On implicitly constituted incompressible fluids

Josef Málek
Mathematical Institute of the Charles University Sokolovská 83, 18675 Prague 8, Czech Republic
M. Bulíček, P. Gwiazda, J. Málek and A. Swierczewska-Gwiazda
KR Rajagopal M. Heida, V.Průša

July 6, 2010

Governing equations

Equations in a bounded domain $\Omega \subset \mathcal{R}^{3}$ for $t \in[0, T]$:

$$
\operatorname{div} \mathbf{v}=0
$$

$$
\mathbf{v}_{, t}+\operatorname{div}(\mathbf{v} \otimes \mathbf{v})-\operatorname{div} \mathbf{S}=-\nabla p+\mathbf{f}
$$

$$
\mathbf{S}=\mathbf{S}^{T}
$$

- \mathbf{v} is the velocity of the fluid
- p is the mean normal stress (pressure) $p:=-\frac{1}{3} \operatorname{tr} \mathbf{T}$
- f external body forces ($\equiv \mathbf{0}$)
- \mathbf{S} is the constitutively determined (deviatoric) part of the Cauchy stress

The Cauchy stress: $\mathbf{T}=-\mathbf{l}+\mathbf{S} \quad \mathbf{T}=\left(\mathbf{T}-\frac{1}{3}(\operatorname{tr} \mathbf{T}) \mathbf{I}\right)+\frac{1}{3}(\operatorname{tr} \mathbf{T}) \mathbf{I}$

Point-wisely given constitutive equations

- $\mathbf{D}(\mathbf{v})$ - the symmetric part of the velocity gradient: $2 \mathbf{D}(\mathbf{v}):=\nabla \mathbf{v}+(\nabla \mathbf{v})^{T}$.
- Consider merely point-wise relations between \mathbf{D} and \mathbf{S} (or \mathbf{D} and \mathbf{T}) NO integral, differential (rate-type) or stochastic constitutive relations:

$$
\mathbf{G}(\mathbf{S}, \mathbf{D})=\mathbf{0} \quad \text { or } \quad \tilde{\mathbf{G}}(\mathbf{T}, \mathbf{D})=\mathbf{0}
$$

- robust class of fluids
- justification to adhoc models
- easy incorporation of constraints (as $\operatorname{div} \mathbf{v}=0$)
- new class of explicit models $\mathbf{D}=\mathbf{H}(\mathbf{S})$ vrs $\mathbf{S}=\tilde{H}(D)$

Extensions:
$\mathrm{G}(\mathrm{S}, \mathrm{D}, p, x, t$, temperature, density, concentration, etc. $)=0$

Point-wisely given constitutive equations

- $\mathbf{D}(\mathbf{v})$ - the symmetric part of the velocity gradient: $2 \mathbf{D}(\mathbf{v}):=\nabla \mathbf{v}+(\nabla \mathbf{v})^{T}$.
- Consider merely point-wise relations between \mathbf{D} and \mathbf{S} (or \mathbf{D} and \mathbf{T}) NO integral, differential (rate-type) or stochastic constitutive relations:

$$
\mathbf{G}(\mathbf{S}, \mathrm{D})=\mathbf{0} \quad \text { or } \quad \tilde{\mathbf{G}}(\mathbf{T}, \mathbf{D})=\mathbf{0}
$$

- robust class of fluids
- justification to adhoc models
- easy incorporation of constraints (as $\operatorname{div} \mathbf{v}=0$)
- new class of explicit models $\mathbf{D}=\mathbf{H}(\mathbf{S})$ vrs $\mathbf{S}=\tilde{H}(D)$

Extensions:

$$
\mathbf{G}(\mathbf{S}, \mathbf{D}, p, x, t, \text { temperature, density, concentration, etc. })=\mathbf{0}
$$

Navier-Stokes fluids

$$
\mathbf{T}=-p \mathbf{I}+2 \mu^{*} \mathbf{D} \Longleftrightarrow \mathbf{S}=2 \mu^{*} \mathbf{D} \Longleftrightarrow \mathbf{D}=\frac{1}{2 \mu^{*}} \mathbf{S}
$$

Navier-Stokes fluids

$$
\mathbf{T}=-\boldsymbol{p} \mathbf{I}+2 \mu^{*} \mathbf{D} \Longleftrightarrow \mathbf{S}=2 \mu^{*} \mathbf{D} \Longleftrightarrow \mathbf{D}=\frac{1}{2 \mu^{*}} \mathbf{S}
$$

$$
\begin{aligned}
0 & \leq \\
& \xi=\mathbf{S} \cdot \mathbf{D} \\
& =2 \mu^{*}|\mathbf{D}|^{2}=\left(2 \mu^{*}\right)^{-1}|\mathbf{S}|^{2} \\
& =\mu^{*}|\mathbf{D}|^{2}+\frac{1}{2}\left(2 \mu^{*}\right)^{-1}|\mathbf{S}|^{2}
\end{aligned}
$$

Navier-Stokes fluids

$$
\mathbf{T}=-\boldsymbol{p} \mathbf{I}+2 \mu^{*} \mathbf{D} \Longleftrightarrow \mathbf{S}=2 \mu^{*} \mathbf{D} \Longleftrightarrow \mathbf{D}=\frac{1}{2 \mu^{*}} \mathbf{S}
$$

$$
\begin{aligned}
0 \leq & \xi=\mathbf{S} \cdot \mathbf{D} \\
& =2 \mu^{*}|\mathbf{D}|^{2}=\left(2 \mu^{*}\right)^{-1}|\mathbf{S}|^{2} \\
& =\mu^{*}|\mathbf{D}|^{2}+\frac{1}{2}\left(2 \mu^{*}\right)^{-1}|\mathbf{S}|^{2}
\end{aligned}
$$

$$
\mu^{*}=1 / 2 \quad \Longrightarrow \mathbf{S}=\mathbf{D}
$$

$$
\xi=\mathbf{S} \cdot \mathbf{D}=\frac{\mathbf{S} \cdot \mathbf{D}}{2}+\frac{\mathbf{S} \cdot \mathbf{D}}{2}=\frac{1}{2}|\mathbf{D}|^{2}+\frac{1}{2}|\mathbf{S}|^{2}
$$

Power-law fluids

$$
\mathbf{T}=-p \mathbf{I}+2 \mu^{*}|\mathbf{D}|^{r-2} \mathbf{D} \Longleftrightarrow \mathbf{S}=2 \mu^{*}|\mathbf{D}|^{r-2} \mathbf{D}
$$

\square $\xi=\mathrm{S} \cdot \mathrm{D}=|\mathrm{D}|^{r}=|\mathrm{S}|^{r /(r-1)}$

Also, for all $\mathbf{D}, \mathrm{E} \in \mathcal{R}^{3 \times 3}$

$(\tilde{\mathbf{S}}(\mathbf{D})-\tilde{\mathbf{S}}(\mathbf{E})) \cdot(\mathbf{D}-\mathbf{E}) \geq 0, \quad$ where $\tilde{\mathbf{S}}(\mathbf{B}):=2 \mu^{*}|\mathbf{B}|^{r-2} \mathbf{B}$

for all $S_{1}, S_{2} \in \mathcal{R}^{3 \times 3}$

Generalizations

Power-law fluids

$$
\mathbf{T}=-\mathbf{p} \mathbf{I}+2 \mu^{*}|\mathbf{D}|^{r-2} \mathbf{D} \Longleftrightarrow \mathbf{S}=2 \mu^{*}|\mathbf{D}|^{r-2} \mathbf{D} \Longleftrightarrow \mathbf{D}=\left[2 \mu^{*}\right]^{-\frac{1}{r-1}}|\mathbf{S}|^{\frac{2-r}{r-1}} \mathbf{S}
$$

\square $\xi=S \cdot D=|D|^{r}=|S|^{r /(r-1)}$

Also, for all $\mathbf{D}, \mathbf{E} \in \mathcal{R}^{3 \times 3}$

for all $\mathbf{S}_{1}, \mathbf{S}_{2} \in \mathcal{R}^{3 \times 3}$

Generalizations

Power-law fluids

$$
\mathbf{T}=-\mathbf{p} \mathbf{I}+2 \mu^{*}|\mathbf{D}|^{r-2} \mathbf{D} \Longleftrightarrow \mathbf{S}=2 \mu^{*}|\mathbf{D}|^{r-2} \mathbf{D} \Longleftrightarrow \mathbf{D}=\left[2 \mu^{*}\right]^{-\frac{1}{r-1}}|\mathbf{S}|^{\frac{2-r}{r-1}} \mathbf{S}
$$

$$
\mu^{*}=1 / 2 \quad r^{\prime}:=r /(r-1)
$$

$$
\xi=\mathbf{S} \cdot \mathbf{D}=|\mathbf{D}|^{r}=|\mathbf{S}|^{r /(r-1)}
$$

Also, for all $\mathbf{D}, \mathbf{E} \in \mathcal{R}^{3 \times 3}$

$(\tilde{\tilde{S}}(\mathbf{D})-\tilde{\mathrm{S}}(E)) \cdot(\mathrm{D}-E) \geq 0, \quad$ where $\quad \tilde{\mathbf{S}}(\mathbf{B}):=2 \mu^{*}|\mathbf{B}|^{r-2} \mathbf{B}$

for all $\mathbf{S}_{1}, \mathbf{S}_{2} \in \mathcal{R}^{3 \times 3}$

$$
\left(\mathbf{S}_{1}-\mathbf{S}_{2}\right) \cdot\left(\mathbf{B}\left(S_{1}\right)-B\left(S_{2}\right)\right) \geq 0,
$$

Generalizations

Power-law fluids

$$
\mathbf{T}=-\mathbf{p} \mathbf{I}+2 \mu^{*}|\mathbf{D}|^{r-2} \mathbf{D} \Longleftrightarrow \mathbf{S}=2 \mu^{*}|\mathbf{D}|^{r-2} \mathbf{D} \Longleftrightarrow \mathbf{D}=\left[2 \mu^{*}\right]^{-\frac{1}{r-1}}|\mathbf{S}|^{\frac{2-r}{r-1}} \mathbf{S}
$$

$$
\mu^{*}=1 / 2 \quad r^{\prime}:=r /(r-1)
$$

$$
\begin{aligned}
\xi & =\mathbf{S} \cdot \mathbf{D}=|\mathbf{D}|^{r}=|\mathbf{S}|^{r /(r-1)} \\
& =\frac{\mathbf{S} \cdot \mathbf{D}}{r}+\frac{\mathbf{S} \cdot \mathbf{D}}{r^{\prime}}=\frac{|\mathbf{D}|^{r}}{r}+\frac{|\mathbf{S}|^{\prime}}{r^{\prime}}
\end{aligned}
$$

Also, for all $\mathbf{D}, \mathbf{E} \in \mathcal{R}^{3 \times 3}$

$(\tilde{S}(D)-\tilde{S}(E)) \cdot(D-E) \geq 0, \quad$ where $\quad \tilde{S}(B):=2 \mu^{*}|B|^{r-2} B$

