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Summary:

• Consider an alternative approach to the use of nonlinear

stochastic Markov processes in modeling uncertainty in

populations.

• alternate formulations ≡ probabilistic structures on family of

deterministic dynamical systems, yield pointwise equivalent

population densities–lead to fast efficient calculations in inverse

problems.

• Here present class of stochastic formulations for which an

alternate representation is readily found.
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Summary of Previous Findings

We compared the probabilistic rate distribution (PRD) model

approach to incorporating the class rate uncertainty into a structured

population model with the stochastic rate model (SRM) formulation.

The earlier discussions indicate that these two stochastic and

probabilistic formulations are conceptually quite different. One entails

imposing a probabilistic structure on the set of possible transition

rates permissible in the entire population while the other involves

formulating transition as a stochastic diffusion process. However, the

analysis in [Shrimp2] reveals that in some cases the structure

distribution (the probability density function of X(t)) obtained from

the stochastic rate model is exactly the same as that obtained from
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the PRD model. For example, if we consider the two models

stochastic formulation:

dX(t) = b0(X(t) + c0)dt+
√

2tσ0(X(t) + c0)dW (t)

probabilistic formulation:
dx(t;b)
dt = (b− σ2

0t)(x(t; b) + c0),

b ∈ R with B ∼ N (b0, σ
2
0),

(1)

and assume their initial structure distributions are the same, then we

obtain at each time t the same structure distribution from these two

distinct formulations. Here b0, σ0 and c0 are positive constants (for

application purposes), and B is a normal random variable with b a

realization of B. Moreover, by using the same analysis as in
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[Shrimp2] we can show that if we compare

stochastic formulation:

dX(t) = (b0 + σ2
0t)(X(t) + c0)dt+

√
2tσ0(X(t) + c0)dW (t)

probabilistic formulation:
dx(t;b)
dt = b(x(t; b) + c0), b ∈ R with B ∼ N (b0, σ

2
0),

(2)

with the same initial structure distributions, then we can also obtain

at each time t the same structure distribution for these two

formulations. In addition, we see that both the stochastic rate

models and the probabilistic rate models in (1) and (2) reduce to the

same deterministic growth model ẋ = b0(x+ c0) when there is no

uncertainty or variability in rate (i.e., σ0 = 0) even though both
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models in (2) do not satisfy the mean rate dynamics

dE(X(t))

dt
= b0(E(X(t)) + c0) (3)

while both models in (1) do. This last observation was critical in the

early efforts of [Shrimp2, Shrimp3] which were derived under the

additional constraint that (3) must hold. This was motivated by

available shrimp data of longitudinal measurements of average

shrimp weight (in gms), i.e., an observation of x̄(t) = E(X(t)). In

this earlier work it was found that an affine growth law
dx̄(t)
dt = g(x̄(t)) = b0(x̄(t) + c0) yielded a good fit to this data for early

shrimp growth. This led to a search for equivalent mathematical

representations which also satisfied this extra condition.

More specifically, one can prove that the formulations in (1) generate

stochastic processes X(t) which both satisfy the mean rate dynamics
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(3) and yield processes

X(t) = −c0 + (X0 + c0)Y (t)

where

YPRD(t) = exp(Bt− 1
2σ

2
0t

2), where B ∼ N (b0, σ
2
0). (4)

YSRM (t) = exp

(
(b0t− 1

2σ
2
0t

2) + σ0

∫ t

0

√
2τdW (τ)

)
. (5)

Moreover it can be shown that for each time t, both YPRD(t) and

YSRM (t) are log normally distributed with identical means and

variances. Thus under the additional reasonable assumption (trivially

true for non-random initial data) that the random variables X0 and

each of YPRD(t) and YSRM (t) are independent we find that each of

the stochastic processes derived from (1) possess at each time t the

same distribution. That is, at each time t each of the processes X(t)

have the same probability density.
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Finally, the two stochastic processes are NOT the same. This can be

seen immediately from (4) and (5), but also from a direct calculation

of the covariances for YPRD and YSRM .

In establishing the above results and to discuss the corresponding

covariances, the following relationship between normal distribution

and log-normal distribution [CasBerg, page 109] is heavily used.

