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Populations with Aggregate Data and

Uncertainty

• Consider approximation methods in estimation or inverse

problems–quantity of interest is a probability distribution

• assume we have parameter (q ∈ Q) dependent system with model

responses x(t, q) describing population of interest

• For data or observations, we are given a set of values {yl} for the

expected values

E [xl(q)|P ] =

∫
Q

xl(q)dP (q)

for model xl(q) = x(tl, q) wrt unknown probability distribution

P describing distribution of parameters q over population
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• Use data to choose from a given family P(Q) the distribution P ∗

that gives best fit of underlying model to data

• Formulate ordinary least squares (OLS) problem–not

essential–could equally well use a WLS, MLE, etc., approach

• Seek to minimize

J(P ) =
∑
l

|E [xl(q)|P ]− yl|2

over P ∈ P(Q)

• Even for simple dynamics for xl is an infinite dimensional

optimization problem–need approximations that lead to

computationally tractable schemes

• That is, it is useful to formulate methods to yield finite

dimensional sets PM (Q) over which to minimize J(P )
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• Of course, we wish to choose these methods so that

“PM (Q)→ P(Q)” in some sense

• In this case we shall use Prohorov metric [BBPP, Bi] of weak star

convergence of measures to assure the desired approximation

results
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General theoretical framework is given in [BBPP] with specific

results on the approximations we use here given in [BB, BP]. Briefly,

ideas for the underlying theory are as follows:

• One argues continuity of P → J(P ) on P(Q) with the Prohorov

metric

• If Q is compact then P(Q) is a complete metric space–also

compact–when taken with Prohorov metric

• Approximation families PM (Q) are chosen so that elements

PM ∈ PM (Q) can be found to approximate elements P ∈ P(Q)

in Prohorov metric

• Well-posedness (existence, continuous dependence of estimates on

data, etc.) obtained along with feasible computational methods
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The data {yl} available (which, in general, will involve longitudinal

or time evolution data) determines the nature of the problem.

• Type I: The most classical problem (which we shall refer to as a

Type I problem) is one in which individual longitudinal data is

available for each member in the population. In this case there is

a wide statistical literature (in the context of hierarchical

modeling, mixing distributions, mixed or random effects, mixture

models, etc.)

[BS, DGa1, DGa2, DG1, DG2, L1, L2, LL, Ma, SRM, S1, S2]

which provides theory and methodology for estimating not only

individual parameters but also population level parameters and

allows one to investigate both intra-individual and

inter-individual variability in the population and data.
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• Type II: In what we shall refer to as Type II problems one has

only aggregate or population level longitudinal data available.

This is common in marine, insect, etc., catch and release

experiments [BK] where one samples at different times from the

same population but cannot be guaranteed of observing the same

set of individuals at each sample time. This type of data is also

typical in experiments where the organism or population member

being studied is sacrificed in the process of making a single

observation (e.g., certain physiologically based pharmacokinetic

(PBPK) modeling [BPo, E, Po] and whole organism transport

models [BK]). In this case one may still have dynamic (i.e., time

course) models for individuals, but no individual data is available.
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• Type III: Finally, the third class of problems which we shall

refer to as Type III problems involves dynamics which depend

explicitly on the probability distribution P itself. In this case one

only has dynamics (aggregate dynamics) for the expected value

x̄(t) =

∫
Q

x(t, q)dP (q)

of the state variable. No dynamics are available for individual

trajectories x(t, q) for a given q ∈ Q. Such problems arise in

viscoelasticity and electromagnetics as well as biology (the HIV

cellular models of Banks, Bortz and Holte [BBH]) see also

[BBPP, BG1, BG2, BP, G].
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• While the approximations we discuss below are applicable to all

three types of problems, we shall illustrate the computational

results in the context of size-structured marine populations

(mosquitofish, shrimp) and PBPK problems (TCE) where the

inverse problems are of Type II.

• Finally, we note that in the problems considered here, one can

not sample directly from the probability distribution being

estimated and this again is somewhat different from the usual

case treated in some of the statistical literature, e.g., see

[Wahba1, Wahba2] and the references cited therein.
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Example 1: The Growth Rate Distribution

Model and Inverse Problem in Marine

Populations

• Motivating application: estimation of growth rate distributions

for size-structured mosquitofish and shrimp populations.

• Mosquitofish used in place of pesticides to control mosquito

populations in rice fields–Marine biologists desire to correctly

predict growth and decline of mosquitofish populatio–in order to

determine the optimal densities of mosquitofish to use to control

mosquito populations–a mathematical model that accurately

describes the mosquitofish population would be beneficial in this

application, as well as in other problems involving population

dynamics and age/size-structured data.
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• Based on data collected from rice fields, a reasonable

mathematical model would have to predict two key features that

are exhibited in the data: dispersion and bifurcation (i.e., a

unimodal density becomes a bimodal density) of the population

density over time [BBKW, BF, BFPZ].

• Growth rate distribution (GRD) model, developed in [BBKW]

and [BF], captures both of these features in its solutions.

• Model is a modification of the Sinko-Streifer model (used for

modeling age/size-structured populations) which takes into

account that individuals have different characteristics or

behaviors.
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Figure 1: Mosquitofish data.
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• Sinko-Streifer model (SS) for size-structured mosquitofish

populations given by

∂v

∂t
+

∂

∂x
(gv) = −µv, x0 < x < x1, t > 0 (1)

v(0, x) = Φ(x)

g(t, x0)v(t, x0) =

∫ x1

x0

K(t, ξ)v(t, ξ)∂ξ

g(t, x1) = 0.

