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Propagation of Uncertainty in Dynamical Systems

(i) Cryptodeterministic (deterministic propagation of random IC)

(ii) Stochastic differential equations (Ito diffusion processes,

Fokker-Planck)

(iii) Random differential equations (nonlinear, nonadditive

dependence on uncertainty)

(iiia) Distributions on parameters in deterministic dynamics

(GRD)

(iv) Individual/population modeling in hierarchial statistical

framework

(v) Probability distribution dependent dynamics
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Motivating Examples: Mosquitofish and

Shrimp Modeling

From joint efforts on modeling of variability in growth in

shrimp populations with

V. A. Bokil, J.L. Davis, Stacey Ernstberger, Shuhua Hu (CRSC)

E. Artimovich, A. K. Dhar, R. A. Bullis, (AdvBioNutrition)

C. L. Browdy (Waddell Marine Culture Center)

Builds on interests and efforts since late 1980’s on uncertainty in

population modeling–mosquitofish–by HTB, F. Kappel, L. Botsford,

C. Wang, B. Fitzpatrick, H. Tran, Y. Zhang, L. Potter, K. Bihari, et

al.,–(Brown, USC, NCSU)
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Shrimp Modeling: Motivation and Methods

Motivation

• Develop a stable operational platform for rapid production of

large quantities of therapeutic and/or preventative

countermeasures responding to bio toxic attacks on population.

• Foundation in economical platform for production of complex

protein therapeutics to replace mammalian cell culture

production methods used in pharmaceutical industry.

Method

• Use shrimp as scaffold organism to produce biological

countermeasures.

• Recruit biochemical machinery in existing biomass for

production of vaccine or antibody – infection using a virus

carrying a passenger gene for desired countermeasure.
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Penaeus Vannamei Shrimp
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Biosecure Shrimp Production System at Waddell Marine

Culture Center
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Hybrid Model of Shrimp Biomass/Vaccine Production

System

Model Components

• Simulating biomass production model over some time interval.

• Feeding the output of biomass production model to the input of

vaccine production model.
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Biomass Production Model

Production System

• Size dependent characteristics.

Size-Structured Population Model (Sinko-Streifer)

ut + (g(x, t)u)x +m(x, t)u = 0 (x, t) ∈ (0, xmax]× (0, T ],

u(0, t) = 0, t ∈ (0, T ],

u(x, 0) = u0(x), x ∈ [0, xmax].

where u(x, t) = density of individuals of size x in gms at time t

(number per unit mass), g(x, t) = dx
dt = growth rate of individuals of

size x at time t (mass per unit time), m(x, t) = mortality rate of

individuals of size x at time t (per unit time).
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Some Conclusions and Needed Research Directions

• Need to develop a mathematical sensitivity analysis methodology

for distributions, e.g., in a Prohorov metric framework or similar

topology for distributions, to aid in optimal harvest of vaccines,

pharmaceuticals, etc.

• Developing an inverse problem methodology to estimate some

critical parameters once we obtain the data from the experiments

(need for design of experiments).

• Need for stochasticity/uncertainty in the model.
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• Not just population growth models in biosciences–wide

applicability to “class structured” modeling (CRD=class rate

distribution models), including complex nodal network models

(network security, logistics, intensity levels in nodal

proliferation), general hyperbolic transport systems including

CFSE label intensity in cell proliferation, etc., with inherent

uncertainties or general physical systems leading to

Fokker-Planck, Forward Kolmogorov systems-

• Describe ideas here in terms of population growth rate

(GRD=growth rate distribution) models from shrimp problem
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Figure 1: Histograms for longitudinal data for Raceway 2. Need for

stochasticity/uncertainty in the model.
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Modeling Growth Uncertainty and Variability:

Probabilistic and Stochastic Formulations
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Figure 2: (left): Exponential fit of Raceway 1 data with g(x̄) =

0.054(x̄ + 0.133); (right): Exponential fit of Raceway 2 data with

g(x̄) = 0.056(x̄+ 0.126).
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The plots reveal that exponential functions appear to fit the data in

each of the raceways. Hence, the corresponding differential equation

dx̄

dt
= g(x̄) = b0(x̄+ c0) (1)

is a reasonable description of the early growth of shrimp. Here b0 is a

positive constant which denotes the intrinsic growth rate, and c0 is a

positive constant which we shall refer to as the affine growth term.