\square

Generalizations

Power-law fluids

$$
\mathbf{T}=-\mathbf{p} \mathbf{I}+2 \mu^{*}|\mathbf{D}|^{r-2} \mathbf{D} \Longleftrightarrow \mathbf{S}=2 \mu^{*}|\mathbf{D}|^{r-2} \mathbf{D} \Longleftrightarrow \mathbf{D}=\left[2 \mu^{*}\right]^{-\frac{1}{r-1}}|\mathbf{S}|^{\frac{2-r}{r-1}} \mathbf{S}
$$

$$
\mu^{*}=1 / 2 \quad r^{\prime}:=r /(r-1)
$$

$$
\begin{aligned}
\xi & =\mathbf{S} \cdot \mathbf{D}=|\mathbf{D}|^{r}=|\mathbf{S}|^{r /(r-1)} \\
& =\frac{\mathbf{S} \cdot \mathbf{D}}{r}+\frac{\mathbf{S} \cdot \mathbf{D}}{r^{\prime}}=\frac{|\mathbf{D}|^{r}}{r}+\frac{|\mathbf{S}|^{\prime}}{r^{\prime}}
\end{aligned}
$$

Also, for all $\mathbf{D}, \mathbf{E} \in \mathcal{R}^{3 \times 3}$

$$
(\tilde{\mathbf{S}}(\mathbf{D})-\tilde{\mathbf{S}}(\mathbf{E})) \cdot(\mathbf{D}-\mathbf{E}) \geq 0, \quad \text { where } \quad \tilde{\mathbf{S}}(\mathbf{B}):=2 \mu^{*}|\mathbf{B}|^{r-2} \mathbf{B}
$$

for all $\mathbf{S}_{1}, \mathbf{S}_{2} \in \mathcal{R}^{3 \times 3}$

$$
\left(\mathbf{S}_{1}-\mathbf{S}_{2}\right) \cdot\left(\mathbf{B}\left(\mathbf{S}_{1}\right)-\mathbf{B}\left(\mathbf{S}_{2}\right)\right) \geq 0, \quad \text { where } \quad \mathbf{B}(\mathbf{S}):=2 \mu^{*}|\mathbf{S}|^{\frac{2-r}{r-1}} \mathbf{S}
$$

Generalizations

Power-law fluids

$$
\mathbf{T}=-\mathbf{p} \mathbf{I}+2 \mu^{*}|\mathbf{D}|^{r-2} \mathbf{D} \Longleftrightarrow \mathbf{S}=2 \mu^{*}|\mathbf{D}|^{r-2} \mathbf{D} \Longleftrightarrow \mathbf{D}=\left[2 \mu^{*}\right]^{-\frac{1}{r-1}}|\mathbf{S}|^{\frac{2-r}{r-1}} \mathbf{S}
$$

$$
\mu^{*}=1 / 2 \quad r^{\prime}:=r /(r-1)
$$

$$
\begin{aligned}
\xi & =\mathbf{S} \cdot \mathbf{D}=|\mathbf{D}|^{r}=|\mathbf{S}|^{r /(r-1)} \\
& =\frac{\mathbf{S} \cdot \mathbf{D}}{r}+\frac{\mathbf{S} \cdot \mathbf{D}}{r^{\prime}}=\frac{|\mathbf{D}|^{r}}{r}+\frac{|\mathbf{S}|^{\prime}}{r^{\prime}}
\end{aligned}
$$

Also, for all $\mathbf{D}, \mathbf{E} \in \mathcal{R}^{3 \times 3}$

$$
(\tilde{\mathbf{S}}(\mathbf{D})-\tilde{\mathbf{S}}(\mathbf{E})) \cdot(\mathbf{D}-\mathbf{E}) \geq 0, \quad \text { where } \quad \tilde{\mathbf{S}}(\mathbf{B}):=2 \mu^{*}|\mathbf{B}|^{r-2} \mathbf{B}
$$

for all $\mathbf{S}_{1}, \mathbf{S}_{2} \in \mathcal{R}^{3 \times 3}$

$$
\left(\mathbf{S}_{1}-\mathbf{S}_{2}\right) \cdot\left(\mathbf{B}\left(\mathbf{S}_{1}\right)-\mathbf{B}\left(\mathbf{S}_{2}\right)\right) \geq 0, \quad \text { where } \quad \mathbf{B}(\mathbf{S}):=2 \mu^{*}|\mathbf{S}|^{\frac{2-r}{r-1}} \mathbf{S}
$$

Generalizations

$$
\begin{array}{ll}
\mathbf{S}=\left(1+|\mathbf{D}|^{2}\right)^{r-2} \mathbf{D} & \mathbf{D}=\left(1+|\mathbf{S}|^{2}\right)^{\frac{2-r}{r-1}} \mathbf{S} \\
\mathbf{S}=\nu\left(|\mathbf{D}|^{2}\right) \mathbf{D} & \mathbf{D}=\mu\left(|\mathbf{S}|^{2} \mathbf{S}\right.
\end{array}
$$

Fluids with shear-rate dependent viscosities

Continuous Explicit Standard Power-Law models (S:= S(D))
$\mu\left(|\mathbf{D}|^{2}\right) \quad \mathbf{v}=(u(y), 0,0) \Longrightarrow|\mathbf{D}(\mathbf{v})|^{2}=1 / 2\left|u^{\prime}\right|^{2}:=\kappa$ shear rate

- $\mu\left(|\mathbf{D}|^{2}\right)=2 \mu^{*}|\mathbf{D}|^{r-2} \quad 1<r<\infty$
- $\mu\left(|\mathbf{D}|^{2}\right)=2 \mu_{0}^{*}+\mu_{1}^{*}|\mathbf{D}|^{r-2} \quad 1<r<\infty$
- $\mu\left(|\mathbf{D}|^{2}\right)=2 \mu_{0}^{*}\left(\epsilon+|\mathbf{D}|^{2}\right)^{r-2} \quad 1 \in \mathcal{R}$
- power-law like fluids $\Longrightarrow r$-coercivity, $(r-1)$-growth and strict monotonicity
- fluids with shear-rate dependent viscosity

Classical power-law model for various power-law index

$$
\mathbf{S}=\left(1+|\mathbf{D}|^{2}\right)^{m} \mathbf{D}
$$

Stress power-law model for various power-law index

Continuous Explicit Stress Power-law models ($\mathrm{D}:=\mathrm{D}(\mathbf{S})$)

$\mathbf{D}=\left(1+|\mathbf{S}|^{2}\right)^{n} \mathbf{S}$

Power-law like fluids with activation criteria/discontinuous stresses

- threshold value for the stress to start flow
- Bingham fluid
- Herschel-Bingham fluid
- drastic changes of the properties when certain criterion is met
- formation and dissolution of blood
- chemical reactions/time scale

Power-law like fluids with activation criteria/II

$$
\begin{aligned}
& |\mathbf{S}|>\tau^{*} \quad \text { if and only if } \quad \mathbf{S}=\tau^{*} \frac{\mathbf{D}}{|\mathbf{D}|}+2 \mu_{i}\left(|\mathbf{D}|^{2}\right) \mathbf{D} \\
& |\mathbf{S}| \leq \tau^{*} \quad \text { if and only if } \quad \mathbf{D}=\mathbf{0}
\end{aligned}
$$

is equivalent to

Similarly:

μ^{*} takes any value between $\mu_{\alpha}^{*}:=\lim _{s \rightarrow d_{-}^{*}} \mu_{\alpha}(s)$ and $\mu_{\beta}^{*}:=\lim _{s \rightarrow d_{+}^{*}} \mu_{\beta}(s)$ with $M(s):=\max \left\{\mu_{\alpha}(s) \operatorname{sgn}\left(s-d^{*}\right) ; \mu_{\beta}(s) \operatorname{sgn}\left(s-d^{*}\right)\right\}$

Power-law like fluids with activation criteria/II

$$
\begin{aligned}
& |\mathbf{S}|>\tau^{*} \quad \text { if and only if } \quad \mathbf{S}=\tau^{*} \frac{\mathbf{D}}{|\mathbf{D}|}+2 \mu_{i}\left(|\mathbf{D}|^{2}\right) \mathbf{D} \\
& |\mathbf{S}| \leq \tau^{*} \quad \text { if and only if } \quad \mathbf{D}=\mathbf{0}
\end{aligned}
$$

is equivalent to

$$
2 \mu_{i}\left(|\mathbf{D}|^{2}\right)\left(\tau^{*}+\left(|\mathbf{S}|-\tau^{*}\right)^{+}\right) \mathbf{D}=\left(|\mathbf{S}|-\tau^{*}\right)^{+} \mathbf{S}
$$

Similarly:

$$
\begin{aligned}
& \mathbf{S}=\mu_{\alpha}\left(|\mathbf{D}|^{2}\right) \mathbf{D} \\
& \mathbf{S}=\mu_{\beta}\left(|\mathbf{D}|^{2}\right) \mathbf{D} \\
& \mathbf{S}=\mu^{*} \mathbf{D}
\end{aligned}
$$

μ^{*} takes any value between $\mu_{\alpha}^{*}:=\lim _{s \rightarrow d_{-}^{*}} \mu_{\alpha}(s)$ and $\mu_{\beta}^{*}:=\lim _{s \rightarrow d_{+}^{*}} \mu_{\beta}(s)$ with $M(s):=\max \left\{\mu_{\alpha}(s) \operatorname{sgn}\left(s-d^{*}\right) ; \mu_{\beta}(s) \operatorname{sgn}\left(s-d^{*}\right)\right\}$

Power-law like fluids with activation criteria/II

$$
\begin{aligned}
& |\mathbf{S}|>\tau^{*} \quad \text { if and only if } \quad \mathbf{S}=\tau^{*} \frac{\mathbf{D}}{|\mathbf{D}|}+2 \mu_{i}\left(|\mathbf{D}|^{2}\right) \mathbf{D} \\
& |\mathbf{S}| \leq \tau^{*} \quad \text { if and only if } \quad \mathbf{D}=\mathbf{0}
\end{aligned}
$$

is equivalent to

$$
2 \mu_{i}\left(|\mathbf{D}|^{2}\right)\left(\tau^{*}+\left(|\mathbf{S}|-\tau^{*}\right)^{+}\right) \mathbf{D}=\left(|\mathbf{S}|-\tau^{*}\right)^{+} \mathbf{S}
$$

Similarly:

$$
\begin{array}{lll}
\mathbf{S}=\mu_{\alpha}\left(|\mathbf{D}|^{2}\right) \mathbf{D} & \text { if } & |\mathbf{D}|<d^{*} \\
\mathbf{S}=\mu_{\beta}\left(|\mathbf{D}|^{2}\right) \mathbf{D} & \text { if } & |\mathbf{D}|>d^{*} \\
\mathbf{S}=\mu^{*} \mathbf{D} & \text { if } & |\mathbf{D}|=d^{*},
\end{array}
$$

