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Governing equations

Equations in a bounded domain Q C R3 for t € [0, T]:

‘v7t+div(v®v) —divS = —Vp—I—f‘

S=sT

e v is the velocity of the fluid

e p is the mean normal stress (pressure) p := —%trT

o f external body forces ( = 0)

e S is the constitutively determined (deviatoric) part of the Cauchy stress

The Cauchy stress: T=(T—3(trT) + (trT)I
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Point-wisely given constitutive equations
e D(v) - the symmetric part of the velocity gradient: 2D(v) := Vv + (Vv).

e Consider merely point-wise relations between D and S (or D and T)
NO integral, differential (rate-type) or stochastic constitutive relations:

G(S,.D)=0| or G(T,D)=0

@ robust class of fluids
@ justification to adhoc models
@ easy incorporation of constraints (as divv = 0)

@ new class of explicit models D = H(S) vrs S = H(D)
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Constitutive equations

Point-wisely given constitutive equations
e D(v) - the symmetric part of the velocity gradient: 2D(v) := Vv + (Vv).

e Consider merely point-wise relations between D and S (or D and T)
NO integral, differential (rate-type) or stochastic constitutive relations:

G(S,.D)=0| or G(T,D)=0

@ robust class of fluids
@ justification to adhoc models
@ easy incorporation of constraints (as divv = 0)

@ new class of explicit models D = H(S) vrs S = H(D)

Extensions:

‘G(S7 D, p, x, t, temperature, density, concentration, etc.) =0 ‘
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Navier-Stokes fluids

1

2,u*s

T=-pl+24"D <= S=2u"D <= D=
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Navier-Stokes fluids

1
2u*

T=-pl+24"D <= S=2u"D <= D= S

o<[£=5 ]

= 2p" D] = (2p") 7SI

1
— 1D + 5 (20) IS
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Navier-Stokes fluids

1
2u*

T=-pl+24"D <= S=2u"D <= D= S

o<[e=5 D]

= 2p" D] = (2p") 7SI

= WD + 5(27) ISP

§=S-D= TD TD 2‘D|2 2‘5‘2
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Power-law fluids

T=—pl+24°D|"°D < S=24"D|"°D
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Power-law fluids

T=—pl+24° DD += $=24°|D|">D < D = [2] 715|715
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Power-law fluids

T=—pl+24° DD += $=24°|D|">D < D = [2] 715|715

pw=1/2 r=r/(r—1)

£=S-D=ID|"= 8"
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Power-law fluids

T=—pl+24° DD += $=24°|D|">D < D = [2] 715|715

pw=1/2 r=r/(r—1)

¢=S-D=D|" = 5|/
— 8D 4 $D _ D | IS

r r’
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Constitutive equations

Power-law fluids

T=—pl+24° DD += $=24°|D|">D < D = [2] 715|715

pw=1/2 r=r/(r—1)

¢=S-D=ID|"=s|"""?

= SrD + SrP = |Dr‘r + ‘Srl’,
Also, for all D, E € R3*3
(5(D) - S(E)) - (D—E) >0, where §(B) := 2" |B|"’B
for all S1, S, € R3*3
(S1-S2)- (B(S1) —B(S2)) >0, where B(S) = 24[S| 1S
Implicit fluids & Orlicz spaces July 6, 2010

5 /54



Power-law fluids

T=—pl+24° DD += $=24°|D|">D < D = [2] 715|715

pw=1/2 r=r/(r—1)

¢=S-D=ID|"=s|"""?

_sDsD_ oI IS
Also, for all D, E € R3*3
(5(D) - S(E)) - (D—E) >0, where §(B) := 2" |B|"’B
for all S1, S, € R3*3
(S1-S2)- (B(S1) —B(S2)) >0, where B(S) = 24[S| 1S
Generalizations
S=(1+DP)D D=(1+[|SP)S
S =v(IDI")D D = u(IS")s
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Constitutive equations

Fluids with shear-rate dependent viscosities

Continuous Explicit Standard Power-Law models (S := S(D))

1(|DJ?) v = (u(y),0,0) = |D(v)|* = 1/2|u/|? := & shear rate
@ wu(|D[?) = 2u*|D|"2 l1<r<oo
@ u(|DP) =2u5 +uiDI™?  1<r<oo
o u(DP)=2ui(c+ D)2 1eR
@ power-law like fluids = r-coercivity, (r — 1)-growth and strict monotonicity

@ fluids with shear-rate dependent viscosity

Tiz (k) 1 Hg (K) !

shear rate £ shear rate £
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Constitutive equations

Classical power-law model for various power-law index

m € (0,+00)
shear thickening

m =0 o
Navicr—Stokcs’,/' 1

me (4,0

shear thinning ...