Let X(t) = a random variable which we use to denote the size of an

individual in the population at time t. That is, each realization

corresponds to the size at time t of an individual. Then we can write

an analogue of (1) for mean growth dynamics as

dE(X(t))

dt
= b0(E(X(t)) + c0). (2)

16



Note that
dx

dt
= g(x) = b(x+ c), x(0) = x0 (3)

has solution

x(t) = x0 exp(bt) + c{exp(bt)− 1}. (4)

If x0 = X0 is random, then obtain cryptodeterministic model for

stochastic size process

X(t) = X0 exp(bt) + c{exp(bt)− 1}, (5)

with E(X(t)) satisfying expected mean growth dynamics

dE(X(t))

dt
= b(E(X0) + c) exp(bt) = b(E(X(t)) + c). (6)
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In this formulation the size random variable X(t) has variance

Var(X(t)) = exp(2bt)Var(X0). (7)

IMPLICATIONS:

Little to no dispersion in size if Var(X0) ≈ 0 (i.e., all

shrimp initially approximately the same size)

But data suggests significant dispersion in size from

approximately no variance in initial sizes!!!
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Figure 3: Histograms for longitudinal data for Raceway 2.
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Figure 4: Histograms for mosquitofish data.
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Probabilistic vs. Stochastic Formulations
1 Probabilistic Approach

• assume each individual grows according to a deterministic

growth model, but different individuals (even of the same size)

may have different size dependent growth rates.

• partition the entire population into (possibly a continuum of)

subpopulations where individuals in each subpopulation have the

same growth rate.

• assign a probability distribution to this partition of possible

growth rates in the population. The growth process for

individuals in a subpopulation with the rate g is described by the

model
dx(t; g)

dt
= g(x(t; g), t), g ∈ G, (8)

where G is the collection of admissible growth rates.

21



Thus growth uncertainty introduced into population by the

variability of growth rates among subpopulations of individuals–

corresponding phenomenon may be attributed to the effect of

genetic differences or some chronic disease on the growth of

individuals. With this assumption of a family of admissible growth

rates and an associated probability distribution, one thus obtains a

generalization of the Sinko-Streifer model, called the Sinko-Streifer

Growth Rate Distribution (SSGRD) model, which has been

formulated and studied in Banks-Botsford-Kappel-Wang, 1987;

Banks-Fitzpatrick, 1991.

The model consists of solving

vt(x, t; g) + (g(x, t)v(x, t; g))x = 0,

v(0, t; g) = 0, v(x, 0; g) = v0(x; g),

(9)

22



for a given g ∈ G and then “summing” (with respect to the

probability) the corresponding solutions over all g ∈ G. Thus if

v(x, t; g) is the population density of individuals with size x at time t

having growth rate g, the expectation of the total population density

for size x at time t is given by

u(x, t) =

∫
g∈G

v(x, t; g)dP(g), (10)

where P is the probability measure on G. This probabilistic

structure P on G is then the fundamental “parameter” to be

determined from aggregate data for the population. Thus this

probabilistic formulation involves a

stationary probabilistic structure

on a

family of deterministic dynamical systems.
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2 Stochastic Formulation

An alternative formulation–based on assumption that movement from

one size class to another can be described by a stochastic diffusion

process. Let X(t) be a Markov diffusion process which represents size

at time t. Then X(t) is described by the Ito stochastic differential

equation (we refer to this equation as the stochastic growth model)

dX(t) = g(X(t), t)dt+ σ(X(t), t)dW (t), (11)

where W (t) = standard Wiener process. Here g(x, t) = average or

mean growth rate of individuals with size x at time t, and is given by

lim
∆t→0+

1

∆t
E(∆X(t)|X(t) = x) = g(x, t), (12)

where ∆X(t) = X(t+ ∆t)−X(t).
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The function σ(x, t) represents variability in growth rate of

individuals – given by

lim
∆t→0+

1

∆t
E([∆X(t)]2|X(t) = x) = σ2(x, t). (13)

• Growth process for each individual is stochastic–each individual

grows according to stochastic growth model (11).