μ^{*} takes any value between $\mu_{\alpha}^{*}:=\lim _{s \rightarrow d_{-}^{*}} \mu_{\alpha}(s)$ and $\mu_{\beta}^{*}:=\lim _{s \rightarrow d_{+}^{*}} \mu_{\beta}(s)$

Power-law like fluids with activation criteria/II

$$
\begin{aligned}
& |\mathbf{S}|>\tau^{*} \quad \text { if and only if } \quad \mathbf{S}=\tau^{*} \frac{\mathbf{D}}{|\mathbf{D}|}+2 \mu_{i}\left(|\mathbf{D}|^{2}\right) \mathbf{D} \\
& |\mathbf{S}| \leq \tau^{*} \quad \text { if and only if } \quad \mathbf{D}=\mathbf{0}
\end{aligned}
$$

is equivalent to

$$
2 \mu_{i}\left(|\mathbf{D}|^{2}\right)\left(\tau^{*}+\left(|\mathbf{S}|-\tau^{*}\right)^{+}\right) \mathbf{D}=\left(|\mathbf{S}|-\tau^{*}\right)^{+} \mathbf{S}
$$

Similarly:

$$
\begin{array}{lll}
\mathbf{S}=\mu_{\alpha}\left(|\mathbf{D}|^{2}\right) \mathbf{D} & \text { if }|\mathbf{D}|<d^{*} \\
\mathbf{S}=\mu_{\beta}\left(|\mathbf{D}|^{2}\right) \mathbf{D} & \text { if }|\mathbf{D}|>d^{*} \\
\mathbf{S}=\mu^{*} \mathbf{D} & \text { if }|\mathbf{D}|=d^{*}
\end{array}
$$

μ^{*} takes any value between $\mu_{\alpha}^{*}:=\lim _{s \rightarrow d_{-}^{*}} \mu_{\alpha}(s)$ and $\mu_{\beta}^{*}:=\lim _{s \rightarrow d_{+}^{*}} \mu_{\beta}(s)$

$$
\begin{aligned}
\left||\mathbf{D}|-d^{*}\right| \mathbf{S}= & M\left(|\mathbf{D}|^{2}\right)\left(|\mathbf{D}|-d^{*}\right) \mathbf{D} \\
& \text { with } M(s):=\max \left\{\mu_{\alpha}(s) \operatorname{sgn}\left(s-d^{*}\right) ; \mu_{\beta}(s) \operatorname{sgn}\left(s-d^{*}\right)\right\}
\end{aligned}
$$

Discontinuous response described by a maximal monotone graph

Perfect plasticity

Ugly "discontinuous" explicit models such as

- Perfect plasticity

$$
\begin{aligned}
&|\mathbf{D}|=0 \\
&|\mathbf{D}|>0 \Longrightarrow \mathbf{S} \mid \leq 1 \\
& \mathbf{S}:=\frac{\mathbf{D}}{|\mathbf{D}|}
\end{aligned}
$$

can be described by a nice continuous implicit formula

$$
||\mathbf{D}| \mathbf{S}-\mathbf{D}|+(|\mathbf{S}|-1)_{+}=0
$$

Implicit theories/I - KR Rajagopal since 2003

Implicit constitutive theory: ability to capture responses of larger set of materials

$$
\mathbf{G}(\mathbf{T}, \mathbf{D})=\mathbf{0}
$$

Isotropy of the material implies

$$
\begin{aligned}
& \alpha_{0} \mathbf{I}+\alpha_{1} \mathbf{T}+\alpha_{2} \mathbf{D}+\alpha_{3} \mathbf{T}^{2}+\alpha_{4} \mathbf{D}^{2}+\alpha_{5}(\mathbf{T D}+\mathbf{D T}) \\
& \quad+\alpha_{6}\left(\mathbf{T}^{2} \mathbf{D}+\mathbf{D} \mathbf{T}^{2}\right)+\alpha_{7}\left(\mathbf{T} \mathbf{D}^{2}+\mathbf{D}^{2} \mathbf{T}\right)+\alpha_{8}\left(\mathbf{T}^{2} \mathbf{D}^{2}+\mathbf{D}^{2} \mathbf{T}^{2}\right)=\mathbf{0}
\end{aligned}
$$

α_{i} being a functions of

$$
\operatorname{tr} \mathbf{T}, \operatorname{tr} \mathbf{D}, \operatorname{tr} \mathbf{T}^{2}, \operatorname{tr} \mathbf{D}^{2}, \operatorname{tr} \mathbf{T}^{3}, \operatorname{tr} \mathbf{D}^{3}, \operatorname{tr}(\mathbf{T} \mathbf{D}), \operatorname{tr}\left(\mathbf{T}^{2} \mathbf{D}\right), \operatorname{tr}\left(\mathbf{D}^{2} \mathbf{T}\right), \operatorname{tr}\left(\mathbf{D}^{2} \mathbf{T}^{2}\right)
$$

For incompressible fluids

$$
\mathbf{T}=\frac{\operatorname{tr} \mathbf{T}}{3} \mathbf{I}+\mu\left(\operatorname{tr} \mathbf{T}, \operatorname{tr} \mathbf{D}^{2}\right) \mathbf{D}
$$

Implicit theories/II

Implicit constitutive theory: ability to include constraints in an easy way If

$$
\mathbf{T}=\mathbf{G}_{1}(\mathbf{D})
$$

isotropy of the material implies

$$
\mathbf{T}=\beta_{0} \mathbf{I}+\beta_{1} \mathbf{D}+\beta_{2} \mathbf{D}^{2} \quad \beta_{i}=\beta_{i}\left(\operatorname{tr} \mathbf{D}^{2}, \operatorname{tr} \mathbf{D}^{3}\right)
$$

isotropy of the material leads to

Implicit theories/II

Implicit constitutive theory: ability to include constraints in an easy way If

$$
\mathbf{T}=\mathbf{G}_{1}(\mathbf{D})
$$

isotropy of the material implies

$$
\mathbf{T}=\beta_{0} \mathbf{I}+\beta_{1} \mathbf{D}+\beta_{2} \mathbf{D}^{2} \quad \beta_{i}=\beta_{i}\left(\operatorname{tr} \mathbf{D}^{2}, \operatorname{tr} \mathbf{D}^{3}\right)
$$

If

$$
\mathbf{D}=\mathbf{G}_{2}(\mathbf{T})
$$

isotropy of the material leads to

$$
\begin{aligned}
\mathbf{D} & =\gamma_{0} \mathbf{I}+\gamma_{1} \mathbf{T}+\gamma_{2} \mathbf{T}^{2} \\
& =\gamma_{1} \mathbf{S}+\gamma_{2}\left(\mathbf{T}^{2}-\frac{\operatorname{tr} \mathbf{T}^{2}}{3} \mathbf{I}\right)
\end{aligned}
$$

Implicit formulation - maximal monotone ψ-graph setting

$(\mathbf{S}, \mathbf{D}) \in \mathcal{A} \quad \Longleftrightarrow \quad \mathbf{G}(\mathbf{D}, \mathbf{S})=\mathbf{0}$
Assumptions (\mathcal{A} is a ψ-maximal monotone graph):

- (A1) $(0,0) \in \mathcal{A}$
- (A2) Monotone graph: For any $\left(\mathbf{S}_{1}, \mathbf{D}_{1}\right),\left(\mathbf{S}_{2}, \mathbf{D}_{2}\right) \in \mathcal{A}$

$$
\left(\mathbf{S}_{1}-\mathbf{S}_{2}\right):\left(\mathbf{D}_{1}-\mathbf{D}_{2}\right) \geq 0
$$

No strict monotonicity is needed!

- (A3) Maximal graph: If for some (S, D) there holds

$$
(\mathbf{S}-\tilde{\mathbf{S}}):(\mathbf{D}-\tilde{\mathbf{D}}) \geq 0 \quad \forall(\tilde{\mathbf{S}}, \tilde{\mathbf{D}}) \in \mathcal{A}
$$

then

$$
(\mathbf{S}, \mathbf{D}) \in \mathcal{A}
$$

- (A4) ψ-graph: There are $\alpha \in(0,1]$ and $g>0$ so that for any $(\mathbf{S}, \mathbf{D}) \in \mathcal{A}$

$$
\mathbf{S}: \mathbf{D} \geq \alpha\left(\psi(\mathbf{D})+\psi^{*}(\mathbf{S})\right)-g
$$

What is ψ ? An excursion to Orlicz spaces

Assume that $\psi: \mathbb{R}_{\text {sym }}^{3 \times 3} \rightarrow \mathbb{R}$ is an N - function (if it depends only on the modulus then Young function), i.e.,

- ψ is convex and continuous
- $\psi(\mathbf{D})=\psi(-\mathbf{D})$

$$
\lim _{|\mathbf{D}| \rightarrow 0_{+}} \frac{\psi(\mathbf{D})}{|\mathbf{D}|}=0, \quad \lim _{|\mathbf{D}| \rightarrow \infty} \frac{\psi(\mathbf{D})}{|\mathbf{D}|}=\infty
$$

We define the conjugate function $\psi *$:

What is ψ ? An excursion to Orlicz spaces

Assume that $\psi: \mathbb{R}_{\text {sym }}^{3 \times 3} \rightarrow \mathbb{R}$ is an N - function (if it depends only on the modulus then Young function), i.e.,

- ψ is convex and continuous
- $\psi(\mathbf{D})=\psi(-\mathbf{D})$

$$
\lim _{|\mathbf{D}| \rightarrow 0_{+}} \frac{\psi(\mathbf{D})}{|\mathbf{D}|}=0, \quad \lim _{|\mathbf{D}| \rightarrow \infty} \frac{\psi(\mathbf{D})}{|\mathbf{D}|}=\infty
$$

We define the conjugate function $\psi *$:

$$
\psi^{*}(\mathbf{S}):=\max _{\mathbf{D}}(\mathbf{S} \cdot \mathbf{D}-\psi(\mathbf{D}))
$$

What is ψ ? An excursion to Orlicz spaces/2

- Young inequality:

$$
\mathbf{S}: \mathbf{D} \leq \psi(\mathbf{D})+\psi^{*}(\mathbf{S})
$$

- Orlicz spaces: The Orlicz space $L^{\psi}(\Omega)^{d \times d}$ is the set of all measurable function D : $\Omega \rightarrow \mathbb{R}_{\text {sym }}^{3 \times 3}$ such that

$$
\lim _{\lambda \rightarrow \infty} \int_{\Omega} \psi\left(\lambda^{-1} \mathbf{D}\right) d x=0
$$

with the norm

$$
\|\mathbf{D}\|_{L \psi}:=\inf \left\{\lambda ; \int_{\Omega} \psi\left(\lambda^{-1} \mathbf{D}\right) d x \leq 1\right\}
$$

- Hölder inequality

$$
\int_{\Omega} a b d x \leq 2\|a\|_{L^{\psi}(\Omega)}\|b\|_{L^{\psi^{*}}(\Omega)}
$$

- Δ_{2}-condition

$$
\psi(2 \mathbf{D}) \leq C_{1} \psi(\mathbf{D})+C_{2}
$$

Maximization of entropy production

In order to specify the constitutive relations, the principle of maximal entropy production (laziness, economy) is used (KR Rajagopal, A Srinivasa):

$$
\begin{equation*}
\mathbf{S} \cdot \mathbf{D}=\xi \geq 0 \tag{*}
\end{equation*}
$$

Let us assume that $\xi:=\xi(\mathbf{D}) \geq 0$ and for some fixed \mathbf{S} we would like to maximize ξ with the constraint $\left(^{*}\right)$.

