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Summary of this lecture

1. Some elementary introductory remarks on the 3D incompressible Euler equa-

tions & vortex stretching ;

2. Vortex stretching in 3D incompressible, stratified, rotating Euler equns ;

3. Ertel’s Theorem & its consequences in GFD ;

4. The theme is the role of potential vorticity : (θ is potential temperature)

q = ω ∙∇θ

& the dynamics of ∇q (about which little is known) in the context of

• the 3D incompressible, stratified, rotating Euler equations ;
• the 3D incompressible Navier-Stokes/Boussinesq equations ;
• the hydrostatic Primitive equations of the oceans & atmosphere.

5. The use of these ideas to suggest a new diagnostic for the relative accuracy of

Euler codes (in collaboration with Charlie Doering).

6. Finally : Do these ideas formally apply to the compressible Euler equations?
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Vortex stretching in Euler

For an incompressible fluid (divu = 0), the Euler equations are

Du

Dt
= −∇p with

D

Dt
= ∂t + u ∙∇

With the vorticity as ω = curlu, an alternative is

∂tu− u× ω = −∇
(
p− 1

2u
2
)

∂tω = curl
(
u× ω

)
, or

Dω

Dt
= ω ∙∇u .

The vortex stretching term ω ∙∇u can be written as

ω ∙∇u = Sω

where the strain matrix is Sij = 1
2

(
ui,j + uj,i

)
.
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Vortex “stretching & folding” in Euler

Dω

Dt
= Sω , divu = 0 .

For short periods the alignment of ω with eigenvectors of S may lead to exponen-

tial stretching/collapse depending on the signs of the eigenvalues λS(x, t). This

growth/collapse process produces the fine-scale “crinkles” in the vorticity field,

which is driven down to deeper scales & might end as a finite time singularity.

Need a local math-formulation for the dynamics of higher derivatives

of ω such as ∇ω – a difficult problem! What do we have?

Global existence of solutions (BKM Theorem 1984) :

There exists a global solution of the 3D Euler equations u ∈ C([0, ∞];Hs) ∩

C1([0, ∞];Hs−1) for s ≥ 3 if
∫ t

0

‖ω(∙ , τ )‖∞ dτ <∞ , for every t > 0 .
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3D incompressible, stratified, rotating Euler equations

The 3D incompressible Euler equations for an incompressible, stratified, rotating

flow (Ω = k̂Ω) in terms of the velocity field u(x, t) and temperature θ are

Du

Dt
+ 2 (Ω× u)︸ ︷︷ ︸

rotation

+ k̂ θ︸︷︷︸
buoyancy

= −∇p ,

and where the temperature θ(x, t) evolves passively according to

Dθ

Dt
= 0 .

Information about ∇θ is needed to determine how θ(x, t) might ac-

cumulate into large local concentrations.

Now consider the vorticity ω = curlu for which ωrot = ω + 2Ω satisfies

Dωrot

Dt
= ωrot ∙∇u +∇

⊥θ ∇⊥ = (−∂y, ∂x, 0)
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The 3D Euler equations and Ertel’s Theorem

Ertel’s Theorem (1942) : If ωrot(x, t) satisfies the 3D incompressible, rotat-

ing Euler equations then any arbitrary differentiable μ(x, t) satisfies

D

Dt
(ωrot ∙ ∇μ) = ωrot ∙ ∇

(
Dμ

Dt

)

.

The operations
[
D
Dt
, ωrot ∙ ∇

]
= 0 commute. Thus ωrot ∙ ∇(t) = ωrot ∙ ∇(0) is

a Lagrangian invariant & is “frozen in” (Cauchy 1859).

Proof :

D

Dt
(ωrot ∙ ∇μ) =

(
Dωrot

Dt
− ωrot ∙∇u

)

∙∇μ + ωrot ∙ ∇

(
Dμ

Dt

)

Ertel (1942); Truesdell & Toupin (1960); Ohkitani (1993); Kuznetsov & Zakharov

(1997); Viudez (2001); Bauer (2000).
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Potential Vorticity for rotating stratified Euler

Potential Vorticity is defined as

q = ωrot ∙∇θ with
Dθ

Dt
= 0 .

