On implicitly constituted incompressible fluids

Josef Málek

Mathematical Institute of the Charles University Sokolovská 83, 186 75 Prague 8, Czech Republic

M. Bulíček, P. Gwiazda, J. Málek and A. Swierczewska-Gwiazda

KR Rajagopal M. Heida, V.Průša

July 6, 2010

Governing equations

Equations in a bounded domain $\Omega \subset \mathbb{R}^3$ for $t \in [0, T]$:

$$\operatorname{div} \mathbf{v} = 0$$

$$\mathbf{v}_{,t} + \operatorname{div}(\mathbf{v} \otimes \mathbf{v}) - \operatorname{div} \mathbf{S} = -\nabla p + \mathbf{f}$$

$$S = S^T$$

- v is the velocity of the fluid
- p is the mean normal stress (pressure) $p := -\frac{1}{3} \operatorname{tr} \mathbf{T}$
- **f** external body forces (\equiv **0**)
- S is the constitutively determined (deviatoric) part of the Cauchy stress

$$T = -pI + S$$

The Cauchy stress:
$$\mathbf{T} = -p\mathbf{I} + \mathbf{S}$$
 $\mathbf{T} = (\mathbf{T} - \frac{1}{3}(\operatorname{tr} \mathbf{T})\mathbf{I}) + \frac{1}{3}(\operatorname{tr} \mathbf{T})\mathbf{I}$

Point-wisely given constitutive equations

- D(v) the symmetric part of the velocity gradient: $2D(v) := \nabla v + (\nabla v)^T$.
- ullet Consider merely **point-wise** relations between **D** and **S** (or **D** and **T**) *NO* integral, differential (rate-type) or stochastic constitutive relations:

$$\boxed{ \mathsf{G}(\mathsf{S},\mathsf{D}) = \mathbf{0} } \quad \text{ or } \quad \tilde{\mathsf{G}}(\mathsf{T},\mathsf{D}) = \mathbf{0}$$

- robust class of fluids
- justification to adhoc models
- easy incorporation of constraints (as $\operatorname{div} \mathbf{v} = 0$)
- ullet new class of explicit models $oldsymbol{\mathsf{D}} = oldsymbol{\mathsf{H}}(oldsymbol{\mathsf{S}})$ vrs $oldsymbol{\mathsf{S}} = ilde{oldsymbol{\mathsf{H}}}(oldsymbol{\mathsf{D}})$

Extensions

G(S, D, p, x, t, temperature, density, concentration, etc.) = 0

Point-wisely given constitutive equations

- D(v) the symmetric part of the velocity gradient: $2D(v) := \nabla v + (\nabla v)^T$.
- Consider merely **point-wise** relations between **D** and **S** (or **D** and **T**) *NO* integral, differential (rate-type) or stochastic constitutive relations:

$$\boxed{ \mathsf{G}(\mathsf{S},\mathsf{D}) = \mathbf{0} } \quad \text{ or } \quad \tilde{\mathsf{G}}(\mathsf{T},\mathsf{D}) = \mathbf{0}$$

- robust class of fluids
- justification to adhoc models
- easy incorporation of constraints (as $\operatorname{div} \mathbf{v} = 0$)
- ullet new class of explicit models $oldsymbol{\mathsf{D}} = oldsymbol{\mathsf{H}}(oldsymbol{\mathsf{S}})$ vrs $oldsymbol{\mathsf{S}} = ilde{oldsymbol{\mathsf{H}}}(oldsymbol{\mathsf{D}})$

Extensions:

 $\textbf{G}(\textbf{S},\textbf{D},\rho,x,t,\text{temperature, density, concentration, etc.}) = \textbf{0}$

Navier-Stokes fluids

$$\mathbf{T} = -\rho \mathbf{I} + 2\mu^* \mathbf{D} \iff \mathbf{S} = 2\mu^* \mathbf{D} \iff \mathbf{D} = \frac{1}{2\mu^*} \mathbf{S}$$

$$0 \le \left[\xi = \mathbf{S} \cdot \mathbf{D} \right]$$

= $2\mu^* |\mathbf{D}|^2 = (2\mu^*)^{-1} |\mathbf{S}|^2$
= $\mu^* |\mathbf{D}|^2 + \frac{1}{2} (2\mu^*)^{-1} |\mathbf{S}|^2$

$$\xi = \mathbf{S} \cdot \mathbf{D} = \frac{\mathbf{S} \cdot \mathbf{D}}{2} + \frac{\mathbf{S} \cdot \mathbf{D}}{2} = \frac{1}{2} |\mathbf{D}|^2 + \frac{1}{2} |\mathbf{S}|^2$$

Navier-Stokes fluids

$$\mathbf{T} = -\rho \mathbf{I} + 2\mu^* \mathbf{D} \iff \mathbf{S} = 2\mu^* \mathbf{D} \iff \mathbf{D} = \frac{1}{2\mu^*} \mathbf{S}$$

$$0 \le \left[\xi = \mathbf{S} \cdot \mathbf{D} \right]$$

$$= 2\mu^* |\mathbf{D}|^2 = (2\mu^*)^{-1} |\mathbf{S}|^2$$

$$= \mu^* |\mathbf{D}|^2 + \frac{1}{2} (2\mu^*)^{-1} |\mathbf{S}|^2$$

$$\mu^* = 1/2 \implies \mathbf{S} = \mathbf{D}$$

$$\xi = \mathbf{S} \cdot \mathbf{D} = \frac{\mathbf{S} \cdot \mathbf{D}}{2} + \frac{\mathbf{S} \cdot \mathbf{D}}{2} = \frac{1}{2} |\mathbf{D}|^2 + \frac{1}{2} |\mathbf{S}|^2$$

Navier-Stokes fluids

$$\mathbf{T} = -\rho \mathbf{I} + 2\mu^* \mathbf{D} \iff \mathbf{S} = 2\mu^* \mathbf{D} \iff \mathbf{D} = \frac{1}{2\mu^*} \mathbf{S}$$

$$\begin{aligned} 0 &\leq \left[\xi = \mathbf{S} \cdot \mathbf{D} \right] \\ &= 2\mu^* |\mathbf{D}|^2 = (2\mu^*)^{-1} |\mathbf{S}|^2 \\ &= \mu^* |\mathbf{D}|^2 + \frac{1}{2} (2\mu^*)^{-1} |\mathbf{S}|^2 \end{aligned}$$

$$\mu^* = 1/2$$
 \Longrightarrow $\mathbf{S} = \mathbf{D}$
$$\xi = \mathbf{S} \cdot \mathbf{D} = \frac{\mathbf{S} \cdot \mathbf{D}}{2} + \frac{\mathbf{S} \cdot \mathbf{D}}{2} = \frac{1}{2} |\mathbf{D}|^2 + \frac{1}{2} |\mathbf{S}|^2$$

$$\mathbf{T} = -\rho\mathbf{I} + 2\mu^*|\mathbf{D}|^{r-2}\mathbf{D} \iff \mathbf{S} = 2\mu^*|\mathbf{D}|^{r-2}\mathbf{D} \iff \mathbf{D} = [2\mu^*]^{-\frac{1}{r-1}}|\mathbf{S}|^{\frac{2-r}{r-1}}\mathbf{S}$$

$$\mu^* = 1/2$$
 $r' := r/(r-1)$

$$\xi = \mathbf{S} \cdot \mathbf{D} = |\mathbf{D}|^r = |\mathbf{S}|^{r/(r-1)}$$
$$= \frac{\mathbf{S} \cdot \mathbf{D}}{r} + \frac{\mathbf{S} \cdot \mathbf{D}}{r'} = \frac{|\mathbf{D}|^r}{r} + \frac{|\mathbf{S}|^{r'}}{r'}$$

Also, for all **D**, $\mathbf{E} \in \mathbb{R}^{3 \times 3}$

$$(\tilde{\mathbf{S}}(\mathbf{D}) - \tilde{\mathbf{S}}(\mathbf{E})) \cdot (\mathbf{D} - \mathbf{E}) \ge 0$$
, where $\tilde{\mathbf{S}}(\mathbf{B}) := 2\mu^* |\mathbf{B}|^{r-2} \mathbf{B}$

for all \mathbf{S}_1 , $\mathbf{S}_2 \in \mathbb{R}^{3 \times 3}$

$$(S_1 - S_2) \cdot (B(S_1) - B(S_2)) \ge 0$$
, where $B(S) := 2\mu^* |S|^{\frac{2-r}{r-1}}$

Generalizations

$$S = (1 + |D|^2)^{r-2}D$$
 $D = (1 + |S|^2)^{\frac{2-r}{r-1}}S$
 $S = \nu(|D|^2)D$ $D = \mu(|S|^2)S$

$$\mathbf{T} = -\rho\mathbf{I} + 2\mu^*|\mathbf{D}|^{r-2}\mathbf{D} \iff \mathbf{S} = 2\mu^*|\mathbf{D}|^{r-2}\mathbf{D} \iff \mathbf{D} = [2\mu^*]^{-\frac{1}{r-1}}|\mathbf{S}|^{\frac{2-r}{r-1}}\mathbf{S}$$

$$\mu^* = 1/2$$
 $r' := r/(r-1)$

$$\xi = \mathbf{S} \cdot \mathbf{D} = |\mathbf{D}|^r = |\mathbf{S}|^{r/(r-1)}$$
$$= \frac{\mathbf{S} \cdot \mathbf{D}}{r} + \frac{\mathbf{S} \cdot \mathbf{D}}{r'} = \frac{|\mathbf{D}|^r}{r} + \frac{|\mathbf{S}|^{r'}}{r'}$$

Also, for all **D**, $\mathbf{E} \in \mathbb{R}^{3 \times 3}$

$$(\tilde{\mathbf{S}}(\mathbf{D}) - \tilde{\mathbf{S}}(\mathbf{E})) \cdot (\mathbf{D} - \mathbf{E}) \ge 0$$
, where $\tilde{\mathbf{S}}(\mathbf{B}) := 2\mu^* |\mathbf{B}|^{r-2} \mathbf{B}$

for all \mathbf{S}_1 , $\mathbf{S}_2 \in \mathbb{R}^{3 \times 3}$

$$(S_1 - S_2) \cdot (B(S_1) - B(S_2)) \ge 0$$
, where $B(S) := 2\mu^* |S|^{\frac{2-r}{r-1}}$