- $\xi:=2 \nu_{0}|\mathbf{D}|^{2}$

$$
\mathbf{S}=2 \nu_{0} \mathbf{D}
$$

- $\xi=\nu(|\mathbf{D}|)|\mathbf{D}|^{2}$

$$
\mathbf{S}=\nu(|\mathbf{D}|) \mathbf{D}
$$

Maximization of entropy production - dual view

Let us assume that $\xi:=\xi(\mathrm{S}) \geq 0$ and for some fixed \mathbf{D} we would like to maximize ξ with the constraint $\xi=\mathbf{S} \cdot \mathbf{D}$.

- $\xi:=\frac{2}{\nu_{0}}|\mathbf{S}|^{2}$

$$
\mathbf{D}=2 \nu_{0} \mathbf{S}
$$

- $\xi=\nu^{*}(|\mathbf{S}|)|\mathbf{S}|^{2}$

$$
\mathbf{D}=\nu^{*}(|\mathbf{S}|) \mathbf{S}
$$

Maximization of entropy production

Let us assume that $\xi:=\xi(\mathbf{D}, \mathbf{S}) \geq 0$ and
(i) for some fixed \mathbf{S} we would like to maximize ξ with the constraint $\xi=\mathbf{S} \cdot \mathbf{D}$
or
(ii) for some fixed \mathbf{D} we would like to maximize ξ with the constraint $\xi=\mathbf{S} \cdot \mathbf{D}$

- $\xi:=\frac{|\mathbf{D}|^{2}+|\mathbf{|}|^{2}}{2}$

$$
\mathbf{S}=\mathrm{D}
$$

- $\xi=\frac{|\mathbf{D}|^{r}}{r}+\frac{|\mathbf{S}|^{\prime} r^{\prime}}{r^{\prime}}$

$$
\mathbf{S}=|\mathbf{D}|^{r-1} \mathbf{D}
$$

Optimality of ψ and ψ^{*}

Let us assume that $\xi:=\xi_{1}(\mathbf{D})+\xi_{2}(\mathbf{S}) \geq 0-$ not necessarily conjugate and (i) for some fixed \mathbf{S} we would like to maximize ξ with the constraint $\xi=\mathbf{S} \cdot \mathbf{D}$ or
(ii) for some fixed \mathbf{D} we would like to maximize ξ with the constraint $\xi=\mathbf{S} \cdot \mathbf{D}$

It is the same as maximize ξ_{1} with the constraint
\square
Hence, for D - the point where maximum is reached - we interchange the role of S and D, so at this point

$$
\max _{\mathrm{s}}\left(\mathbf{S} \cdot \mathbf{D}-\xi_{2}(\mathbf{S})\right)=\xi_{1}(\mathbf{D})
$$

But it implies

Optimality of ψ and ψ^{*}

Let us assume that $\xi:=\xi_{1}(\mathbf{D})+\xi_{2}(\mathbf{S}) \geq 0-$ not necessarily conjugate and (i) for some fixed \mathbf{S} we would like to maximize ξ with the constraint $\xi=\mathbf{S} \cdot \mathbf{D}$ or
(ii) for some fixed \mathbf{D} we would like to maximize ξ with the constraint $\xi=\mathbf{S} \cdot \mathbf{D}$ It is the same as maximize ξ_{1} with the constraint

$$
\mathbf{S} \cdot \mathbf{D}-\xi_{2}(\mathbf{S})=\xi_{1}(\mathbf{D})
$$

Hence, for D - the point where maximum is reached - we interchange the role of S and D, so at this point

$$
\max _{\mathbf{S}}\left(\mathbf{S} \cdot \mathbf{D}-\xi_{2}(\mathbf{S})\right)=\xi_{1}(\mathbf{D})
$$

But it implies

Optimality of ψ and ψ^{*}

Let us assume that $\xi:=\xi_{1}(\mathbf{D})+\xi_{2}(\mathbf{S}) \geq 0-$ not necessarily conjugate and
(i) for some fixed \mathbf{S} we would like to maximize ξ with the constraint $\xi=\mathbf{S} \cdot \mathbf{D}$
or
(ii) for some fixed \mathbf{D} we would like to maximize ξ with the constraint $\xi=\mathbf{S} \cdot \mathbf{D}$ It is the same as maximize ξ_{1} with the constraint

$$
\mathbf{S} \cdot \mathbf{D}-\xi_{2}(\mathbf{S})=\xi_{1}(\mathbf{D})
$$

Hence, for \mathbf{D} - the point where maximum is reached - we interchange the role of \mathbf{S} and D, so at this point

$$
\max _{\mathbf{S}}\left(\mathbf{S} \cdot \mathbf{D}-\xi_{2}(\mathbf{S})\right)=\xi_{1}(\mathbf{D})
$$

But it implies

Optimality of ψ and ψ^{*}

Let us assume that $\xi:=\xi_{1}(\mathbf{D})+\xi_{2}(\mathbf{S}) \geq 0-$ not necessarily conjugate and
(i) for some fixed \mathbf{S} we would like to maximize ξ with the constraint $\xi=\mathbf{S} \cdot \mathbf{D}$
or
(ii) for some fixed \mathbf{D} we would like to maximize ξ with the constraint $\xi=\mathbf{S} \cdot \mathbf{D}$ It is the same as maximize ξ_{1} with the constraint

$$
\mathbf{S} \cdot \mathbf{D}-\xi_{2}(\mathbf{S})=\xi_{1}(\mathbf{D})
$$

Hence, for \mathbf{D} - the point where maximum is reached - we interchange the role of \mathbf{S} and D, so at this point

$$
\max _{\mathbf{S}}\left(\mathbf{S} \cdot \mathbf{D}-\xi_{2}(\mathbf{S})\right)=\xi_{1}(\mathbf{D})
$$

But it implies

$$
\xi_{2}^{*}(\mathbf{D}):=\max _{\mathbf{S}}\left(\mathbf{S} \cdot \mathbf{D}-\xi_{2}(\mathbf{S})\right)=\xi_{1}(\mathbf{D})
$$

Optimality of ψ and ψ^{*} - more general models

- Non-polynomial growth

$$
\mathbf{S} \sim\left(1+|\mathbf{D}|^{2}\right)^{\frac{r-2}{2}} \ln (1+|\mathbf{D}|) \mathbf{D} \Longrightarrow \psi(\mathbf{D}) \sim|\mathbf{D}|^{r} \ln (1+|\mathbf{D}|)
$$

- Anisotropic case - different growth
- Different upper and lower growth in principle - ψ has different polynomial upper and lower growth, for $\psi(\mathbf{D}):=\psi(|\mathbf{D}|)$: for certain $1<r \leq a<\infty$ there are positive constants c_{1}, c_{2}, c_{3} and c_{4} so that

Optimality of ψ and ψ^{*} - more general models

- Non-polynomial growth

$$
\mathbf{S} \sim\left(1+|\mathbf{D}|^{2}\right)^{\frac{r-2}{2}} \ln (1+|\mathbf{D}|) \mathbf{D} \Longrightarrow \psi(\mathbf{D}) \sim|\mathbf{D}|^{r} \ln (1+|\mathbf{D}|)
$$

- Anisotropic case - different growth

$$
\mathbf{S}_{i j} \sim|\mathbf{D}|^{r_{i j}-2} \mathbf{D} \Longrightarrow \psi(\mathbf{D}) \sim \sum|\mathbf{D}|^{r_{i j}}
$$

- Different upper and lower growth in principle - ψ has different polynomial upper and lower growth, for $\psi(\mathbf{D}):=\psi(|\mathbf{D}|)$: for certain $1<r \leq q<\infty$ there are positive constants c_{1}, c_{2}, c_{3} and c_{4} so that

Optimality of ψ and ψ^{*} - more general models

- Non-polynomial growth

$$
\mathbf{S} \sim\left(1+|\mathbf{D}|^{2}\right)^{\frac{r-2}{2}} \ln (1+|\mathbf{D}|) \mathbf{D} \Longrightarrow \psi(\mathbf{D}) \sim|\mathbf{D}|^{r} \ln (1+|\mathbf{D}|)
$$

- Anisotropic case - different growth

$$
\mathbf{S}_{i j} \sim|\mathbf{D}|^{r_{i j}-2} \mathbf{D} \Longrightarrow \psi(\mathbf{D}) \sim \sum|\mathbf{D}|^{r_{i j}}
$$

- Different upper and lower growth in principle - ψ has different polynomial upper and lower growth, for $\psi(\mathbf{D}):=\psi(|\mathbf{D}|)$: for certain $1<r \leq q<\infty$ there are positive constants c_{1}, c_{2}, c_{3} and c_{4} so that

$$
c_{1} s^{r}-c_{2} \leq \psi(s) \leq c_{3} s^{q}+c_{4}
$$

Optimality of ψ and ψ^{*} - more general models

- Non-polynomial growth

$$
\mathbf{S} \sim\left(1+|\mathbf{D}|^{2}\right)^{\frac{r-2}{2}} \ln (1+|\mathbf{D}|) \mathbf{D} \Longrightarrow \psi(\mathbf{D}) \sim|\mathbf{D}|^{r} \ln (1+|\mathbf{D}|)
$$

- Anisotropic case - different growth

$$
\mathbf{S}_{i j} \sim|\mathbf{D}|^{r_{i j}-2} \mathbf{D} \Longrightarrow \psi(\mathbf{D}) \sim \sum|\mathbf{D}|^{r_{i j}}
$$

- Different upper and lower growth in principle - ψ has different polynomial upper and lower growth, for $\psi(\mathbf{D}):=\psi(|\mathbf{D}|)$: for certain $1<r \leq q<\infty$ there are positive constants c_{1}, c_{2}, c_{3} and c_{4} so that

$$
c_{1} s^{r}-c_{2} \leq \psi(s) \leq c_{3} s^{q}+c_{4}
$$

\qquad

$$
c_{1}^{*} s^{q^{\prime}}-c_{2}^{*} \leq \psi^{*}(s) \leq c_{3}^{*} s^{r^{\prime}}+c_{4}^{*}
$$

What is the goal?

- Goal $=$ existence result for as general constitutive relationships as possible - Using large data apriori estimates (Ω bounded and nice, nice b.c.)
- Steady case

$$
\int_{\Omega} \psi(\mathbf{D})+\psi^{*}(\mathbf{S}) d x \leq C
$$

- Unsteady case

- If the function spaces that are under control are "slightly better" than just to guarantee that all terms in weak formulation are meaningful, does there exist a weak solution?

