On the gradient of potential vorticity

J. D. Gibbon

Mathematics Department Imperial College London, London SW7 2AZ

j.d.gibbon@imperial.ac.uk

In collaboration with Darryl Holm

Warwick, July 2010

Summary of this lecture

1. Some elementary introductory remarks on the 3D incompressible Euler equations \& vortex stretching;
2. Vortex stretching in 3D incompressible, stratified, rotating Euler equns;
3. Ertel's Theorem \& its consequences in GFD;
4. The theme is the role of potential vorticity : (θ is potential temperature)

$$
q=\boldsymbol{\omega} \cdot \boldsymbol{\nabla} \theta
$$

\& the dynamics of ∇q (about which little is known) in the context of

- the 3D incompressible, stratified, rotating Euler equations;
- the 3D incompressible Navier-Stokes/Boussinesq equations;
- the hydrostatic Primitive equations of the oceans \& atmosphere.

5. The use of these ideas to suggest a new diagnostic for the relative accuracy of Euler codes (in collaboration with Charlie Doering).
6. Finally : Do these ideas formally apply to the compressible Euler equations?

Vortex stretching in Euler

For an incompressible fluid ($\operatorname{div} \boldsymbol{u}=0$), the Euler equations are

$$
\frac{D \boldsymbol{u}}{D t}=-\boldsymbol{\nabla} p \quad \text { with } \quad \frac{D}{D t}=\partial_{t}+\boldsymbol{u} \cdot \boldsymbol{\nabla}
$$

With the vorticity as $\boldsymbol{\omega}=$ curl \boldsymbol{u}, an alternative is

$$
\partial_{t} \boldsymbol{u}-\boldsymbol{u} \times \boldsymbol{\omega}=-\boldsymbol{\nabla}\left(p-\frac{1}{2} u^{2}\right)
$$

$$
\partial_{t} \boldsymbol{\omega}=\operatorname{curl}(\boldsymbol{u} \times \boldsymbol{\omega}), \quad \text { or } \quad \frac{D \boldsymbol{\omega}}{D t}=\boldsymbol{\omega} \cdot \nabla \boldsymbol{u} .
$$

The vortex stretching term $\boldsymbol{\omega} \cdot \boldsymbol{\nabla} \boldsymbol{u}$ can be written as

$$
\boldsymbol{\omega} \cdot \nabla \boldsymbol{u}=S \boldsymbol{\omega}
$$

where the strain matrix is $S_{i j}=\frac{1}{2}\left(u_{i, j}+u_{j, i}\right)$.

Vortex "stretching \& folding" in Euler

$$
\frac{D \boldsymbol{\omega}}{D t}=S \boldsymbol{\omega}, \quad \operatorname{div} \boldsymbol{u}=0
$$

For short periods the alignment of $\boldsymbol{\omega}$ with eigenvectors of S may lead to exponential stretching/collapse depending on the signs of the eigenvalues $\lambda_{S}(\boldsymbol{x}, t)$. This growth/collapse process produces the fine-scale "crinkles" in the vorticity field, which is driven down to deeper scales \& might end as a finite time singularity.

Need a local math-formulation for the dynamics of higher derivatives of ω such as $\nabla \omega$ - a difficult problem! What do we have?

Global existence of solutions (BKM Theorem 1984):
There exists a global solution of the $3 D$ Euler equations $\boldsymbol{u} \in C\left([0, \infty] ; H^{s}\right) \cap$ $C^{1}\left([0, \infty] ; H^{s-1}\right)$ for $s \geq 3$ if

$$
\int_{0}^{t}\|\boldsymbol{\omega}(\cdot, \tau)\|_{\infty} d \tau<\infty, \quad \text { for every } t>0
$$

3D incompressible, stratified, rotating Euler equations

The 3D incompressible Euler equations for an incompressible, stratified, rotating flow ($\Omega=\hat{\boldsymbol{k}} \Omega$) in terms of the velocity field $\boldsymbol{u}(\boldsymbol{x}, t)$ and temperature θ are

$$
\frac{D \boldsymbol{u}}{D t}+\underbrace{2(\boldsymbol{\Omega} \times \boldsymbol{u})}_{\text {rotation }}+\underbrace{\hat{\boldsymbol{k}} \theta}_{\text {buoyancy }}=-\boldsymbol{\nabla} p
$$

and where the temperature $\theta(\boldsymbol{x}, t)$ evolves passively according to

$$
\frac{D \theta}{D t}=0 .
$$

Information about $\nabla \theta$ is needed to determine how $\theta(\boldsymbol{x}, t)$ might accumulate into large local concentrations.

Now consider the vorticity $\boldsymbol{\omega}=$ curl \boldsymbol{u} for which $\boldsymbol{\omega}_{\text {rot }}=\boldsymbol{\omega}+2 \boldsymbol{\Omega}$ satisfies

$$
\frac{D \boldsymbol{\omega}_{r o t}}{D t}=\boldsymbol{\omega}_{r o t} \cdot \boldsymbol{\nabla} \boldsymbol{u}+\boldsymbol{\nabla}^{\perp} \theta \quad \boldsymbol{\nabla}^{\perp}=\left(-\partial_{y}, \partial_{x}, 0\right)
$$

The $3 D$ Euler equations and Ertel's Theorem

Ertel's Theorem (1942): If $\boldsymbol{\omega}_{\text {rot }}(\boldsymbol{x}, t)$ satisfies the 3D incompressible, rotating Euler equations then any arbitrary differentiable $\mu(\boldsymbol{x}, t)$ satisfies

$$
\frac{D}{D t}\left(\boldsymbol{\omega}_{r o t} \cdot \nabla \mu\right)=\boldsymbol{\omega}_{r o t} \cdot \nabla\left(\frac{D \mu}{D t}\right) .
$$

The operations $\left[\frac{D}{D t}, \boldsymbol{\omega}_{r o t} \cdot \nabla\right]=0$ commute. Thus $\boldsymbol{\omega}_{r o t} \cdot \nabla(t)=\boldsymbol{\omega}_{r o t} \cdot \nabla(0)$ is a Lagrangian invariant \& is "frozen in" (Cauchy 1859).

Proof:

$$
\frac{D}{D t}\left(\boldsymbol{\omega}_{r o t} \cdot \nabla \mu\right)=\left(\frac{D \boldsymbol{\omega}_{r o t}}{D t}-\boldsymbol{\omega}_{r o t} \cdot \boldsymbol{\nabla} \boldsymbol{u}\right) \cdot \boldsymbol{\nabla} \mu+\boldsymbol{\omega}_{r o t} \cdot \nabla\left(\frac{D \mu}{D t}\right)
$$

Ertel (1942); Truesdell \& Toupin (1960); Ohkitani (1993); Kuznetsov \& Zakharov (1997); Viudez (2001); Bauer (2000).