[Ts| t 1
=-1
t m=—3 i
20 limit case
v F 8
r me (—o0,—1
____nonmonotone
L s T |
0
0

D]

S = (1+|D?)™D
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Constitutive equations

Stress power-law model for various power-law index

Continuous Explicit Stress Power-law models (D := D(S))

T

Skr

D

D = (1+[S]?)"S
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Constitutive equations

Power-law like fluids with activation criteria/discontinuous
stresses

Tha (k)

/ @ threshold value for the stress to

start flow

yield stress

@ Bingham fluid

hear rate » @ Herschel-Bingham fluid

S
@ drastic changes of the properties
when certain criterion is met

o formation and dissolution of
blood

KO @ chemical reactions/time scale
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Power-law like fluids with activation criteria/Il

*D 2
=7 — +2u(|D])D
By +2(DP)

S|<7" ifandonlyif D=0

S| > 7" ifandonlyif S
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Power-law like fluids with activation criteria/Il

*D 2
=7 — +2u(|D])D
By +2(DP)

S|<7" ifandonlyif D=0

S| > 7" ifandonlyif S

is equivalent to

2u(IDP") (=" + (S| = 7)) D = (S| = 7°) S
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Constitutive equations

Power-law like fluids with activation criteria/Il

*D 2
=7"— +2u;(|D|?)D
By +2(DP)

S|<7" ifandonlyif D=0

S| > 7" ifandonlyif S

is equivalent to

2u(IDP") (=" + (S| = 7)) D = (S| = 7°) S

Similarly:
S = 1. (|D]*)D if |D|<d*
S = us(IDP)D it D> d"
S=u'D if |D|=d",
p* takes any value between pg = lims_.g+ pia(s) and pjs = lims_ g+ pa(s)
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Constitutive equations

Power-law like fluids with activation criteria/Il

S| > 7" ifand only if S = T*% +2ui(|D*)D

S|<7" ifandonlyif D=0

is equivalent to

2u(IDP") (=" + (S| = 7)) D = (S| = 7°) S

Similarly:
S = 1. (|D]*)D if |D|<d*
S = 115(IDI)D it D> d"
S=u'D if |D|=d",

p* takes any value between pg = lims_.g+ pia(s) and pjs = lims_ g+ pa(s)

|ID| — d” |S = M(ID*)(|D| - d*)D
with M(s) := max{pa(s)sgn(s — d*); ps(s)sgn(s — d*)}
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Constitutive equations

Discontinuous response described by a maximal monotone graph

T12 Tmax

shear rate
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Perfect plasticity

Ugly “discontinuous” explicit models such as

@ Perfect plasticity

D=0 = [S[<1

D
D|>0 = S:= —

can be described by a nice continuous implicit formula

IDIS =Dl +(IS[-1), =0
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Constitutive equations

Implicit theories/I - KR Rajagopal since 2003

Implicit constitutive theory: ability to capture responses of larger set of materials
G(T,D)=0
Isotropy of the material implies

aol + a1 T + asD + 3T + auD? + a5(TD + DT)
+ as(T°D + DT?) + a7(TD? + D°T) + a5(T°D* + D*T?) = 0
aj being a functions of
trT, trD, tr T2, trD?, tr T°, tr D?, tr(TD), tr(T°D), tr(D°T), tr(D>T?)

For incompressible fluids

T="2T1+p(tr T,trD*)D

Malek (Charles University in Prague) Implicit fluids & Orlicz spaces July 6, 2010

13 / 54



Constitutive equations

Implicit theories/Il

Implicit constitutive theory: ability to include constraints in an easy way

f
|

isotropy of the material implies

T = Bol + 3D + 3,D° B = Bi(trD*, trD?)
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Constitutive equations

Implicit theories/Il

Implicit constitutive theory: ability to include constraints in an easy way

f
|

T = Bol + 3D + 3,D° B = Bi(trD*, trD?)

isotropy of the material implies

D = G,(T)

isotropy of the material leads to

D = ol + 1T + 1. T? yi = 3i(tr T, tr T2 tr T?)
= 1S +7(T* — =)
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Implicit formulation - maximal monotone -graph setting