• Individuals with same size at same time have same variability in

the growth. Thus, growth uncertainty/variability is introduced

into population by growth stochasticity of each individual.

• Phenomenon might be explained in some situations by influence

of fluctuations of environment on growth rate of individuals, e.g.,

growth rate of shrimp affected by temperature, salinity, dissolved

oxygen level, un-ionized ammonia level, etc.
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This assumption on growth process leads to Fokker-Planck (FP) or

forward Kolmogorov model for population density u, (carefully

derived by Okubo among numerous others and subsequently studied

in many references (e.g., L. Allen, Banks-Tran-Woodard, T. Gard)).

The equation with appropriate boundary conditions is given by

ut(x, t) + (g(x, t)u(x, t))x = 1
2 (σ2(x, t)u(x, t))xx, u(x, 0) = u0(x),

g(0, t)u(0, t)− 1
2 (σ2(x, t)u(x, t))x|x=0 = 0,

g(L, t)u(L, t)− 1
2 (σ2(x, t)u(x, t))x|x=L = 0.

(14)

More generally:

g(0, t)u(0, t)− 1

2
(σ2(x, t)u(x, t))x|x=0 =

∫ L

0

β(ξ, t)u(ξ, t)dξ (15)
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Note σ = 0 in FP yields SS (no variance in growth rate) so SS is

deterministic version for size densities.

Comparison of deterministic (SS) vs. stochastic growth (FP)
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Figure 5: Population density as a function of size x at time t = 5 for

σ = 0 vs. σ = .04. Parameters: g(x) = .2(1 − x),m = .3, β(x) =

.2 exp(−(x− .5)2)
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Modeling Summary

From above discussions, we readily see

• In probabilistic structure formulation resulting in the SSGRD

model, the growth of each individual is a deterministic

process.

• In stochastic formulation, growth of each individual is a

stochastic process resulting in the FP model.

• Hence, these two formulations are conceptually quite

different.

• Choice of formulation to describe the dynamics of a particular

population should, if possible, be based on the mechanisms

and/or scenarios that are the primary sources of the

uncertainty/variability in growth.
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SUBSEQUENT EFFORTS INCLUDE:

• Development of experiments at ABN, Waddell Center, and

Oceanic Institute to determine variability in growth, mortality, to

“validate” Sinko-Streifer Growth Rate Distribution or to

investigate need for Fokker-Planck vs. Sinko-Streifer GRD.

Experiments were designed using math models and simulations

for inverse problems (how much data?? how often??).

Experiments designed and carried out in Winter, 2007-2008.

• Compare Fokker-Planck with SS Growth Rate Distribution

models to determine best way to include

uncertainty/stochasticity. Question: How to put comparable

amounts of uncertainty in each of probabilistic and stochastic

formulations to make reasonable comparisons ?????
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IF SSGRD generates a stochastic process for size(???), could then

match up means and variances of each process!!

IDEA: Put distribution on b, c, and x0 simultaneously in

g(x) = b(x + c) in the deterministic system

dx(t)

dt
= b(x + c), x(0) = x0. (16)

More generally, using the solution

x(t; b, c, x0) = (x0 + c) exp(bt) − c, (17)

of (16) and assuming that B,C and X0 are random variables for

b, c and x0, respectively, we can always define a stochastic process

X(t;B,C,X0) = (X0 + C) exp(Bt) − C, (18)
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and argue that it satisfies the random differential equation

dX(t)

dt
= B(X(t) + C), X(0) = X0. (19)

But in general one cannot say anything about E(X(t)) and

Var(X(t)) without special assumptions on B,C and X0 that would

enable one to ascertain statistical properties of X(t) and statistical

relationships between X(t), B,X0 and C.

However, if C is constant and B assumed normal and independent of

X0, then can find distribution for stochastic process defined by (18).
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Need result (one in a class of transformation theorems for RVs):

Lemma 1. If lnZ ∼ N (µ, σ2), then Z is log-normally distributed,

where its probability density function fZ(z) is defined by

fZ(z) =
1

z
√

2πσ
exp

(
− (ln z − µ)2

2σ2

)
,

and its mean and variance are given by

E(Z) = exp(µ+ 1
2σ

2), Var(Z) = [exp(σ2)− 1] exp(2µ+ σ2).