Here v(t, x) represents size (given in numbers per unit length) or

population density, where t represents time and x represents

length of mosquitofish–growth rate of individual mosquitofish

given by g(t, x), where

dx

dt
= g(t, x) (2)

for each individual (all mqf of given size have same growth rate)
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• In SS µ(t, x) represents mortality rate of mosquitofish–function

Φ(x) represents initial size density of the population, while K

represents the fecundity kernel. The boundary condition at

x = x0 is recruitment, or birth rate, while the boundary condition

at x = x1 = xmax ensures the maximum size of the mosquitofish

is x1. The SS model cannot be used as is to model the

mosquitofish population because it does not predict dispersion or

bifurcation of the population in time under biologically

reasonable assumptions [BBKW, BF].
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• By modifying the SS model so that the individual growth rates of

the mosquitofish vary across the population (instead of being the

same for all individuals in the population), one obtains a model,

known as the growth rate distribution (GRD) model–does in fact

exhibit both dispersal in time and development of a bimodal

density from a unimodal density (see [BF, BFPZ]).

• In (GRD) model, population density u(t, x;P ), discussed in

[BBKW] and developed in [BF], is actually given by

u(t, x;P ) =

∫
G

v(t, x; g)dP (g). (3)

• G is collection of admissible growth rates, P is probability

measure on G, and v(t, x; g) is solution of (SS) with g– model

assumes pop. made up of collections of subpopulations

–individuals in same subpopulation have same growth rate
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• Based on work in [BF], solutions to GRD model exhibit both

dispersion and bifurcation of the population density in time.

Here assume that the admissible growth rates g have the form

g(x; b, γ) = b(γ − x)

for x0 ≤ x ≤ γ and zero otherwise, where b is the intrinsic

growth rate of the mosquitofish and γ = x1 is the maximum size.

This choice based on work in [BBKW], where idea of other

properties related to the growth rates varying among the

mosquitofish is discussed.

• Under assumption of varying intrinsic growth rates and

maximum sizes, assume that b and γ are random variables taking

values in the compact sets B and Γ, respectively. A reasonable

assumption is that both are bounded closed intervals.
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• Thus we take

G = {g(·; b, γ)|b ∈ B, γ ∈ Γ}

so that G is also compact in, for example, C[x0, X] where X =

max(Γ). Then P(G) is compact in the Prohorov metric and we

are in framework outlined above. In illustrative examples, choose

a growth rate parameterized by the intrinsic growth rate b with

γ = 1 , leading to a one parameter family of varying growth rates

g among the individuals in the population. We also assume here

that µ = 0 and K = 0 in order to focus on only the distribution

of growth rates; however, distributions could just as well be

placed on µ and K.

• Next, introduce two different approaches that can be used in

inverse problem for estimation of distribution of growth rates of

the mosquitofish

17



• First approach, which has been discussed and used in [BF] and

[BFPZ], involves the use of delta distibutions. We assume that

probability distributions PM placed on growth rates are discrete

corresponding to a collection GM with the form GM = {gk}Mk=1

where gk(x) = bk(1− x), for k = 1, . . . ,M . Here the {bk} are a

discretization of B. For each subpopulation with growth rate gk,

there is a corresponding probability pk that an individual is in

subpopulation k. The population density u(t, x;P ) in (3) is then

approximated by

u(t, x; {pk}) =
∑
k

v(t, x; gk)pk,

where v(t, x; gk) is the subpopulation density from (SS) with

growth rate gk. We denote this delta function approximation

method as DEL(M), where M is number of elements used in this

approximation.
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• While it has been shown that DEL(M) provides a reasonable

approximation to (3), a better approach might involve techniques

that will provide a smoother approximation of (3) in the case of

continuous probability distributions on the growth rates. Thus,

as a second approach, we chose to use an approximation scheme

based on piecewise linear splines. Here we have assumed that P

is a continuous probability distribution on the intrinsic growth

rates. We approximate the density P ′ = dP
db = p(b) using

piecewise linear splines, which leads to the following

approximation for u(t, x;P ) in (3):

u(t, x; {ak}) =
∑
k

ak

∫
B

v(t, x; g)lk(b)db,

where g(x; b) = b(1− x), pk(b) = aklk(b) is the probability

density for an individual in subpopulation k and lk represents the

piecewise linear spline functions.
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• This spline based approximation method is denoted by

SPL(M,N), where M is the number of basis elements used to

approximate the growth rate probability distribution and N is

the number of quadrature nodes used to approximate the integral

in the formula above. One can use the composite trapezoidal rule

for the approximation of these integrals [QSS].
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• One can use the approximation methods DEL(M) and SPL(M,N)

in the inverse problem for the estimation of the growth rate

distributions. The least squares inverse problem to be solved is

min
P∈PM (G)

J(P ) =
∑
i,j

|u(ti, xj ;P )− ûij |2 (4)

=
∑
i,j

(u(ti, xj ;P ))2 − 2u(ti, xj ;P )ûij + (ûij)
2,

where {ûij} is the data and PM (G) is the finite dimensional

approximation to P(G). When using DEL(M), the finite

dimensional approximation PM (G) to the probability measure

space P(G) is given by

PM (G) =

{
P ∈ P(G)| P ′ =

∑
k

pkδgk ,
∑
k

pk = 1

}
,

where δgk is the delta function with an atom at gk. However,
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when using SPL(M,N), the finite dimensional approximation

PM (G) is given by

PM (G) =

{
P ∈ P(G)| P ′ =

∑
k

aklk(b),
∑
k

ak

∫
B

lk(b)db = 1

}
.