Potential Vorticity for rotating stratified Euler

Potential Vorticity is defined as

$$
q=\boldsymbol{\omega}_{r o t} \cdot \boldsymbol{\nabla} \theta \quad \text { with } \quad \frac{D \theta}{D t}=0 .
$$

PV is very important in GFD : - see Hoskins, McIntyre, \& Robertson (1985).
Take $\mu(\boldsymbol{x}, t)=\theta$, and thus

$$
\begin{aligned}
\frac{D q}{D t} & =\left(\frac{D \boldsymbol{\omega}_{r o t}}{D t}-\boldsymbol{\omega}_{r o t} \cdot \boldsymbol{\nabla} \boldsymbol{u}\right) \cdot \boldsymbol{\nabla} \theta+\boldsymbol{\omega}_{r o t} \cdot \boldsymbol{\nabla}\left(\frac{D \theta}{D t}\right) \\
& =\boldsymbol{\nabla}^{\perp} \theta \cdot \boldsymbol{\nabla} \theta=0 .
\end{aligned}
$$

Because $D q / D t=0, q$ is a materially conserved quantity.

Thus we have two materially conserved quantities q and θ.

Evolution of the \mathcal{B}-field

The vector $\mathcal{B}=\nabla q \times \nabla \theta$ satisfies

$$
\partial_{t} \mathcal{B}=\operatorname{curl}(\boldsymbol{u} \times \mathcal{B}) \quad \Rightarrow \quad \frac{D \mathcal{B}}{D t}=\boldsymbol{\mathcal { B }} \cdot \nabla \boldsymbol{u}
$$

Appears in Kurgansky \& Tatarskaya (1987), Kurgansky \& Pisnichenko (2000) \& Kurgansky (2002) "Adiabatic Invariants in large-scale atmospheric dynamics"

$$
\text { Proof : } \quad \begin{aligned}
\partial_{t} \mathcal{B}= & \partial_{t}(\boldsymbol{\nabla} q) \times(\boldsymbol{\nabla} \theta)+(\boldsymbol{\nabla} q) \times \partial_{t}(\boldsymbol{\nabla} \theta) \\
= & -\boldsymbol{\nabla}(\boldsymbol{u} \cdot \boldsymbol{\nabla} q) \times(\boldsymbol{\nabla} \theta)-(\boldsymbol{\nabla} q) \times[\boldsymbol{\nabla}(\boldsymbol{u} \cdot \boldsymbol{\nabla} \theta)] \\
= & -\{\boldsymbol{u} \cdot \boldsymbol{\nabla}(\boldsymbol{\nabla} q)+(\boldsymbol{\nabla} q) \cdot \boldsymbol{\nabla} \boldsymbol{u}+(\boldsymbol{\nabla} q) \times \boldsymbol{\omega}\} \times(\boldsymbol{\nabla} \theta) \\
& -(\boldsymbol{\nabla} q) \times\{\boldsymbol{u} \cdot \boldsymbol{\nabla}(\boldsymbol{\nabla} \theta)+(\boldsymbol{\nabla} \theta) \cdot \boldsymbol{\nabla} \boldsymbol{u}+(\boldsymbol{\nabla} \theta) \times \boldsymbol{\omega}\} \\
= & -\boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{B}+(\boldsymbol{\nabla} q)(\boldsymbol{\omega} \cdot \boldsymbol{\nabla} \theta)-(\boldsymbol{\nabla} \theta)(\boldsymbol{\omega} \cdot \boldsymbol{\nabla} q) \\
& +(\boldsymbol{\nabla} \theta) \times(\boldsymbol{\nabla} q \cdot \boldsymbol{\nabla} \boldsymbol{u})-(\boldsymbol{\nabla} q) \times(\boldsymbol{\nabla} \theta \cdot \nabla \boldsymbol{u}) \\
= & \operatorname{curl}(\boldsymbol{u} \times \boldsymbol{B})
\end{aligned}
$$

Why are we not surprised?

Consider $\mathcal{B}=\nabla q \times \nabla \theta$ where

$$
\frac{D q}{D t}=0 \quad \text { and } \quad \frac{D \theta}{D t}=0
$$

\mathcal{B} is tangent to the curve defined by the intersection of $q=$ const and $\theta=$ const

$$
\frac{D \mathcal{B}}{D t}=\mathcal{B} \cdot \nabla \boldsymbol{u}
$$

which is also the equation for the stretching of a line-element $\mathcal{B} \equiv \delta \ell$.

Stretching \& folding in the \mathcal{B}-field

Because $\operatorname{div} \boldsymbol{u}=0$ and $\operatorname{div} \boldsymbol{\mathcal { B }}=0$ we have

$$
\operatorname{curl}(\boldsymbol{u} \times \mathcal{B})=\mathcal{B} \cdot \boldsymbol{\nabla} \boldsymbol{u}-\boldsymbol{u} \cdot \boldsymbol{\nabla} \mathcal{B}
$$

$$
\partial_{t} \mathcal{B}=\operatorname{curl}(\boldsymbol{u} \times \mathcal{B}) \quad \text { or } \quad \frac{D \mathcal{B}}{D t}=\mathcal{B} \cdot \nabla \boldsymbol{u}
$$

The same as that for $\boldsymbol{\omega}$ \& also for the magnetic \boldsymbol{B}-field in MHD (Moffatt 1978).
(i) Thus all the "stretching \& folding" properties associated with ω or magnetic field-lines lift over to \mathcal{B} even though \mathcal{B} contains $\omega, \nabla \omega$, $\nabla \theta$ and $\nabla^{2} \theta$ in various forms of projection.
(ii) Moreover, for any surface $S(\boldsymbol{u})$ moving with the flow \boldsymbol{u}, one finds

$$
\frac{d}{d t} \int_{S(u)} \mathcal{B} \cdot d S=0 .
$$

Helicity in the \mathcal{B}-field

Now define the vector potential \mathcal{A} such that $\mathcal{B}=\operatorname{curl} \mathcal{A}$ where

$$
\mathcal{A}=\frac{1}{2}(q \boldsymbol{\nabla} \theta-\theta \boldsymbol{\nabla} q)+\boldsymbol{\nabla} \psi .
$$

The helicity H that results from this definition,

$$
H=\int_{V} \mathcal{A} \cdot \mathcal{B} d V=\int_{V} \operatorname{div}(\psi \mathcal{B}) d V=\oint_{\partial V} \psi \mathcal{B} \cdot \hat{\boldsymbol{n}} d S
$$

measures the knottedness of the \mathcal{B} field-lines. $H=0$ for homogeneous BCs but if realistic topographies were taken into account then there exists the possibility that $H \neq 0$. The boundaries may therefore be an important generating source for helicity, thus allowing the formation of knots and linkages in the \mathcal{B}-field.