PV is very important in GFD : – see Hoskins, McIntyre, & Robertson (1985).

Take μ(x, t) = θ, and thus

Dq

Dt
=

(
Dωrot

Dt
− ωrot ∙∇u

)

∙∇θ + ωrot ∙∇

(
Dθ

Dt

)

= ∇⊥θ ∙∇θ = 0 .

Because Dq/Dt = 0, q is a materially conserved quantity.

Thus we have two materially conserved quantities q and θ.
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Evolution of the B-field

The vector B =∇q ×∇θ satisfies

∂tB = curl (u×B) ⇒
DB
Dt
= B ∙∇u

Appears in Kurgansky & Tatarskaya (1987) , Kurgansky & Pisnichenko (2000) &

Kurgansky (2002) “Adiabatic Invariants in large-scale atmospheric dynamics”

Proof : ∂tB = ∂t(∇q)× (∇θ) + (∇q)× ∂t(∇θ)

= −∇
(
u ∙∇q

)
× (∇θ)− (∇q)× [∇(u ∙∇θ)]

= −{u ∙∇(∇q) + (∇q) ∙∇u + (∇q)× ω} × (∇θ)

−(∇q)× {u ∙∇(∇θ) + (∇θ) ∙∇u + (∇θ)× ω}

= −u ∙∇B + (∇q)(ω ∙∇θ)− (∇θ)(ω ∙∇q)

+(∇θ)× (∇q ∙∇u)− (∇q)× (∇θ ∙ ∇u)

= curl (u×B)
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Why are we not surprised?

Consider B =∇q ×∇θ where

Dq

Dt
= 0 and

Dθ

Dt
= 0

B

θ = const

q = const

∇θ↗

↖∇q

B is tangent to the curve defined by the intersection of q = const and θ = const

DB
Dt
= B ∙∇u

which is also the equation for the stretching of a line-element B ≡ δ`.
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Stretching & folding in the B-field

Because divu = 0 and divB = 0 we have

curl (u×B) = B ∙∇u− u ∙∇B

∂tB = curl (u×B) or
DB
Dt
= B ∙∇u ,

The same as that for ω & also for the magnetic B-field in MHD (Moffatt 1978).

(i) Thus all the “stretching & folding” properties associated with ω

or magnetic field-lines lift over to B even though B contains ω, ∇ω,

∇θ and ∇2θ in various forms of projection.

(ii) Moreover, for any surface S(u) moving with the flow u, one finds

d

dt

∫

S(U)

B ∙ dS = 0 .
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Helicity in the B-field

Now define the vector potential A such that B = curlA where

A = 1
2

(
q∇θ − θ∇q

)
+∇ψ .

The helicity H that results from this definition,

H =

∫

V

A ∙B dV =
∫

V

div
(
ψB
)
dV =

∮

∂V

ψB ∙ n̂ dS ,

measures the knottedness of the B field-lines. H = 0 for homogeneous BCs but

if realistic topographies were taken into account then there exists the possibility

that H 6= 0. The boundaries may therefore be an important generating source

for helicity, thus allowing the formation of knots and linkages in the B-field.

See Ohkitani (2007) for a discussion of helicity-free vorticity fields

ω =∇f ×∇g

. with Df/Dt = 0 and Dg/Dt = 0.
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A remark about higher derivatives

Define the set of scalars qn as

qn = Bn−1 ∙∇θ .

Take q0 = θ and B0 = ω as the starting point. Also, for n ≥ 1, define the

sequence of vectors

Bn =∇qn ×∇qn−1 .

Thus q1 = ω ∙∇θ and B1 =∇q1 ×∇θ, and all the Bn obey

DBn
Dt
= Bn ∙∇u .