• Furthermore, we note that this least squares inverse problem (4)

becomes a quadratic programming problem [BF, BFPZ]. Letting

p be the vector that contains pk, 1 ≤ k ≤M, when using

DEL(M) or ak, 1 ≤ k ≤M, when using SPL(M,N), we let A be

the matrix with entries given by

Akm =
∑
i,j

v(ti, xj ; gk)v(ti, xj ; gm),
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b the vector with entries given by

bk = −
∑
i,j

ûijv(ti, xj ; gk),

and

c =
∑
i,j

(ûij)
2,

where 1 ≤ k,m ≤M. In the place of (4), we now minimize

F (p) ≡ pTAp + 2pTb + c (5)

over PM (G). We note when using DEL(M) we also had to

include the constraint ∑
k

pk = 1,
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while when using SPL(M,N) we had to include the constraint∑
k

ak

∫
B

lk(b)db = 1.

However, in both cases, we were able to include these constraints

along with non-negativity constraints on the {pk} and {ak} in

the programming of these two inverse problems.
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Other Size-Structured Population Models

The Sinko-Streifer (SS) model [SS] and its variations have been

widely used to describe numerous age and size-structured populations

(see [BBDS1, BBDS2, BBKW, BF, BFPZ, BeAnd, Kot, Metz] for

exMPLE).

• Shrimp growth models Dispersion in size observed in

experimental data (Figures 2 and 3) for early growth of shrimp–

data: different raceways at Shrimp Mariculture Research Facility,

Texas Agricultural Experiment Station in Corpus Christi, TX.

Initial sizes were very similar–variability observed in aggregate

type longitudinal data. Reasonable model for population must

account for variability in size distribution data–perhaps a result

of variability in individual growth rates across

population [CSLFJ]. Models developed in [Shrimp, Shrimp-exp].
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Figure 2: Histograms for longitudinal data for size (in grams) for Race-

way 1.
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Figure 3: Histograms for longitudinal data for size (in grams) for Race-

way 2.
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• Florescent labeling in cell population growth More recently,

extensions of these models have been employed in cell population

models where size is replaced by intensity of a label or marker

[Tat1, BTSBRSM].

• Original data sets shown below in translated log intensity

s = z + ct. Note subsequent division peaks now strongly

correlated with specific regions in the state variable, unlike when

plotted vs. original log intensity variable z
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Mathematical Model

• Model: dynamics of life/death process–population of

CFSE-labelled cells–proposed by Bochorov et al.

(2007)–variation of Bell-Anderson / Sinko-Streifer (1967)

population models: x = CFSE FI (in units of intensity, UI) of a

cell; n(t, x) = label-structured population density (cells/UI) with

FI x at time t–Population density given by

∂n

∂t
(t, x) +

∂[v(x)n(t, x)]

∂x
= −(α(x) + β(x))n(t, x) (6)

+ χ[xmin,xmax/γ]2γα(γx)n(t, γx),

v(x) = label loss rate, α(x) = cell proliferation rate, β(x) = cell

death rate, x ∈ [xmin, xmax] and t > 0.
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• cells naturally lose FI over time even in absence of division (due

to catabolic activity), v(x) represents natural label loss rate

(UI/hr)– parameter γ is label dilution factor i.e., ratio of FI of a

mother cell to FI of a daughter cell

• FACS returns data on logarithmic scale, make change of variables

z = log10 x

Resulting model when v(x) = −cx (which we assume here) and

ñ(t, z) ≡ n(t, 10z) is

∂ñ

∂t
(t, z) +

∂[ṽ(z)ñ(t, z)]

∂z
= − (α̃(z) + β̃(z))ñ(t, z) (7)

+ χ[zmin,zmax−log10 γ]2γα̃(z + log10 γ)ñ(t, z + log10 γ),

where ṽ(z) = −c̃ = −c/ln10, and α̃, β̃ are appropriately defined cell

proliferation and death rates, respectively.
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In summary, the GRD model (3) represents one approach to

accounting for variability in growth rates by imposing a probability

distribution on the growth rates in the SS model (1). Individuals in

the population grow according to a deterministic growth model (2),

but different individuals in the population may have different

parameter dependent growth rates in the GRD model. The

population is assumed to consist of subpopulations with individuals in

the same subpopulation having the same growth rate. The growth

uncertainty of individuals in the population is the result of variability

in growth rates among the subpopulations. This modeling approach,

which entails a stationary probabilistic structure on a family of

deterministic dynamic systems, may be most applicable when the

growth of individuals is assumed to be the result of genetic

variability.
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However, a second approach that has been studied as well is based on

the assumption that individual growth is a Markov diffusion

stochastic process which leads to the Fokker-Planck model for shrimp

population density [Allen, BTW, Gard, Okubo]. The growth process

for each individual is stochastic, and each individual grows according

to a stochastic growth model. In the Fokker-Planck model, the

uncertainty in the growth of individuals is the result of the growth

stochasticity of each individual. This modeling approach may be

most applicable when the variability in the growth rate of individuals

is believed to be the result of variability in environmental factors

such as discussed in [GAZ, LLS, PMR]. Theoretical arguments in

[GRD-FP] demonstrate that the population density from the GRD

model is same as population density obtained from the Fokker-Planck

model when equivalent levels of variability are used in both models.