Generalizations

$$S = (1 + |D|^2)^{r-2}D$$
 $D = (1 + |S|^2)^{\frac{2-r}{r-1}}S$
 $S = \nu(|D|^2)D$ $D = \mu(|S|^2)S$

$$\mathbf{T} = -\rho\mathbf{I} + 2\mu^*|\mathbf{D}|^{r-2}\mathbf{D} \iff \mathbf{S} = 2\mu^*|\mathbf{D}|^{r-2}\mathbf{D} \iff \mathbf{D} = [2\mu^*]^{-\frac{1}{r-1}}|\mathbf{S}|^{\frac{2-r}{r-1}}\mathbf{S}$$

$$\mu^* = 1/2$$
 $r' := r/(r-1)$

$$\xi = \mathbf{S} \cdot \mathbf{D} = |\mathbf{D}|^r = |\mathbf{S}|^{r/(r-1)}$$
$$= \frac{\mathbf{S} \cdot \mathbf{D}}{r} + \frac{\mathbf{S} \cdot \mathbf{D}}{r'} = \frac{|\mathbf{D}|^r}{r} + \frac{|\mathbf{S}|^{r'}}{r'}$$

$$(\tilde{\mathbf{S}}(\mathbf{D}) - \tilde{\mathbf{S}}(\mathbf{E})) \cdot (\mathbf{D} - \mathbf{E}) \ge 0$$
, where $\tilde{\mathbf{S}}(\mathbf{B}) := 2\mu^* |\mathbf{B}|^{r-2} \mathbf{B}$

$$(S_1 - S_2) \cdot (B(S_1) - B(S_2)) \ge 0,$$
 where $B(S) := 2\mu^* |S|^{\frac{2-r}{r-1}}$

$$S = (1 + |D|^2)^{r-2}D$$
 $D = (1 + |S|^2)^{\frac{2-r}{r-1}}S$
 $S = \nu(|D|^2)D$ $D = \mu(|S|^2)S$

$$\mathbf{T} = -\rho\mathbf{I} + 2\mu^*|\mathbf{D}|^{r-2}\mathbf{D} \iff \mathbf{S} = 2\mu^*|\mathbf{D}|^{r-2}\mathbf{D} \iff \mathbf{D} = [2\mu^*]^{-\frac{1}{r-1}}|\mathbf{S}|^{\frac{2-r}{r-1}}\mathbf{S}$$

$$\mu^* = 1/2$$
 $r' := r/(r-1)$

$$\xi = \mathbf{S} \cdot \mathbf{D} = |\mathbf{D}|^r = |\mathbf{S}|^{r/(r-1)}$$
$$= \frac{\mathbf{S} \cdot \mathbf{D}}{r} + \frac{\mathbf{S} \cdot \mathbf{D}}{r'} = \frac{|\mathbf{D}|^r}{r} + \frac{|\mathbf{S}|^{r'}}{r'}$$

$$(\tilde{\mathbf{S}}(\mathbf{D}) - \tilde{\mathbf{S}}(\mathbf{E})) \cdot (\mathbf{D} - \mathbf{E}) \ge 0$$
, where $\tilde{\mathbf{S}}(\mathbf{B}) := 2\mu^* |\mathbf{B}|^{r-2} \mathbf{B}$

$$(S_1 - S_2) \cdot (B(S_1) - B(S_2)) \ge 0,$$
 where $B(S) := 2\mu^* |S|^{\frac{2-r}{r-1}} S$

$$S = (1 + |D|^2)^{r-2}D$$
 $D = (1 + |S|^2)^{\frac{2-r}{r-1}}S$
 $S = \nu(|D|^2)D$ $D = \mu(|S|^2)S$

$$\mathbf{T} = -p\mathbf{I} + 2\mu^*|\mathbf{D}|^{r-2}\mathbf{D} \iff \mathbf{S} = 2\mu^*|\mathbf{D}|^{r-2}\mathbf{D} \iff \mathbf{D} = [2\mu^*]^{-\frac{1}{r-1}}|\mathbf{S}|^{\frac{2-r}{r-1}}\mathbf{S}$$

$$\mu^* = 1/2$$
 $r' := r/(r-1)$

$$\xi = \mathbf{S} \cdot \mathbf{D} = |\mathbf{D}|^r = |\mathbf{S}|^{r/(r-1)}$$
$$= \frac{\mathbf{S} \cdot \mathbf{D}}{r} + \frac{\mathbf{S} \cdot \mathbf{D}}{r'} = \frac{|\mathbf{D}|^r}{r} + \frac{|\mathbf{S}|^{r'}}{r'}$$

Also, for all **D**, $\mathbf{E} \in \mathbb{R}^{3\times 3}$

$$(\tilde{\mathbf{S}}(\mathbf{D}) - \tilde{\mathbf{S}}(\mathbf{E})) \cdot (\mathbf{D} - \mathbf{E}) \ge 0$$
, where $\tilde{\mathbf{S}}(\mathbf{B}) := 2\mu^* |\mathbf{B}|^{r-2} \mathbf{B}$

where
$$\tilde{S}(B) := 2\mu^* |B|^{r-2}$$

for all \mathbf{S}_1 , $\mathbf{S}_2 \in \mathbb{R}^{3\times 3}$

$$(S_1 - S_2) \cdot (B(S_1) - B(S_2)) \ge 0$$
, where $B(S) := 2\mu^* |S|^{\frac{2-r}{r-1}} S$

where
$$B(S) := 2\mu^* |S|^{\frac{2-r}{r-1}}$$

$$\begin{split} \mathbf{S} &= (1+|\mathbf{D}|^2)^{r-2}\mathbf{D} \qquad \mathbf{D} = (1+|\mathbf{S}|^2)^{\frac{2-r}{r-1}}\mathbf{S} \\ \mathbf{S} &= \nu(|\mathbf{D}|^2)\mathbf{D} \qquad \mathbf{D} = \mu(|\mathbf{S}|^2)\mathbf{S} \end{split}$$

$$\mathbf{T} = -\rho\mathbf{I} + 2\mu^*|\mathbf{D}|^{r-2}\mathbf{D} \iff \mathbf{S} = 2\mu^*|\mathbf{D}|^{r-2}\mathbf{D} \iff \mathbf{D} = [2\mu^*]^{-\frac{1}{r-1}}|\mathbf{S}|^{\frac{2-r}{r-1}}\mathbf{S}$$

$$\mu^* = 1/2$$
 $r' := r/(r-1)$

$$\xi = \mathbf{S} \cdot \mathbf{D} = |\mathbf{D}|^r = |\mathbf{S}|^{r/(r-1)}$$
$$= \frac{\mathbf{S} \cdot \mathbf{D}}{r} + \frac{\mathbf{S} \cdot \mathbf{D}}{r'} = \frac{|\mathbf{D}|^r}{r} + \frac{|\mathbf{S}|^{r'}}{r'}$$

Also, for all \mathbf{D} , $\mathbf{E} \in \mathcal{R}^{3 \times 3}$

$$(\mathbf{\tilde{S}}(\mathbf{D}) - \mathbf{\tilde{S}}(\mathbf{E})) \cdot (\mathbf{D} - \mathbf{E}) \ge 0$$
, where $\mathbf{\tilde{S}}(\mathbf{B}) := 2\mu^* |\mathbf{B}|^{r-2} \mathbf{B}$

for all \mathbf{S}_1 , $\mathbf{S}_2 \in \mathbb{R}^{3 \times 3}$

$$\left(\textbf{S}_1-\textbf{S}_2\right)\cdot\left(\textbf{B}(\textbf{S}_1)-\textbf{B}(\textbf{S}_2)\right)\geq 0\,, \qquad \quad \text{where} \quad \textbf{B}(\textbf{S}):=2\mu^*|\textbf{S}|^{\frac{2-r}{r-1}}\textbf{S}$$

Generalizations

$$S = (1 + |D|^2)^{r-2}D$$
 $D = (1 + |S|^2)^{\frac{2-r}{r-1}}S$
 $S = \nu(|D|^2)D$ $D = \mu(|S|^2)S$

Fluids with shear-rate dependent viscosities

Continuous Explicit Standard Power-Law models (S := S(D))

$$\mu(|\mathbf{D}|^2)$$

$$\mathbf{v} = (u(y), 0, 0) \implies |\mathbf{D}(\mathbf{v})|^2 = 1/2|u'|^2 := \kappa$$
 shear rate

- $\mu(|\mathbf{D}|^2) = 2\mu^* |\mathbf{D}|^{r-2}$ $1 < r < \infty$
- $\mu(|\mathbf{D}|^2) = 2\mu_0^* + \mu_1^* |\mathbf{D}|^{r-2}$ $1 < r < \infty$
- $\mu(|\mathbf{D}|^2) = 2\mu_0^*(\epsilon + |\mathbf{D}|^2)^{r-2}$ $1 \in \mathcal{R}$
- power-law like fluids \implies r-coercivity, (r-1)-growth and strict monotonicity
- fluids with shear-rate dependent viscosity

Classical power-law model for various power-law index

$$\mathbf{S} = (1 + |\mathbf{D}|^2)^m \mathbf{D}$$

Stress power-law model for various power-law index

Continuous Explicit Stress Power-law models (D := D(S))

$$D = (1 + |S|^2)^n S$$

Power-law like fluids with activation criteria/discontinuous stresses

- threshold value for the stress to start flow
- Bingham fluid
- Herschel-Bingham fluid
- drastic changes of the properties when certain criterion is met
- formation and dissolution of blood
- chemical reactions/time scale

$$|\mathbf{S}| > \tau^*$$
 if and only if $\mathbf{S} = \tau^* \frac{\mathbf{D}}{|\mathbf{D}|} + 2\mu_i(|\mathbf{D}|^2)\mathbf{D}$
 $|\mathbf{S}| \le \tau^*$ if and only if $\mathbf{D} = \mathbf{0}$

is equivalent to

$$2\mu_i(|\mathbf{D}|^2)(\tau^* + (|\mathbf{S}| - \tau^*)^+)\mathbf{D} = (|\mathbf{S}| - \tau^*)^+\mathbf{S}$$

Similarly:

$$\mathbf{S} = \mu_{\alpha}(|\mathbf{D}|^2)\mathbf{D}$$
 if $|\mathbf{D}| < d^*$
 $\mathbf{S} = \mu_{\beta}(|\mathbf{D}|^2)\mathbf{D}$ if $|\mathbf{D}| > d^*$
 $\mathbf{S} = \mu^*\mathbf{D}$ if $|\mathbf{D}| = d^*$,

 μ^* takes any value between $\mu_lpha^*:=\lim_{s o d_-^*}\mu_lpha(s)$ and $\mu_eta^*:=\lim_{s o d_\perp^*}\mu_eta(s)$

$$||\mathbf{D}| - d^*|\mathbf{S} = M(|\mathbf{D}|^2)(|\mathbf{D}| - d^*)\mathbf{D}$$
with $M(s) := \max\{\mu_{\alpha}(s)\operatorname{sgn}(s - d^*); \mu_{\beta}(s)\operatorname{sgn}(s - d^*)\}$

$$|\mathbf{S}| > \tau^*$$
 if and only if $\mathbf{S} = \tau^* \frac{\mathbf{D}}{|\mathbf{D}|} + 2\mu_i(|\mathbf{D}|^2)\mathbf{D}$
 $|\mathbf{S}| \le \tau^*$ if and only if $\mathbf{D} = \mathbf{0}$

is equivalent to

$$2\mu_i(|\mathbf{D}|^2)\big(\tau^*+(|\mathbf{S}|-\tau^*)^+\big)\,\mathbf{D}=\big(|\mathbf{S}|-\tau^*\big)^+\mathbf{S}$$