Thus all the Bn have the same stretching equation as ω.
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Aside : Is there a connection with the 2D surface QG equations?

To extract a 2D result let q = z = const and θ = const be material surfaces :

B =∇z ×∇θ = k̂ ×∇θ = −∇⊥θ .

In R2 if u is chosen as

u =∇⊥ψ with θ = −(−Δ)1/2ψ

then
DB
Dt
= B ∙∇u B = −∇⊥θ

are the 2D surface quasi-geostrophic (QG) equations discussed by Con-

stantin, Majda & Tabak (1994) who conjectured that strong fronts in

numerical calculations might be finite time singularities.

See Ohkitani & Yamada (1997); Constantin, Nie & Schorghofer (1998); Cordoba

(1998); Cordoba, Fefferman & Rodrigo (2004) & Rodrigo (2004).
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Does the stretching & folding in the B-field survive dissipation?

Consider the NS–equations coupled to the θ-field

Du

Dt
+ θ k̂ = Re−1Δu−∇p ,

Dθ

Dt
=
(
σRe

)−1
Δθ .

then the PV q = ω ∙∇θ evolves according to

Dq

Dt
=

(
Dω

Dt
− ω ∙∇u

)

∙∇θ + ω ∙∇

(
Dθ

Dt

)

=
(
Re−1Δω −∇⊥θ

)
∙∇θ + ω ∙∇

(
(σRe)−1Δθ

)

= div
(
Re−1Δu×∇θ + (σRe)−1ωΔθ

)
,

The material property is destroyed but the trick of Haynes & McItyre 1987 gives

∂tq + div (qU) = 0 .

q
(
U − u

)
= −Re−1

(
Δu×∇θ + σ−1ωΔθ

)
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Remarks on the transport velocity U

Note that from

(∂t + U ∙∇)q = −q divU
and

q
(
U − u

)
= −Re−1

(
Δu×∇θ + σ−1ωΔθ

)

1. q is the PV density ;

2. divU 6= 0 but nevertheless divU = Re−1div
[
q−1 ( . . . )

]
;

3. Strictly speaking U is not a physical velocity (Danielsen 1990), but U can still

be considered as a transport velocity .

4.What of θ?

∂tθ + U ∙∇θ = ∂tθ + u ∙∇θ −Re
−1q−1

{
Δu×∇θ + σ−1ωΔθ

}
∙∇θ

= ∂tθ + u ∙∇θ −
(
σRe

)−1
Δθ

= 0 .

J. D. Gibbon 2010 15

Imperial College London

Remarks on the transport velocity U

Note that from

(∂t + U ∙∇)q = −q divU
and

q
(
U − u

)
= −Re−1

(
Δu×∇θ + σ−1ωΔθ

)

1. q is the PV density ;

2. divU 6= 0 but nevertheless divU = Re−1div
[
q−1 ( . . . )

]
;

3. Strictly speaking U is not a physical velocity (Danielsen 1990), but U can still

be considered as a transport velocity .

4.What of θ?

∂tθ + U ∙∇θ = ∂tθ + u ∙∇θ −Re
−1q−1

{
Δu×∇θ + σ−1ωΔθ

}
∙∇θ

= ∂tθ + u ∙∇θ −
(
σRe

)−1
Δθ

= 0 .

J. D. Gibbon 2010 15



Imperial College London

Formal result for the B-field

∂tq + div
(
qU
)
= 0 , ∂tθ + U ∙∇θ = 0 ,

and B =∇Q(q)×∇θ satisfies the stretching relation

∂tB − curl (U ×B) = D .

where the divergence-less vector D is given by

D = −∇(qQ′ divU)×∇θ .

and U is defined as

q(U − u) = −Re−1
{
Δu×∇θ + σ−1ωΔθ

}
, q 6= 0 .