See Ohkitani (2007) for a discussion of helicity-free vorticity fields

$$
\boldsymbol{\omega}=\boldsymbol{\nabla} f \times \boldsymbol{\nabla} g
$$

. with $D f / D t=0$ and $D g / D t=0$.

A remark about higher derivatives

Define the set of scalars q_{n} as

$$
q_{n}=\boldsymbol{\mathcal { B }}_{n-1} \cdot \boldsymbol{\nabla} \theta
$$

Take $q_{0}=\theta$ and $\boldsymbol{\mathcal { B }}_{0}=\boldsymbol{\omega}$ as the starting point. Also, for $n \geq 1$, define the sequence of vectors

$$
\boldsymbol{\mathcal { B }}_{n}=\boldsymbol{\nabla} q_{n} \times \boldsymbol{\nabla} q_{n-1} .
$$

Thus $q_{1}=\boldsymbol{\omega} \cdot \boldsymbol{\nabla} \theta$ and $\mathcal{B}_{1}=\boldsymbol{\nabla} q_{1} \times \boldsymbol{\nabla} \theta$, and all the \mathcal{B}_{n} obey

$$
\frac{D \boldsymbol{\mathcal { B }}_{n}}{D t}=\boldsymbol{\mathcal { B }}_{n} \cdot \boldsymbol{\nabla} \boldsymbol{u}
$$

Thus all the \mathcal{B}_{n} have the same stretching equation as $\boldsymbol{\omega}$.

Aside: Is there a connection with the 2D surface QG equations?

To extract a 2D result let $q=z=$ const and $\theta=$ const be material surfaces :

$$
\mathcal{B}=\boldsymbol{\nabla} z \times \boldsymbol{\nabla} \theta=\hat{\boldsymbol{k}} \times \boldsymbol{\nabla} \theta=-\boldsymbol{\nabla}^{\perp} \theta .
$$

$\ln \mathbb{R}^{2}$ if \boldsymbol{u} is chosen as

$$
\boldsymbol{u}=\boldsymbol{\nabla}^{\perp} \psi \quad \text { with } \quad \theta=-(-\Delta)^{1 / 2} \psi
$$

then

$$
\frac{D \mathcal{B}}{D t}=\mathcal{B} \cdot \nabla \boldsymbol{u} \quad \mathcal{B}=-\nabla^{\perp} \theta
$$

are the 2D surface quasi-geostrophic (QG) equations discussed by Constantin, Majda \& Tabak (1994) who conjectured that strong fronts in numerical calculations might be finite time singularities.

See Ohkitani \& Yamada (1997); Constantin, Nie \& Schorghofer (1998); Cordoba (1998); Cordoba, Fefferman \& Rodrigo (2004) \& Rodrigo (2004).

Does the stretching \& folding in the \mathcal{B}-field survive dissipation?

Consider the NS-equations coupled to the θ-field

$$
\frac{D \boldsymbol{u}}{D t}+\theta \hat{\boldsymbol{k}}=R e^{-1} \Delta \boldsymbol{u}-\nabla p, \quad \frac{D \theta}{D t}=(\sigma R e)^{-1} \Delta \theta
$$

then the $\mathrm{PV} q=\boldsymbol{\omega} \cdot \boldsymbol{\nabla} \theta$ evolves according to

$$
\begin{aligned}
\frac{D q}{D t} & =\left(\frac{D \boldsymbol{\omega}}{D t}-\boldsymbol{\omega} \cdot \boldsymbol{\nabla} \boldsymbol{u}\right) \cdot \boldsymbol{\nabla} \theta+\boldsymbol{\omega} \cdot \boldsymbol{\nabla}\left(\frac{D \theta}{D t}\right) \\
& =\left(R e^{-1} \Delta \boldsymbol{\omega}-\boldsymbol{\nabla}^{\perp} \theta\right) \cdot \boldsymbol{\nabla} \theta+\boldsymbol{\omega} \cdot \boldsymbol{\nabla}\left((\sigma R e)^{-1} \Delta \theta\right) \\
& =\operatorname{div}\left(R e^{-1} \Delta \boldsymbol{u} \times \boldsymbol{\nabla} \theta+(\sigma R e)^{-1} \boldsymbol{\omega} \Delta \theta\right)
\end{aligned}
$$

The material property is destroyed but the trick of Haynes \& Mcltyre 1987 gives

$$
\begin{gathered}
\partial_{t} q+\operatorname{div}(q \mathcal{U})=0 \\
q(\boldsymbol{U}-\boldsymbol{u})=-\operatorname{Re}^{-1}\left(\Delta \boldsymbol{u} \times \nabla \theta+\sigma^{-1} \boldsymbol{\omega} \Delta \theta\right)
\end{gathered}
$$

Remarks on the transport velocity \mathcal{U}

Note that from

$$
\left(\partial_{t}+\boldsymbol{U} \cdot \boldsymbol{\nabla}\right) q=-q \operatorname{div} \mathcal{U}
$$

and

$$
q(\boldsymbol{U}-\boldsymbol{u})=-R e^{-1}\left(\Delta \boldsymbol{u} \times \boldsymbol{\nabla} \theta+\sigma^{-1} \boldsymbol{\omega} \Delta \theta\right)
$$

1. q is the PV density ;
2. $\operatorname{div} \mathcal{U} \neq 0$ but nevertheless $\operatorname{div} \mathcal{U}=\operatorname{Re}^{-1} \operatorname{div}\left[q^{-1}(\ldots)\right]$;
3. Strictly speaking \mathcal{U} is not a physical velocity (Danielsen 1990), but \mathcal{U} can still be considered as a transport velocity .
4. What of θ ?

$$
\begin{aligned}
\partial_{t} \theta+\boldsymbol{U} \cdot \boldsymbol{\nabla} \theta & =\partial_{t} \theta+\boldsymbol{u} \cdot \boldsymbol{\nabla} \theta-R e^{-1} q^{-1}\left\{\Delta \boldsymbol{u} \times \boldsymbol{\nabla} \theta+\sigma^{-1} \boldsymbol{\omega} \Delta \theta\right\} \cdot \boldsymbol{\nabla} \theta \\
& =\partial_{t} \theta+\boldsymbol{u} \cdot \boldsymbol{\nabla} \theta-(\sigma R e)^{-1} \Delta \theta \\
& =\mathbf{0}
\end{aligned}
$$