\(S,D)eA — G(D,S):O‘
Assumptions (A is a ¢)-maximal monotone graph):
o (A1) (0,00 A
o (A2) Monotone graph: For any (S1,D1),(S2,D2) € A

(51 —=S2): (D1 —D2) >0

No strict monotonicity is needed!
o (A3) Maximal graph: If for some (S, D) there holds

(S-8):(D-D)>0 Vv(©S,DeAa

then
(S,D)e A

o (A4) 1-graph: There are a € (0,1] and g > 0 so that for any (S,D) € A
S:D > a(¥(D)+v"(S)) — g
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What is 107 An excursion to Orlicz spaces

Assume that v : ngx,f — Ris an N - function (if it depends only on the modulus then
Young function), i.e.,

@ 1) is convex and continuous
@ (D) = 4(-D)

=
S

. . (D)
lim ——= =0, lim ——* =
|D\I—>0+ |D| \Dll—>oo D]
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What is 107 An excursion to Orlicz spaces

Assume that v : ngx,,f — Ris an N - function (if it depends only on the modulus then
Young function), i.e.,

@ 1) is convex and continuous
@ (D) = 4(-D)
*]

¥D) _ o 9D) _

pj—o4 |D|

’ Ip|—oo |D|

We define the conjugate function vx:

¥7(8) :=max(S-D — (D))
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What is ©)? An excursion to Orlicz spaces/2

e Young inequality:

S:D<y(D)+v"(8)]

e Orlicz spaces: The Orlicz space L¥()9*? is the set of all measurable function
D:Q— ngx,,f such that

lim /z/;(,\*ID) dx =0
A—o00 Q
with the norm
Dl i=inf( [ w(x'D) dx < 1)
Q
e Holder inequality

/Q ab dx < 23]l v @y Bl 1o o

e Aj-condition
¥(2D) < Gy(D) + G
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Maximization of entropy production

In order to specify the constitutive relations, the principle of maximal entropy production
(laziness, economy) is used (KR Rajagopal, A Srinivasa):

*

Let us assume that £ := ¢(D) > 0 and for some fixed S we would like to maximize &
with the constraint (*).

@ ¢ :=21|DJ?
S = 2l/0D

o ¢=y(|D))ID]? 5 _ (DD
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Maximization of entropy production - dual view

Let us assume that £ := £(S) > 0 and for some fixed D we would like to maximize &
with the constraint £ =S - D.

o ¢:=2Is
D = 214S

o c=v(sIsP D v (5)S
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Constitutive equations

Maximization of entropy production

Let us assume that £ := ¢(D,S) > 0 and

(i) for some fixed S we would like to maximize & with the constraint £ =S -D
or

(ii) for some fixed D we would like to maximize £ with the constraint £ =S -D

. [bPP+IsP?
0 ¢:= Y

S=D

S=pI'D
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Optimality of ¢ and *

Let us assume that £ := £1(D) 4 &(S) > 0 - not necessarily conjugate and

(i) for some fixed S we would like to maximize £ with the constraint £ =S -D
or

(i) for some fixed D we would like to maximize £ with the constraint £ =S -D
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. carstititivelequationshl
Optimality of ¢ and *

Let us assume that £ := £1(D) 4 &(S) > 0 - not necessarily conjugate and

(i) for some fixed S we would like to maximize £ with the constraint £ =S -D
or

(i) for some fixed D we would like to maximize £ with the constraint £ =S -D
It is the same as maximize &; with the constraint

S D-&(S)=6(D)|
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. carstititivelequationshl
Optimality of ¢ and *

Let us assume that £ := £1(D) 4 &(S) > 0 - not necessarily conjugate and

(i) for some fixed S we would like to maximize £ with the constraint £ =S -D
or

(i) for some fixed D we would like to maximize £ with the constraint £ =S -D
It is the same as maximize &; with the constraint

S D-&(S)=6(D)|

Hence, for D - the point where maximum is reached - we interchange the role of S and
D, so at this point

max (S - D — &(S)) = &(D)
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. carstititivelequationshl
Optimality of ¢ and *

Let us assume that £ := £1(D) 4 &(S) > 0 - not necessarily conjugate and

(i) for some fixed S we would like to maximize £ with the constraint £ =S -D
or

(i) for some fixed D we would like to maximize £ with the constraint £ =S -D
It is the same as maximize &; with the constraint