Lemma 1. If lnZ ∼ N (µ, σ2), then Z is log-normally distributed,

where its probability density function fZ(z) is defined by

fZ(z) =
1

z
√

2πσ
exp

(
− (ln z − µ)2

2σ2

)
,

and its mean and variance are given as follows

E(Z) = exp(µ+ 1
2σ

2), Var(Z) = [exp(σ2)− 1] exp(2µ+ σ2).

In our subsequent arguments we shall also need the following basic
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result on the process generated by Ito integrals of Wiener processes

that can be found in [Klebner, Sec 4.3, Thm 4.11].

Lemma 2. For a non-random function f ∈ L2(0, T ), the Ito

integrals Q(t) =
∫ t

0
f(s)dW (s) for 0 < t ≤ T yield a Gaussian

stochastic process with pointwise distributions N
(

0,
∫ t

0
f2(s)ds

)
.

Moreover, Cov(Q(t), Q(t+ ξ)) =
∫ t

0
f2(s)ds for all ξ ≥ 0.

We can use these lemmas to find the covariance function of the

stochastic processes YPRD(t) in the probabilistic formulation and

YSRM (t) in the stochastic formulation.

Probabilistic formulation: In this case we have

YPRD(t) = exp(Bt− 1
2σ

2
0t

2), where B ∼ N (b0, σ
2
0).
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By Lemma 1, we find immediately

E(YPRD(t)) = exp(b0t). (6)

Then using Lemma 1 and (6) we find the covariance function for the

process {Y (t)} = {YPRD(t)} given by

Cov(Y (t), Y (s)) = E(Y (t)Y (s))− E(Y (t))E(Y (s))

= E
{

exp
(
B(t+ s)− 1

2σ
2
0(t2 + s2)

)}
− exp(b0(t+ s))

= exp
(
b0(t+ s)− 1

2σ
2
0(t2 + s2) + 1

2σ
2
0(t+ s)2

)
− exp(b0(t+ s))

= exp
(
b0(t+ s) + stσ2

0

)
− exp(b0(t+ s))

= exp(b0(t+ s))
[
exp

(
stσ2

0

)
− 1
]
.
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Stochastic formulation: We found

YSRM (t) = exp

(
(b0t− 1

2σ
2
0t

2) + σ0

∫ t

0

√
2τdW (τ)

)
.

Let Q(t) = σ0

∫ t
0

√
2τdW (τ). Then by Lemma 2, we have that

{Q(t)} is a Gaussian process with zero mean and covariance function

given by

Cov(Q(t), Q(s)) = σ2
0 min{t2, s2}. (7)

Using Lemma 1 and (7) we find that

E(YSRM (t)) = exp(b0t). (8)

Note that for any fixed s and t, both Q(t) and Q(s) are Gaussian

distributions with zero mean. Hence, Q(t) +Q(s) is also a Gaussian
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distribution with zero mean and variance defined by

Var(Q(t) +Q(s)) = Var(Q(t)) + Var(Q(s)) + 2Cov(Q(t), Q(s))

= σ2
0

(
t2 + s2 + 2 min{t2, s2}

)
.

(9)

Now we use Lemma 1, along with equations (8) and (9) to find the
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covariance function of {Y (t)} = {YSRM (t)}.

Cov(Y (t), Y (s))

= E(Y (t)Y (s))− E(Y (t))E(Y (s))

= E
{

exp(b0(t+ s)− 1
2σ

2
0(t2 + s2) +Q(t) +Q(s))

}
− exp(b0(t+ s))

= exp
(
b0(t+ s)− 1

2σ
2
0(t2 + s2) + 1

2σ
2
0

(
t2 + s2 + 2 min{t2, s2}

))
− exp(b0(t+ s))

= exp
(
b0(t+ s) + σ2

0 min{t2, s2}
)
− exp(b0(t+ s))

= exp(b0(t+ s))
[
exp

(
σ2

0 min{t2, s2}
)
− 1
]
.