Formal result for the \mathcal{B}-field

$$
\partial_{t} q+\operatorname{div}(q \boldsymbol{U})=0, \quad \partial_{t} \theta+\boldsymbol{U} \cdot \boldsymbol{\nabla} \theta=0
$$

and $\mathcal{B}=\boldsymbol{\nabla} Q(q) \times \boldsymbol{\nabla} \theta$ satisfies the stretching relation

$$
\partial_{t} \mathcal{B}-\operatorname{curl}(\mathcal{U} \times \mathcal{B})=\mathcal{D} .
$$

where the divergence-less vector \mathcal{D} is given by

$$
\mathcal{D}=-\nabla\left(q Q^{\prime} \operatorname{div} \mathcal{U}\right) \times \nabla \theta
$$

and \mathcal{U} is defined as

$$
q(\boldsymbol{U}-\boldsymbol{u})=-R e^{-1}\left\{\Delta \boldsymbol{u} \times \boldsymbol{\nabla} \theta+\sigma^{-1} \boldsymbol{\omega} \Delta \theta\right\}, \quad q \neq 0
$$

Moreover, for any surface $\boldsymbol{S}(\mathcal{U})$ moving with the flow \mathcal{U}, one finds

$$
\frac{d}{d t} \int_{\boldsymbol{S}(u)} \mathcal{B} \cdot d \boldsymbol{S}=\int_{\boldsymbol{S}(u)} \mathcal{D} \cdot d \boldsymbol{S}
$$

Proof of the \mathcal{B}-equation

Consider $\mathcal{B}=\boldsymbol{\nabla} Q(q) \times \boldsymbol{\nabla} \theta$, then

$$
\begin{aligned}
\partial_{t} \mathcal{B}= & \partial_{t}(\nabla Q) \times(\nabla \theta)+(\nabla Q) \times \partial_{t}(\nabla \theta) \\
= & \left.-\nabla\left[\left(q Q^{\prime} \operatorname{div} \mathcal{U}\right)+\boldsymbol{U} \cdot \nabla Q\right)\right] \times(\nabla \theta)-(\nabla Q) \times[\nabla(\boldsymbol{U} \cdot \nabla \theta)] \\
= & -\left\{\nabla\left(q Q^{\prime} \operatorname{div} \boldsymbol{U}\right)+\boldsymbol{U} \cdot \nabla(\nabla Q)+(\nabla Q) \cdot \nabla \boldsymbol{U}+(\nabla Q) \times \boldsymbol{\omega}_{U}\right\} \times(\nabla \theta) \\
& -(\nabla Q) \times\left\{\boldsymbol{U} \cdot \nabla(\nabla \theta)+(\nabla \theta) \cdot \nabla \boldsymbol{U}+(\nabla \theta) \times \boldsymbol{\omega}_{U}\right\} \\
= & -\nabla\left(q Q^{\prime} \operatorname{div} \boldsymbol{U}\right) \times \nabla \theta-\boldsymbol{U} \cdot \nabla \boldsymbol{B}+(\nabla Q)\left(\boldsymbol{\omega}_{U} \cdot \nabla \theta\right)-(\nabla \theta)\left(\boldsymbol{\omega}_{U} \cdot \nabla Q\right) \\
& +(\nabla \theta) \times(\nabla Q \cdot \nabla \boldsymbol{U})-(\nabla Q) \times(\nabla \theta \cdot \nabla \boldsymbol{U}) \\
= & \operatorname{curl}(\boldsymbol{U} \times \boldsymbol{B})-\nabla\left(q Q^{\prime} \operatorname{div} \mathcal{U}\right) \times \nabla \theta .
\end{aligned}
$$

The dynamics of the gradient of potential vorticity (JDG and D. D. Holm),
J. Phys. A: Math. Theor. 43, (2010) 172001.

Remarks on re-connection

Because $\operatorname{div} \mathcal{U} \neq 0$ but $\operatorname{div} \mathcal{B}=0$ we have

$$
\partial_{t} \mathcal{B}-\operatorname{curl}(\mathcal{U} \times \mathcal{B})=\mathcal{D}
$$

we could write $\boldsymbol{U}=\boldsymbol{u}+\boldsymbol{v}$ where \boldsymbol{u} is an Euler solution ($\operatorname{div} \boldsymbol{u}=0$), with

$$
\boldsymbol{v}=-\operatorname{Re}^{-1}\left\{q^{-1}\left[\Delta \boldsymbol{u} \times \boldsymbol{\nabla} \theta+\sigma^{-1} \boldsymbol{\omega} \Delta \theta\right]\right\}
$$

where

For numerical calculations on re-connection see: Herring, Kerr and Rotunno, Ertel's PV in unstratified turbulence, JAS, 51, 35 (1994).

The hydrostatic primitive equations

Many simulations of weather, climate and ocean circulation employ a hydrostatic version of the primitive equations (denoted HPE). The major difference of HPE from the NS-equations lies in the exclusion of the vertical velocity component $w(x, y, z, t)$ in the hydrostatic velocity field:

$$
\boldsymbol{v}(x, y, z, t)=(u, v, 0)
$$

However, w does appear in the full velocity field \boldsymbol{V}

$$
\boldsymbol{V}=(u, v, \varepsilon w)
$$

where ε is the Rossby number. The vertical velocity w has no evolution equation; it appears only in $\boldsymbol{V} \cdot \boldsymbol{\nabla}$. The z-derivative of the pressure field p and the dimensionless temperature Θ enter the problem through the hydrostatic equation

$$
a_{0} \Theta+p_{z}=0
$$

The hydrostatic approximation

To address the influence of the material derivative in $\left(\alpha_{a}=H / L\right)$

$$
\alpha_{a}^{2} \varepsilon^{2}\left(\frac{\partial}{\partial t}+\boldsymbol{V} \cdot \nabla_{3}\right) w+a_{0} \Theta+p_{z}=\varepsilon \operatorname{Re}^{-1} \Delta_{3} w .
$$

Typical values of $\alpha_{a}^{2} \varepsilon^{2}$ for mid-latitude synoptic weather \& climate systems are:

$$
\begin{aligned}
\alpha_{a} & =H / L \approx 10^{4} \mathrm{~m} / 10^{6} \mathrm{~m} \approx 10^{-2} \\
W / U & \approx 10^{-2} \mathrm{~ms}^{-1} / 10 \mathrm{~ms}^{-1} \approx 10^{-3} \\
\varepsilon & =U /\left(f_{0} L\right) \approx 10 \mathrm{~ms}^{-1} /\left(10^{-4} \mathrm{~s}^{-1} 10^{6} \mathrm{~m}\right) \approx 10^{-1} .
\end{aligned}
$$

For mid-latitude large-scale ocean circulation, the corresponding numbers are:

$$
\begin{aligned}
\alpha_{a} & =H / L \approx 10^{3} \mathrm{~m} / 10^{5} \mathrm{~m} \approx 10^{-2} \\
W / U & \approx 10^{-3} m s^{-1} / 10^{-1} m s^{-1} \approx 10^{-2} \\
\varepsilon & =U /\left(f_{0} L\right) \approx 10^{-1} \mathrm{~ms}^{-1} /\left(10^{-4} \mathrm{~s}^{-1} 10^{5} \mathrm{~m}\right) \approx 10^{-2} .
\end{aligned}
$$

Thus $\alpha_{a}^{2} \varepsilon^{2} \approx 10^{-8}-10^{-6} \ll 1$ so the hydrostatic approxn is good.