S D-&(S)=6(D)|

Hence, for D - the point where maximum is reached - we interchange the role of S and
D, so at this point

max (S - D — &(S)) = &(D)

But it implies

&(D) = max(S-D - &(S)) = &(D)
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Optimality of ¥ and ¥* - more general models

@ Non-polynomial growth

S~ (1+|DP)Z In(1+ D))D = %(D) ~ [D|"In(1+|D|)

Mdlek (Charles University in Prague) Implicit fluids & Orlicz spaces July 6, 2010 22 / 54



Optimality of ¥ and ¥* - more general models

@ Non-polynomial growth

S~ (1+|D] ) In(1+\D|)D = (D) ~ |D|"In(1 + |DJ)

@ Anisotropic case - different growth

Si ~|D"?D = ¢(D) ~ Y |D|"
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Optimality of ¥ and ¥* - more general models

@ Non-polynomial growth

S~ (1+|D] )7 In(1+ |D|)D = (D) ~ |D|"In(1 + |DJ)

@ Anisotropic case - different growth

Si ~|D"?D = ¢(D) ~ Y |D|"

@ Different upper and lower growth in principle - ¥ has different polynomial upper
and lower growth, for ¢(D) := 1 (|D]): for certain 1 < r < g < oo there are
positive constants c¢i1, ¢, ¢z and ¢; so that

‘ as' —o<yYis)<as'+a
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. carstititivelequationshl
Optimality of ¥ and ¥* - more general models

@ Non-polynomial growth

S~ (1+|D] )7 In(1+ |D|)D = (D) ~ |D|"In(1 + |DJ)

@ Anisotropic case - different growth

Si ~|D"?D = ¢(D) ~ Y |D|"

@ Different upper and lower growth in principle - ¥ has different polynomial upper
and lower growth, for ¢(D) := 1 (|D]): for certain 1 < r < g < oo there are
positive constants c¢i1, ¢, ¢z and ¢; so that

‘ as' —o<yYis)<as'+a

’ /
s~ <Y () < i+
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What is the goal?

e Goal = existence result for as general constitutive relationships as possible
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What is the goal?

e Goal = existence result for as general constitutive relationships as possible
e Using large data apriori estimates (2 bounded and nice, nice b.c.)

@ Steady case
[ 0@+ )< c
Q
@ Unsteady case

;
sgp”v“%—i—/o /Qw(D)er*(S) dx dt < C

o If the function spaces that are under control are “slightly better” than just to
guarantee that all terms in weak formulation are meaningful, does there exist a weak

solution?
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The goal more precisely

@ If the function spaces generated by the apriori large data energy estimates are
compactly embedded into L2, does there exist a weak solution?
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Results - power-law like fluid - Explicit

Compact embedding is available if r > g
Lebesgue and Sobolev spaces

@ r =2 Lerray (1934)
r > 4 for unsteady, r > 7 steady; Ladyzhenskaya, JL Lions 60's
r > £ unsteady; Bellout, Bloom, Netas, Milek, Ruzi¢ka 90's
unsteady; Frehse, Mdlek, Steinhauer (2000)

steady; Frehse, Mdlek, Steinhauer (2003) Diening, Malek, Steinhauer
)

@ r > £ unsteady; Diening, Ruzitka, Wolf (2009)

*]
o
@ r
*]

\Y%

—~
N
o
o
[e°)
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Constitutive equations

Results - power-law like fluid - implicit (discontinuous)

Lebesgue and Sobolev spaces
o r> 15—1 - strictly monotone operators - Gwiazda, Malek, Swierczewska (2007)
o r> % - Herschel-Bulkley model - Malek, Rizi¢ka, Shelukhin(2005)
6

@ r > g steady - strictly monotone graph - Buli¢ek, Gwiazda, Malek,
Swierczewska (2009)

@ r > ¢ unsteady; Bulitek, Gwiazda, Malek, Swierczewska-Gwiazda (2010)
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Constitutive equations

Answers - implicit

Orlicz and Orlicz-Sobolev spaces
@ subcritical - Gwiazda, Swierczevska-Gwiazda et al (2009)

@ strict monotone operators

o the energy equality holds

o the term (v ®v) - D(v) € L! - the solution is an admissible test
function in the weak formulation