Similarly:

$$\mathbf{S} = \mu_{\alpha}(|\mathbf{D}|^2)\mathbf{D}$$
 if $|\mathbf{D}| < d^*$
 $\mathbf{S} = \mu_{\beta}(|\mathbf{D}|^2)\mathbf{D}$ if $|\mathbf{D}| > d^*$
 $\mathbf{S} = \mu^*\mathbf{D}$ if $|\mathbf{D}| = d^*$,

 μ^* takes any value between $\mu_lpha^*:=\lim_{s o d_-^*}\mu_lpha(s)$ and $\mu_eta^*:=\lim_{s o d_\perp^*}\mu_eta(s)$

$$||\mathbf{D}| - d^*|\mathbf{S} = M(|\mathbf{D}|^2)(|\mathbf{D}| - d^*)\mathbf{D}$$

with $M(s) := \max\{\mu_{\alpha}(s)\operatorname{sgn}(s - d^*); \mu_{\beta}(s)\operatorname{sgn}(s - d^*)\}$

$$|\mathbf{S}| > \tau^*$$
 if and only if $\mathbf{S} = \tau^* \frac{\mathbf{D}}{|\mathbf{D}|} + 2\mu_i (|\mathbf{D}|^2) \mathbf{D}$
 $|\mathbf{S}| \le \tau^*$ if and only if $\mathbf{D} = \mathbf{0}$

is equivalent to

$$2\mu_i(|\mathbf{D}|^2)\big(\tau^*+(|\mathbf{S}|-\tau^*)^+\big)\,\mathbf{D}=\big(|\mathbf{S}|-\tau^*\big)^+\mathbf{S}$$

Similarly:

$$\mathbf{S} = \mu_{\alpha}(|\mathbf{D}|^2)\mathbf{D}$$
 if $|\mathbf{D}| < d^*$
 $\mathbf{S} = \mu_{\beta}(|\mathbf{D}|^2)\mathbf{D}$ if $|\mathbf{D}| > d^*$
 $\mathbf{S} = \mu^*\mathbf{D}$ if $|\mathbf{D}| = d^*$,

 μ^* takes any value between $\mu_{\alpha}^* := \lim_{s \to d_-^*} \mu_{\alpha}(s)$ and $\mu_{\beta}^* := \lim_{s \to d_+^*} \mu_{\beta}(s)$

$$||\mathbf{D}| - d^*|\mathbf{S} = M(|\mathbf{D}|^2)(|\mathbf{D}| - d^*)\mathbf{D}$$
with $M(s) := \max\{\mu_{\alpha}(s)\operatorname{sgn}(s - d^*); \mu_{\beta}(s)\operatorname{sgn}(s - d^*)\}$

$$|\mathbf{S}| > \tau^*$$
 if and only if $\mathbf{S} = \tau^* \frac{\mathbf{D}}{|\mathbf{D}|} + 2\mu_i (|\mathbf{D}|^2) \mathbf{D}$
 $|\mathbf{S}| \le \tau^*$ if and only if $\mathbf{D} = \mathbf{0}$

is equivalent to

$$2\mu_i(|\mathbf{D}|^2)(\tau^* + (|\mathbf{S}| - \tau^*)^+)\mathbf{D} = (|\mathbf{S}| - \tau^*)^+\mathbf{S}$$

Similarly:

$$egin{aligned} \mathbf{S} &= \mu_{lpha}(|\mathbf{D}|^2)\mathbf{D} & & & & & & & & & & & \\ \mathbf{S} &= \mu_{eta}(|\mathbf{D}|^2)\mathbf{D} & & & & & & & & & & \\ \mathbf{S} &= \mu^*\mathbf{D} & & & & & & & & & & & \\ \mathbf{D} &= \mathbf{D}^*, & & & & & & & & & \\ \mathbf{D} &= \mathbf{D}^*, & & & & & & & & \\ \mathbf{D} &= \mathbf{D}^*, & & & & & & & \\ \mathbf{D} &= \mathbf{D}^*, & & & & & & & \\ \mathbf{D} &= \mathbf{D}^*, & & & & & & \\ \mathbf{D} &= \mathbf{D}^*, & & & & & & \\ \mathbf{D} &= \mathbf{D}^*, & & & & & & \\ \mathbf{D} &= \mathbf{D}^*, & & & & & \\ \mathbf{D} &= \mathbf{D}^*, & & & & & \\ \mathbf{D} &= \mathbf{D}^*, & & & & & \\ \mathbf{D} &= \mathbf{D}^*, & & & & & \\ \mathbf{D} &= \mathbf{D}^*, & & & \\ \mathbf{D} &= \mathbf{D}^*, & & & & \\ \mathbf{D} &= \mathbf{D}^*, & & & & \\ \mathbf{D} &= \mathbf{D}^*, & \\ \mathbf{D} &= \mathbf{D}^*, & & \\ \mathbf{D} &= \mathbf{D}^*,$$

 μ^* takes any value between $\mu_{\alpha}^* := \lim_{s \to d_{-}^*} \mu_{\alpha}(s)$ and $\mu_{\beta}^* := \lim_{s \to d_{+}^*} \mu_{\beta}(s)$

$$||\mathbf{D}| - d^*|\mathbf{S} = M(|\mathbf{D}|^2)(|\mathbf{D}| - d^*)\mathbf{D}$$

with $M(s) := \max\{\mu_{\alpha}(s)\operatorname{sgn}(s - d^*); \mu_{\beta}(s)\operatorname{sgn}(s - d^*)\}$

Discontinuous response described by a maximal monotone graph

Perfect plasticity

Ugly "discontinuous" explicit models such as

Perfect plasticity

$$|\mathbf{D}| = 0 \implies |\mathbf{S}| \le 1$$

 $|\mathbf{D}| > 0 \implies \mathbf{S} := \frac{\mathbf{D}}{|\mathbf{D}|}$

can be described by a nice continuous implicit formula

$$||\mathbf{D}|\mathbf{S} - \mathbf{D}| + (|\mathbf{S}| - 1)_{\perp} = 0$$

Implicit theories/I - KR Rajagopal since 2003

Implicit constitutive theory: ability to capture responses of larger set of materials

$$\mathsf{G}(\mathsf{T},\mathsf{D})=\mathbf{0}$$

Isotropy of the material implies

$$\begin{split} \alpha_0 \mathbf{I} + \alpha_1 \mathbf{T} + \alpha_2 \mathbf{D} + \alpha_3 \mathbf{T}^2 + \alpha_4 \mathbf{D}^2 + \alpha_5 (\mathbf{T} \mathbf{D} + \mathbf{D} \mathbf{T}) \\ + \alpha_6 (\mathbf{T}^2 \mathbf{D} + \mathbf{D} \mathbf{T}^2) + \alpha_7 (\mathbf{T} \mathbf{D}^2 + \mathbf{D}^2 \mathbf{T}) + \alpha_8 (\mathbf{T}^2 \mathbf{D}^2 + \mathbf{D}^2 \mathbf{T}^2) &= \mathbf{0} \end{split}$$

 α_i being a functions of

$$\mathrm{tr}\,\boldsymbol{\mathsf{T}},\,\mathrm{tr}\,\boldsymbol{\mathsf{D}},\,\mathrm{tr}\,\boldsymbol{\mathsf{T}}^2,\,\mathrm{tr}\,\boldsymbol{\mathsf{D}}^2,\,\mathrm{tr}\,\boldsymbol{\mathsf{T}}^3,\,\mathrm{tr}\,\boldsymbol{\mathsf{D}}^3,\,\mathrm{tr}(\boldsymbol{\mathsf{TD}}),\,\mathrm{tr}(\boldsymbol{\mathsf{T}}^2\boldsymbol{\mathsf{D}}),\,\mathrm{tr}(\boldsymbol{\mathsf{D}}^2\boldsymbol{\mathsf{T}}),\,\mathrm{tr}(\boldsymbol{\mathsf{D}}^2\boldsymbol{\mathsf{T}}^2)$$

For incompressible fluids

$$\mathbf{T} = rac{\operatorname{tr} \mathbf{T}}{3} \mathbf{I} + \mu (\operatorname{tr} \mathbf{T}, \operatorname{tr} \mathbf{D}^2) \mathbf{D}$$

Implicit theories/II

Implicit constitutive theory: ability to include constraints in an easy way If

$$T = G_1(D)$$

isotropy of the material implies

$$\mathbf{T} = \beta_0 \mathbf{I} + \beta_1 \mathbf{D} + \beta_2 \mathbf{D}^2 \qquad \beta_i = \beta_i (\operatorname{tr} \mathbf{D}^2, \operatorname{tr} \mathbf{D}^3)$$

H

$$\mathbf{D} = \mathbf{G}_2(\mathbf{T})$$

isotropy of the material leads to

$$\begin{split} \mathbf{D} &= \gamma_0 \mathbf{I} + \gamma_1 \mathbf{T} + \gamma_2 \mathbf{T}^2 & \gamma_i &= \gamma_i \big(\operatorname{tr} \mathbf{T}, \operatorname{tr} \mathbf{T}^2, \operatorname{tr} \mathbf{T}^3 \big) \\ &= \gamma_1 \mathbf{S} + \gamma_2 \big(\mathbf{T}^2 - \frac{\operatorname{tr} \mathbf{T}^2}{2} \mathbf{I} \big) \end{split}$$

Implicit theories/II

Implicit constitutive theory: ability to include constraints in an easy way If

$$T = G_1(D)$$

isotropy of the material implies

$$\mathbf{T} = \beta_0 \mathbf{I} + \beta_1 \mathbf{D} + \beta_2 \mathbf{D}^2 \qquad \beta_i = \beta_i (\operatorname{tr} \mathbf{D}^2, \operatorname{tr} \mathbf{D}^3)$$

lf

$$\mathbf{D} = \mathbf{G}_2(\mathbf{T})$$

isotropy of the material leads to

$$\begin{split} \mathbf{D} &= \gamma_0 \mathbf{I} + \gamma_1 \mathbf{T} + \gamma_2 \mathbf{T}^2 & \gamma_i = \gamma_i (\operatorname{tr} \mathbf{T}, \operatorname{tr} \mathbf{T}^2, \operatorname{tr} \mathbf{T}^3) \\ &= \gamma_1 \mathbf{S} + \gamma_2 (\mathbf{T}^2 - \frac{\operatorname{tr} \mathbf{T}^2}{3} \mathbf{I}) \end{split}$$

Implicit formulation - maximal monotone ψ -graph setting

$$(\textbf{S},\textbf{D})\in\mathcal{A}\quad\iff\quad \textbf{G}(\textbf{D},\textbf{S})=\textbf{0}$$

Assumptions (A is a ψ -maximal monotone graph):

- (A1) $(\mathbf{0},\mathbf{0})\in\mathcal{A}$
- (A2) Monotone graph: For any $(S_1, D_1), (S_2, D_2) \in A$

$$(S_1 - S_2) : (D_1 - D_2) \ge 0$$

No strict monotonicity is needed!