The velocity field $\boldsymbol{v}=(u, v, 0)$ obeys the motion equation

$$
\varepsilon\left(\partial_{t}+\boldsymbol{V} \cdot \nabla\right) \boldsymbol{v}+\hat{\boldsymbol{k}} \times \boldsymbol{v}+a_{0} \hat{\boldsymbol{k}} \Theta=\varepsilon \operatorname{Re}^{-1} \Delta \boldsymbol{v}-\boldsymbol{\nabla} p
$$

$a_{0}=\varepsilon \sigma \alpha_{a}^{-3} R_{a} \mathrm{Re}^{-2}$; the aspect ratio $\alpha_{a} \ll 1 \& R_{a}$ is the Rayleigh no.

$$
\boldsymbol{V} \cdot \boldsymbol{\nabla} \boldsymbol{v}=-\boldsymbol{V} \times \boldsymbol{\zeta}+\frac{1}{2} \boldsymbol{\nabla}\left(u^{2}+v^{2}\right) .
$$

The vorticity equation for $\zeta=\operatorname{curl} \boldsymbol{v} \&$ the dimensionless temperature Θ satisfy

$$
\begin{gathered}
\left(\partial_{t}+\boldsymbol{V} \cdot \boldsymbol{\nabla}\right) \boldsymbol{\zeta}=(\sigma \operatorname{Re})^{-1} \Delta \boldsymbol{\zeta}+\boldsymbol{\zeta} \cdot \boldsymbol{\nabla} \boldsymbol{V}+\operatorname{curl} \boldsymbol{f} \\
\left(\partial_{t}+\boldsymbol{V} \cdot \boldsymbol{\nabla}\right) \Theta=(\sigma \operatorname{Re})^{-1} \Delta \Theta+h \\
\operatorname{div} \boldsymbol{V}=\operatorname{div} \boldsymbol{v}+\varepsilon w_{z}=0
\end{gathered}
$$

where $\boldsymbol{f}=-\varepsilon^{-1}\left(\hat{\boldsymbol{k}} \times \boldsymbol{v}+a_{0} \hat{\boldsymbol{k}} \Theta\right)$. The existence and uniqueness of strong solutions of HPE has been proved by Cao and Titi (2007). For earlier work see Lions, Temam \& Wang $(1992,1995)$ \& Lewandowski (2001).

The equation for B

$$
\mathrm{q}=\boldsymbol{\zeta} \cdot \boldsymbol{\nabla} \Theta \quad \text { and } \quad \mathbf{B}=\nabla \mathrm{Q} \times \boldsymbol{\nabla} \Theta,
$$

where $Q(q)$ can be chosen as any smooth function of the potential vorticity q,

$$
\begin{gathered}
\partial_{t} \mathbf{q}+\operatorname{div}(\mathbf{q} \mathbf{U})=0, \quad \mathbf{q}\left(\partial_{t}+\mathbf{U} \cdot \boldsymbol{\nabla}\right) \Theta=0 . \\
\mathbf{q}(\mathbf{U}-\boldsymbol{V})=-\left\{\left[\operatorname{Re}^{-1} \Delta \boldsymbol{V}+\boldsymbol{f}\right] \times \boldsymbol{\nabla} \Theta+\left[(\sigma \operatorname{Re})^{-1} \boldsymbol{\zeta} \Delta \Theta+h\right]\right\} . \\
\partial_{t} \mathbf{B}-\operatorname{curl}(\mathbf{U} \times \mathbf{B})=\mathbf{D} \quad \operatorname{div} \mathbf{U} \neq 0 \\
\mathbf{D}=-\boldsymbol{\nabla}\left(\mathrm{q}^{\prime}(\mathbf{q}) \operatorname{div} \mathbf{U}\right) \times \boldsymbol{\nabla} \Theta . \\
\frac{d}{d t} \int_{\mathbf{S}(\mathbf{U})} \mathbf{B} \cdot d \mathbf{S}=\int_{\mathbf{S}(\mathbf{U})} \mathbf{D} \cdot d \mathbf{S} .
\end{gathered}
$$

ECMWF : http://www.met.rdg.ac.uk/Data/CurrentWeather: "Analyzed data" every 6 hrs of the \mathbf{N}. Hemisphere showing contours of θ on a level set $q=2$ in the tropopause. High values of $\boldsymbol{\nabla} \theta$ lie at sharp contour interfaces. Thanks to Brian Hoskins, Paul Berrisford \& Nicholas Klingaman.

Euler singularity literature

1. Morf, Orszag \& Frisch U 1980; Chorin A J 1982; Brachet, Meiron, Orszag, Nickel, Morf \& Frisch 1983; Siggia 1984; Kida 1985; Ashurst \& Meiron 1987; Pumir \& Kerr 1987; Pumir \& Siggia 1990; Grauer \& Sideris 1991; Bell \& Marcus 1992; Brachet, Meneguzzi, Vincent, Politano \& Sulem 1992; Kerr 1993, 2005; Boratav \& Pelz 1993, 1995; Pelz 1997; Pelz \& Gulak 1997; Grauer, Marliani \& Germaschewski 1998; Pelz 2001; Cichowlas \& Brachet 2005; Gulak \& Pelz 2005; Pelz \& Ohkitani 2005; Hou \& Li 2006, 2008.

See the articles in: Proc. of "Euler Equations 250 years on" Aussois conference: Physica D, (2008) vol 237.
2. Controversy concerning the development of a singularity:
(a) Kerr 1993 \& Bustamante \& Kerr 2008; Orlandi \& Carnevale 2007; Grafke, Homann, Dreher \& Grauer 2008 suggest singular behaviour.
(b) Hou \& Li R 2006, 2008 suggest double exponential growth.
3. The Kerr and $\mathrm{Hou} / \mathrm{Li}$ calculations agree until the last phase.