@ supercritical - Bulitek, Gwiazda, Mélek, Swierczewska-Gwiazda (2010)

o (A1)-(A4) - maximal monotone )-graph
* ¢(D) = ¢(ID]);
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Methods

@ subcritical case

o energy equality - v is an addmissible test function
@ Minty’s method

difficulties if v does not satisfy A, condition
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Methods

@ subcritical case

o energy equality - v is an addmissible test function
@ Minty’s method

difficulties if v does not satisfy A, condition
@ supercritical case

o generalized Minty’s method
@ Lipschitz approximation in Orlicz-Sobolev spaces
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Generalized Minty's method - Convergence lemma

Assume that
@ A is a maximal monotone 1)-graph satisfying (A1)-(A4)
@ {S"}:2; and {D"}2; satisfy for some Q' C Q

(S",D e A for a.a. (t,x) € Q',
D" —~D weakly in LY(Q'),
S"—~S weakly in LY (Q),

limsup [ S"-D" dx dt < S . D dx dt.

n— oo QI . Q/
Then for almost all (t,x) € Q" we have

(S,D) € A

Lemma - Local version
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Constitutive equations

Application of Convergence lemma to Stokes-like problems

To find (v, p,S) such that

veEW(Q) pel’(Q) Del¥Q) Sel¥(Q)
divv =0 —divS = —Vp+fin D'(Q),
(S(x),D(v(x))) € A for a.a. x € Q

Theorem. For any f € (Wol’r)* and 2 there is a weak solution to the Problem P.

Proof is based on the following steps:

@ Take any selection (VD take one §* := Sp so that (§*,D) € A) and its
n-regularizations leads to n-approximations P,

@ Galerkin N-approximations of P, give finitedimensional problems Py ,,
@ For fix N € N: letting n — 0 we obtain Py

@ Uniform estimates follow from (A4); Letting N — oo and applying Convergence
lemma one concludes (S,D) € A a.e. in Q
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Constitutive equations

Extension to subcritical problems

If

@ compactness in L? is available (which follows if r > % for steady problems and
r> % for unsteady problems)

@ v is an admissible test function in the weak formulation of the problem

Then the results holds for
@ diviv®v) —divS=—-Vp+finQ
@ v, +divivev)—divS=—-Vp+fin (0, T) x Qand v(0,-) = vo € L3},

Supercritical problems: v” — v is not admissible test function = need for its
appropriate truncation
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Constitutive equations

Lipschitz approximations of Sobolev function/1

Calderon, Ziemer, Acerbi and Fusco, ...

Theorem. (Diening, Malek, Steinhauer '08, Frehse, Malek, Steinhauer '03)
Let 1 < g<oocand QeC®. Let

u” € WQ)? and u” — 0 weakly in W) 9(Q)".
Set
K = sup [|u”[|1,q < oo,
Yo = lu"llg =0 (n—o0).
Let 6, > 0 be such that (e.g. 0, := \/7n)

0, — 0 and BLAENY (n — o0).

Let pj:= 27,
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Constitutive equations

Lipschitz approximations of Sobolev function/2

Then there exists a sequence A, ; > 0 with
i < Anj < g,
and a sequence u"™ € W,"*(Q)? such that for all j,n € N

[u™]los <00 =0 (n— o),
[Vu™|lo < ¢ Xnj < €

and

™ £u"} cQn ({Mu" > 0,} U {M(Vu") >2\,;}),
and for all j € Nand n — oo
u™ — 0 strongly in L*(Q)? for all s € [1,00],
u™ —~ 0 weakly in W;*(Q)? for all s € [1,0),
Vu™ 20 weakly- % in L>(Q)9*¢.
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Lipschitz approximations of Sobolev function/3

Furthermore, for all n,j € N

cluf, ve(Z)
%y o

n,j Yn
VU™ X qunizamylla < € [ AniXqunizmylla < € o Minitce,
n

[{u™ # u"}g <

and

where €; 1= K 279/9 vanishes as j — co. The constant ¢ depends on €.

e based on the continuity of the Hardy-Littlewood maximal function in L? - In Orlicz
space setting it requires Ap-condition and log-continuity w.r.t. x or (t, x)

e Goal is to avoid using continuity of Hardy-Littelwood maximal function; apply weak

(1, 1)-estimates
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Constitutive equations