Numerical results are also presented in [GRD-FP2] to further
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validate the theoretical analysis of [GRD-FP]. Therefore, one can use

the computationally “easier” approach to model the population of

interest when appropriately chosen forms of variability can be

determined. Based on these studies, suggest use of GRD model (3) to

incorporate uncertainty in the growth rates in the size-structured

population model for the early growth of shrimp. A natural question

arises immediately: how to collect date to carry out the minimization

to determine a reasonable value for P. In particular, what sampling

size and sampling frequency should be used in experiments to

adequately estimate P ?
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Example 2: PBPK Models for TCE

Uncertainty is an inherent factor in mathematical models for

biological systems. Model equations themselves are an approximation

of the phenomena they are designed to model, introducing a degree

of uncertainty that is difficult to measure. Further simplifications and

approximations of a model for theoretical and computational

purposes result in additional layers of uncertainty. Moreover, many

biological processes are subject to variability that may not be

incorporated into a mathematical model. Experimental observations

also introduce uncertainty when data are used with a model to

estimate parameters.
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Two types of variability that are common in biological models and

are well-known in the statistical literature [DG1] are intra-individual

and inter-individual variability. Intra-individual variability is defined

as variability that occurs within a given individual organism or

biological process. This type of variability may result in

time-dependent and/or spatially-dependent variation within an

individual. Biological examples of such variability include parameters

such as body weight, blood pressure, fat content and cell membrane

permeabilities.

A second type of variability that is commonly found in biological

modeling is inter-individual variability. This type of variability

results from variations in individuals across a population. Biological

models that are based on behavior or phenomena over a population

are almost always subject to inter-individual variability. This is

especially the case when a model is designed to predict or explain
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experimental observations that are collected from multiple

individuals.

It is reasonable to expect that different individuals of a population

would possess different values for biological, physical and chemical

parameters. These parameters would then take on varying values

across the population, so that each parameter would be associated

with a probability distribution that would mathematically describe

this variation. Using data from multiple individuals, one can

estimate the resulting probability distributions with inverse problem

techniques, thereby obtaining both the mean and variance of the

uncertainty.

Examples of biological parameters that are often subject to

inter-individual variability include growth and death rates,

susceptibility to infection, efficacy of vaccines and other

prophylactics, and age. Note that each of the examples given above
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for intra-individual variability may also involve inter-individual

variability depending on the type of model and experimental

observations. Similarly, each of the examples for inter-individual

variability also may be subject to intra-individual variability.
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The next motivating example we consider here is a toxicokinetic

model for the systemic transport of the environmental contaminant

trichloroethylene (TCE). TCE is a solvent that has been used widely

in industry as a metal degreasing agent, and is now a common soil

and groundwater contaminant. This highly fat-soluble compound is

rapidly absorbed into the bloodstream, and has been shown to

accumulate in the adipose (fat) tissue of humans and animals.

Known and suspected toxic effects of TCE and its metabolites in

laboratory animals and/or humans include acute effects such as

dizziness, drowsiness, headaches and fatigue, as well as chronic effects

such as developmental defects and lung, kidney and liver tumors.
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Toxicokinetic models are used in the overall risk assessment process

for toxic compounds to help quantify the expected risk of toxicity to

humans as a function of the level of exposure to the given chemical.

In particular, physiologically based pharmacokinetic (PBPK) models

predict the effective dose level of a toxic compound that is delivered

to the “target” tissues (i.e., tissues that experience toxic effects) for a

given external exposure level. PBPK models are compartmental

models that describe the systemic transport of a compound through

the tissues and organs, including the dynamics of uptake, tissue

distribution, metabolism and elimination. The resulting model is a

system of differential equations, with each equation representing the

dynamics of tissue concentrations in a particular tissue or organ.

In [ABEP] and [BPo], three PBPK models for TCE are developed

and compared, each with a different submodel for the adipose tissue

compartment.

41



As discussed in [ABEP], preliminary simulations indicated that a

perfusion-limited adipose tissue compartment does not appear to

sufficiently capture the dynamics of TCE accumulation in fat as seen

in experimental data. Moreover, adipose tissue is known to have

highly heterogeneous physiological properties, including significant

variations in fat cell size, lipid distribution, blood flow rates and cell

membrane permeabilities. These characteristics further suggest that

the “well-mixed,” rapid equilibrium assumptions of the

perfusion-limited model may be inappropriate for describing the

disposition of fat-accumulating compounds such as TCE in adipose

tissue.
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To better capture the dynamics of TCE in fat tissue, a spatially

varying axial dispersion model was developed [ABEP] to address the

intra-individual variability that results from the heterogeneous lipid

distribution and physiological characteristics of adipose tissue. This

variability is built into the adipose compartmental model with a

special axial dispersion term, where the “dispersion” coefficient is a

measure of the degree of intra-individual variability that occurs in

the fat.

