H̃(λ)T = P−1
eq H̃(E − λ)Peq ⇒ e(λ) = e(E − λ)

• But the zero-range process has unbounded state space!



Back to single-site ZRP

• Prediction:
p(−j, t)

p(j, t)
∼ e−Ejt with E an effective field

• e.g., 1 site ZRP with steady-state initial condition:

α δ

βγ
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• Breakdown of Gallavotti-Cohen symmetry

— Physically due to “instantaneous condensates”



Fluctuation Theorems: General perspective

• Consider “dissipation function” W (t) [for wn = 1]

W (t) =
L

∑

l=0

ElJl(t)− ln
P0(σ(t))

P0(σ(0))

• Distribution of w(t) = W (t)/t obeys

p(−w, t)

p(w, t)
= e−wt

→ transient fluctuation theorem [D.Evans & Searles ’94]

• For bounded state space, in the long-time limit one can replace W (t) by (
∑L

i=0 Ei)Jl

• For unbounded state space, boundary terms are non-vanishing and GC

symmetry can be violated

• Analogous effects due to unbounded potentials:

– Deterministic forces, single-particle Langevin dynamics

[Bonetto et al. ’05, van Zon & Cohen ’03, Farago ’02, Baiesi et al. ’06]

[Experimentally relevant, e.g., trapped colloids, granular media, electric circuits, ... ]