What is the goal?

- Goal $=$ existence result for as general constitutive relationships as possible
- Using large data apriori estimates (Ω bounded and nice, nice b.c.)
- Steady case

$$
\int_{\Omega} \psi(\mathbf{D})+\psi^{*}(\mathbf{S}) d x \leq C
$$

- Unsteady case

$$
\sup _{t}\|\mathbf{v}\|_{2}^{2}+\int_{0}^{T} \int_{\Omega} \psi(\mathbf{D})+\psi^{*}(\mathbf{S}) d x d t \leq C
$$

- If the function spaces that are under control are "slightly better" than just to guarantee that all terms in weak formulation are meaningful, does there exist a weak solution?

The goal more precisely

- If the function spaces generated by the apriori large data energy estimates are compactly embedded into L^{2}, does there exist a weak solution?

Results - power-law like fluid - Explicit

Compact embedding is available if $r>\frac{6}{5}$
Lebesgue and Sobolev spaces

- $r=2$ Lerray (1934)
- $r \geq \frac{11}{5}$ for unsteady, $r \geq \frac{9}{5}$ steady; Ladyzhenskaya, JL Lions 60's
- $r \geq \frac{9}{5}$ unsteady; Bellout, Bloom, Nečas, Málek, Růžička 90's
- $r \geq \frac{8}{5}$ unsteady; Frehse, Málek, Steinhauer (2000)
- $r>\frac{6}{5}$ steady; Frehse, Málek, Steinhauer (2003) Diening, Málek, Steinhauer (2008)
- $r>\frac{6}{5}$ unsteady; Diening, Růžička, Wolf (2009)

Results - power-law like fluid - implicit (discontinuous)

Lebesgue and Sobolev spaces

- $r \geq \frac{11}{5}$ - strictly monotone operators - Gwiazda, Málek, S̀̀wierczewska (2007)
- $r>\frac{9}{5}$ - Herschel-Bulkley model - Málek, Růžička, Shelukhin(2005)
- $r>\frac{6}{5}$ steady - strictly monotone graph - Bulíček, Gwiazda, Málek, S̀wierczewska (2009)
- $r>\frac{6}{5}$ unsteady; Bulíček, Gwiazda, Málek, S̀wierczewska-Gwiazda (2010)

Answers - implicit

Orlicz and Orlicz-Sobolev spaces

- subcritical - Gwiazda, S̀wierczevska-Gwiazda et al (2009)
- strict monotone operators
- the energy equality holds
- the term $(\mathbf{v} \otimes \mathbf{v}) \cdot \mathbf{D}(\mathbf{v}) \in L^{1}$ - the solution is an admissible test function in the weak formulation
- supercritical - Bulíček, Gwiazda, Málek, S̀̀wierczewska-Gwiazda (2010)
- (A1)-(A4) - maximal monotone ψ-graph
- $\psi(\mathbf{D})=\psi(|\mathbf{D}|)$;

Methods

- subcritical case
- energy equality - \mathbf{v} is an addmissible test function
- Minty's method
difficulties if ψ does not satisfy Δ_{2} condition
- supercritical case
- generalized Minty's method
- Lipschitz approximation in Orlicz-Sobolev spaces

Methods

- subcritical case
- energy equality - \mathbf{v} is an addmissible test function
- Minty's method
difficulties if ψ does not satisfy Δ_{2} condition
- supercritical case
- generalized Minty's method
- Lipschitz approximation in Orlicz-Sobolev spaces

Generalized Minty's method - Convergence lemma

Assume that

- \mathcal{A} is a maximal monotone ψ-graph satisfying (A1)-(A4)
- $\left\{\mathbf{S}^{n}\right\}_{n=1}^{\infty}$ and $\left\{\mathbf{D}^{n}\right\}_{n=1}^{\infty}$ satisfy for some $Q^{\prime} \subset Q$

$$
\begin{array}{r}
\left(\mathbf{S}^{n}, \mathbf{D}^{n}\right) \in \mathcal{A} \\
\mathbf{D}^{n} \rightharpoonup \mathbf{D} \\
\mathbf{S}^{n} \rightharpoonup \mathbf{S}
\end{array}
$$

$$
\limsup _{n \rightarrow \infty} \int_{Q^{\prime}} \mathbf{S}^{n} \cdot \mathbf{D}^{n} d x d t \leq \int_{Q^{\prime}} \mathbf{S} \cdot \mathbf{D} d x d t
$$

Then for almost all $(t, x) \in Q^{\prime}$ we have

$$
(\mathbf{S}, \mathbf{D}) \in \mathcal{A}
$$

Lemma - Local version

Application of Convergence lemma to Stokes-like problems

To find ($\mathbf{v}, p, \mathbf{S}$) such that

$$
\begin{aligned}
& \mathbf{v} \in W_{0}^{1, r}(\Omega) \quad p \in{L^{r^{\prime}}(\Omega) \quad \mathbf{D} \in L^{\psi}(\Omega) \quad \mathbf{S} \in{L^{\psi^{*}}(\Omega)}^{\operatorname{div} \mathbf{v}=0 \quad-\operatorname{div} \mathbf{S}=-\nabla p+\mathbf{f} \text { in } \mathcal{D}^{\prime}(\Omega),}}_{(\mathbf{S}(x), \mathbf{D}(\mathbf{v}(x))) \in \mathcal{A} \text { for a.a. } x \in \Omega}
\end{aligned}
$$

Theorem. For any $\mathbf{f} \in\left(W_{0}^{1, r}\right)^{*}$ and Ω there is a weak solution to the Problem \mathcal{P}.
Proof is based on the following steps:

- Take any selection ($\forall \mathbf{D}$ take one $\mathbf{S}^{*}:=\mathbf{S}_{\mathbf{D}}^{*}$ so that $\left.\left(\mathbf{S}^{*}, \mathbf{D}\right) \in \mathcal{A}\right)$ and its η-regularizations leads to η-approximations \mathcal{P}_{η}
- Galerkin N-approximations of \mathcal{P}_{η} give finitedimensional problems $\mathcal{P}_{N, \eta}$
- For fix $N \in \mathcal{N}$: letting $\eta \rightarrow 0$ we obtain \mathcal{P}_{N}
- Uniform estimates follow from (A4); Letting $N \rightarrow \infty$ and applying Convergence lemma one concludes $(\mathbf{S}, \mathbf{D}) \in \mathcal{A}$ a.e. in Ω

Extension to subcritical problems

If

- compactness in L^{2} is available (which follows if $r>\frac{9}{5}$ for steady problems and $r>\frac{11}{5}$ for unsteady problems)
- \mathbf{v} is an admissible test function in the weak formulation of the problem

Then the results holds for

- $\operatorname{div}(\mathbf{v} \otimes \mathbf{v})-\operatorname{div} \mathbf{S}=-\nabla p+\mathbf{f}$ in Ω
- $\mathbf{v}_{, t}+\operatorname{div}(\mathbf{v} \otimes \mathbf{v})-\operatorname{div} \mathbf{S}=-\nabla p+\mathbf{f}$ in $(0, T) \times \Omega$ and $\mathbf{v}(0, \cdot)=\mathbf{v}_{0} \in L_{\mathrm{div}}^{2}$

Supercritical problems: $\mathbf{v}^{n}-\mathbf{v}$ is not admissible test function \Longrightarrow need for its appropriate truncation

Lipschitz approximations of Sobolev function/1

Calderon, Ziemer, Acerbi and Fusco, ...
Theorem. (Diening, Málek, Steinhauer '08, Frehse, Málek, Steinhauer '03) Let $1<q<\infty$ and $\Omega \in \mathcal{C}^{0,1}$. Let

$$
\mathbf{u}^{n} \in W_{0}^{1, q}(\Omega)^{d} \quad \text { and } \mathbf{u}^{n} \rightharpoonup \mathbf{0} \text { weakly in } W_{0}^{1, q}(\Omega)^{d} .
$$

Set

$$
\begin{aligned}
K & :=\sup _{n}\left\|\mathbf{u}^{n}\right\|_{1, q}<\infty \\
\gamma_{n} & :=\left\|\mathbf{u}^{n}\right\|_{q} \rightarrow 0 \quad(n \rightarrow \infty) .
\end{aligned}
$$

Let $\theta_{n}>0$ be such that (e.g. $\theta_{n}:=\sqrt{\gamma_{n}}$)

$$
\theta_{n} \rightarrow 0 \quad \text { and } \quad \frac{\gamma_{n}}{\theta_{n}} \rightarrow 0 \quad(n \rightarrow \infty)
$$

Let $\mu_{j}:=2^{2^{j}}$.

Lipschitz approximations of Sobolev function/2

Then there exists a sequence $\lambda_{n, j}>0$ with

$$
\mu_{j} \leq \lambda_{n, j} \leq \mu_{j+1}
$$

and a sequence $\mathbf{u}^{n, j} \in W_{0}^{1, \infty}(\Omega)^{d}$ such that for all $j, n \in \mathbb{N}$

$$
\begin{aligned}
\left\|\mathbf{u}^{n, j}\right\|_{\infty} & \leq \theta_{n} \rightarrow 0 \quad(n \rightarrow \infty), \\
\left\|\nabla \mathbf{u}^{n, j}\right\|_{\infty} & \leq c \lambda_{n, j} \leq c \mu_{j+1}
\end{aligned}
$$

and

$$
\left\{\mathbf{u}^{n, j} \neq \mathbf{u}^{n}\right\} \subset \Omega \cap\left(\left\{M \mathbf{u}^{n}>\theta_{n}\right\} \cup\left\{M\left(\nabla \mathbf{u}^{n}\right)>2 \lambda_{n, j}\right\}\right)
$$

and for all $j \in \mathbb{N}$ and $n \rightarrow \infty$

$$
\begin{aligned}
\mathbf{u}^{n, j} \rightarrow \mathbf{0} & \text { strongly in } L^{s}(\Omega)^{d} \text { for all } s \in[1, \infty], \\
\mathbf{u}^{n, j} & \rightharpoonup \mathbf{0} \\
\nabla \mathbf{u}^{n, j} \xrightarrow{*} \mathbf{0} & \text { weakly in } W_{0}^{1, s}(\Omega)^{d} \text { wor all } s \in[1, \infty),
\end{aligned}
$$

Lipschitz approximations of Sobolev function/3

Furthermore, for all $n, j \in \mathbb{N}$

$$
\left|\left\{\mathbf{u}^{n, j} \neq \mathbf{u}^{n}\right\}\right|_{d} \leq \frac{c\left\|\mathbf{u}^{n}\right\|_{1, q}^{q}}{\lambda_{n, j}^{q}}+c\left(\frac{\gamma^{n}}{\theta^{n}}\right)^{q}
$$

and

$$
\left\|\nabla \mathbf{u}^{n, j} \chi_{\left\{\mathbf{u}^{\left.n, j \neq \mathbf{u}^{n}\right\}}\right.}\right\|_{q} \leq c\left\|\lambda_{n, j} \chi_{\left\{\mathbf{u}^{n, j} \neq \mathbf{u}^{n}\right\}}\right\|_{q} \leq c \frac{\gamma_{n}}{\theta_{n}} \mu_{j+1}+c \epsilon_{j},
$$

where $\epsilon_{j}:=K 2^{-j / q}$ vanishes as $j \rightarrow \infty$. The constant c depends on Ω.