Moreover, for any surface S(U) moving with the flow U , one finds
d

dt

∫

S(U)

B ∙ dS =
∫

S(U)

D ∙ dS .
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Proof of the B-equation

Consider B =∇Q(q)×∇θ, then

∂tB = ∂t(∇Q)× (∇θ) + (∇Q)× ∂t(∇θ)

= −∇
[
(qQ′ divU) + U ∙ ∇Q)

]
× (∇θ)− (∇Q)× [∇(U ∙ ∇θ)]

= −{∇(qQ′ divU) + U ∙ ∇(∇Q) + (∇Q) ∙ ∇U + (∇Q)× ωU} × (∇θ)

− (∇Q)× {U ∙ ∇(∇θ) + (∇θ) ∙ ∇U + (∇θ)× ωU}

= −∇(qQ′ divU)×∇θ − U ∙ ∇B + (∇Q)(ωU ∙ ∇θ)− (∇θ)(ωU ∙ ∇Q)

+ (∇θ)× (∇Q ∙ ∇U)− (∇Q)× (∇θ ∙ ∇U)

= curl (U ×B)−∇(qQ′ divU)×∇θ .

The dynamics of the gradient of potential vorticity

(JDG and D. D. Holm),

J. Phys. A: Math. Theor. 43, (2010) 172001.
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= curl (U ×B)−∇(qQ′ divU)×∇θ .

The dynamics of the gradient of potential vorticity

(JDG and D. D. Holm),

J. Phys. A: Math. Theor. 43, (2010) 172001.
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Remarks on re-connection

Because divU 6= 0 but divB = 0 we have

∂tB − curl (U ×B) = D

we could write U = u + v where u is an Euler solution (divu = 0), with

v = −Re−1
{
q−1
[
Δu×∇θ + σ−1ωΔθ

]}

where

∂tB − curl (u×B)︸ ︷︷ ︸
Euler

= D + curl (v ×B)︸ ︷︷ ︸
? re-connection ?

∼ O
(
Re−1

)
{ ∙ } .

For numerical calculations on re-connection see : Herring, Kerr and Rotunno,

Ertel’s PV in unstratified turbulence, JAS, 51, 35 (1994).
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The hydrostatic primitive equations

Many simulations of weather, climate and ocean circulation employ a hydrostatic

version of the primitive equations (denoted HPE). The major difference of

HPE from the NS-equations lies in the exclusion of the vertical velocity

component w(x, y, z, t) in the hydrostatic velocity field :

v(x, y, z, t) = (u, v, 0) .

However, w does appear in the full velocity field V

V = (u, v, εw)

where ε is the Rossby number. The vertical velocity w has no evolution equa-

tion; it appears only in V ∙∇. The z-derivative of the pressure field p and the

dimensionless temperature Θ enter the problem through the hydrostatic equation

a0Θ + pz = 0 ,

J. D. Gibbon 2010 19

Imperial College London

The hydrostatic primitive equations

Many simulations of weather, climate and ocean circulation employ a hydrostatic

version of the primitive equations (denoted HPE). The major difference of

HPE from the NS-equations lies in the exclusion of the vertical velocity

component w(x, y, z, t) in the hydrostatic velocity field :

v(x, y, z, t) = (u, v, 0) .

However, w does appear in the full velocity field V

V = (u, v, εw)

where ε is the Rossby number. The vertical velocity w has no evolution equa-

tion; it appears only in V ∙∇. The z-derivative of the pressure field p and the

dimensionless temperature Θ enter the problem through the hydrostatic equation

a0Θ + pz = 0 ,

J. D. Gibbon 2010 19



Imperial College London

The hydrostatic approximation

To address the influence of the material derivative in (αa = H/L)

α2aε
2

(
∂

∂t
+ V ∙ ∇3

)

w + a0Θ + pz = εRe
−1Δ3w .

Typical values of α2aε
2 for mid-latitude synoptic weather & climate systems are :

αa = H/L ≈ 104m/106m ≈ 10−2

W/U ≈ 10−2ms−1/10ms−1 ≈ 10−3

ε = U/(f0L) ≈ 10ms
−1/(10−4s−1106m) ≈ 10−1 .