In summary, while the two formulations of (1) generally lead to

different processes, one can argue that they are equivalent in the
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sense that they possess the same probability density at any time t. We

refer to this as pointwise equivalence in density. This density must

satisfy the corresponding Fokker-Planck or Forward Kolmogorov

equation for the stochastic formulation in (1). Thus if one wishes to

obtain a numerical solution of such a Fokker-Planck equation, one

possibility is to consider the numerical solution of the equivalent but

more readily solved CRDSS formulation of (1). For the particular

systems of (1) and (2), this approach was demonstrated to be a

computationally advantageous strategy in [BaDavHu].

Natural research question: Are there general classes of

Fokker-Planck systems that can be converted to an equivalent (in the

distributional sense described above) CRDSS system and hence

efficiently solved numerically for the desired probability density

function? A positive answer to this question is given in Banks-Hu,

Jan 2011.
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Equivalence between Probabilistic and

Stochastic Formulations

In this section, we turn to several cases for which one can establish

the desired equivalence between the probabilistic and stochastic

formulations given above. The probabilistic formulations we consider

here involve a finite-dimensional parameter family of structure rates

of change; that is, all the subsystems have the same functional form

g(x, t; b0, b1, . . . , bn−1) = g(x, t; b̄) for the structure rates of change but

the values of parameters b̄ = (b0, b1, . . . , bn−1) vary across the system.

Case I

In the first case we derive conditions under which the probabilistic

and stochastic formulations generate stochastic processes with the
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same distributions (normal in the case the initial condition is a fixed

constant) at each time t. The probabilistic formulation considered

has the following form

dx(t; b̄)

dt
= α(t)x(t; b̄) + γ(t) + b̄ · %̄(t), (10)

where b̄ = (b0, b1, . . . , bn−1) ∈ Rn, α, γ and %̄ = (%0, %1, . . . , %n−1) are

non-random functions of t, Bj ∼ N (µj , σ
2
j ), j = 0, 1, 2, . . . , n− 1, and

are mutually independent, with the b̄ chosen as realizations of

B̄ = (B0, B1, . . . , Bn−1). Hence, the dynamics of an individual with

initial condition x0 in a subsystem with its rates of change having

parameter values b̄ is described by the deterministic model (10) with

initial condition x(0) = x0.

We assume that all the subsystems have the same probability density

function for initial condition X0, and let
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X(t) = x(t;X0, B0, B1, . . . , Bn−1) = x(t;X0, B̄) and

Y (t) =

∫ t

0

γ(s) exp

(∫ t

s

α(τ)dτ

)
ds+B̄ ·

∫ t

0

%̄(s) exp

(∫ t

s

α(τ)dτ

)
ds.

Then we have that

X(t) = X0 exp
(∫ t

0
α(s)ds

)
+ Y (t). (11)

Note that Bj ∼ N (µj , σ
2
j ), and Bj , j = 0, 1, 2, . . . , n− 1, are

mutually independent. Hence, we find that for any fixed t, Y (t) is

normally distributed with mean defined by∫ t

0

(γ(s) + µ̄ · %̄(s)) exp

(∫ t

s

α(τ)dτ

)
ds, (12)
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where µ̄ = (µ0, µ1, . . . , µn−1), and variance defined by

n−1∑
j=0

σ2
j

[∫ t

0

%j(s) exp

(∫ t

s

α(τ)dτ

)
ds

]2

. (13)

Hence, if all the individuals in the entire system have the same fixed

initial condition x0, then X(t) is also normally distributed for any

fixed time t, i.e., X(t) is a Gaussian process. Based on this piece of

information, the stochastic model is chosen to have the form

dX(t) = [α(t)X(t) + ξ(t)]dt+ η(t)dW (t), X(0) = X0, (14)

where α, ξ and η are non-random functions of t.