- based on the continuity of the Hardy-Littlewood maximal function in $L^{p}-\operatorname{In}$ Orlicz space setting it requires Δ_{2}-condition and log-continuity w.r.t. x or (t, x)
- Goal is to avoid using continuity of Hardy-Littelwood maximal function; apply weak (1, 1)-estimates

Lipschitz approximations of "Orlicz-Sobolev" functions

Lemma

$\left\{\mathbf{u}^{n}\right\}_{n=1}^{\infty}$ tends strongly to $\mathbf{0}$ in L^{1} and $\left\{\mathbf{S}^{n}\right\}_{n=1}^{\infty}$ such that

$$
\int_{\Omega} \psi^{*}\left(\left|\mathbf{S}^{n}\right|\right)+\psi\left(\left|\nabla \mathbf{u}^{n}\right|\right) d x \leq C^{*} \quad\left(C^{*}>1\right)
$$

Then for arbitrary $\lambda^{*} \in \mathbb{R}_{+}$and $k \in \mathbb{N}$ there exists $\lambda^{\max }<\infty$ and there exists sequence of $\left\{\lambda_{n}^{k}\right\}_{n=1}^{\infty}$ and the sequence \mathbf{u}_{k}^{n} (going to zero) and open sets $E_{n}^{k}:=\left\{\mathbf{u}_{k}^{n} \neq \mathbf{u}^{n}\right\}$ such that $\lambda_{n}^{k} \in\left[\lambda^{*}, \lambda^{\text {max }}\right]$ and for any sequence α_{k}^{n}

$$
\begin{aligned}
\mathbf{u}_{k}^{n} & \in W^{1, p}, \quad\left\|\mathbf{D}\left(\mathbf{u}_{k}^{n}\right)\right\|_{\infty} \leq C \lambda_{n}^{k} \\
\left|\Omega \cap E_{n}^{k}\right| & \leq C \frac{C^{*}}{\psi\left(\lambda_{n}^{k}\right)}, \\
\int_{\Omega \cap E_{n}^{k}}\left|\mathbf{S}^{n} \cdot \mathbf{D}\left(\mathbf{u}_{k}^{n}\right)\right| d x & \leq C C^{*}\left(\frac{\alpha_{n}^{k}}{k}+\frac{\alpha_{n}^{k} \psi\left(\lambda_{n}^{k} / \alpha_{n}^{k}\right)}{\psi\left(\lambda_{n}^{k}\right)}\right)
\end{aligned}
$$

Application of Lipschitz approximations to steady flows

- We have suitable approximations $\left(\mathbf{v}^{n}, \mathbf{S}^{n}\right)$ and their weak limits $(\mathbf{v}, \overline{\mathbf{S}})$, we need to show that $(\overline{\mathbf{S}}, \mathbf{D}(\mathbf{v})) \in \mathcal{A}$
- Test the approximative n - problem by Lipschitz approximation of $\mathbf{v}^{n}-\mathbf{v}$, i.e., $\mathbf{u}_{k}^{n}:=\left(\mathbf{v}^{n}-\mathbf{v}\right)_{k}$
- One gets (here S is such that $(S, D) \in \mathcal{A}$

- Hölder inequality gives

Application of Lipschitz approximations to steady flows

- We have suitable approximations $\left(\mathbf{v}^{n}, \mathbf{S}^{n}\right)$ and their weak limits $(\mathbf{v}, \overline{\mathbf{S}})$, we need to show that $(\overline{\mathbf{S}}, \mathbf{D}(\mathbf{v})) \in \mathcal{A}$
- Test the approximative n - problem by Lipschitz approximation of $\mathbf{v}^{n}-\mathbf{v}$, i.e., $\mathbf{u}_{k}^{n}:=\left(\mathbf{v}^{n}-\mathbf{v}\right)_{k}$
- One gets (here \mathbf{S} is such that $(\mathbf{S}, \mathbf{D}) \in \mathcal{A}$

$$
\lim _{n \rightarrow \infty} \int_{\mathbf{u}_{k}^{n}=\mathbf{u}^{n}}\left(\mathbf{S}^{n}-\mathbf{S}\right): \mathbf{D}\left(\mathbf{u}_{k}^{n}\right) \leq C C^{*}\left(\frac{\alpha_{n}^{k}}{k}+\frac{\alpha_{n}^{k} \psi\left(\lambda_{n}^{k} / \alpha_{n}^{k}\right)}{\psi\left(\lambda_{n}^{k}\right)}\right)
$$

- Hölder inequality gives

Application of Lipschitz approximations to steady flows

- We have suitable approximations $\left(\mathbf{v}^{n}, \mathbf{S}^{n}\right)$ and their weak limits $(\mathbf{v}, \overline{\mathbf{S}})$, we need to show that $(\overline{\mathbf{S}}, \mathbf{D}(\mathbf{v})) \in \mathcal{A}$
- Test the approximative n - problem by Lipschitz approximation of $\mathbf{v}^{n}-\mathbf{v}$, i.e., $\mathbf{u}_{k}^{n}:=\left(\mathbf{v}^{n}-\mathbf{v}\right)_{k}$
- One gets (here \mathbf{S} is such that $(\mathbf{S}, \mathbf{D}) \in \mathcal{A}$

$$
\lim _{n \rightarrow \infty} \int_{\mathbf{u}_{k}^{n}=\mathbf{u}^{n}}\left(\mathbf{S}^{n}-\mathbf{S}\right): \mathbf{D}\left(\mathbf{u}_{k}^{n}\right) \leq C C^{*}\left(\frac{\alpha_{n}^{k}}{k}+\frac{\alpha_{n}^{k} \psi\left(\lambda_{n}^{k} / \alpha_{n}^{k}\right)}{\psi\left(\lambda_{n}^{k}\right)}\right)
$$

- Hölder inequality gives

$$
\lim _{n \rightarrow \infty} \int_{\Omega}\left|\left(\mathbf{S}^{n}-\mathbf{S}\right) \cdot \mathbf{D}\left(\mathbf{v}^{n}-\mathbf{v}\right)\right|^{\varepsilon} \leq \int_{\mathbf{u}^{n}=\mathbf{u}_{k}^{n}}+\int_{\mathbf{u}^{n} \neq \mathbf{u}_{k}^{n}} \leq \text { small terms } \rightarrow 0
$$

Application of Generalized Minty's method/Convergence lemma

- point-wise convergence of $\left(\mathbf{S}^{n}-\mathbf{S}\right) \cdot \mathbf{D}\left(\mathbf{v}^{n}-\mathbf{v}\right)$ to 0 ; if the strictly monotone property available the proof is finished
- if only monotone property is available: apply bf biting lemma; Since $\left(\mathbf{S}^{n}-\mathbf{S}\right) \cdot \mathbf{D}\left(\mathbf{v}^{n}-\mathbf{v}\right)$ is bounded in L^{1} there is sequence of non-increasing sets $A_{k+1} \subset A_{k}, \lim _{k \rightarrow \infty}\left|A_{k}\right|=0$ such that

- nonnegativity \& point-wise \& weak implies strong in $L^{1}\left(\Omega \backslash A_{k}\right)$
- strong \& weak implies for any bounded ϕ

- apply Convergence lemma

Application of Generalized Minty's method/Convergence lemma

- point-wise convergence of $\left(\mathbf{S}^{n}-\mathbf{S}\right) \cdot \mathbf{D}\left(\mathbf{v}^{n}-\mathbf{v}\right)$ to 0 ; if the strictly monotone property available the proof is finished
- if only monotone property is available: apply bf biting lemma; Since $\left(\mathbf{S}^{n}-\mathbf{S}\right) \cdot \mathbf{D}\left(\mathbf{v}^{n}-\mathbf{v}\right)$ is bounded in L^{1} there is sequence of non-increasing sets $A_{k+1} \subset A_{k}, \lim _{k \rightarrow \infty}\left|A_{k}\right|=0$ such that

$$
\left(\mathbf{S}^{n}-\mathbf{S}\right) \cdot \mathbf{D}\left(\mathbf{v}^{n}-\mathbf{v}\right) \text { converges to } 0 \text { weakly in } L^{1}\left(\Omega \backslash A_{k}\right)
$$

- nonnegativity \& point-wise \& weak implies strong in $L^{1}\left(\Omega \backslash A_{k}\right)$
- strong \& weak implies for any bounded φ

$$
\lim _{n \rightarrow \infty} \int_{\Omega \backslash A_{k}} \mathbf{S}^{n} \cdot \mathbf{D}\left(\mathbf{v}^{n}\right) \varphi=\int_{\Omega \backslash A_{k}} \overline{\mathbf{S}} \cdot \mathbf{D}(\mathbf{v}) \varphi
$$

- apply Convergence lemma

Concluding Remarks

- Extension of (homogeneous, incompressible) fluids of power-law type to fully implicit constitutive theory characterized by maximal monotone ψ-graphs (not necessarilly of power-law type)
- Thermodynamically consistent
- Ability to capture shear thinning/thickening, activation criteria, pressure thickening
- "Complete" large data existence theory both for steady and unsteady flows
- From explicit to implicit, from (\mathbf{v}, p) formulation to ($\mathbf{v}, p, \mathbf{S}$) setting
- Extension 1: from $\psi(|\mathbf{D}|)$ to $\psi(\mathbf{D})$
- Extension 2: unsteady flows, full thermodynamic setting
(1) J. Frehse, J. Málek and M. Steinhauer: On analysis of steady flows of fluids with shear-dependent viscosity based on the Lipschitz truncation method, SIAM J. Math. Anal. 34, 1064-1083, 2003
(2) L. Diening, J. Málek and M. Steinhauer: On Lipschitz truncations of Sobolev functions (with variable exponent) and their selected applications, ESAIM: Control, Optimisation \& Calc. Var., 14, 211-232,2008
(3) J. Málek, M. Růžička and V.V. Shelukhin: Herschel-Bulkley Fluids: Existence and regularity of steady flows, Mathematical Models and Methods in Applied Sciences, 15, 1845-1861, 2005
(4) P. Gwiazda, J. Málek and A. Świerczewska: On flows of an incompressible fluid with a discontinuous power-law-like rheology, Computers \& Mathematics with Applications, 53, 531-546, 2007
(5) M. Bulíček, P. Gwiazda, J. Málek and A. Świerczewska-Gwiazda: On steady flows of an incompressible fluids with implicit power-law-like theology, Advances in Calculus of Variations, 2, 109-136 2009
(6) M. Bulíček, P. Gwiazda, J. Málek and A. Świerczewska-Gwiazda: On unsteady flows of implicitly contituted incompressible fluids, to appear in the Preprint series of the Nečas Center, 2010