=⇒ Y (t) ≡ exp(Bt) is log normal if B ∼ N
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THEORY:

Can prove (theorems!!) that the size distribution (probability density

function for X(t)) obtained from the stochastic formulation is exactly

the same as that obtained from probabilistic formulation (as long as

their initial size distributions X(0) are the same (either deterministic

or random)) in several cases of interest:

EXAMPLE 1 (MGD):

Stochastic formulation: dX(t) = b0(X(t) + c0)dt

+
√

2tσ0(X(t) + c0)dW (t)

Probabilistic formulation: dx(t;b)
dt = (b− σ2

0t)(x(t; b) + c0), b ∈ R

with B ∼ N (b0, σ
2
0),

33



EXAMPLE 2 (NO MGD):

Stochastic formulation: dX(t) = (b0 + σ2
0t)(X(t) + c0)dt

+
√

2tσ0(X(t) + c0)dW (t)

Probabilistic formulation: dx(t;b)
dt = b(x(t; b) + c0), b ∈ R

with B ∼ N (b0, σ
2
0),

REMARK: Example 1 satisfies mean growth dynamics (MGD)

dE(X(t))

dt
= b0(E(X(t)) + c0)

while Example 2 does not. Both models reduce to deterministic affine

growth rate model ẋ = b0(x+ c0) when σ0 = 0.
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COMPUTATION:

• Practical problem: in probabilistic formulation, normal

distribution N (b0, σ
2
0) for B not completely reasonable–the

intrinsic growth rate b can be negative–results in the size having

non-negligible probability of being negative in a finite time

period when σ0 sufficiently large compared to b0.

• Typical (and reasonable) fix-up: impose a truncated normal

distribution N[b, b̄](b0, σ
2
0) instead of normal distribution, i.e.,

restrict B to some reasonable range [b, b̄].

• Stochastic formulation can also lead to the size having

non-negligible probability being negative when σ0 is sufficiently

large compared to b0: W (t) ∼ N (0, t) for any fixed t. Possible

remedy: set X(t) = 0 if computed X(t) ≤ 0.
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IN SUMMARY: If σ0 is large compared to b0, may obtain different

size distributions for these two formulations after making these

different modifications.

HERE: Give numerical examples to illustrate difficulties and

possible resolutions–demonstrate how solutions to FP model and

SSGRD model change as we vary the values of σ0 and b.
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Numerical Results

• Time interval t ∈ [0, 10]

• Initial conditions FP:

u0(x) = 100 exp(−100(x− 0.4)2)

• Initial Conditions GRD:

v0(x; b) = 100 exp(−100(x− 0.4)2) for b ∈ [b, b̄]

c0 = 0.1, b0 = 0.045, σ0 = rb0, r > 0.

• Use ∆x = 10−3 and ∆t = 10−3 in finite difference scheme to

numerically solve FP model.

• In both examples, vary values of r and b to see effect on solutions

to FP and GRD
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Example 1: Parameters:

FP model: g(x) = b0(x+ c0), σ(x, t) =
√

2tσ0(x+ c0)

GRD model: g(x, t; b) = (b− σ2
0t)(x+ c0),

where b ∈ [b, b̄] with B ∼ N[b, b̄](b0, σ
2
0).

• Take b = b0 − 3σ0 and b̄ = b0 + 3σ0 (so 99.7%)

• Take r0 = −3+
√

4b0T+9
2b0T

(≈ 0.3182)

• r < r0 =⇒ g(x, t; b) > 0 in {(x, t)|(x, t) ∈ [0, L]× [0, T ]} for all

b ∈ [b, b̄], L=3.
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FP model
GRD model

Numerical solutions u(x, T ) for Example 1, r = 0.1, 0.3.

• Good approximations: N[b, b̄](b0, σ
2
0) good approximation of

N (b0, σ
2
0)

• resulting size distribution a good approximation of theoretical

size distributions obtained by GRD model and FP model
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Example 2: Parameters:

FP model: g(x, t) = (b0 + σ2
0t)(x+ c0), σ(x, t) =

√
2tσ0(x+ c0)

GRD model: g(x; b) = b(x+ c0), b ∈ [b, b̄], B ∼ N[b, b̄](b0, σ
2
0).