(A3) Maximal graph: If for some (S, D) there holds

$$(\mathbf{S} - \tilde{\mathbf{S}}) : (\mathbf{D} - \tilde{\mathbf{D}}) \ge 0 \qquad \forall \ (\tilde{\mathbf{S}}, \tilde{\mathbf{D}}) \in \mathcal{A}$$

then

$$(S,D) \in \mathcal{A}$$

(A4) ψ -graph: There are $\alpha \in (0,1]$ and g>0 so that for any $(\mathbf{S},\mathbf{D}) \in \mathcal{A}$

$$S: D \geq \alpha(\psi(D) + \psi^*(S)) - g$$

What is ψ ? An excursion to Orlicz spaces

Assume that $\psi: \mathbb{R}^{3\times 3}_{sym} \to \mathbb{R}$ is an N - function (if it depends only on the modulus then Young function), i.e.,

- \bullet ψ is convex and continuous
- $\psi(\mathbf{D}) = \psi(-\mathbf{D})$

$$\lim_{|\mathbf{D}| \to 0_+} \frac{\psi(\mathbf{D})}{|\mathbf{D}|} = 0, \qquad \lim_{|\mathbf{D}| \to \infty} \frac{\psi(\mathbf{D})}{|\mathbf{D}|} = \infty$$

$$\psi^*(\mathsf{S}) := \max_{\mathsf{D}} \left(\mathsf{S} \cdot \mathsf{D} - \psi(\mathsf{D}) \right)$$

What is ψ ? An excursion to Orlicz spaces

Assume that $\psi:\mathbb{R}^{3\times 3}_{sym} o\mathbb{R}$ is an N - function (if it depends only on the modulus then Young function), i.e.,

- \bullet ψ is convex and continuous
- $\psi(D) = \psi(-D)$

$$\lim_{|\mathbf{D}| \to \mathbf{0}_+} \frac{\psi(\mathbf{D})}{|\mathbf{D}|} = \mathbf{0}, \qquad \lim_{|\mathbf{D}| \to \infty} \frac{\psi(\mathbf{D})}{|\mathbf{D}|} = \infty$$

We define the conjugate function $\psi*$:

$$\psi^*(S) := \max_{\mathbf{D}} (\mathbf{S} \cdot \mathbf{D} - \psi(\mathbf{D}))$$

What is ψ ? An excursion to Orlicz spaces/2

• Young inequality:

$$\boxed{\mathbf{S}:\mathbf{D}\leq\psi(\mathbf{D})+\psi^*(\mathbf{S})}$$

ullet Orlicz spaces: The Orlicz space $L^{\psi}(\Omega)^{d\times d}$ is the set of all measurable function

 $\boldsymbol{D}:\Omega\to \overset{\cdot}{\mathbb{R}}^{3\times 3}_{sym}$ such that

$$\lim_{\lambda \to \infty} \int_{\Omega} \psi(\lambda^{-1} \mathbf{D}) \ dx = 0$$

with the norm

$$\|\mathbf{D}\|_{L^{\psi}} := \inf\{\lambda; \ \int_{\Omega} \psi(\lambda^{-1}\mathbf{D}) \ dx \le 1\}$$

• Hölder inequality

$$\int_{\Omega} ab \, dx \le 2 ||a||_{L^{\psi}(\Omega)} ||b||_{L^{\psi^*}(\Omega)}$$

Δ₂-condition

$$\psi(2\mathbf{D}) \leq C_1\psi(\mathbf{D}) + C_2$$

Maximization of entropy production

In order to specify the constitutive relations, the principle of maximal entropy production (laziness, economy) is used (KR Rajagopal, A Srinivasa):

$$S \cdot D = \xi \ge 0$$

Let us assume that $\xi := \xi(\mathbf{D}) \geq 0$ and for some fixed \mathbf{S} we would like to maximize ξ with the constraint (*).

•
$$\xi := 2\nu_0 |\mathbf{D}|^2$$

$$S = 2\nu_0 D$$

•
$$\xi = \nu(|\mathbf{D}|)|\mathbf{D}|^2$$

$$S = \nu(|D|)D$$

Maximization of entropy production - dual view

Let us assume that $\xi := \xi(\mathbf{S}) \geq 0$ and for some fixed \mathbf{D} we would like to maximize ξ with the constraint $\xi = \mathbf{S} \cdot \mathbf{D}$.

•
$$\xi := \frac{2}{\nu_0} |\mathbf{S}|^2$$

$$\mathbf{D} = 2\nu_0 \mathbf{S}$$

•
$$\xi = \nu^*(|S|)|S|^2$$

$$\mathbf{D} = \nu^*(|\mathbf{S}|)\mathbf{S}$$

Maximization of entropy production

Let us assume that $\xi := \xi(\mathbf{D}, \mathbf{S}) \geq 0$ and

- (i) for some fixed **S** we would like to maximize ξ with the constraint $\xi = \mathbf{S} \cdot \mathbf{D}$ or
- (ii) for some fixed **D** we would like to maximize ξ with the constraint $\xi = \mathbf{S} \cdot \mathbf{D}$

$$\bullet \ \xi := \tfrac{|\mathbf{D}|^2 + |\mathbf{S}|^2}{2}$$

$$S = D$$

•
$$\xi = \frac{|\mathbf{D}|^r}{r} + \frac{|\mathbf{S}|^{r'}}{r'}$$

$$\mathbf{S} = |\mathbf{D}|^{r-1}\mathbf{D}$$

Optimality of ψ and ψ^*

Let us assume that $\xi:=\xi_1(\mathbf{D})+\xi_2(\mathbf{S})\geq 0$ - not necessarily conjugate and

- (i) for some fixed **S** we would like to maximize ξ with the constraint $\xi = \mathbf{S} \cdot \mathbf{D}$ or
- (ii) for some fixed **D** we would like to maximize ξ with the constraint $\xi = \mathbf{S} \cdot \mathbf{D}$

$$\mathbf{S} \cdot \mathbf{D} - \xi_2(\mathbf{S}) = \xi_1(\mathbf{D})$$

Hence, for D - the point where maximum is reached - we interchange the role of S and D, so at this point

$$\max_{\mathbf{S}} \left(\mathbf{S} \cdot \mathbf{D} - \xi_2(\mathbf{S}) \right) = \xi_1(\mathbf{D})$$

But it implies

$$\xi_2^*(\mathbf{D}) := \max_{\mathbf{S}} (\mathbf{S} \cdot \mathbf{D} - \xi_2(\mathbf{S})) = \xi_1(\mathbf{D})$$

Optimality of ψ and ψ^*

Let us assume that $\xi:=\xi_1(\mathbf{D})+\xi_2(\mathbf{S})\geq 0$ - not necessarily conjugate and

- (i) for some fixed **S** we would like to maximize ξ with the constraint $\xi = \mathbf{S} \cdot \mathbf{D}$ or
- (ii) for some fixed **D** we would like to maximize ξ with the constraint $\xi = \mathbf{S} \cdot \mathbf{D}$ It is the same as maximize ξ_1 with the constraint

$$\mathbf{S} \cdot \mathbf{D} - \xi_2(\mathbf{S}) = \xi_1(\mathbf{D})$$

Hence, for D - the point where maximum is reached - we interchange the role of S and D, so at this point

$$\max_{\mathbf{S}} \left(\mathbf{S} \cdot \mathbf{D} - \xi_2(\mathbf{S}) \right) = \xi_1(\mathbf{D})$$

But it implies

$$\xi_2^*(\mathbf{D}) := \max_{\mathbf{S}} (\mathbf{S} \cdot \mathbf{D} - \xi_2(\mathbf{S})) = \xi_1(\mathbf{D})$$

Optimality of ψ and ψ^*

Let us assume that $\xi:=\xi_1(\mathbf{D})+\xi_2(\mathbf{S})\geq 0$ - not necessarily conjugate and

- (i) for some fixed **S** we would like to maximize ξ with the constraint $\xi = \mathbf{S} \cdot \mathbf{D}$ or
- (ii) for some fixed **D** we would like to maximize ξ with the constraint $\xi = \mathbf{S} \cdot \mathbf{D}$ It is the same as maximize ξ_1 with the constraint

$$\mathbf{S} \cdot \mathbf{D} - \xi_2(\mathbf{S}) = \xi_1(\mathbf{D})$$

Hence, for D - the point where maximum is reached - we interchange the role of S and D, so at this point

$$\max_{\mathbf{S}} \left(\mathbf{S} \cdot \mathbf{D} - \xi_2(\mathbf{S}) \right) = \xi_1(\mathbf{D})$$

But it implies

$$\xi_2^*(\mathbf{D}) := \max_{\mathbf{S}} (\mathbf{S} \cdot \mathbf{D} - \xi_2(\mathbf{S})) = \xi_1(\mathbf{D})$$

Optimality of ψ and ψ^*

Let us assume that $\xi:=\xi_1(\textbf{D})+\xi_2(\textbf{S})\geq 0$ - not necessarily conjugate and

- (i) for some fixed **S** we would like to maximize ξ with the constraint $\xi = \mathbf{S} \cdot \mathbf{D}$ or
- (ii) for some fixed **D** we would like to maximize ξ with the constraint $\xi = \mathbf{S} \cdot \mathbf{D}$ It is the same as maximize ξ_1 with the constraint

$$\mathbf{S}\cdot\mathbf{D}-\xi_2(\mathbf{S})=\xi_1(\mathbf{D})$$

Hence, for D - the point where maximum is reached - we interchange the role of S and D, so at this point

$$\max_{\mathbf{S}} \left(\mathbf{S} \cdot \mathbf{D} - \xi_2(\mathbf{S}) \right) = \xi_1(\mathbf{D})$$

But it implies

$$\xi_2^*(\mathbf{D}) := \max_{\mathbf{S}} \left(\mathbf{S} \cdot \mathbf{D} - \xi_2(\mathbf{S}) \right) = \xi_1(\mathbf{D})$$

Non-polynomial growth

$$\mathbf{S} \sim (1+|\mathbf{D}|^2)^{rac{r-2}{2}} \ln(1+|\mathbf{D}|) \mathbf{D} \implies \psi(\mathbf{D}) \sim |\mathbf{D}|^r \ln(1+|\mathbf{D}|)$$

Anisotropic case - different growth

$$\mathsf{S}_{ij} \sim |\mathsf{D}|^{r_{ij}-2}\mathsf{D} \implies \psi(\mathsf{D}) \sim \sum |\mathsf{D}|^{r_{ij}}$$

• Different upper and lower growth in principle - ψ has different polynomial upper and lower growth, for $\psi(D) := \psi(|D|)$: for certain $1 < r \le q < \infty$ there are positive constants c_1 , c_2 , c_3 and c_4 so that

$$c_1 s^r - c_2 \le \psi(s) \le c_3 s^q + c_4$$

$$c_1^* s^{q'} - c_2^* \le \psi^*(s) \le c_3^* s^{r'} + c_4^*$$

Non-polynomial growth

$$\mathbf{S} \sim (1+|\mathbf{D}|^2)^{rac{r-2}{2}} \ln(1+|\mathbf{D}|) \mathbf{D} \implies \psi(\mathbf{D}) \sim |\mathbf{D}|^r \ln(1+|\mathbf{D}|)$$

Anisotropic case - different growth

$$\mathsf{S}_{ij} \sim |\mathsf{D}|^{r_{ij}-2} \mathsf{D} \implies \psi(\mathsf{D}) \sim \sum |\mathsf{D}|^{r_{ij}}$$