Lipschitz approximations of " Orlicz-Sobolev” functions

Lemma
{u"}22, tends strongly to 0 in L' and {S"}32, such that
[ sy +uvwy s e (€ > .
Then for arbitrary \* € R, and k € N there exists \™ < oo and there exists sequence
of {A\K}22, and the sequence uf (going to zero) and open sets EX := {u} # u"} such

that A% € [\*, \™>] and for any sequence o

up € WP, ID(uf)]|e < CAs,

C*
QNEf<C ,
0ET= CO0n
k k )\k/Oék)
S".D(uy)| dx < CC* (%+7a"¢( o >
/mgnk' Wl < CCo 00+ 00w
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Application of Lipschitz approximations to steady flows

e We have suitable approximations (v",S") and their weak limits (v,S), we need to show
that (S,D(v)) € A
e Test the approximative n- problem by Lipschitz approximation of v" — v, i.e.,
no.__ n
uj = (v — v

Mdlek (Charles University in Prague) Implicit fluids & Orlicz spaces July 6, 2010 36 / 54



Application of Lipschitz approximations to steady flows

e We have suitable approximations (v",S") and their weak limits (v,S), we need to show
that (S,D(v)) € A

e Test the approximative n- problem by Lipschitz approximation of v" — v, i.e.,

up = (v —v)i

e One gets (here S is such that (S,D) € A

. n n * ﬁ ﬁ Aﬁ ﬁ
Jim, /un:un(s —S):D(uj) < CC (% n %)
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Application of Lipschitz approximations to steady flows

e We have suitable approximations (v",S") and their weak limits (v,S), we need to show

that (S,D(v)) € A

e Test the approximative n- problem by Lipschitz approximation of v" — v, i.e.,
up = (v —v)i

e One gets (here S is such that (S,D) € A

aﬁw(kﬁ/aﬁ))

k
lim /n:un(s" ~S):D(u)) < CC* (% IR

n—oo
u

e Holder inequality gives

lim /| (v" —v) / / < small terms — 0
n— oo un_u n#u

Malek (Charles University in Prague) Implicit fluids & Orlicz spaces July 6, 2010

36 / 54



Constitutive equations

Application of Generalized Minty's method/Convergence
lemma

@ point-wise convergence of (S§” —S) - D(v" — v) to 0; if the strictly monotone
property available the proof is finished
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Constitutive equations

Application of Generalized Minty's method /Convergence
lemma

@ point-wise convergence of (S” —S) - D(v" — v) to 0; if the strictly monotone
property available the proof is finished

if only monotone property is available: apply bf biting lemma; Since
(8" —S)-D(v" — v) is bounded in L' there is sequence of non-increasing sets
Ak+1 C Ax, limeo oo |Ak| = 0 such that

(S" —S)-D(v" — v) converges to 0 weakly in L'(Q\ Ax)

©

nonnegativity & point-wise & weak implies strong in L}(Q\ Ax)

(4

strong & weak implies for any bounded ¢

lim / S"-D(v")p = / S-D(v)p
e Ja\A Q\Ak

@ apply Convergence lemma
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Concluding Remarks

Extension of (homogeneous, incompressible) fluids of power-law type to fully
implicit constitutive theory characterized by maximal monotone -graphs (not
necessarilly of power-law type)

@ Thermodynamically consistent
o Ability to capture shear thinning/thickening, activation criteria,
pressure thickening

"Complete” large data existence theory both for steady and unsteady flows
From explicit to implicit, from (v, p) formulation to (v, p,S) setting
Extension 1: from (|D|) to (D)

Extension 2: unsteady flows, full thermodynamic setting

e 6 ¢ ¢
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Constitutive equations
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Newtonian and Fourier fluids

Newtonian homogeneous incompressible fluid
S =2v(e)D(v) or T = —pl+2v(e)D(v)

Fourier fluid
q= —r(e)Ve
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Newtonian incompressible heat-conducting fluids

"Equivalent” formulation of the balance of energy/1

dive =0
v +div(vev) —divS = -Vp
(e +|v|?/2).+ + div((e + [v[*/2 4 p)v) + div q = div (Sv)

is equivalent (if v is admissible test function in BM) to

dive =10
vi+divivev) —divS =-Vp
et +div(ev) + divq =S -D(v)