For mid-latitude large-scale ocean circulation, the corresponding numbers are :

αa = H/L ≈ 103m/105m ≈ 10−2

W/U ≈ 10−3ms−1/10−1ms−1 ≈ 10−2

ε = U/(f0L) ≈ 10
−1ms−1/(10−4s−1105m) ≈ 10−2 .

Thus α2aε
2 ≈ 10−8 − 10−6 � 1 so the hydrostatic approxn is good.
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The velocity field v = (u, v, 0) obeys the motion equation

ε
(
∂t + V ∙∇

)
v + k̂ × v + a0k̂Θ = εRe

−1Δv −∇p ,

a0 = εσα
−3
a RaRe

−2 ; the aspect ratio αa � 1 & Ra is the Rayleigh no.

V ∙∇v = −V × ζ + 1
2∇
(
u2 + v2

)
.

The vorticity equation for ζ = curlv & the dimensionless temperature Θ satisfy

(
∂t + V ∙∇

)
ζ = (σRe)−1Δζ + ζ ∙∇V + curlf ,

(
∂t + V ∙∇

)
Θ = (σRe)−1ΔΘ + h ,

divV = divv + εwz = 0

where f = −ε−1
(
k̂ × v + a0k̂Θ

)
. The existence and uniqueness of strong

solutions of HPE has been proved by Cao and Titi (2007). For earlier work

see Lions, Temam & Wang (1992, 1995) & Lewandowski (2001).
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The equation for B

q = ζ ∙∇Θ and B =∇Q×∇Θ ,

where Q(q) can be chosen as any smooth function of the potential vorticity q,

∂t q + div
(
qU
)
= 0 , q

(
∂t +U ∙∇

)
Θ = 0 .

q (U− V ) = −
{[
Re−1ΔV + f

]
×∇Θ +

[
(σRe)−1ζΔΘ + h

]}
.

∂tB− curl (U× B) = D divU 6= 0

D = −∇
(
qQ′(q) divU

)
×∇Θ .

d

dt

∫

S(U)

B ∙ dS =
∫

S(U)

D ∙ dS .
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ECMWF : http://www.met.rdg.ac.uk/Data/CurrentWeather : “Analyzed data” every 6 hrs of the

N. Hemisphere showing contours of θ on a level set q = 2 in the tropopause. High values of ∇θ lie

at sharp contour interfaces. Thanks to Brian Hoskins, Paul Berrisford & Nicholas Klingaman.
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Euler singularity literature

1. Morf, Orszag & Frisch U 1980; Chorin A J 1982; Brachet, Meiron, Orszag, Nickel, Morf & Frisch 1983;

Siggia 1984; Kida 1985; Ashurst & Meiron 1987; Pumir & Kerr 1987; Pumir & Siggia 1990; Grauer &

Sideris 1991; Bell & Marcus 1992; Brachet, Meneguzzi, Vincent, Politano & Sulem 1992; Kerr 1993, 2005;

Boratav & Pelz 1993, 1995; Pelz 1997; Pelz & Gulak 1997; Grauer, Marliani & Germaschewski 1998; Pelz

2001; Cichowlas & Brachet 2005; Gulak & Pelz 2005; Pelz & Ohkitani 2005; Hou & Li 2006, 2008.

See the articles in : Proc. of “Euler Equations 250 years on” Aussois

conference : Physica D, (2008) vol 237.

2. Controversy concerning the development of a singularity :

(a) Kerr 1993 & Bustamante & Kerr 2008; Orlandi & Carnevale

2007; Grafke, Homann, Dreher & Grauer 2008 suggest singular

behaviour.

(b) Hou & Li R 2006, 2008 suggest double exponential growth.

3. The Kerr and Hou/Li calculations agree until the last phase.
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A diagnostic for Euler codes : by Ch. Doering, DDH & JDG

arXiv:1002.2961v1

We propose the following test on the accuracy of the codes.