A diagnostic for Euler codes: by Ch. Doering, DDH \& JDG arXiv:1002.2961v1

We propose the following test on the accuracy of the codes.

$$
\frac{D \boldsymbol{u}}{D t}=-\boldsymbol{\nabla} p, \quad \frac{D}{D t}=\partial_{t}+\boldsymbol{u} \cdot \boldsymbol{\nabla}
$$

Now treat θ simply as a passive tracer concentration (with initial data)

$$
\frac{D \theta}{D t}=0 .
$$

Define

$$
\begin{array}{lll}
q=\boldsymbol{\omega} \cdot \boldsymbol{\nabla} \theta & \Rightarrow & \frac{D q}{D t}=0 \\
\mathcal{B}=\boldsymbol{\nabla} q \times \boldsymbol{\nabla} \theta & \Rightarrow & \operatorname{div} \boldsymbol{B}=0
\end{array}
$$

The vector field \mathcal{B} contains information on $\omega, \nabla \omega, \nabla \theta$ and $\nabla^{2} \theta$.

$$
\partial_{t} \mathcal{B}=\operatorname{curl}(\boldsymbol{u} \times \mathcal{B}) \quad \text { or } \quad \frac{D \mathcal{B}}{D t}=\mathcal{B} \cdot \nabla \boldsymbol{u}
$$

1. Choose initial data for \boldsymbol{u} and θ, thereby fixing initial data for q and \mathcal{B}.
2. Use one's code to evolve \boldsymbol{u} \& simultaneously solve $D \theta / D t=0$ for θ and $D \mathcal{B} / D t=\mathcal{B} \cdot \nabla \boldsymbol{u}$ for \mathcal{B}.
3. Construct $q_{1}(\cdot, t)=\boldsymbol{\omega}(\cdot, t) \cdot \boldsymbol{\nabla} \theta(\cdot, t)$ from data and then:
(a) compare the solution for $\mathcal{B}(\cdot, t)$ obtained from solving $D \mathcal{B} / D t=\mathcal{B} \cdot \boldsymbol{\nabla} \boldsymbol{u}$ with $\mathcal{B}_{1}(\cdot, t)=\boldsymbol{\nabla} q_{1}(\cdot, t) \times \boldsymbol{\nabla} \theta(\cdot, t)$
(b) and, furthermore, compare these with $\mathcal{B}_{2}(\cdot, t)=\boldsymbol{\nabla} q(\cdot, t) \times \boldsymbol{\nabla} \theta(\cdot, t)$ where $q(\cdot, t)$ is the evolved solution of $D q / D t=0$.
4. For fixed initial data for \boldsymbol{u} this procedure may be implemented for a variety of "markers" $\theta_{n}(\cdot, t)$ evolving from distinct initial data $\theta_{n}(\cdot, 0)$ to diagnose the numerical accuracy in different regions of the flow.

Because \mathcal{B} contains $\nabla \boldsymbol{\omega}$, comparison of $\mathcal{B}, \mathcal{B}_{1}$ and \mathcal{B}_{2} tests the accuracy of the computation of some of the small scale flow-structures.

The behaviour of $\|\ln \mathcal{B}\|_{\infty}$

$$
\frac{1}{2} \frac{D|\mathcal{B}|^{2}}{D t}=\boldsymbol{\mathcal { B }} \cdot \boldsymbol{\nabla} \boldsymbol{u} \cdot \mathcal{B} \quad \text { or as } \quad \frac{D \ln |\boldsymbol{\mathcal { B }}|}{D t}=\hat{\mathcal{B}} \cdot \nabla \boldsymbol{u} \cdot \hat{\mathcal{B}} .
$$

With $\mathcal{B}=|\mathcal{B}|$, the L^{p}-norm of $\ln \mathcal{B}$ gives

$$
\frac{d}{d t}\|\ln \mathcal{B}\|_{p} \leq\|\boldsymbol{\nabla} \boldsymbol{u}\|_{p}
$$

For $p=\infty$

$$
\|\ln \mathcal{B}(\cdot, t)\|_{\infty}=\|\ln \mathcal{B}(\cdot, 0)\|_{\infty} \int_{0}^{t}\|\boldsymbol{\nabla} \boldsymbol{u}(\cdot, \tau)\|_{\infty} d \tau
$$

The BKM Theorem $\Rightarrow \int_{0}^{t}\|\boldsymbol{\nabla} \boldsymbol{u}(\cdot, \tau)\|_{\infty} d \tau$ is controlled by $\int_{0}^{t}\|\boldsymbol{\omega}(\cdot, \tau)\|_{\infty} d \tau$.
Lemma : If $\int_{0}^{t}\|\boldsymbol{\omega}(\cdot, \tau)\|_{\infty} d \tau$ is bounded at time t then :
(i) No singularity in ∇q and $\nabla \theta$ can occur without the simultaneous alignment or anti-alignment of the vectors ∇q and $\nabla \theta$.
(ii) No alignment or anti-alignment of the vectors $\boldsymbol{\nabla} q$ nor $\nabla \theta$ can occur if they both remain finite.

Compressible Euler

Consider the dimensionless form of the Euler equations in their simplest form

$$
\rho\left(\frac{D \boldsymbol{u}}{D t}\right)=-\nabla p, \quad \quad \partial_{t} \rho+\operatorname{div}(\rho \boldsymbol{u})=0
$$

Define

$$
q:=\boldsymbol{\omega} \cdot \boldsymbol{\nabla} \rho
$$

where

$$
\frac{D \boldsymbol{\omega}}{D t}=\boldsymbol{\omega} \cdot \boldsymbol{\nabla} \boldsymbol{u}-\boldsymbol{\omega} \operatorname{div} \boldsymbol{u}-\boldsymbol{\nabla}\left(\rho^{-1}\right) \times \boldsymbol{\nabla} p
$$

Now formally manipulate:

$$
\begin{aligned}
\frac{D}{D t}(\boldsymbol{\omega} \cdot \boldsymbol{\nabla} \rho) & =\left(\frac{D \boldsymbol{\omega}}{D t}\right) \cdot \boldsymbol{\nabla} \rho+\boldsymbol{\omega} \cdot \frac{D}{D t}(\boldsymbol{\nabla} \rho) \\
& =\left(\frac{D \boldsymbol{\omega}}{D t}-\boldsymbol{\omega} \cdot \boldsymbol{\nabla} \boldsymbol{u}\right) \cdot \boldsymbol{\nabla} \rho+\boldsymbol{\omega} \cdot \boldsymbol{\nabla}\left(\frac{D \rho}{D t}\right)
\end{aligned}
$$

Thus q satisfies

$$
\frac{D q}{D t}+\left\{\boldsymbol{\nabla}\left(\rho^{-1}\right) \times \boldsymbol{\nabla} p+\boldsymbol{\omega} \operatorname{div} \boldsymbol{u}\right\} \cdot \boldsymbol{\nabla} \rho+\boldsymbol{\omega} \cdot \boldsymbol{\nabla}(\rho \operatorname{div} \boldsymbol{u})=0
$$

$$
\partial_{t} q+\operatorname{div}\{q \mathcal{U}\}=0, \quad q \neq 0, \quad \partial_{t} \rho+\boldsymbol{U} \cdot \boldsymbol{\nabla} \rho=0
$$

where

$$
\begin{gathered}
\boldsymbol{U}=\boldsymbol{u}+q^{-1} \rho \boldsymbol{\omega} \operatorname{div} \boldsymbol{u}, \quad \operatorname{div} \boldsymbol{U} \neq 0 . \\
\partial_{t} \boldsymbol{B}-\operatorname{curl}(\mathcal{U} \times \boldsymbol{B})=\boldsymbol{D}
\end{gathered}
$$

and where the divergence-less vector \mathcal{D} is given by

$$
\mathcal{D}=-\nabla(q \operatorname{div} \mathcal{U}) \times \nabla \theta
$$

In the Boussinesq approximation, $\mathcal{D}=0$.