Helmholtz decomposition u = ug;y + VgV
Leray’'s projector P : u — ugjy
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"Equivalent” formulation of the balance of energy/2

divv =0
v +div(vev) —divS = —-Vp
(e +|v|?/2).+ + div((e + [v[*/2 + p)v) + div q = div (Sv)
is equivalent (if v is admissible test function in BM) to
divv =0
v+ Pdiv(vev) —PdivS =0
et +div(ev) +divq =S -D(v)
Advantages/Disadvantages
@ + pressure is not included into the 2nd formulation
@ + minimum principle for e if S-D(v) >0
@ — S-D(v) € L! while Sv € L9 with g > 1, 2nd form is derived form of BE
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Newtonian incompressible heat-conducting fluids

Newtonian case - S = v(e)D(v) and q = —x(e)Ve -
bounded v, k

Theorem 1. (M. Buli¢ek, E. Feireisl, J. Mlek '06 and '08) Assume that
o v >u(s) >v,>0and k* > Kk(s) > ke >0
0 90e Ct voel] i, eell,eg>C >0inQ hel'(0,T).
Then for all T >0, 0 < X <1 there is suitable weak solution {v, p, e}

o veC(0,T;[2 )nL20, T; W)

weak n,div
e trv e L2(0, T; L2(09))
o pe L3(0,T;L3) Jo p(t, x)dx = g(t)
0 ec >0, T;")NL™(Q), Ve € L"(Q) with me (1,3), ne (1,2)
2
(p+ "’2|)v eL9(0,T;L9) D(v)ve Li([o,T];L?)
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Weak vrs Suitable weak solutions

Governing equations

dive=20 vi+div(vev) = —Vp+div <V( . )D(v))

(e+ "2|2))t+ div ((e+p+ g)v) ~ div(x(...)Ve) = div (v(...)D(v)v)

Formulation of the second law of thermodynamics

e + div(ev) — div(k(e)Ve) > 1/(e)|D(v)|2

equivalent to

(3Iv]?).e + vID()? < div(v(e)D(v)v — (p + 3|v[*)v)
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Energy estimates and their consequences

dive=0 v+div(vev) = —-Vp+div (V( . )D(v))

[v[”

(e+ %) v ((e+p+ "T)V) — div(x(...)Ve) = div ((...)D(v) V)

e+ div(ev) — div(k(...)Ve)(>) = v(...)|D(v)|?

o fo (et MY (tx)dx < [y (a0 + %Yok = [ee L™(L) vel™(1?)]

o [Tu(..)D(v)Pdx < C — W e }(1?)]

v(..)DW)E >0, = |e>C*ae ,ec L™L™), V()72 e [2(1?)
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Estimates for the pressure

Equation for the pressure: ‘ p=(-A)"tdivdiv(ve v — v(...)D(v)) ‘

@ ve l®(L?) and Vv € [2(L12) = |v e [23(119/3) and p e L5/3(15/3)

No-slip BCs for NSEs: LP maximal regularity for the evolutionary Stokes system
(Solonnikov '77, Giga, Giga, Sohr '85)

felP(LY) = v, V@v, Vpe LP(L9)
No-slip BC for generalized NSEs with v(e) does not hold.

Navier's slip: v - n = 0 solutions of homogeneous Neumann problem for Laplace
equations are admissible

(p,dive) = —(p, —Ah) — Ah=1p|*p

Integrable pressure exists for domains with Lipschitz boundary, etc.
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Further consequences of energy estimates

dive=0 v+div(vev) = -Vp+div (V( . )D(v))
v[?

(e+ g) v ((e+p+ "7)\,) — div(x(...)Ve) = div (v(...)D(v)v)
e+ div(ev) — div(k(...)Ve)(>) = v(...)|D(v)[?

o v, € <L5/2(W1=5/2))* — L‘5/3(W1=—5/3)

® e, e Y(WL9) with ¢ > 10

@ Aubin-Lions lemma and its generalization: v and e precompact in L™(L™)
formel[l,3

@ Trace theorem and Aubin-Lions lemma: pre-compactness of v on 02
Two steps in the proof of existence
@ Stability of the system w.r.t. weakly converging sequences

@ Constructions of approximations (several levels), derivation of uniform
estimates, weak limits - candidates for the solutions, taking limits in
nonlinearities
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Newtonian and Fourier fluids - unbounded v and &

«a, B>0:
v(e)~(L+e")  w(e)~(1+¢)
@ NSF: v decreases with increasing e v(e) = roexp(53;)
@ TKE: v increases with increasing k v(k,0) = vy + vilvk
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Conjecture - Buli¢ek, Lewandowski, Malek

v(e) :=wpe* and k(e) = upe®. (1)