• Different upper and lower growth in principle - ψ has different polynomial upper and lower growth, for $\psi(D) := \psi(|D|)$: for certain $1 < r \le q < \infty$ there are positive constants c_1 , c_2 , c_3 and c_4 so that

$$c_1 s^r - c_2 \le \psi(s) \le c_3 s^q + c_4$$

 \Longrightarrow

$$c_1^* s^{q'} - c_2^* \le \psi^*(s) \le c_3^* s^{r'} + c_4^*$$

Non-polynomial growth

$$\mathbf{S} \sim (1+|\mathbf{D}|^2)^{\frac{r-2}{2}} \ln(1+|\mathbf{D}|) \mathbf{D} \implies \psi(\mathbf{D}) \sim |\mathbf{D}|^r \ln(1+|\mathbf{D}|)$$

Anisotropic case - different growth

$$\mathsf{S}_{ij} \sim |\mathsf{D}|^{r_{ij}-2}\mathsf{D} \implies \psi(\mathsf{D}) \sim \sum |\mathsf{D}|^{r_{ij}}$$

• Different upper and lower growth in principle - ψ has different polynomial upper and lower growth, for $\psi(\mathbf{D}) := \psi(|\mathbf{D}|)$: for certain $1 < r \le q < \infty$ there are positive constants c_1 , c_2 , c_3 and c_4 so that

$$c_1s'-c_2\leq \psi(s)\leq c_3s^q+c_4$$

$$c_1^* s^{q'} - c_2^* \le \psi^*(s) \le c_3^* s^{r'} + c_4^*$$

Non-polynomial growth

$$\mathbf{S} \sim (1+|\mathbf{D}|^2)^{rac{r-2}{2}} \ln(1+|\mathbf{D}|) \mathbf{D} \implies \psi(\mathbf{D}) \sim |\mathbf{D}|^r \ln(1+|\mathbf{D}|)$$

Anisotropic case - different growth

$$\mathsf{S}_{ij} \sim |\mathsf{D}|^{r_{ij}-2}\mathsf{D} \implies \psi(\mathsf{D}) \sim \sum |\mathsf{D}|^{r_{ij}}$$

• Different upper and lower growth in principle - ψ has different polynomial upper and lower growth, for $\psi(\mathbf{D}) := \psi(|\mathbf{D}|)$: for certain $1 < r \le q < \infty$ there are positive constants c_1 , c_2 , c_3 and c_4 so that

$$c_1s'-c_2\leq \psi(s)\leq c_3s^q+c_4$$

 \Longrightarrow

$$\left| c_1^* s^{q'} - c_2^* \le \psi^*(s) \le c_3^* s^{r'} + c_4^* \right|$$

What is the goal?

- Goal = existence result for as general constitutive relationships as possible
- Using large data apriori estimates (Ω bounded and nice, nice b.c.)
 - Steady case

$$\int_{\Omega} \psi(\mathbf{D}) + \psi^*(\mathbf{S}) \, dx \le C$$

Unsteady case

$$\sup_{t} \|\mathbf{v}\|_{2}^{2} + \int_{0}^{T} \int_{\Omega} \psi(\mathbf{D}) + \psi^{*}(\mathbf{S}) \ dx \ dt \leq C$$

• If the function spaces that are under control are "slightly better" than just to guarantee that all terms in weak formulation are meaningful, does there exist a weak solution?

What is the goal?

- Goal = existence result for as general constitutive relationships as possible
- Using large data apriori estimates (Ω bounded and nice, nice b.c.)
 - Steady case

$$\int_{\Omega} \psi(\mathbf{D}) + \psi^*(\mathbf{S}) \ dx \le C$$

Unsteady case

$$\sup_{t} \|\mathbf{v}\|_{2}^{2} + \int_{0}^{T} \int_{\Omega} \psi(\mathbf{D}) + \psi^{*}(\mathbf{S}) \ dx \ dt \leq C$$

• If the function spaces that are under control are "slightly better" than just to guarantee that all terms in weak formulation are meaningful, does there exist a weak solution?

The goal more precisely

• If the function spaces generated by the apriori large data energy estimates are compactly embedded into L², does there exist a weak solution?

Results - power-law like fluid - Explicit

Compact embedding is available if $r > \frac{6}{5}$ Lebesgue and Sobolev spaces

- r = 2 Lerray (1934)
- ullet $r \geq rac{11}{5}$ for unsteady, $r \geq rac{9}{5}$ steady; **Ladyzhenskaya**, **JL Lions** 60's
- $r \ge \frac{9}{5}$ unsteady; **Bellout, Bloom, Nečas**, Málek, **Růžička** 90's
- $r \ge \frac{8}{5}$ unsteady; Frehse, Málek, Steinhauer (2000)
- $r > \frac{6}{5}$ steady; Frehse, Málek, Steinhauer (2003) Diening, Málek, Steinhauer (2008)
- $r > \frac{6}{5}$ unsteady; **Diening, Růžička, Wolf** (2009)

Results - power-law like fluid - implicit (discontinuous)

Lebesgue and Sobolev spaces

- ullet $r \geq rac{11}{5}$ strictly monotone operators **Gwiazda, Málek, Šwierczewska** (2007)
- $r > \frac{9}{5}$ Herschel-Bulkley model **Málek, Růžička, Shelukhin**(2005)
- $r > \frac{6}{5}$ steady strictly monotone graph **Bulíček, Gwiazda, Málek, Šwierczewska** (2009)
- $r > \frac{6}{5}$ unsteady; **Bulíček, Gwiazda**, Málek, Šwierczewska-Gwiazda (2010)

Answers - implicit

Orlicz and Orlicz-Sobolev spaces

- subcritical Gwiazda, Świerczevska-Gwiazda et al (2009)
 - strict monotone operators
 - the energy equality holds
 - the term $(\mathbf{v} \otimes \mathbf{v}) \cdot \mathbf{D}(\mathbf{v}) \in L^1$ the solution is an admissible test function in the weak formulation
- supercritical Bulíček, Gwiazda, Málek, Świerczewska-Gwiazda (2010)
 - (A1)-(A4) maximal monotone ψ -graph
 - $\psi(\mathbf{D}) = \psi(|\mathbf{D}|);$

Methods

- subcritical case
 - energy equality v is an addmissible test function
 - Minty's method

difficulties if ψ does not satisfy Δ_2 condition

- supercritical case
 - generalized Minty's method
 - Lipschitz approximation in Orlicz-Sobolev spaces

Methods

- subcritical case
 - energy equality v is an addmissible test function
 - Minty's method

difficulties if ψ does not satisfy Δ_2 condition

- supercritical case
 - generalized Minty's method
 - Lipschitz approximation in Orlicz-Sobolev spaces

Generalized Minty's method - Convergence lemma

Assume that

- A is a maximal monotone ψ -graph satisfying (A1)–(A4)
- $\{S^n\}_{n=1}^{\infty}$ and $\{D^n\}_{n=1}^{\infty}$ satisfy for some $Q' \subset Q$

$$(\mathbf{S}^n, \mathbf{D}^n) \in \mathcal{A}$$
 for a.a. $(t, x) \in Q'$, $\mathbf{D}^n \rightharpoonup \mathbf{D}$ weakly in $L^{\psi}(Q')$, weakly in $L^{\psi^*}(Q')$, $\lim\sup_{n\to\infty} \int_{Q'} \mathbf{S}^n \cdot \mathbf{D}^n \ dx \ dt \le \int_{Q'} \mathbf{S} \cdot \mathbf{D} \ dx \ dt$.

Then for almost all $(t,x) \in Q'$ we have

$$(S,D)\in\mathcal{A}$$

Lemma - Local version

Application of Convergence lemma to Stokes-like problems

To find $(\mathbf{v}, p, \mathbf{S})$ such that

$$\mathbf{v} \in W_0^{1,r}(\Omega) \qquad p \in L^{r'}(\Omega) \qquad \mathbf{D} \in L^{\psi}(\Omega) \qquad \mathbf{S} \in L^{\psi^*}(\Omega)$$
$$\operatorname{div} \mathbf{v} = 0 \qquad -\operatorname{div} \mathbf{S} = -\nabla p + \mathbf{f} \text{ in } \mathcal{D}'(\Omega),$$
$$(\mathbf{S}(x), \mathbf{D}(\mathbf{v}(x))) \in \mathcal{A} \text{ for a.a. } x \in \Omega$$

Theorem. For any $\mathbf{f} \in \left(W_0^{1,r}\right)^*$ and Ω there is a weak solution to the Problem \mathcal{P} .

Proof is based on the following steps:

- Take any selection $(\forall \mathbf{D} \text{ take one } \mathbf{S}^* := \mathbf{S}^*_{\mathbf{D}} \text{ so that } (\mathbf{S}^*, \mathbf{D}) \in \mathcal{A})$ and its η -regularizations leads to η -approximations \mathcal{P}_{η}
- ullet Galerkin N-approximations of \mathcal{P}_{η} give finitedimensional problems $\mathcal{P}_{N,\eta}$
- For fix $N \in \mathcal{N}$: letting $\eta \to 0$ we obtain \mathcal{P}_N
- Uniform estimates follow from (A4); Letting $N \to \infty$ and applying Convergence lemma one concludes $(\mathbf{S},\mathbf{D}) \in \mathcal{A}$ a.e. in Ω

Extension to subcritical problems

lf

- compactness in L^2 is available (which follows if $r > \frac{9}{5}$ for steady problems and $r > \frac{11}{5}$ for unsteady problems)
- v is an admissible test function in the weak formulation of the problem

Then the results holds for

- $\operatorname{div}(\mathbf{v} \otimes \mathbf{v}) \operatorname{div} \mathbf{S} = -\nabla p + \mathbf{f}$ in Ω
- $\mathbf{v}_{,t} + \operatorname{div}(\mathbf{v} \otimes \mathbf{v}) \operatorname{div} \mathbf{S} = -\nabla p + \mathbf{f} \text{ in } (0,T) \times \Omega \text{ and } \mathbf{v}(0,\cdot) = \mathbf{v}_0 \in \mathcal{L}^2_{\operatorname{div}}$

Supercritical problems: $\mathbf{v}^n - \mathbf{v}$ is not admissible test function \implies need for its appropriate truncation

Lipschitz approximations of Sobolev function/1

Calderon, Ziemer, Acerbi and Fusco, ...

Theorem. (Diening, Málek, Steinhauer '08, Frehse, Málek, Steinhauer '03) Let $1 < q < \infty$ and $\Omega \in \mathcal{C}^{0,1}$. Let

$$\mathbf{u}^n \in W^{1,q}_0(\Omega)^d$$
 and $\mathbf{u}^n \rightharpoonup \mathbf{0}$ weakly in $W^{1,q}_0(\Omega)^d$.