Numerical solutions of F-P and of GRD model at t = T with r = 0.1,

0.3, 0.7, 0.9, 1.3 and 1.5.
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Numerical solutions u(x, T ) for Example 2: b = max{b0 − 3σ0, 10−6}
and b̄ = b0 + 3σ0.
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• r ≤ r0 = b0−10−6

3b0
(≈ 0.3333) =⇒ N[b, b̄](b0, σ

2
0) a good

approximation of N (b0, σ
2
0) Figure above: quite similar solutions

for two models for r = 0.1 and 0.3

• But for r > r0, the two solutions begin to diverge further as r

increases: reason N[b, b̄](b0, σ
2
0) is not a good approximation of

N (b0, σ
2
0) as b = 10−6

• FP size distribution obtained in these cases NOT a good

approximation of size distribution obtained by GRD model

anymore.

• For FP model with r > r0, there exist non-negligible fraction of

individuals whose size is decreased, while for GRD model size of

each individual always increases as b is always positive.
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Numerical solutions u(x, T ) with r = 0.7, 0.9, 1.3 and 1.5: Example 2

with b = b0 − 3σ0 and b̄ = b0 + 3σ0. Snapshot is the region [0, 0.5].
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• r > 1/3 implies existence of subpopulations in GRD model with

negative growth rates–individuals in these subpopulations

continue to lose weight– removed from system once size is less

than zero–if situation occurs, total number of population not

conserved–worse as r increases.

• For FP model, total number of population always conserved–

zero-flux boundary conditions. Once size of individuals decreased

to minimum size, either stay there or increase size.

• Two models yield similar solution with r = 0.7 and 0.9– r not

sufficiently large, size has negligible probability of being

negative–most in GRD model stay in system.

• Solutions to FP and GRD models diverge (at the left part) for

cases r = 1.3 and 1.5– size has non-negligible probability being

negative–individuals with negative size in GRD model removed
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SUMMARY AND FURTHER EFFORTS

• Fokker-Planck ubiquitous in math, physics, biology, etc

• FP notoriously difficult computationally for most cases of interest

• Study further transformations for equivalence of SSGRD and FP

formulations in HTB and S. Hu, Nonlinear stochastic Markov

processes and modeling uncertainty in populations,

CRSC-TR11-02, N.C. State University, Raleigh, NC, January,

2011; Math. Biosci. Engr., submitted.

• SSGRD important as alternative to computationally expensive

FP, especially in inverse problems (parameter estimation for g

and σ)
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FURTHER CONNECTIONS: SDE, RDE, and the

PROBABILISTIC FORMULATION

K. Huang, Statistical Mechanics, J. Wiley & Sons, New York, 1963.

Consider ensemble of particles (gas dynamics)–Positions x(t) give rise

to stochastic process X(t) due to random velocity g in

dx

dt
(t) = g(t, x),

which are thus realizations of dX
dt (t) = G(t,X(t)). Conservation laws

result in Liouville’s equation for probability density ρ = ρ(t, x) of X:

∂ρ

∂t
+∇ · (gρ) = 0 (20)
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or in scalar case
∂ρ

∂t
+

∂

∂x
(gρ) = 0 (21)

which is precisely the Sinko-Strieffer equation discussed above

∂v

∂t
+

∂

∂x
(gv) = 0 (22)

with zero mortality (conservation), where g is the individual growth

rate dx
dt = g(t, x).

The theory of RDE can then be used to make the connection

between these formulations.
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T.T. Soong, Random Differential Equations in Science and

Engineering, Academic Press, New York, 1973.

Consider the Random Differential Equation

dX

dt
(t) = G(t,X(t)), X(0) = X0, (23)

where X0, G are independent random variables with G having

probability distribution P on set G of possible choices for g. Then

basic result is: the probability density u for X is given by

u(t, x) =

∫
G
v(t, x; g)dP (g) (24)

where v is the solution of (22). This along with the relationships

between the Prohorov based Probabilistic Formulation and SDEs

yields a connection between certain RDE and FDE and the

Probabilistic Formulation.
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