In addition to the intra-individual variability that appears to affect

TCE concentrations in fat tissue, inter-individual variability also

plays a major role in toxicokinetic models in general. Experimental

techniques that require measurements of chemical concentrations in

tissues over time be taken from multiple individuals immediately

introduces inter-individual variability into the measured observations,

and must be considered in the development of mathematical models.
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To further amplify on our discussions of intra- and inter-individual

variability as used in this paper, we note that neither of these refer

specifically to cellular variability here. The PBPK models we use are

standard compartmental models which have already incorporated

variability across cells (even though the resulting models are

deterministic). While this is a usual practice in most PBPK model

formulations, one could reasonably argue against the use of

deterministic models for expected blood or tissue concentrations in a

given individual (patient or test subject in clinical trials). There are

in fact a number of ways to introduce cellular variability in one

individual. In addition to usual stochastic dynamics, one might also

consider probability measure dependent dynamical systems

ẋ(t) = f(t, x(t), P )

for the expected value x of the blood/tissue concentrations. Here the

expected value is taken over an ensemble of cells. Examples of such
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models can be found in the HIV cellular models of [BBH, BBPP], the

molecular level modeling of biotissue in [BP] and of polymers in

[BMP] along with the discussions of individual vs. aggregate

dynamics estimation problems in [BBPP]. The Prohorov framework

outlined below as developed in [BB] can also be used (see [BBPP]) to

develop a theory for such aggregate dynamics measure-dependent

models. We do not do that here. Rather, as described above and

detailed below, we employ deterministic models (i.e., systems with

deterministic parameters) involving spatially varying axial dispersion

formulations to capture intra-individual variability in adipose TCE

concentrations (which in this case is essentially inter-cellular

variability as well variability across space). In these models the

inter-individual aspects are introduced to treat variability of the

deterministic parameters across populations of individuals (patients

or test subjects).
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As biological models have become more widely utilized and influential

in a variety of fields, the need to account for variability and

uncertainty in modeling has been recognized. Markov Chain-Monte

Carlo methods have been developed to address issues of variability

and uncertainty, and these methods have been applied to PBPK

models as a part of the parameter estimation process. Monte Carlo

methods are based on a Bayesian statistical approach that involves

the use of experimental data to update estimates of a hypothesized

“prior” probability distribution for one or more model parameters.
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An alternative, probability-based method has been developed to

incorporate uncertainty and variability in mathematical models. This

method, which is discussed in [B, BB, HTB-HK] is centered around a

probabilistic parameter estimation approach that involves the

estimation of probability distributions for model parameters.

Well-known theoretical results from probability theory establish the

theoretical soundness of this technique, which can be implemented

computationally in a straightforward manner.

A distinct advantage of this approach over the Monte Carlo-based

methods is an added level of flexibility in choosing the prior

probability distributions. These probability-based methods can be

used with preselected prior distributions as with Monte Carlo

methods, or they may be used with weighted sums of Dirac delta

measures that do not assume a fixed form for the probability

distribution functions. A version of this method has been applied to
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a population model for mosquitofish in rice paddies, and was used to

successfully describe fish population dynamics by estimating

distributed growth rate functions using aggregate experimental

data [BFPZ].
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Overview of the TCE model

Here we provide an overview of the PBPK-hybrid model for TCE as

developed in [ABEP, Po-thesis]. This model utilizes standard

physiologically based pharmacokinetic compartmental equations for

various non-fat tissues. The fat tissue compartment is described with

a spatially varying dispersion model, and is designed specifically to

capture the intra-individual variability that results from the

heterogeneous physiology of fat.

The most commonly used compartmental model in PBPK modeling

is the perfusion-limited, or flow-limited compartment. This model is

based on simple mass balance principles and assumptions of rapid

equilibrium and spatial uniformity. Moreover, it is assumed that the

blood flow rate to the tissue is much slower than the rate of transport

of the compound across cell membranes. The resulting equation for
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the tissue concentration C of the compound is given by

V
dC(t)

dt
= Qbl(Cin(t)− Cout(t)),

where V is the volume of the tissue, Qbl is the volumetric blood flow

rate to the tissue, and Cin and Cout are the concentrations of

compound entering and leaving the tissue respectively. Under

standard assumptions, the concentration Cout is equal to the

concentration C of compound in the tissue divided by the

blood:tissue partition coefficient.

For many tissues and compounds of interest the perfusion-limited

compartmental model is adequate to describe the dynamics of such

compounds inside the tissues. In the case of highly lipophilic

substances such as TCE, however, the standard models may not

accurately capture the transport of these chemicals in the adipose

tissue. The highly heterogeneous physiology of fat tissue appears to

50



have a major influence on the behavior of TCE in fat. Using a PBPK

model for TCE in Long-Evans rats with a perfusion-limited fat

compartment [Marina] (see Figure 52 for a model schematic), model

simulations suggested that the standard model does not capture the

concentration profile of TCE in adipose tissue as seen in

experimental data [ABEP].
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The schematic in Figure 53 depicts a geometric representation of an

adipocyte-capillary unit in adipose tissue. The adipocyte region (A)

is represented by a sphere and is immersed in the interstitial fluid (I).

The capillary or blood region (B) is a cylindrical tube that wraps

around the adipocyte. Coordinates are in spherical coordinates

(r, θ, φ).