Set

$$K := \sup_{n} \|\mathbf{u}^{n}\|_{1,q} < \infty,$$
$$\gamma_{n} := \|\mathbf{u}^{n}\|_{q} \to 0 \qquad (n \to \infty).$$

Let $\theta_n > 0$ be such that (e.g. $\theta_n := \sqrt{\gamma_n}$)

$$\theta_n \to 0$$
 and $\frac{\gamma_n}{\theta_n} \to 0$ $(n \to \infty)$.

Let $\mu_i := 2^{2^j}$.

Lipschitz approximations of Sobolev function/2

Then there exists a sequence $\lambda_{n,j} > 0$ with

$$\mu_j \leq \lambda_{n,j} \leq \mu_{j+1}$$
,

and a sequence $\mathbf{u}^{n,j} \in W^{1,\infty}_0(\Omega)^d$ such that for all $j,n \in \mathbb{N}$

$$\|\mathbf{u}^{n,j}\|_{\infty} \le \theta_n \to 0 \quad (n \to \infty),$$

 $\|\nabla \mathbf{u}^{n,j}\|_{\infty} \le c \lambda_{n,j} \le c \mu_{j+1}$

and

$$\{\mathbf{u}^{n,j} \neq \mathbf{u}^n\} \subset \Omega \, \cap \, \big(\{M\mathbf{u}^n > \theta_n\} \, \cup \, \{M(\nabla \mathbf{u}^n) > 2\,\lambda_{n,j}\}\big),$$

and for all $j \in \mathbb{N}$ and $n \to \infty$

$$\mathbf{u}^{n,j} o \mathbf{0}$$
 strongly in $L^s(\Omega)^d$ for all $s \in [1,\infty],$

$$\mathbf{u}^{n,j} \rightharpoonup \mathbf{0}$$
 weakly in $W_0^{1,s}(\Omega)^d$ for all $s \in [1,\infty)$,

$$\nabla \mathbf{u}^{n,j} \stackrel{*}{\rightharpoonup} \mathbf{0}$$
 weakly-* in $L^{\infty}(\Omega)^{d \times d}$.

Lipschitz approximations of Sobolev function/3

Furthermore, for all $n, j \in \mathbb{N}$

$$|\{\mathbf{u}^{n,j} \neq \mathbf{u}^n\}|_d \leq \frac{c\|\mathbf{u}^n\|_{1,q}^q}{\lambda_{n,j}^q} + c\left(\frac{\gamma^n}{\theta^n}\right)^q$$

and

$$\|\nabla \mathbf{u}^{n,j}\chi_{\{\mathbf{u}^{n,j}\neq\mathbf{u}^n\}}\|_q \leq c \|\lambda_{n,j}\chi_{\{\mathbf{u}^{n,j}\neq\mathbf{u}^n\}}\|_q \leq c \frac{\gamma_n}{\theta_n} \mu_{j+1} + c \epsilon_j,$$

where $\epsilon_j := K \, 2^{-j/q}$ vanishes as $j \to \infty$. The constant c depends on Ω .

- based on the continuity of the Hardy-Littlewood maximal function in L^p In Orlicz space setting it requires Δ_2 -condition and log-continuity w.r.t. x or (t,x)
- ullet Goal is to avoid using continuity of Hardy-Littelwood maximal function; apply weak (1,1)-estimates

Lipschitz approximations of "Orlicz-Sobolev" functions

Lemma

 $\{\boldsymbol{u}^n\}_{n=1}^{\infty}$ tends strongly to $\boldsymbol{0}$ in L^1 and $\{\boldsymbol{S}^n\}_{n=1}^{\infty}$ such that

$$\int_{\Omega} \psi^*(|\mathbf{S}^n|) + \psi(|\nabla \mathbf{u}^n|) \ dx \le C^* \quad (C^* > 1).$$

Then for arbitrary $\lambda^* \in \mathbb{R}_+$ and $k \in \mathbb{N}$ there exists $\lambda^{\max} < \infty$ and there exists sequence of $\{\lambda_n^k\}_{n=1}^{\infty}$ and the sequence \mathbf{u}_k^n (going to zero) and open sets $E_n^k := \{\mathbf{u}_k^n \neq \mathbf{u}^n\}$ such that $\lambda_n^k \in [\lambda^*, \lambda^{\max}]$ and for any sequence α_k^n

$$\begin{split} \mathbf{u}_k^n \in W^{1,p}, \quad & \|\mathbf{D}(\mathbf{u}_k^n)\|_{\infty} \leq C\lambda_n^k, \\ & |\Omega \cap E_n^k| \leq C\frac{C^*}{\psi(\lambda_n^k)}, \\ & \int_{\Omega \cap E_n^k} |\mathbf{S}^n \cdot \mathbf{D}(\mathbf{u}_k^n)| \ dx \leq CC^* \left(\frac{\alpha_n^k}{k} + \frac{\alpha_n^k \psi(\lambda_n^k/\alpha_n^k)}{\psi(\lambda_n^k)}\right) \end{split}$$

Application of Lipschitz approximations to steady flows

- We have suitable approximations $(\mathbf{v}^n, \mathbf{S}^n)$ and their weak limits $(\mathbf{v}, \overline{\mathbf{S}})$, we need to show that $(\overline{\mathbf{S}}, \mathbf{D}(\mathbf{v})) \in \mathcal{A}$
- Test the approximative *n* problem by Lipschitz approximation of $\mathbf{v}^n \mathbf{v}$, i.e., $\mathbf{u}_k^n := (\mathbf{v}^n \mathbf{v})_k$
- \bullet One gets (here S is such that $(S,D)\in \mathcal{A}$

$$\lim_{n\to\infty} \int_{\mathbf{u}_k^n = \mathbf{u}^n} (\mathbf{S}^n - \mathbf{S}) : \mathbf{D}(\mathbf{u}_k^n) \le CC^* \left(\frac{\alpha_n^k}{k} + \frac{\alpha_n^k \psi(\lambda_n^k/\alpha_n^k)}{\psi(\lambda_n^k)} \right)$$

Hölder inequality gives

$$\lim_{n\to\infty}\int_{\Omega}|(S^n-S)\cdot D(v^n-v)|^{\epsilon}\leq \int_{u^n=u^n_{\ell}}+\int_{u^n\neq u^n_{\ell}}\leq \ \mathrm{small\ terms}\to 0$$

Application of Lipschitz approximations to steady flows

- We have suitable approximations $(\mathbf{v}^n, \mathbf{S}^n)$ and their weak limits $(\mathbf{v}, \overline{\mathbf{S}})$, we need to show that $(\overline{\mathbf{S}}, \mathbf{D}(\mathbf{v})) \in \mathcal{A}$
- Test the approximative n- problem by Lipschitz approximation of $\mathbf{v}^n \mathbf{v}$, i.e., $\mathbf{u}_k^n := (\mathbf{v}^n \mathbf{v})_k$
- \bullet One gets (here \boldsymbol{S} is such that $(\boldsymbol{S},\boldsymbol{D})\in\mathcal{A}$

$$\lim_{n\to\infty} \int_{\mathbf{u}_k^n = \mathbf{u}^n} (\mathbf{S}^n - \mathbf{S}) : \mathbf{D}(\mathbf{u}_k^n) \le CC^* \left(\frac{\alpha_n^k}{k} + \frac{\alpha_n^k \psi(\lambda_n^k/\alpha_n^k)}{\psi(\lambda_n^k)} \right)$$

Hölder inequality gives

$$\lim_{n\to\infty}\int_{\Omega}|(S^n-S)\cdot D(\nu^n-\nu)|^{\epsilon}\leq \int_{u^n=u^n_{\ell}}+\int_{u^n\neq u^n_{\ell}}\leq \ \mathrm{small\ terms}\to 0$$

Application of Lipschitz approximations to steady flows

- We have suitable approximations $(\mathbf{v}^n, \mathbf{S}^n)$ and their weak limits $(\mathbf{v}, \overline{\mathbf{S}})$, we need to show that $(\overline{\mathbf{S}}, \mathbf{D}(\mathbf{v})) \in \mathcal{A}$
- Test the approximative *n* problem by Lipschitz approximation of $\mathbf{v}^n \mathbf{v}$, i.e., $\mathbf{u}_k^n := (\mathbf{v}^n \mathbf{v})_k$
- ullet One gets (here ullet is such that $(ullet, D) \in \mathcal{A}$

$$\lim_{n\to\infty} \int_{\mathbf{u}_k^n = \mathbf{u}^n} (\mathbf{S}^n - \mathbf{S}) : \mathbf{D}(\mathbf{u}_k^n) \le CC^* \left(\frac{\alpha_n^k}{k} + \frac{\alpha_n^k \psi(\lambda_n^k/\alpha_n^k)}{\psi(\lambda_n^k)} \right)$$

• Hölder inequality gives

$$\lim_{n\to\infty} \int_{\Omega} |(\boldsymbol{S}^n-\boldsymbol{S})\cdot\boldsymbol{D}(\boldsymbol{v}^n-\boldsymbol{v})|^{\epsilon} \leq \int_{\boldsymbol{u}^n=\boldsymbol{u}^n_{\boldsymbol{\nu}}} + \int_{\boldsymbol{u}^n\neq\boldsymbol{u}^n_{\boldsymbol{\nu}}} \leq \ \mathrm{small \ terms} \to 0$$

Application of Generalized Minty's method/Convergence lemma

- point-wise convergence of $(\mathbf{S}^n \mathbf{S}) \cdot \mathbf{D}(\mathbf{v}^n \mathbf{v})$ to 0; if the strictly monotone property available the proof is finished
- if only monotone property is available: apply bf biting lemma; Since $(\mathbf{S}^n \mathbf{S}) \cdot \mathbf{D}(\mathbf{v}^n \mathbf{v})$ is bounded in L^1 there is sequence of non-increasing sets $A_{k+1} \subset A_k$, $\lim_{k \to \infty} |A_k| = 0$ such that

$$(S^n - S) \cdot D(v^n - v)$$
 converges to 0 weakly in $L^1(\Omega \setminus A_k)$

- nonnegativity & point-wise & weak implies strong in $L^1(\Omega \setminus A_k)$
- ullet strong & weak implies for any bounded arphi

$$\lim_{n\to\infty}\int_{\Omega\setminus A_k}\mathbf{S}^n\cdot\mathbf{D}(\mathbf{v}^n)\varphi=\int_{\Omega\setminus A_k}\mathbf{\overline{S}}\cdot\mathbf{D}(\mathbf{v})\varphi$$

apply Convergence lemma

Application of Generalized Minty's method/Convergence lemma

- point-wise convergence of $(\mathbf{S}^n \mathbf{S}) \cdot \mathbf{D}(\mathbf{v}^n \mathbf{v})$ to 0; if the strictly monotone property available the proof is finished
- if only monotone property is available: apply bf biting lemma; Since $(\mathbf{S}^n \mathbf{S}) \cdot \mathbf{D}(\mathbf{v}^n \mathbf{v})$ is bounded in L^1 there is sequence of non-increasing sets $A_{k+1} \subset A_k$, $\lim_{k \to \infty} |A_k| = 0$ such that

$$(\mathbf{S}^n - \mathbf{S}) \cdot \mathbf{D}(\mathbf{v}^n - \mathbf{v})$$
 converges to 0 weakly in $L^1(\Omega \setminus A_k)$