References

[1] Hoskins B J 1982 Ann Rev Fluid Mech 1 131-151
[2] Hoskins B J, McIntyre M E and Robertson A W 1985 Quart J Roy Met Soc 111 877-946
[3] Kurgansky M V and Tatarskaya M S 1987 Izvestiya - Atmospheric and Oceanic Physics 23587606
[4] Kurgansky M V and Pisnichenko I A 2000 J Atmos Sci 57822
[5] Kurgansky M V 2002 Adiabatic Invariants in large-scale atmospheric dynamics Taylor \& Francis London
[6] Schär C 1993 J Atmos Sci 50 1437-1443
[7] ECMWF 2009 Large-scale Analyses: http://www.met.rdg.ac.uk/Data/CurrentWeather
[8] Constantin P, Majda A J and Tabak ? 1994 Nonlinearity 7, 1495-1533.
[9] Ohkitani K \& Yamada M 1997 Phys Fluids 9.
[10] Constantin, Nie \& Schorghofer 1998 Phys Lett A 24.
[11] Cordoba D, 1998 Ann,. Math, 148, 1135-1152.
[12] Cordoba D \& Fefferman Ch 2001 J Amer Math Soc 15.
[13] Cao C and Titi E S 2007 Ann Math 166 245-267
[14] Ju N 2007 Disc Cont Dyn Systems 17 159-179
[15] Ertel, H 1942 Met Z 59 271-281
[16] Haynes P and McIntyre M E 1987 J Atmos Sci 44 828-841
[17] Haynes P and McIntyre M E 1990 J Atmos Sci 47 2021-2031
[18] Danielsen E F 1990 J Atmos Sci 47 2013-2020
[19] Viudez A 1999 J Atmos Sci 56 507-516
[20] McIntyre M E 1990 Middle atmospheric dynamics \& transport: some current challenges to our understanding pp 1-18 in "Dynamics, Transport \& Photochemistry in the Middle Atmosphere of the Southern Hemisphere" ed O'Neill A (Kluwer Amsterdam)
[21] Ohkitani K 2008 Physica D 23720202027
[22] Moffatt H K 1978 Magnetic field generation in electrically conducting fluids CUP Cambridge
[23] Palmer T 1988 Geo Astro Fluid Dyn 40 133-145
[24] Herring J K, Kerr R M and Rotunno R 1994 J Atmos Sci 51 35-47
[25] Lions J Temam R and Wang S 1992 New formulations of the primitive equations of atmosphere and applications Nonlinearity 5 237-288
J. D. Gibbon 2010
[26] Lions J Temam R and Wang S 1992 On the equations of the large scale Ocean Nonlinearity 5 1007-1053
[27] Lions J Temam R and Wang S 1995 Mathematical theory for the coupled atmosphere-ocean models J Math Pures Appl 74 105-163
[28] Lewandowski R 2007 Résultat d'existence d'une solution faible au système des equations primitives, Analyse Mathématique et océanographie: Essai sur la modélisation et l'analyse Mathématique de quelques modèles de turbulence utilisés en océanographie, chapter 2 June 15
[29] Czaja A and Hausmann U 2008 Observations of entry and exit of Potential Vorticity at the sea surface, Preprint.
[30] McWilliams J C, Colas F and Molemaker M J 2009 Geophys Res Lett 36 L18602
[31] Rhines P B and Young W R 1982 J Fluid Mech 12 347-367
[32] Rhines P B 1993 Oceanic general circulation: Wave \& advection dynamics. Modelling Oceanic Climate Interactions, Anderson D \& Willebrandt J Eds. NATO-ASI Series 1 67-149
[33] Majda A J and Bertozzi A L 2001 Vorticity and Incompressible Flow (Cambridge: Cambridge University Press)
[34] Constantin P 2008 Proc. of the conference "Euler Equations 250 years on" Aussois June 2007, Singular, weak and absent: Solutions of the Euler equations, 237 1926-1931
[35] Bardos C, Benachour S and Zerner M 1976 Analyticité des solutions périodiques de léquation d'Euler en deux dimensions C. R. Acad. Sc. Paris 282A 995-998
[36] Bardos C and Benachour S 1977 Domaine d'analyticité des solutions de l'équation d'Euler dans un ouvert de R^{n} Ann. Sc. Norm. Super. Pisa, CI. Sci. IV Ser. 4 647-687
[37] Bardos C 1972 Existence et unicite de la solution de l'équation d'Euler en dimension deux. J. Math. Anal. Appl. 40 769-790
[38] Morf R H, Orszag S A and Frisch U 1980 Spontaneous singularity in three-dimensional, inviscid incompressible flow Phys. Rev. Lett. 44 572-575
[39] Chorin A J 1982 The evolution of a turbulent vortex Commun. Math. Phys. 83 517-535
[40] Brachet M E, Meiron D I, Orszag S A, Nickel B G, Morf R H and Frisch U 1983 Small-scale structure of the Taylor-Green vortex J. Fluid Mech. 130 411-452
[41] Siggia E D 1984 Collapse and amplification of a vortex filament Phys. Fluids 28 794-805
[42] Kida S 1985 Three-Dimensional periodic flows with high-symmetry J. Phys. Soc. Jpn. 54 2132-2136
[43] Ashurst W and Meiron D 1987 Numerical study of vortex reconnection Phys. Rev. Lett. 58 1632-1635
[44] Pumir A and Kerr R M 1987 Numerical simulation of interacting vortex tubes Phys. Rev. Lett. 58 1636-1639
[45] Pumir A and Siggia E 1990 Collapsing solutions to the 3D Euler equations, Physics Fluids A 2 220-241
[46] Grauer R and Sideris T 1991 Numerical computation of 3D incompressible ideal fluids with swirl Phys. Rev. Lett. 67 3511-3514
[47] Bell J B and Marcus D L 1992 Vorticity intensification and transition to turbulence in the three-dimensional Euler equations Comm. Math. Phys. 147 371-394
[48] Brachet M E, Meneguzzi V, Vincent A, Politano H and Sulem P-L 1992 Numerical evidence of smooth self-similar dynamics and the possibility of subsequent collapse for ideal flows Phys. Fluids 4A 2845-2854
[49] Kerr R M 1993 Evidence for a singularity of the three-dimensional incompressible Euler equations Phys. Fluids A 5 1725-1746
[50] Boratav O N and Pelz R B 1994 Direct numerical simulation of transition to turbulence from a high-symmetry initial condition Phys. Fluids 6 2757-2784
[51] Boratav O N and Pelz R B 1995 On the local topology evolution of a high-symmetry flow Phys. Fluids 7 1712-1731
[52] Pelz R B 1997 Locally self-similar, finite-time collapse in a high-symmetry vortex filament model Phys. Rev. E 55 1617-1626