Conjecture. Let o € R, v and p are of the form (1). Then there exists a
0 > 0 and C* > 0 such that for any suitable weak solution (v, p, €) to NSF
with unbounded material coefficients the following implication holds:

If
0
/ / v(e)|D(v)|? dx dt < §
-1JB1(0)

(0).

then .
v(t,x)| < C* in (—5,0) x B

N=

For a = 0: NSEs - Conjecture holds (CKN '82, Vasseur '07). Statement:

If Conjecture holds for o > % then the corresponding suitable weak
solution has bounded velocity
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Newtonian incompressible heat-conducting fluids

Scaling property of NSF

(v, p, €) solve NSF on some neighborhood of (0,0): (—¢§,0) x By, (0) with some
A>0and £y > 0. Then

ve(t,x) == Bv(07t,x)  pe(t,x)

with

= 02Bp(11t, x) et x) = ?Be(t"t, Ix)

2-2a 1 1
20" P51 2 “7 3
solves NSF in (—1,0) x B1(0). Conjecture applied on (vg, e;) leads to

0
52// v(ke)|D(ve)|? dx dt
—1.JB:(0)
1
- / / (2Bat2B42(4 (At 1)) |D(u((At, 1) dx dt
—1JB1(0)

) 0
:ﬁ‘iz’a/ / k*|D(v)[? dx dt.
—ea JBy(0)
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Newtonian incompressible heat-conducting fluids

Existence result - unbounded v and &

Theorem 2. (M. Bulitek, R. Lewandowski, J. Mélek, 2010) Assume that
v, k fulfil the growth condition

2
8>0 0§a<?ﬁ+

WIN

Then for any set of data there exists (suitable) weak solution (v, p, €) to the
system in consideration, completed by Navier's slip boundary conditions, such that
veECO T L2.)NLA0, T; W,2) trve L¥50, T; L¥5(0Q))
peLi0,T;L9) g<min{5/3,2—2a/(a+ B+5/3)}
1
ec L0, T;LY, e>0 and (1+e)—-1€l%0,T;W?) s< 6%
vee LT, TiW, ) ere MO, T; W HI9)  E, e M0, T, Wh10/9)

. . 2 — =
Jim (IV(8) = Vo3 + (1) — eollx) = 0
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Newtonian incompressible heat-conducting fluids

Maximal L2-regularity for Stokes-Fourier system
Navier-Stokes sytem
dive=0  v;+div(vev)—div(2yyD(v))+ Vp=F
Maximal L9-regularity for the evolutionary (linear) Stokes system
divv =0 v —div(2rgD(v)) + Vp = F
Fel(0,T;L'(Q)9) = v, Vp, Ve lL(0,T;L(Q)

Q: Maximal L9-regularity for the evolutionary (non-linear) Stokes-Fourier

divv =0
v~ div(A(e)D()) + Vp = F
€t — div(n(e)Ve) = J/(e)|D(V)|2

Simplifications: periodic problem, x(e) =1, vg < v(e) < vy, r =2
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L2-maximal regularity like result for Stokes-Fourier Eqs

Theorem 3. (M. Bulitek, P. Kaplicky, J. Malek Applicable Analysis 2010)
Let d > 2. Let

Fel?0,T;[2(Q)9) eoe WH(Q) e > emin
vo € W2(Q)¢ = {u e W2(Q)?; divu =0, / u=0}
Q
Assume that v € CO}(R.) fulfills (¢ > 0)

2 V'(s) 1
15(s — emin +¢€) — v(s) ~ 40(s — emin +€)

for all s € (emin, )

Then there exists a triple (v, e, p) that solves (SF) such that

v e L0, T; Wi(Q)) N L2(0, T; W22(Q)7) n Wi2(0, T; L2(Q))

d+2

e € L9 (0, T; W28 (Q)) n W (0, T; L4 (Q))
Ve e L=(0, T, Wh3(Q)) p e L%(0, T; W(Q))
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Newtonian incompressible heat-conducting fluids

Example
2 V'(s) 1
_ < < fi 11 min>
15(s — emin +€) — v(s) ~— 40(s — emin +€) or all s € (emin, o)
If [v(e) =w exp(bj_ e) that the above conditions holds if ey, > 2a— b
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