- nonnegativity & point-wise & weak implies strong in $L^1(\Omega \setminus A_k)$
- ullet strong & weak implies for any bounded arphi

$$\lim_{n\to\infty}\int_{\Omega\setminus A_k} \mathbf{S}^n\cdot \mathbf{D}(\mathbf{v}^n)\varphi = \int_{\Omega\setminus A_k} \overline{\mathbf{S}}\cdot \mathbf{D}(\mathbf{v})\varphi$$

apply Convergence lemma

Concluding Remarks

- Extension of (homogeneous, incompressible) fluids of power-law type to fully implicit constitutive theory characterized by maximal monotone ψ -graphs (not necessarilly of power-law type)
 - Thermodynamically consistent
 - Ability to capture shear thinning/thickening, activation criteria, pressure thickening
- "Complete" large data existence theory both for steady and unsteady flows
- From explicit to implicit, from (\mathbf{v}, p) formulation to $(\mathbf{v}, p, \mathbf{S})$ setting
- Extension 1: from $\psi(|\mathbf{D}|)$ to $\psi(\mathbf{D})$
- Extension 2: unsteady flows, full thermodynamic setting

- J. Frehse, J. Málek and M. Steinhauer: On analysis of steady flows of fluids with shear-dependent viscosity based on the Lipschitz truncation method, SIAM J. Math. Anal. 34, 1064-1083, 2003
- 2 L. Diening, J. Málek and M. Steinhauer: On Lipschitz truncations of Sobolev functions (with variable exponent) and their selected applications, ESAIM: Control, Optimisation & Calc. Var., 14, 211-232,2008
- J. Málek, M. Růžička and V.V. Shelukhin: Herschel-Bulkley Fluids: Existence and regularity of steady flows, Mathematical Models and Methods in Applied Sciences, 15, 1845–1861, 2005
- P. Gwiazda, J. Málek and A. Świerczewska: On flows of an incompressible fluid with a discontinuous power-law-like rheology, Computers & Mathematics with Applications, 53, 531–546, 2007
- M. Bulíček, P. Gwiazda, J. Málek and A. Świerczewska-Gwiazda: On steady flows of an incompressible fluids with implicit power-law-like theology, *Advances in Calculus of Variations*, 2, 109–136 2009
- **M. Bulíček**, **P. Gwiazda**, J. Málek and **A. Świerczewska-Gwiazda**: On unsteady flows of implicitly contituted incompressible fluids, to appear in the *Preprint series of the Nečas Center*. 2010

Newtonian and Fourier fluids

Newtonian homogeneous incompressible fluid

$$S = 2\nu(e)D(\mathbf{v})$$
 or $T = -p\mathbf{I} + 2\nu(e)D(\mathbf{v})$

Fourier fluid

$$\mathbf{q} = -\kappa(e)\nabla e$$

"Equivalent" formulation of the balance of energy/1

$$\begin{aligned} \operatorname{div} \mathbf{v} &= 0 \\ \mathbf{v}_{,t} + \operatorname{div}(\mathbf{v} \otimes \mathbf{v}) - \operatorname{div} \mathbf{S} &= -\nabla p \\ (e + |\mathbf{v}|^2/2)_{,t} + \operatorname{div}((e + |\mathbf{v}|^2/2 + p)\mathbf{v}) + \operatorname{div} \mathbf{q} &= \operatorname{div}(\mathbf{S}\mathbf{v}) \end{aligned}$$

is equivalent (if \mathbf{v} is admissible test function in BM) to

$$\begin{aligned} \operatorname{div} \mathbf{v} &= 0 \\ \mathbf{v}_{,t} + \operatorname{div} (\mathbf{v} \otimes \mathbf{v}) - \operatorname{div} \mathbf{S} &= -\nabla p \\ e_{,t} + \operatorname{div} (e\mathbf{v}) + \operatorname{div} \mathbf{q} &= \mathbf{S} \cdot \mathbf{D}(\mathbf{v}) \end{aligned}$$

 $\label{eq:helmholtz} \begin{aligned} & \text{Helmholtz decomposition } \mathbf{u} = \mathbf{u}_{\mathrm{div}} + \nabla g^{\mathbf{v}} \\ & \text{Leray's projector } \mathbb{P} : \mathbf{u} \mapsto \mathbf{u}_{\mathrm{div}} \end{aligned}$

"Equivalent" formulation of the balance of energy/2

$$\begin{aligned} \operatorname{div} \mathbf{v} &= 0 \\ \mathbf{v}_{,t} + \operatorname{div}(\mathbf{v} \otimes \mathbf{v}) - \operatorname{div} \mathbf{S} &= -\nabla p \\ (e + |\mathbf{v}|^2/2)_{,t} + \operatorname{div}((e + |\mathbf{v}|^2/2 + p)\mathbf{v}) + \operatorname{div} \mathbf{q} &= \operatorname{div}(\mathbf{S}\mathbf{v}) \end{aligned}$$

is equivalent (if \mathbf{v} is admissible test function in BM) to

$$\begin{aligned} \operatorname{div} \mathbf{v} &= 0 \\ \mathbf{v}_{,t} + \mathbb{P}\operatorname{div}(\mathbf{v} \otimes \mathbf{v}) - \mathbb{P}\operatorname{div} \mathbf{S} &= \mathbf{0} \\ e_{,t} + \operatorname{div}(e\mathbf{v}) + \operatorname{div} \mathbf{q} &= \mathbf{S} \cdot \mathbf{D}(\mathbf{v}) \end{aligned}$$

Advantages/Disadvantages

- + pressure is not included into the 2nd formulation
- + minimum principle for e if $\mathbf{S} \cdot \mathbf{D}(\mathbf{v}) \geq 0$
- $-\mathbf{S} \cdot \mathbf{D}(\mathbf{v}) \in L^1$ while $\mathbf{S} \mathbf{v} \in L^q$ with q > 1, 2nd form is **derived** form of BE

Newtonian case - $\mathbf{S} = \nu(e)\mathbf{D}(\mathbf{v})$ and $\mathbf{q} = -\kappa(e)\nabla e$ - bounded ν , κ

Theorem 1. (M. Bulíček, E. Feireisl, J. Málek '06 and '08) Assume that

•
$$\nu^* \ge \nu(s) \ge \nu_* > 0$$
 and $\kappa^* \ge \kappa(s) \ge \kappa_* > 0$

•
$$\partial \Omega \in C^{1,1}$$
, $\mathbf{v}_0 \in L^2_{\mathbf{n},div}$, $e_0 \in L^1$, $e_0 \ge C^* > 0$ in Ω , $h \in L^1(0,T)$.

Then for all T>0, $0 \le \lambda < 1$ there is suitable weak solution $\{\mathbf{v}, p, e\}$

$$\bullet \ \mathbf{v} \in \mathit{C}(0,\mathit{T};\dot{L}^{2}_{\mathit{weak}}) \cap \mathit{L}^{2}(0,\mathit{T};\mathit{W}^{1,2}_{\mathbf{n},\mathit{div}})$$

•
$$\operatorname{tr} \mathbf{v} \in L^2(0,T;L^2(\partial\Omega))$$

•
$$p \in L^{\frac{5}{3}}(0, T; L^{\frac{5}{3}})$$
 $\int_{\Omega} p(t, x) dx = g(t)$

$$ullet$$
 $e\in L^\infty(0,T;L^1)\cap L^m(Q),\ \nabla e\in L^n(Q)$ with $m\in\langle 1,rac{5}{3}),\ n\in\langle 1,rac{5}{4})$

$$(p + \frac{|\mathbf{v}|^2}{2})\mathbf{v} \in L^{\frac{10}{9}}(0, T; L^{\frac{10}{9}})$$
 $\mathbf{D}(\mathbf{v})\mathbf{v} \in L^{\frac{5}{4}}([0, T]; L^{\frac{5}{4}})$

Weak vrs Suitable weak solutions

Governing equations

$$\operatorname{div} \mathbf{v} = 0 \qquad \mathbf{v}_{,t} + \operatorname{div}(\mathbf{v} \otimes \mathbf{v}) = -\nabla p + \operatorname{div}\left(\nu(\dots)\mathbf{D}(\mathbf{v})\right)$$
$$\left(e + \frac{|\mathbf{v}|^2}{2}\right)_{,t} + \operatorname{div}\left(\left(e + p + \frac{|\mathbf{v}|^2}{2}\right)\mathbf{v}\right) - \operatorname{div}(\kappa(\dots)\nabla e) = \operatorname{div}\left(\nu(\dots)\mathbf{D}(\mathbf{v})\mathbf{v}\right)$$

Formulation of the second law of thermodynamics

$$e_{t} + \operatorname{div}(e\mathbf{v}) - \operatorname{div}(\kappa(e)\nabla e) \ge \nu(e)|\mathbf{D}(\mathbf{v})|^{2}$$

equivalent to

$$(\tfrac{1}{2}|\mathbf{v}|^2)_{,t} + \nu|\mathbf{D}(\mathbf{v})|^2 \leq \operatorname{div}(\nu(e)\mathbf{D}(\mathbf{v})\mathbf{v} - (p + \tfrac{1}{2}|\mathbf{v}|^2)\mathbf{v})$$

Energy estimates and their consequences

$$\operatorname{div} \mathbf{v} = \mathbf{0} \qquad \mathbf{v}_{,t} + \operatorname{div}(\mathbf{v} \otimes \mathbf{v}) = -\nabla p + \operatorname{div}\left(\nu(\dots)\mathbf{D}(\mathbf{v})\right)$$
$$\left(e + \frac{|\mathbf{v}|^2}{2}\right)_{,t} + \operatorname{div}\left(\left(e + p + \frac{|\mathbf{v}|^2}{2}\right)\mathbf{v}\right) - \operatorname{div}(\kappa(\dots)\nabla e) = \operatorname{div}\left(\nu(\dots)\mathbf{D}(\mathbf{v})\mathbf{v}\right)$$
$$e_{,t} + \operatorname{div}(e\mathbf{v}) - \operatorname{div}(\kappa(\dots)\nabla e)(\geq) = \nu(\dots)|\mathbf{D}(\mathbf{v})|^2$$

•
$$\int_0^T \nu(\dots) |\mathbf{D}(\mathbf{v})|^2 dx \le C$$
 $\Longrightarrow \boxed{\nabla \mathbf{v} \in L^2(L^2)}$

$$\bullet \ \nu(\dots)|D(\mathbf{v})|^2 \geq 0, \ \Longrightarrow \left[e > C^* \ \mathrm{a.e.} \ , e \in L^m(L^m) \, , \, \nabla(e)^{(1-s)/2} \in L^2(L^2) \right]$$

Estimates for the pressure

Equation for the pressure: $p = (-\Delta)^{-1} \operatorname{div} \operatorname{div}(\mathbf{v} \otimes \mathbf{v} - \nu(\dots) \mathbf{D}(\mathbf{v}))$

$$\bullet \ \mathbf{v} \in L^{\infty}(L^2) \text{ and } \nabla \mathbf{v} \in L^2(L^2) \implies \boxed{\mathbf{v} \in L^{10/3}(L^{10/3}) \text{ and } p \in L^{5/3}(L^{5/3})}$$

No-slip BCs for NSEs: L^p maximal regularity for the evolutionary Stokes system (Solonnikov '77, Giga, Giga, Sohr '85)

$$\mathbf{f} \in L^p(L^q) \implies \mathbf{v}_{,t}, \nabla^{(2)}\mathbf{v}, \nabla p \in L^p(L^q)$$

No-slip BC for generalized NSEs with v(e) does not hold.