Can argue that if functions ξ, η and %j , and constants µj , σj and n
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satisfy the following two equalities∫ t

0

ξ(s) exp

(∫ t

s

α(τ)dτ

)
ds =

∫ t

0

[γ(s) + µ̄ · %̄(s)] exp

(∫ t

s

α(τ)dτ

)
ds

(15)

and∫ t

0

[
η(s) exp

(∫ t

s

α(τ)dτ

)]2

ds =
n−1∑
j=0

σ2
j

[∫ t

0

%j(s) exp

(∫ t

s

α(τ)dτ

)
ds

]2

,

(16)

then the probabilistic formulation (10) and the stochastic

formulation (14) yield stochastic processes that are pointwise

equivalent in density.
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Probabilistic Formulation to Stochastic Formulation

Here we assume that probabilistic formulation (10) is known, and we

want to determine its corresponding stochastic formulation. In other

words, we need to determine functions ξ and η in terms of functions

%j , and constants µj , σj and n. By (15), it is obvious that if function

ξ is chosen to be

ξ(t) = γ(t) +

n−1∑
j=0

µj%j(t) = γ(t) + µ̄ · %̄(t),

then (15) holds. Can ague that the function η such that (16) is given

by

η(t) =
[
2
∑n−1
j=0 σ

2
j%j(t)

∫ t
0
%j(s) exp

(∫ t
s
α(τ)dτ

)
ds
] 1

2

.
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Stochastic Formulation to Probabilistic Formulation

Next we assume that stochastic formulation (14) is known, and we

wish to determine its corresponding probabilistic formulation. In

other words, we need to determine function ρj , and constants µj , σj

and n in terms of functions ξ and η . By (15) and (16) we know that

we have numerous different choices for the probabilistic formulation.

Here we choose one of the simple formulations. Let n = 2 and

µ1 = 0. Then by (15) we have∫ t

0

[γ(s) + µ0%0(s)] exp

(∫ t

s

α(τ)dτ

)
ds =

∫ t

0

ξ(s) exp

(∫ t

s

α(τ)dτ

)
ds.

(17)

It is obvious that if we set

γ(t) + µ0%0(t) = ξ(t), (18)
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then (17) holds. But we see that we still have different choices for

probabilistic formulation. One simple case is just to choose γ ≡ 0,

%0(t) = ξ(t), and µ0 = 1. Then by (16) we have

σ2
1

[∫ t
0
%1(s) exp

(∫ t
s
α(τ)dτ

)
ds
]2

=
∫ t

0
η2(s) exp

(
2
∫ t
s
α(τ)dτ

)
ds− σ2

0

[∫ t
0
ξ(s) exp

(∫ t
s
α(τ)dτ

)
ds
]2
,

(19)

which implies that we need to choose σ0 sufficiently small such that

its right-hand side is greater than 0. Now by (19) we have

σ1

∫ t
0
%1(s) exp

(∫ t
s
α(τ)dτ

)
ds

=

[∫ t
0
η2(s) exp

(
2
∫ t
s
α(τ)dτ

)
ds− σ2

0

(∫ t
0
ξ(s) exp

(∫ t
s
α(τ)dτ

)
ds
)2
] 1

2
.
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Differentiating both sides of the above equation with respect to t we

obtain that

σ1%1(t) = d
dt [
∫ t

0
η2(s) exp

(
2
∫ t
s
α(τ)dτ

)
ds

− σ2
0

(∫ t
0
ξ(s) exp

(∫ t
s
α(τ)dτ

)
ds
)2

]
1
2

−α(t)[
∫ t

0
η2(s) exp

(
2
∫ t
s
α(τ)dτ

)
ds

− σ2
0

(∫ t
0
ξ(s) exp

(∫ t
s
α(τ)dτ

)
ds
)2

]
1
2 .

Hence, we can just assign any positive value for σ1, and then use the

above equality to determine function %1.
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Remarks and Examples

Other cases discussed in [Banks-Hu]. Based on discussions there, we

see that we can find the corresponding probabilistic formulation for

the following two types of stochastic differential equations

dX(t) = [α(t)X(t) + ξ(t)]dt+ η(t)dW (t),

and

dX(t) = ξ(t)(X(t) + c)dt+ η(t)(X(t) + c)dW (t),

where ξ, η, and α are all deterministic function of t, and c is a given

constant. Hence, if a nonlinear stochastic differential

equation can be reduced to one of the above forms by some

invertible transformation, then one can find its

corresponding probabilistic formulation.