Newtonian and Fourier fluids

Newtonian homogeneous incompressible fluid

$$
\mathbf{S}=2 \nu(e) \mathbf{D}(\mathbf{v}) \quad \text { or } \mathbf{T}=-p \mathbf{I}+2 \nu(e) \mathbf{D}(\mathbf{v})
$$

Fourier fluid

$$
\mathbf{q}=-\kappa(e) \nabla e
$$

"Equivalent" formulation of the balance of energy/1

$$
\begin{aligned}
\operatorname{div} \mathbf{v} & =0 \\
\mathbf{v}_{, t}+\operatorname{div}(\mathbf{v} \otimes \mathbf{v})-\operatorname{div} \mathbf{S} & =-\nabla p \\
\left(e+|\mathbf{v}|^{2} / 2\right)_{, t}+\operatorname{div}\left(\left(e+|\mathbf{v}|^{2} / 2+p\right) \mathbf{v}\right)+\operatorname{div} \mathbf{q} & =\operatorname{div}(\mathbf{S} \mathbf{v})
\end{aligned}
$$

is equivalent (if \mathbf{v} is admissible test function in $B M$) to

$$
\begin{aligned}
\operatorname{div} \mathbf{v} & =0 \\
\mathbf{v}_{, t}+\operatorname{div}(\mathbf{v} \otimes \mathbf{v})-\operatorname{div} \mathbf{S} & =-\nabla p \\
e_{, t}+\operatorname{div}(e \mathbf{v})+\operatorname{div} \mathbf{q} & =\mathbf{S} \cdot \mathbf{D}(\mathbf{v})
\end{aligned}
$$

Helmholtz decomposition $\mathbf{u}=\mathbf{u}_{\text {div }}+\nabla g^{v}$
Leray's projector $\mathbb{P}: \mathbf{u} \mapsto \mathbf{u}_{\text {div }}$

"Equivalent" formulation of the balance of energy/2

$$
\begin{aligned}
\operatorname{div} \mathbf{v} & =0 \\
\mathbf{v}_{, t}+\operatorname{div}(\mathbf{v} \otimes \mathbf{v})-\operatorname{div} \mathbf{S} & =-\nabla p \\
\left(e+|\mathbf{v}|^{2} / 2\right)_{t}+\operatorname{div}\left(\left(e+|\mathbf{v}|^{2} / 2+p\right) \mathbf{v}\right)+\operatorname{div} \mathbf{q} & =\operatorname{div}(\mathbf{S} \mathbf{v})
\end{aligned}
$$

is equivalent (if \mathbf{v} is admissible test function in BM) to

$$
\begin{aligned}
\operatorname{div} \mathbf{v} & =0 \\
\mathbf{v}_{, t}+\mathbb{P} \operatorname{div}(\mathbf{v} \otimes \mathbf{v})-\mathbb{P} \operatorname{div} \mathbf{S} & =\mathbf{0} \\
e_{, t}+\operatorname{div}(e \mathbf{v})+\operatorname{div} \mathbf{q} & =\mathbf{S} \cdot \mathbf{D}(\mathbf{v})
\end{aligned}
$$

Advantages/Disadvantages

- + pressure is not included into the 2nd formulation
- + minimum principle for e if $\mathbf{S} \cdot \mathbf{D}(\mathbf{v}) \geq 0$
- $-\mathbf{S} \cdot \mathbf{D}(\mathbf{v}) \in L^{1}$ while $\mathbf{S v} \in L^{q}$ with $q>1$, 2nd form is derived form of $B E$

Newtonian case $-\mathbf{S}=\nu(e) \mathbf{D}(\mathbf{v})$ and $\mathbf{q}=-\kappa(e) \nabla e-$ bounded ν, κ

Theorem 1. (M. Bulíček, E. Feireisl, J. Málek '06 and '08) Assume that

- $\nu^{*} \geq \nu(s) \geq \nu_{*}>0$ and $\kappa^{*} \geq \kappa(s) \geq \kappa_{*}>0$
- $\partial \Omega \in C^{1,1}, \mathbf{v}_{0} \in L_{\mathbf{n}, d i v}^{2}, e_{0} \in L^{1}, e_{0} \geq C^{*}>0$ in $\Omega, h \in L^{1}(0, T)$.

Then for all $T>0,0 \leq \lambda<1$ there is suitable weak solution $\{\mathbf{v}, p, e\}$

- $\mathbf{v} \in C\left(0, T ; \dot{L}_{\text {weak }}^{2}\right) \cap L^{2}\left(0, T ; W_{\mathbf{n}, \text { div }}^{1,2}\right)$
- $\operatorname{tr} \mathbf{v} \in L^{2}\left(0, T ; L^{2}(\partial \Omega)\right)$
- $p \in L^{\frac{5}{3}}\left(0, T ; L^{\frac{5}{3}}\right) \quad \int_{\Omega} p(t, x) d x=g(t)$
- $e \in L^{\infty}\left(0, T ; L^{1}\right) \cap L^{m}(Q), \nabla e \in L^{n}(Q)$ with $m \in\left\langle 1, \frac{5}{3}\right), n \in\left\langle 1, \frac{5}{4}\right)$

$$
\left(p+\frac{|\mathbf{v}|^{2}}{2}\right) \mathbf{v} \in L^{\frac{10}{9}}\left(0, T ; L^{\frac{10}{9}}\right) \quad \mathbf{D}(\mathbf{v}) \mathbf{v} \in L^{\frac{5}{4}}\left([0, T] ; L^{\frac{5}{4}}\right)
$$

Weak vrs Suitable weak solutions

Governing equations

$$
\begin{aligned}
& \operatorname{div} \mathbf{v}=0 \quad \mathbf{v}_{, t}+\operatorname{div}(\mathbf{v} \otimes \mathbf{v})=-\nabla p+\operatorname{div}(\nu(\ldots) \mathbf{D}(\mathbf{v})) \\
& \quad\left(e+\frac{|\mathbf{v}|^{2}}{2}\right)_{, t}+\operatorname{div}\left(\left(e+p+\frac{|\mathbf{v}|^{2}}{2}\right) \mathbf{v}\right)-\operatorname{div}(\kappa(\ldots) \nabla e)=\operatorname{div}(\nu(\ldots) \mathbf{D}(\mathbf{v}) \mathbf{v})
\end{aligned}
$$

Formulation of the second law of thermodynamics

$$
e_{, t}+\operatorname{div}(e \mathbf{v})-\operatorname{div}(\kappa(e) \nabla e) \geq \nu(e)|\mathbf{D}(\mathbf{v})|^{2}
$$

equivalent to

$$
\left(\frac{1}{2}|\mathbf{v}|^{2}\right)_{, t}+\nu|\mathbf{D}(\mathbf{v})|^{2} \leq \operatorname{div}\left(\nu(e) \mathbf{D}(\mathbf{v}) \mathbf{v}-\left(p+\frac{1}{2}|\mathbf{v}|^{2}\right) \mathbf{v}\right)
$$

Energy estimates and their consequences

$$
\begin{aligned}
& \operatorname{div} \mathbf{v}=0 \quad \mathbf{v}_{, t}+\operatorname{div}(\mathbf{v} \otimes \mathbf{v})=-\nabla p+\operatorname{div}(\nu(\ldots) \mathbf{D}(\mathbf{v})) \\
& \left(e+\frac{|\mathbf{v}|^{2}}{2}\right)_{,_{t}}+\operatorname{div}\left(\left(e+p+\frac{|\mathbf{v}|^{2}}{2}\right) \mathbf{v}\right)-\operatorname{div}(\kappa(\ldots) \nabla e)=\operatorname{div}(\nu(\ldots) \mathbf{D}(\mathbf{v}) \mathbf{v}) \\
& e, t+\operatorname{div}(e \mathbf{v})-\operatorname{div}(\kappa(\ldots) \nabla e)(\geq)=\nu(\ldots)|\mathbf{D}(\mathbf{v})|^{2}
\end{aligned}
$$

- $\int_{\Omega}\left(e+\frac{|\mathbf{v}|^{2}}{2}\right)(t, x) d x \leq \int_{\Omega}\left(e_{0}+\frac{\left|\mathbf{v o}_{0}\right|^{2}}{2}\right) d x \quad \Longrightarrow \quad e \in L^{\infty}\left(L^{1}\right) \quad \mathbf{v} \in L^{\infty}\left(L^{2}\right)$
- $\left.\int_{0}^{T} \nu(\ldots) \mathbf{D}(\mathbf{v})\right|^{2} d x \leq C \quad \Longrightarrow \nabla \mathbf{v} \in L^{2}\left(L^{2}\right)$
- $\nu(\ldots)|\mathbf{D}(\mathbf{v})|^{2} \geq 0, \Longrightarrow e>C^{*}$ a.e. $, e \in L^{m}\left(L^{m}\right), \nabla(e)^{(1-s) / 2} \in L^{2}\left(L^{2}\right)$

Estimates for the pressure

Equation for the pressure:

$$
p=(-\Delta)^{-1} \operatorname{div} \operatorname{div}(\mathbf{v} \otimes \mathbf{v}-\nu(\ldots) \mathbf{D}(\mathbf{v}))
$$

- $\mathbf{v} \in L^{\infty}\left(L^{2}\right)$ and $\nabla \mathbf{v} \in L^{2}\left(L^{2}\right) \Longrightarrow \mathbf{v} \in L^{10 / 3}\left(L^{10 / 3}\right)$ and $p \in L^{5 / 3}\left(L^{5 / 3}\right)$

No-slip BCs for NSEs: L^{p} maximal regularity for the evolutionary Stokes system (Solonnikov '77, Giga, Giga, Sohr '85)

$$
\mathbf{f} \in L^{p}\left(L^{q}\right) \Longrightarrow \mathbf{v}_{, t}, \nabla^{(2)} \mathbf{v}, \nabla p \in L^{p}\left(L^{q}\right)
$$

No-slip BC for generalized NSEs with $v(e)$ does not hold.
Navier's slip: v $\cdot \mathbf{n}=0$ solutions of homogeneous Neumann problem for Laplace equations are admissible

$$
(p, \operatorname{div} \varphi)=-(p,-\Delta h) \quad-\Delta h=|p|^{\alpha} p
$$

Integrable pressure exists for domains with Lipschitz boundary, etc.