Navier's slip: ${\bf v}\cdot{\bf n}=0$ solutions of homogeneous Neumann problem for Laplace equations are admissible

$$(p, \operatorname{div} \varphi) = -(p, -\Delta h)$$
 $-\Delta h = |p|^{\alpha} p$

Integrable pressure exists for domains with Lipschitz boundary, etc.

Further consequences of energy estimates

$$\begin{aligned} \operatorname{div} \mathbf{v} &= 0 \qquad \mathbf{v}_{,t} + \operatorname{div}(\mathbf{v} \otimes \mathbf{v}) = -\nabla p + \operatorname{div}\left(\nu(\dots)\mathbf{D}(\mathbf{v})\right) \\ &\left(e + \frac{|\mathbf{v}|^2}{2}\right)_{,t} + \operatorname{div}\left(\left(e + p + \frac{|\mathbf{v}|^2}{2}\right)\mathbf{v}\right) - \operatorname{div}(\kappa(\dots)\nabla e) = \operatorname{div}\left(\nu(\dots)\mathbf{D}(\mathbf{v})\mathbf{v}\right) \\ &e_{,t} + \operatorname{div}(e\mathbf{v}) - \operatorname{div}(\kappa(\dots)\nabla e)(\geq) = \nu(\dots)|\mathbf{D}(\mathbf{v})|^2 \end{aligned}$$

- $\mathbf{v}_{,t} \in \left(L^{5/2}(W^{1,5/2})\right)^* = L^{-5/3}(W^{1,-5/3})$
- $e_{.t} \in L^1(W^{-1,q'})$ with q > 10
- Aubin-Lions lemma and its generalization: \mathbf{v} and e precompact in $L^m(L^m)$ for $m \in [1, \frac{5}{2})$
- Trace theorem and Aubin-Lions lemma: pre-compactness of **v** on $\partial\Omega$

Two steps in the proof of existence

- Stability of the system w.r.t. weakly converging sequences
- Constructions of approximations (several levels), derivation of uniform estimates, weak limits - candidates for the solutions, taking limits in nonlinearities

Newtonian and Fourier fluids - unbounded u and κ

 α , $\beta > 0$:

$$u(e) \sim (1 + \mathrm{e}^{lpha}) \qquad \kappa(e) \sim (1 + \mathrm{e}^{eta})$$

• NSF: ν decreases with increasing e

 $\nu(e) = \nu_0 \exp(\frac{a}{b+e})$

• TKE: ν increases with increasing k

 $\nu(\mathbf{k},\ell) = \nu_0 + \nu_1 \ell \sqrt{\mathbf{k}}$

Conjecture - Bulíček, Lewandowski, Málek

$$\nu(e) := \nu_0 e^{\alpha}$$
 and $\kappa(e) := \mu_0 e^{\alpha}$. (1)

Conjecture. Let $\alpha \in \mathbb{R}$, ν and μ are of the form (1). Then there exists a $\delta > 0$ and $C^* > 0$ such that for any suitable weak solution (\mathbf{v}, p, e) to NSF with unbounded material coefficients the following implication holds: If

$$\int_{-1}^{0} \int_{B_1(0)} \nu(e) |\mathbf{D}(\mathbf{v})|^2 dx dt \le \delta$$

then

$$|\mathbf{v}(t,x)| \leq C^* \quad \text{ in } (-\frac{1}{2},0) \times B_{\frac{1}{2}}(0).$$

For $\alpha \equiv$ 0: NSEs - Conjecture holds (CKN '82, Vasseur '07). Statement:

If Conjecture holds for $\alpha \geq \frac{1}{6}$ then the corresponding suitable weak solution has bounded velocity

Scaling property of NSF

 (\mathbf{v},p,e) solve NSF on some neighborhood of (0,0): $(-\ell_0^A,0) \times B_{\ell_0}(0)$ with some A>0 and $\ell_0>0$. Then

$$\mathbf{v}_\ell(t,x) := \ell^B \mathbf{v}(\ell^A t,x) \quad p_\ell(t,x) \quad := \ell^{2B} p(\ell^A t,x) \quad e_\ell(t,x) := \ell^{2B} e(\ell^A t,\ell x)$$

with

$$A := \frac{2-2\alpha}{1-2\alpha}, \qquad B := \frac{1}{1-2\alpha} \qquad \qquad \alpha \neq \frac{1}{2}$$

solves NSF in $(-1,0) \times B_1(0)$. Conjecture applied on (\mathbf{v}_ℓ,e_ℓ) leads to

$$\begin{split} \delta &\geq \int_{-1}^{0} \int_{B_{1}(0)} \nu(k_{\ell}) |\mathbf{D}(\mathbf{v}_{\ell})|^{2} dx dt \\ &= \int_{-1}^{1} \int_{B_{1}(0)} \ell^{2B\alpha + 2B + 2} (k(\ell^{A}t, \ell x))^{\alpha} |\mathbf{D}(\mathbf{v}(\ell^{A}t, \ell x))|^{2} dx dt \\ &= \ell^{\frac{6\alpha - 1}{1 - 2\alpha}} \int_{-\ell^{A}}^{0} \int_{B_{\ell}(0)} k^{\alpha} |\mathbf{D}(\mathbf{v})|^{2} dx dt. \end{split}$$

Existence result - unbounded ν and κ

Theorem 2. (M. Bulíček, R. Lewandowski, J. Málek, 2010) Assume that ν , κ fulfil the growth condition

$$\beta \ge 0 \qquad \qquad 0 \le \alpha < \frac{2\beta}{5} + \frac{2}{3}$$

Then for any set of data there exists (suitable) weak solution (\mathbf{v}, p, e) to the system in consideration, completed by Navier's slip boundary conditions, such that

$$\begin{aligned} & \mathbf{v} \in C(0,T;L^2_{weak}) \cap L^2(0,T;W^{1,2}_{\mathbf{n},div}) & \operatorname{tr} \mathbf{v} \in L^{8/5}(0,T;L^{8/5}(\partial\Omega)) \\ & p \in L^q(0,T;L^q) & q < \min\{5/3,2-2\alpha/(\alpha+\beta+5/3)\} \\ & e \in L^\infty(0,T;L^1), & e \geq 0 & \operatorname{and} & (1+e)^s - 1 \in L^2(0,T;W^{1,2}) & s < \frac{\beta+1}{2} \\ & \mathbf{v}_{,t} \in L^{q'}(0,T;W^{-1,q'}_{\mathbf{n}}) & e_{,t} \in \mathcal{M}(0,T;W^{-1,10/9}) & E_{,t} \in L^1(0,T;W^{-1,10/9}) \end{aligned}$$

 $\lim_{t\to 0+} (\|\mathbf{v}(t) - \mathbf{v}_0\|_2^2 + \|e(t) - e_0\|_1) = 0$

Maximal L^2 -regularity for Stokes-Fourier system

Navier-Stokes sytem

$$\operatorname{div} \mathbf{v} = 0 \qquad \mathbf{v}_{,t} + \operatorname{div}(\mathbf{v} \otimes \mathbf{v}) - \operatorname{div}(2\nu_0 \mathbf{D}(\mathbf{v})) + \nabla p = \mathcal{F}$$

Maximal L^q -regularity for the evolutionary (linear) Stokes system

$$\operatorname{div} \mathbf{v} = 0 \qquad \mathbf{v}_{,t} - \operatorname{div}(2\nu_0 \mathbf{D}(\mathbf{v})) + \nabla p = \mathcal{F}$$

$$\mathcal{F} \in L^r(0,T;L^r(\Omega)^d) \implies \mathbf{v}_{,t}, \nabla p, \nabla^2 \mathbf{v} \in L^r(0,T;L^r(\Omega))$$

Q: Maximal L^q -regularity for the evolutionary (non-linear) Stokes-Fourier

$$\begin{aligned} \operatorname{div} \mathbf{v} &= 0 \\ \mathbf{v}_{,t} - \operatorname{div}(\nu(e)\mathbf{D}(\mathbf{v})) + \nabla p &= \mathcal{F} \\ e_{,t} - \operatorname{div}(\kappa(e)\nabla e) &= \nu(e)|\mathbf{D}(\mathbf{v})|^2 \end{aligned}$$

Simplifications: periodic problem, $\kappa(e)=1$, $\nu_0 \leq v(e) \leq \nu_1$, r=2

L^2 -maximal regularity like result for Stokes-Fourier Eqs.

Theorem 3. (M. Bulíček, P. Kaplický, J. Málek *Applicable Analysis 2010*) Let $d \ge 2$. Let

$$\begin{split} \mathcal{F} &\in L^2(0,T;L^2(\Omega)^d) \quad \sqrt{e_0} \in W^{1,2}(\Omega) \quad e_0 \geq e_{min} \\ \mathbf{v}_0 &\in W^{1,2}_{\mathrm{div}}(\Omega)^d := \{\mathbf{u} \in W^{1,2}(\Omega)^d; \ \mathrm{div}\, \mathbf{u} = 0, \ \int_{\Omega} \mathbf{u} = \mathbf{0} \} \end{split}$$

Assume that $u \in \mathcal{C}^{0,1}(\mathbb{R}_+)$ fulfills $(\varepsilon > 0)$

$$-\frac{2}{15(s-e_{min}+\varepsilon)} \leq \frac{\nu'(s)}{\nu(s)} \leq \frac{1}{40(s-e_{min}+\varepsilon)} \quad \text{for all } s \in (e_{min}, \infty)$$

Then there exists a triple (\mathbf{v}, e, p) that solves (SF) such that

$$\mathbf{v} \in L^{\infty}(0, T; W_{\text{div}}^{1,2}(\Omega)^{d}) \cap L^{2}(0, T; W^{2,2}(\Omega)^{d}) \cap W^{1,2}(0, T; L^{2}(\Omega)^{d})$$

$$e \in L^{\frac{d+2}{d}}(0, T; W^{2,\frac{d+2}{d}}(\Omega)) \cap W^{1,\frac{d+2}{d}}(0, T; L^{\frac{d+2}{d}}(\Omega))$$

$$\sqrt{e} \in L^{\infty}(0, T; W^{1,2}(\Omega)) \qquad p \in L^{2}(0, T; W^{1,2}(\Omega))$$

Example

$$-\frac{2}{15(s-e_{min}+\varepsilon)} \leq \frac{\nu'(s)}{\nu(s)} \leq \frac{1}{40(s-e_{min}+\varepsilon)} \qquad \text{for all } s \in (e_{min},\infty)$$

If
$$v(e) = v_0 \exp(\frac{a}{b+e})$$
 that the above conditions holds if $e_{min} > 2a-b$