First we will consider some special cases of nonlinear stochastic
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differential equations that can be reduced to linear stochastic

differential equations after some transformation. First consider the

stochastic differential equation

dX(t) = g(X(t), t)dt+ σ(X(t), t)dW (t) (20)

where g and σ are non-random functions of x and t. Under certain

conditions on g and σ can show [Gard] that (20) can be reduced to a

linear SDE of the form

dh(X(t), t) = ḡ(t)dt+ σ̄(t)dW (t),

where ḡ(t) can be readily computed.

In addition, it was shown in [Gard] that the autonomous stochastic

differential equation

dX(t) = g(X(t))dt+ σ(X(t))dW (t),
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can be reduced to the linear stochastic differential equation

dh(X) = (λ0 + λ1h(X))dt+ (ν0 + ν1h(X))dW (t)

if and only if

ψ′(x) = 0 or

(
(σψ′)′

ψ′

)′
(x) = 0, (21)

where λ0, λ1, ν0 and ν1 are some constants, and

ψ(x) = g(x)
σ(x) −

1
2σ
′(x).

If the latter part of (21) is satisfied, then we see that (σψ′)′

ψ′ is some

constant. Let ν1 = − (σψ′)′

ψ′ . If ν1 6= 0, then we can choose

h(x) = c exp

(
ν1

∫ x

a

1

σ(τ)
dτ

)
,
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where c is some constant. If ν1 = 0, then we can choose

h(x) = ν0

∫ x

a

1

σ(τ)
dτ + c.
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Examples to illustrate this transformation method to find the

corresponding equivalent formulations.

Example 1: Use transformation method to find equivalent

probabilistic formulation for nonlinear stochastic differential

equation:

dX(t) =

[
1− 1

2
exp(−2X(t))

]
dt+ exp(−X(t))dW (t).

Find:

dx(t; b)

dt
= 1 + b

[
exp(2t)√

2[exp(2t)− 1]
−
√

exp(2t)− 1

2

]
exp(−x(t; b)),

where b ∈ R; B ∼ N (0, 1),

yields process that is pointwise equivalent in density.
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Example 2: We consider the deterministic logistic equation

dx

dt
= bx

(
1− x

κ

)
, x(0) = x0, (22)

where b is some constant representing the intrinsic growth rate, and

κ is a given constant representing the carrying capacity.

We find the probabilistic formulation

dx(t; b)

dt
= bx(t; b)

(
1− x(t; b)

κ

)
, b ∈ R; B ∼ N (µ0, σ

2
0) (23)

and the stochastic formulation

dX(t) = X(t)

[
(µ0 − σ2

0t)
(

1− X(t)
κ

)
+ 2tσ2

0

(
1− X(t)

κ

)2
]
dt

−
√

2tσ0X(t)
(

1− X(t)
κ

)
dW (t)

(24)

are pointwise equivalent in density. Figures 1 and 2 depict the

probability density function p(x, t) at different times t for the
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probabilistic formulation (23) and the stochastic formulation (24)

with κ = 100, x0 = 10, µ0 = 1 and σ0 = 0.1, where p(x, t) is obtained

by simulating 105 sample paths for each formulation.
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Figure 1: Probability density function p(x, t) are obtained by simulat-

ing 105 sample paths for probabilistic formulation (23) and stochastic

formulation (24) at t = 1 and 2 where ∆t = 0.004 is used in (??), and

T = 4.
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Figure 2: Probability density function p(x, t) are obtained by simulat-

ing 105 sample paths for probabilistic formulation (23) and stochastic

formulation (24) at t = 3 and 4, where ∆t = 0.004 is used in (??), and

T = 4.
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Concluding Remarks

• Derived several classes of examples for which we can establish

pointwise equivalence in density for the corresponding

probabilistic and stochastic formulations.

• Well documented: difficulties arise in numerically solving the F-P

when the drift g dominates the diffusion σ2.

• Results here lead to alternative methods that can be fast and

efficient in numerically solving the Fokker-Planck by employing

its pointwise equivalent in density probabilistic formulation.

• Have shown efficacy in inverse problems calculations; current

efforts on control problems.
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