Further consequences of energy estimates

$$
\operatorname{div} \mathbf{v}=0 \quad \mathbf{v}_{, t}+\operatorname{div}(\mathbf{v} \otimes \mathbf{v})=-\nabla p+\operatorname{div}(\nu(\ldots) \mathbf{D}(\mathbf{v}))
$$

$$
\begin{gathered}
\left(e+\frac{|\mathbf{v}|^{2}}{2}\right)_{, t}+\operatorname{div}\left(\left(e+p+\frac{|\mathbf{v}|^{2}}{2}\right) \mathbf{v}\right)-\operatorname{div}(\kappa(\ldots) \nabla e)=\operatorname{div}(\nu(\ldots) \mathbf{D}(\mathbf{v}) \mathbf{v}) \\
e_{, t}+\operatorname{div}(e \mathbf{v})-\operatorname{div}(\kappa(\ldots) \nabla e)(\geq)=\nu(\ldots)|\mathbf{D}(\mathbf{v})|^{2}
\end{gathered}
$$

- $\mathbf{v}_{, t} \in\left(L^{5 / 2}\left(W^{1,5 / 2}\right)\right)^{*}=L^{-5 / 3}\left(W^{1,-5 / 3}\right)$
- $e_{, t} \in L^{1}\left(W^{-1, q^{\prime}}\right)$ with $q>10$
- Aubin-Lions lemma and its generalization: \mathbf{v} and e precompact in $L^{m}\left(L^{m}\right)$ for $m \in\left[1, \frac{5}{3}\right)$
- Trace theorem and Aubin-Lions lemma: pre-compactness of \mathbf{v} on $\partial \Omega$

Two steps in the proof of existence

- Stability of the system w.r.t. weakly converging sequences
- Constructions of approximations (several levels), derivation of uniform estimates, weak limits - candidates for the solutions, taking limits in nonlinearities

Newtonian and Fourier fluids - unbounded ν and κ

$\alpha, \beta>0$:

$$
\nu(e) \sim\left(1+e^{\alpha}\right) \quad \kappa(e) \sim\left(1+e^{\beta}\right)
$$

- NSF: ν decreases with increasing e
$\nu(e)=\nu_{0} \exp \left(\frac{a}{b+e}\right)$
- TKE: ν increases with increasing k
$\nu(k, \ell)=\nu_{0}+\nu_{1} \ell \sqrt{k}$

Conjecture - Bulíček, Lewandowski, Málek

$$
\begin{equation*}
\nu(e):=\nu_{0} e^{\alpha} \quad \text { and } \quad \kappa(e):=\mu_{0} e^{\alpha} . \tag{1}
\end{equation*}
$$

Conjecture. Let $\alpha \in \mathbb{R}, \nu$ and μ are of the form (1). Then there exists a $\delta>0$ and $C^{*}>0$ such that for any suitable weak solution (\mathbf{v}, p, e) to NSF with unbounded material coefficients the following implication holds: If

$$
\int_{-1}^{0} \int_{B_{1}(0)} \nu(e)|\mathbf{D}(\mathbf{v})|^{2} d x d t \leq \delta
$$

then

$$
|\mathbf{v}(t, x)| \leq C^{*} \quad \text { in }\left(-\frac{1}{2}, 0\right) \times B_{\frac{1}{2}}(0) .
$$

For $\alpha \equiv 0$: NSEs - Conjecture holds (CKN '82, Vasseur '07). Statement:
If Conjecture holds for $\alpha \geq \frac{1}{6}$ then the corresponding suitable weak solution has bounded velocity

Scaling property of NSF

(\mathbf{v}, p, e) solve NSF on some neighborhood of $(0,0):\left(-\ell_{0}^{A}, 0\right) \times B_{\ell_{0}}(0)$ with some $A>0$ and $\ell_{0}>0$. Then

$$
\mathbf{v}_{\ell}(t, x):=\ell^{B} \mathbf{v}\left(\ell^{A} t, x\right) \quad p_{\ell}(t, x):=\ell^{2 B} p\left(\ell^{A} t, x\right) \quad e_{\ell}(t, x):=\ell^{2 B} e\left(\ell^{A} t, \ell x\right)
$$

with

$$
A:=\frac{2-2 \alpha}{1-2 \alpha}, \quad B:=\frac{1}{1-2 \alpha} \quad \alpha \neq \frac{1}{2}
$$

solves NSF in $(-1,0) \times B_{1}(0)$. Conjecture applied on $\left(\mathbf{v}_{\ell}, e_{\ell}\right)$ leads to

$$
\begin{aligned}
\delta & \geq \int_{-1}^{0} \int_{B_{1}(0)} \nu\left(k_{\ell}\right)\left|\mathbf{D}\left(\mathbf{v}_{\ell}\right)\right|^{2} d x d t \\
& =\int_{-1}^{1} \int_{B_{1}(0)} \ell^{2 B \alpha+2 B+2}\left(k\left(\ell^{A} t, \ell x\right)\right)^{\alpha}\left|\mathbf{D}\left(\mathbf{v}\left(\ell^{A} t, \ell x\right)\right)\right|^{2} d x d t \\
& =\ell^{\frac{6 \alpha-1}{1-2 \alpha}} \int_{-\ell^{A}}^{0} \int_{B_{\ell}(0)} k^{\alpha}|\mathbf{D}(\mathbf{v})|^{2} d x d t .
\end{aligned}
$$

Existence result - unbounded ν and κ

Theorem 2. (M. Bulíček, R. Lewandowski, J. Málek, 2010)
Assume that ν, κ fulfil the growth condition

$$
\beta \geq 0 \quad 0 \leq \alpha<\frac{2 \beta}{5}+\frac{2}{3}
$$

Then for any set of data there exists (suitable) weak solution (\mathbf{v}, p, e) to the system in consideration, completed by Navier's slip boundary conditions, such that

$$
\begin{aligned}
& \mathbf{v} \in C\left(0, T ; L_{\text {weak }}^{2}\right) \cap L^{2}\left(0, T ; W_{\mathbf{n}}^{1,2} \text { div }\right) \quad \operatorname{tr} \mathbf{v} \in L^{8 / 5}\left(0, T ; L^{8 / 5}(\partial \Omega)\right) \\
& p \in L^{q}\left(0, T ; L^{q}\right) \quad q<\min \{5 / 3,2-2 \alpha /(\alpha+\beta+5 / 3)\} \\
& e \in L^{\infty}\left(0, T ; L^{1}\right), \quad e \geq 0 \quad \text { and } \quad(1+e)^{s}-1 \in L^{2}\left(0, T ; W^{1,2}\right) \quad s<\frac{\beta+1}{2} \\
& \mathbf{v}_{, t} \in L^{q^{\prime}}\left(0, T ; W_{\mathbf{n}}^{-1, q^{\prime}}\right) \quad e_{, t} \in \mathcal{M}\left(0, T ; W^{-1,10 / 9}\right) \quad E_{, t} \in L^{1}\left(0, T ; W^{-1,10 / 9}\right) \\
& \lim _{t \rightarrow 0+}\left(\left\|\mathbf{v}(t)-\mathbf{v}_{0}\right\|_{2}^{2}+\left\|e(t)-e_{0}\right\|_{1}\right)=0
\end{aligned}
$$

Maximal L^{2}-regularity for Stokes-Fourier system

Navier-Stokes sytem

$$
\operatorname{div} \mathbf{v}=0 \quad \mathbf{v}_{, t}+\operatorname{div}(\mathbf{v} \otimes \mathbf{v})-\operatorname{div}\left(2 \nu_{0} \mathbf{D}(\mathbf{v})\right)+\nabla p=\mathcal{F}
$$

Maximal $L^{\text {a }}$-regularity for the evolutionary (linear) Stokes system

$$
\begin{gathered}
\operatorname{div} \mathbf{v}=0 \quad \mathbf{v}_{, t}-\operatorname{div}\left(2 \nu_{0} \mathbf{D}(\mathbf{v})\right)+\nabla p=\mathcal{F} \\
\mathcal{F} \in L^{r}\left(0, T ; L^{r}(\Omega)^{d}\right) \Longrightarrow \mathbf{v}_{, t}, \nabla p, \nabla^{2} \mathbf{v} \in L^{r}\left(0, T ; L^{r}(\Omega)\right)
\end{gathered}
$$

Q: Maximal L^{q}-regularity for the evolutionary (non-linear) Stokes-Fourier

$$
\begin{aligned}
\operatorname{div} \mathbf{v} & =0 \\
\mathbf{v}_{, t}-\operatorname{div}(\nu(e) \mathbf{D}(\mathbf{v}))+\nabla p & =\mathcal{F} \\
e_{, t}-\operatorname{div}(\kappa(e) \nabla e) & =\nu(e)|\mathbf{D}(\mathbf{v})|^{2}
\end{aligned}
$$

Simplifications: periodic problem, $\kappa(e)=1, \nu_{0} \leq v(e) \leq \nu_{1}, r=2$

L^{2}-maximal regularity like result for Stokes-Fourier Eqs

Theorem 3. (M. Bulíček, P. Kaplický, J. Málek Applicable Analysis 2010) Let $d \geq 2$. Let

$$
\begin{aligned}
& \mathcal{F} \in L^{2}\left(0, T ; L^{2}(\Omega)^{d}\right) \quad \sqrt{e_{0}} \in W^{1,2}(\Omega) \quad e_{0} \geq e_{\min } \\
& \mathbf{v}_{0} \in W_{\operatorname{div}}^{1,2}(\Omega)^{d}:=\left\{\mathbf{u} \in W^{1,2}(\Omega)^{d} ; \operatorname{div} \mathbf{u}=0, \int_{\Omega} \mathbf{u}=\mathbf{0}\right\}
\end{aligned}
$$

Assume that $\nu \in \mathcal{C}^{0,1}\left(\mathbb{R}_{+}\right)$fulfills $(\varepsilon>0)$

$$
-\frac{2}{15\left(s-e_{\min }+\varepsilon\right)} \leq \frac{\nu^{\prime}(s)}{\nu(s)} \leq \frac{1}{40\left(s-e_{\min }+\varepsilon\right)} \quad \text { for all } s \in\left(e_{\min }, \infty\right)
$$

Then there exists a triple (v,e,p) that solves (SF) such that

$$
\begin{aligned}
& \mathbf{v} \in L^{\infty}\left(0, T ; W_{\text {div }}^{1,2}(\Omega)^{d}\right) \cap L^{2}\left(0, T ; W^{2,2}(\Omega)^{d}\right) \cap W^{1,2}\left(0, T ; L^{2}(\Omega)^{d}\right) \\
& e \in L^{\frac{d+2}{d}}\left(0, T ; W^{2, \frac{d+2}{d}}(\Omega)\right) \cap W^{1, \frac{d+2}{d}}\left(0, T ; L^{\frac{d+2}{d}}(\Omega)\right) \\
& \sqrt{e} \in L^{\infty}\left(0, T ; W^{1,2}(\Omega)\right) \quad p \in L^{2}\left(0, T ; W^{1,2}(\Omega)\right)
\end{aligned}
$$

Example

$-\frac{2}{15\left(s-e_{\min }+\varepsilon\right)} \leq \frac{\nu^{\prime}(s)}{\nu(s)} \leq \frac{1}{40\left(s-e_{\min }+\varepsilon\right)} \quad$ for all $s \in\left(e_{\min }, \infty\right)$
If $\nu(e)=\nu_{0} \exp \left(\frac{a}{b+e}\right)$ that the above conditions holds if $e_{\text {min }}>2 a-b$