[53] Pelz R B and Gulak Y 1997 Evidence for a real-time singularity in hydrodynamics from time series analysis Phys. Rev. Lett. 79 4998-5001
[54] Grauer R, Marliani C and Germaschewski K 1998 Adaptive mesh refinement for singular solutions of the incompressible Euler equations Phys. Rev. Lett. 80 4177-4180
[55] Pelz R B 2001 Symmetry and the hydrodynamic blow-up problem J. Fluid Mech. 444 299-320
[56] Kerr R M 2005 Vorticity and scaling of collapsing Euler vortices Phys. Fluids A 17 075103-114
[57] Kerr R M 2005 Vortex collapse Fluid Dyn. Res. 36 249-260
[58] Cichowlas C and Brachet M-E 2005 Evolution of complex singularities in Kida-Pelz and Taylor-Green inviscid flows Fluid Dyn. Res. 36 239-248
[59] Gulak Y and Pelz R B 2005 High-symmetry Kida flow: Time series analysis and resummation Fluid Dyn. Res. 36 211-220
[60] Pelz R B and Ohkitani K 2005 Linearly strained flows with and without boundaries - the regularizing effect of the pressure term Fluid Dyn. Res. 36 193-210
[61] Pauls W, Matsumoto T, Frisch U and Bec J 2006 Nature of complex singularities for the 2D Euler equation Physica D 219, 40-59.
[62] Gibbon J D 2008 The three dimensional Euler equations: how much do we know? Proc. of "Euler Equations 250 years on" Aussois June 2007, Physica D, 237, 1894-1904.
[63] Bardos C and Titi E S 2007 Euler equations of incompressible ideal fluids Russ. Math. Surv. 62:3 409-451
[64] Hou T Y and Li R 2006 Dynamic Depletion of Vortex Stretching and Non-Blowup of the 3-D Incompressible Euler Equations J. Nonlinear Sci. 16 639-664
[65] Hou T Y and Li R 2008 Blowup or No Blowup? The Interplay between Theory and Numerics Proc. of "Euler Equations 250 years on" Aussois June 2007, Physica D, 237, 19371944
[66] Bustamante M D and Kerr R M 2008 3D Euler about a 2D Symmetry Plane, Proc. of "Euler Equations 250 years on" Aussois June 2007, Physica D, 237, 1912-1920
[67] Orlandi P and Carnevale G 2007 Nonlinear amplification of vorticity in inviscid interaction of orthogonal Lamb dipoles Phys. Fluids 19057106
[68] Grafke T, Homann H, Dreher J, and Grauer R 2008 Numerical simulations of possible finite time singularities in the incompressible Euler equations: comparison of numerical methods, Proc. of "Euler Equations 250 years on" Aussois June 2007, 237, 19321936.
[69] Beale J T, Kato T and Majda A J 1984 Remarks on the breakdown of smooth solutions for the 3D Euler equations Commun. Math. Phys. 94 61-66
[70] Ponce G 1985 Remarks on a paper by J. T. Beale, T. Kato and A. Majda Commun. Math. Phys. 98 349-353
[71] Ferrari A 1993 On the blow-up of solutions of the 3D Euler equations in a bounded domain Comm. Math. Phys. 155277294
[72] Constantin P 1994 Geometric statistics in turbulence SIAM Rev. 36 73-98
[73] Constantin P, Fefferman Ch and Majda A J 1996 Geometric constraints on potentially singular solutions for the 3D Euler equation Comm. Partial Diff. Equns. 21 559-571
[74] Kozono H and Taniuchi Y 2000 Limiting case of the Sobolev inequality in BMO, with applications to the Euler equations Comm. Math. Phys. 214 191-200
[75] Chae D 2003 Remarks on the blow-up of the Euler equations and the related equations Comm. Math. Phys. 245 539-550
[76] Chae D 2004 Local Existence and Blow-up Criterion for the Euler Equations in the Besov Spaces Asymptotic Analysis 38 339-358
[77] Chae D 2005 Remarks on the blow-up criterion of the 3D Euler equations Nonlinearity 18 1021-1029
[78] Chae D 2007 On the finite time singularities of the 3D incompressible Euler equations Comm. Pure App. Math. 60 597-617
[79] Cordoba D and Fefferman Ch 2001 On the collapse of tubes carried by 3D incompressible flows Comm. Math. Phys. 222 293-298
J. D. Gibbon 2010
[80] Deng J, Hou T Y and Yu X 2005 Geometric Properties and Non-blowup of 3D Incompressible Euler Flow Commun. Partial Diff. Equns. 30 225-243
[81] Deng J, Hou T Y and Yu X 2006 Improved geometric condition for non-blowup of the $3 D$ incompressible Euler equation, Commun. Partial Diff. Equns. 31 293-306
[82] Gibbon J D 2007 Ortho-normal quaternion frames, Lagrangian evolution equations and the three-dimensional Euler equations, Russian Math. Surveys 62:3 126 (Uspekhi Mat. Nauk 62:3 4772).
[83] Constantin P and Foias C Navier-Stokes Equations 1988 (Chicago: The University of Chicago Press).
[84] Foias C, Manley O, Rosa R and Temam R 2001 Navier-Stokes equations \& Turbulence (Cambridge: Cambridge University Press).
[85] Brenier Y 1999 Minimal geodesics on groups of volume-preserving maps and generalized solutions of the Euler equations Comm. Pure Appl. Math. 52 411-452.
[86] Shnirelman A 1997 On the non-uniqueness of weak solution of the Euler equation Comm. Pure Appl. Math. 50 1260-1286
[87] De Lellis C and Székelyhidi L 2007 The Euler equations as a differential inclusion, to appear in Annals of Mathematics.
[88] Gibbon J D and Doering C R 2003 Intermittency is solutions of the three-dimensional Navier-Stokes equations J. Fluid Mech. 478 227-235
[89] Gibbon J D and Doering 2005 Intermittency \& regularity issues in three-dimensional Navier-Stokes turbulence Arch. Rat. Mech. Anal. 177 115-150.
[90] Gibbon J. D. and Titi E S 2005 Cluster formation in complex multi-scale systems, Proc. Royal Soc. 461 3089-3097
[91] Gibbon J D and Pavliotis G A 2007 Estimates for the two-dimensional Navier-Stokes equations in terms of the Reynolds number J. Math. Phys, 48065202
[92] G. Eyink 2008 Proc. of Euler Equations 250 years on held at Aussois June 2007, Physica D, 237,?-?.