Du

Dt
= −∇p ,

D

Dt
= ∂ t + u ∙∇ ,

Now treat θ simply as a passive tracer concentration (with initial data)

Dθ

Dt
= 0 .

Define

q = ω ∙∇θ ⇒
Dq

Dt
= 0 .

B =∇q ×∇θ ⇒ divB = 0

The vector field B contains information on ω, ∇ω, ∇θ and ∇2θ.
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∂ tB = curl (u×B) or
DB
Dt
= B ∙∇u .

1. Choose initial data for u and θ, thereby fixing initial data for q and B.

2. Use one’s code to evolve u & simultaneously solve Dθ/Dt = 0 for θ and

DB/Dt = B ∙∇u for B.

3. Construct q1(∙ , t) = ω(∙ , t) ∙∇θ(∙ , t) from data and then :

(a) compare the solution for B(∙, t) obtained from solving DB/Dt = B ∙∇u

with B1(∙ , t) =∇q1(∙ , t)×∇θ(∙ , t)

(b) and, furthermore, compare these with B2(∙ , t) = ∇q(∙ , t) × ∇θ(∙ , t)

where q(∙ , t) is the evolved solution of Dq/Dt = 0.

4. For fixed initial data for u this procedure may be implemented for a variety of

“markers” θn(∙ , t) evolving from distinct initial data θn(∙ , 0) to diagnose the

numerical accuracy in different regions of the flow.

Because B contains ∇ω, comparison of B, B1 and B2 tests the accu-

racy of the computation of some of the small scale flow-structures.
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The behaviour of ‖ lnB‖∞

1
2

D|B|2

Dt
= B ∙∇u ∙B or as

D ln |B|
Dt

= B̂ ∙∇u ∙ B̂ .

With B = |B|, the Lp-norm of lnB gives
d

dt
‖ lnB‖p ≤ ‖∇u‖p .

For p =∞

‖ lnB(∙ , t)‖∞ = ‖ lnB(∙ , 0)‖∞

∫ t

0

‖∇u(∙ , τ )‖∞ dτ

The BKM Theorem ⇒
∫ t
0 ‖∇u(∙ , τ )‖∞ dτ is controlled by

∫ t
0 ‖ω(∙ , τ )‖∞ dτ .

Lemma : If
∫ t
0 ‖ω(∙ , τ )‖∞ dτ is bounded at time t then :

(i) No singularity in ∇q and ∇θ can occur without the simultaneous alignment

or anti-alignment of the vectors ∇q and ∇θ.

(ii) No alignment or anti-alignment of the vectors ∇q nor ∇θ can occur if they

both remain finite.
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Compressible Euler

Consider the dimensionless form of the Euler equations in their simplest form

ρ

(
Du

Dt

)

= −∇p , ∂tρ + div
(
ρu
)
= 0 .

Define

q := ω ∙∇ρ

where

Dω

Dt
= ω ∙∇u− ω divu−∇

(
ρ−1
)
×∇p

Now formally manipulate :

D

Dt
(ω ∙∇ρ) =

(
Dω

Dt

)

∙∇ρ + ω ∙
D

Dt
(∇ρ)

=

(
Dω

Dt
− ω ∙∇u

)

∙∇ρ + ω ∙∇

(
Dρ

Dt

)
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Thus q satisfies

Dq

Dt
+
{
∇
(
ρ−1
)
×∇p + ω divu

}
∙∇ρ + ω ∙∇ (ρ divu) = 0 .

∂tq + div {qU} = 0 , q 6= 0 , ∂tρ + U ∙∇ρ = 0

where

U = u + q−1ρω divu , divU 6= 0 .

∂tB − curl (U ×B) = D

and where the divergence-less vector D is given by

D = −∇
(
q divU

)
×∇θ .

In the Boussinesq approximation, D = 0.
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[35] Bardos C, Benachour S and Zerner M 1976 Analyticité des solutions périodiques de léquation d’Euler en deux dimensions C. R.

Acad. Sc. Paris 282A 995-998
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