To account for the spatial variation in TCE fat concentrations as

suggested by the physiology of adipose tissue, an axial dispersion

model was developed to replace the perfusion-limited fat tissue

compartment. This model is based directly on the structure of fat

tissue, which consists primarily of spherical, lipid-containing cells

called adipocytes. Each adipocyte is in contact with one or more

capillaries and is immersed in interstitial fluid.

The model equations are based on an axial dispersion model

developed by Roberts and Rowland [RobertsRowland] for the liver.
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A key feature of their model is its aggregate structure, using a single

cellular unit with the dispersion term to represent the intra-individual

variability that occurs across the millions of cells in the tissue. As

detailed in [ABEP], we have adapted their model to describe the

geometry of adipose tissue and the transport of TCE within the fat.

The resulting system of partial differential equations is given by

VB
∂CB
∂t

=
VB

r2 sinφ

∂

∂φ

[
sinφ

(
DB
r2

∂CB
∂φ
− vCB

)]
+ λIµBI(fICI(θ0)− fBCB)

+ λAµBA(fACA(θ0)− fBCB) (8)
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−DB
r2

∂CB
∂φ

(t, φ) + vCB(t, φ)

∣∣∣∣
φ=ε1

=
Qc

1000AB
Ca(t) (9)

−DB
r2

∂CB
∂φ

(t, φ) + vCB(t, φ)

∣∣∣∣
φ=π−ε2

=
Qc

1000AB
Cv(t) (10)

VI
∂CI
∂t

=
VIDI

r2
1

[
1

sin2 φ

∂2CI
∂θ2

+
1

sinφ

∂

∂φ

(
sinφ

∂CI
∂φ

)]
+ δθ0(θ)χB(φ)λIµBI(fBCB − fICI)
+ µIA(fACA − fICI) (11)

CI(t, θ, φ) = CI(t, θ + 2π, φ) (12)

∂CI
∂θ

(t, θ, φ) =
∂CI
∂θ

(t, θ + 2π, φ) (13)

CI(t, θ, 0) < ∞ (14)

CI(t, θ, π) < ∞ (15)
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VA
∂CA
∂t

=
VADA

r2
0

[
1

sin2 φ

∂2CA
∂θ2

+
1

sinφ

∂

∂φ

(
sinφ

∂CA
∂φ

)]
+ δθ0(θ)χB(φ)λAµBA(fBCB − fACA)

+ µIA(fICI − fACA) (16)

CA(t, θ, φ) = CA(t, θ + 2π, φ) (17)

∂CA
∂θ

(t, θ, φ) =
∂CA
∂θ

(t, θ + 2π, φ) (18)

CA(t, θ, 0) < ∞ (19)

CA(t, θ, π) < ∞. (20)

The capillary equation (8) describes the transport of TCE in the
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capillary region of the adipose tissue and utilizes the dispersion term

VB
r2 sinφ

∂

∂φ

[
sinφ

DB
r2

∂CB
∂φ

]
with dispersion coefficient DB . This term accounts for the variability

in physiological properties that occurs across the population of fat

cells, with a large dispersion coefficient indicating a high degree of

variability. Mathematically, the dispersion term is equivalent to a

standard diffusion term, although the dispersion term is used

specifically to approximate the observed physiological phenomena of

varying path lengths, flow velocities and compound transit times that

occur within a tissue.

The boundary conditions (9) and (10) connect the adipose capillary

region to the systemic arterial and venous blood compartments using

flux balance. Transport of TCE between the capillary region and the

other two adipose subcompartments (interstitial and adipocyte) is
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modeled in the PDE (8). The variables CB(t), CI(t) and CA(t)

denote concentrations of TCE in the capillary, interstitial and

adipocyte regions respectively, while Ca(t) and Cv(t) represent the

systemic arterial and venous blood concentrations of TCE.

The interstitial region is modeled with the two-dimensional PDE (11)

and boundary conditions (12) – (15). The adipocyte region

equations (16) – (20) are similar in structure to the interstitial

equations, and describe the diffusion of TCE around the surface of

the adipocyte as well as the transport of TCE between the three

adipose subcompartments. The boundary conditions are standard

periodic and finiteness boundary conditions that are commonly used

for the diffusion equation on a spherical domain. A detailed

derivation and description of the dispersion model is given

in [ABEP, Po-thesis].

Adipose model parameters include the dispersion coefficient DB
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(m2/hour); diffusion coefficients DI and DA (m2/hour); the fractions

fB , fI , fA of unbound TCE in each adipose region; cell membrane

permeability coefficients µBA, µIA, µBI (liters/hour); blood flow

parameters v (m/hour) and F ; and inter-region transport parameters

λI and λA.

The adipose model equations (8) – (20) are coupled with standard

compartmental equations for the lung, arterial blood, venous blood,

liver, brain, kidney, muscle and remaining non-fat tissue to obtain a

whole-body PBPK-hybrid model. Uptake of TCE is via inhalation

into the lungs, and metabolism is modeled with a Michaelis-Menten
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term in the liver. The resulting equations are given by

Vv
dCv
dt

= QmCm/Pm +QtCt/Pt +QfCB(·, π − ε2) +QbrCbr/Pbr

+ QlCl/Pl +QkCk/Pk −QcCv (21)

Ca =
QcCv +QpCc

Qc +
Qp

Pb

(22)

Vm
dCm
dt

= Qm(Ca − Cm/Pm) (23)

Vt
dCt
dt

= Qt(Ca − Ct/Pt) (24)

Vbr
dCbr
dt

= Qbr(Ca − Cbr/Pbr) (25)

Vl
dCl
dt

= Ql(Ca − Cl/Pl)−
vmaxCl/Pl
kM + Cl/Pl

(26)

Vk
dCk
dt

= Qk(Ca − Ck/Pk), (27)
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where Cv(t), Cbr(t), Ck(t), Cm(t), Cl(t) and Ct(t) denote TCE

concentrations in the venous blood, brain, kidney, muscle, liver and

remaining tissue compartments, respectively. The chamber air

concentration Cc(t) is specified as part of the experiment and is used

as a forcing function in the arterial blood equation (22). For the

results we present in this paper, we set the chamber air concentration

to 2000 parts per million TCE for one hour, followed by zero ppm

TCE until the final time tf (in hours).

Model parameters include tissue volumes V (in liters), volumetric

blood flow rates to the tissues Q (liters/hour), and blood:tissue

partition coefficients P , each labeled with a subscript corresponding

to the appropriate tissue. The cardiac output and ventilation rates

(in liters/hour) are denoted by Qc and Qb respectively, and the

blood:air partition coefficient is denoted as Pb. The standard
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Michaelis-Menten metabolic parameters are denoted by vmax

(mg/hour) and kM (mg/liter). See [ABEP, Po-thesis] for complete

discussion of the model equations and parameters.

Theoretical results relating to well-posedness of the whole-body

PBPK-hybrid model are presented in [BPo]. In particular, we have

shown the existence of a unique weak solution for a general class of

nonlinear parabolic equations that includes the TCE model as a

special case. Moreover, we established the well-posedness of the

deterministic estimation problem for the TCE model, and

in [Po-thesis] we have addressed the well-posedness of

probability-based parameter estimation methods applied to the TCE

model. Numerical methods and simulations for this model with

deterministic parameters are given in [BPnum], and results for the

standard PBPK models are compared to those for the PBPK-hybrid

model.

63



Examples of Metrics on Probabilities

We summarize some functional analysis fundamentals. Reference:

H.T. Banks, A Functional Analysis Framework for Modeling,

Estimation and Control in Science and Engineering,

CRC/Taylor&Francis, 2011.

• The space of continuous functions on [a, b] is denoted by C[a, b].

It has a norm defined by |ϕ| = sup
ξ∈[a,b]

|ϕ(ξ)| for ϕ ∈ C[a, b]. Then

we have the following theorem from [DS].

Theorem 1. The following equivalences hold:

C∗[a, b] ∼= rba[a, b] ∼= NBV[a, b]

where NBV[a, b] stands for normalized bounded variation

functions and rba[a, b] stands for regular bounded additive set
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functions.

Therefore we can talk about the weak* topology for NBV[a, b];

however, C[a, b] is not the dual of another space, NBV[a, b]∗ =?

(i.e., we do not have satisfactory characterizations or

representations). Thus we cannot talk about the weak* topology

in C[a, b].

Discussion of rba[a, b]: Suppose µ is a regular set function.

Then by definition of regular, given a set F and ε > 0, there

exists a closed set E and an open set O such that E ⊂ F ⊂ Ō
and µ(Ō − E) < ε. Additive means that for any two Borel

subsets A and B contained in [a, b] such that A ∩B = ∅, and

µ(A ∪B) = µ(A) + µ(B).

Discussion of NBV[a, b]: BV[a, b] has a norm |f | = |f(a+)|+
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var(f) where var(f) is the total variation

var(f) = sup
π

N∑
i=1

|f(xi)− f(xi−1)|,

and π denotes the partitions of [a, b]. Note that var(f) provides a

semi-norm on BV and BV can be written as BV0 ⊕N where

BV0 = {f ∈ BV|f(a) = 0} and N is the 1-D space of constant

functions.

NBV[a, b] is normalized by making f right-continuous at the

interior points and f(a+) = 0 with |f | = var(f).

Suppose f ∈ NBV[a, b]; then we can write

f(x) = f(a) + pf (x)− nf (x),
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where pf and nf are nondecreasing monotone functions. Recall

pf (x) = sup
π

N∑
i=1

|f(xi)− f(xi−1)|+.

Thus we can get a signed measure (recall Lebesgue-Stieltjes

measures)

µf = µpf − µnf
,

where µf is regular. From above we have C∗[a, b] ∼= rba(a, b),

which means there is a one-to-one correspondence

x∗ ↔ µ,

given by

x∗(ϕ) =

∫
ϕdµ.
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We also have C∗[a, b] ∼= NBV[a, b], which means we have

x∗ ↔ µf ,

given by

x∗(ϕ) =

∫
ϕdµf =

(∫
ϕdf

)
where integrals are Lebesque-Stieltjes integrals-see [A] and [DS].
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Weak* Convergence and the Prohorov Metric

Recall two types of measure dependent problems: individual

dynamics and aggregate dynamics.

Type II: Individual Dynamics and Aggregate Data

Such examples include the mosquitofish and shrimp examples

outlined above. The dynamics for u(t, x; γ), γ ∈ Γ have a distribution

P over Γ so that

u(t, x) =

∫
Γ

v(t, x; γ)dP (γ).
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If P is discrete, ∫
T

v(t, x; γ)dP (γ) =
N∑
v(t, x; γj)pj .

If P is (absolutely) continuous, we can use whatever quadrature rule

we wish, and∫
v(t, x; γ)p(γ)d(γ) ≈

N∑
j=1

v(t, x; γj)p(γj)4γj .

More generally, for a general probability distribution P , we have

u(t, x) =

∫
T

v(t, x; γ)dP (γ),

as the expected value of the density

u(t, x) = u(t, x;P ) = E [v(t, x; ·)|P ]

.
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Since in typical inverse problems, we must use the data dij to

estimate P itself, we are therefore required to understand the

sensitivity of u(t, x;P ) as a function of P . Thus, we see that the data

for parametric estimation or inverse problems is dij ∼ u(ti, xj) where

u(t, x) is the total population density given by u(t, x;P ).
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Type III: Aggregate Dynamics

In this case, individual dynamics are not available. Instead, the

dynamics themselves depend on probability measure, e.g.,

∂u

∂t
+
∂2u

∂x2
= f(u, P ).

Here, as an example we can refer to the polarization of

inhomogeneous dielectric materials in the theory of electromagnetics

[BBL, BG1, BG2]. To obtain the macroscopic polarization, we sum

over all the parameters. We cannot separate dynamics to obtain

individual dynamics, and therefore we have an example, where the

dynamics for the E and H fields depend explicitly on the probability

measure P .

For inverse problems, data dij ≈ u(ti, xj) = u(ti, xj ;P ) in Type I,
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where dij ≈ E(ti, x̄j ;P ) in Type II. Notice that P ∈ P(Q), which is

the space of probability measures, where Q consists of “parameters”,

and P(Q) is a set of probability distributions over Q.

For example, in ordinary least square problems, we have

J(P ) =
∑
ij

|dij − u(ti, xj ;P )|2 or
∑
ij

|dij − E(ti, x̄j ;P )|2,

to be minimized over P ∈ P(Q) or over some subset of P(Q). We

need (for computational and theoretical considerations) a sense of

closeness of two probability distributions P1 and P2. The ideas of

local minima, continuity, “gradient”, etc., depend on a metric (or

topology) for P1 and P2.
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More fundamentally for Type II systems, the “well-posedness of

systems”, including existence and continuous dependence of solutions

on “parameters”, depends on the concept of P1 and P2 being close,

i.e., P → E(t, x̄;P ) is continuous.

We consider P(Q) as the space of probability measures or

distributions on Q. Let P1 and P2 be probability distributions. If on

the real line (−∞,∞) or (0,∞) we will sometimes not distinguish

between the probability measure P and its cumulative distribution

function F .
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We need to understand the concept of ρ(P1, P2). There are several

that metrize the weak* topology on P including:

Levy − ρL(P1, P2)

Prohorov − ρPR(P1, P2)

Bounded Lipschitz − ρBL(P1, P2)

and also some that do not metrize the weak* topology on P:

Total variation − ρTV (P1, P2)

Kolmogorov − ρK(P1, P2).

For relevant material, see [P], [B], and [H].
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Prohorov Metric

Previous developments in probability theory provide helpful results in

the pursuit of a possible complete computational methodology. One

of the most important tools in probability theory is the Prohorov

metric, which we will define. Let Q be a metric space with metric d.

Given a closed subset A of Q, define the ε-neighborhood of A as

Aε = {q ∈ Q : d(q̂, q) ≤ ε for some q̂ ∈ A}
= {q ∈ Q : inf

q̂∈A
d(q̂, q) ≤ ε}.

We define the Prohorov metric ρ : P(Q)× P(Q)→ R+ by

ρ(P1, P2) ≡ inf{ε > 0 : P1(A) ≤ P2(Aε) + ε, A closed ⊂ Q}.

This can be shown to be a metric on P(Q) and has many properties

including
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(a.) (P(Q), ρ) is a complete metric space;

(b.) If Q is compact, then (P(Q), ρ) is a compact metric space.

Note that the definition of ρ is not intuitive. For example, we do not

necessarily know what Pk → P in ρ means. We have the following

important characterizations [B]. Given Pk, P ∈ P(Q), the following

convergence statements are equivalent:

1. ρ(Pk, P )→ 0;

2.
∫
Q
fdPk(q)→

∫
Q
fdP (q) for all bounded, continuous f : Q→ R1;

3. Pk[A]→ P [A] for all Borel sets A ⊂ Q with P [∂A] = 0.

Thus, we immediately obtain the following results:

• Convergence in the ρ metric is equivalent to convergence in

distribution or so-called “weak” convergence of measures.

• Let C∗B(Q) denote the topological dual of CB(Q), where CB(Q)
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is the usual space of bounded continuous functions on Q with the

supremum norm. If we view P(Q) ⊂ C∗B(Q), convergence in the

ρ topology is equivalent to weak* convergence in P(Q). Note the

misnomer “weak convergence of measures” used by probabilists.

More importantly,

ρ(Pk, P )→ 0 is equivalent to

∫
Q

x(ti; q)dPk(q)→
∫
Q

x(ti; q)dP (q),

and Pk → P in ρ metric is equivalent to

E [x(ti; q)|Pk]→ E [x(ti; q)|P ]

or “convergence in expectation”. This yields that

P → J(P ) =
n∑
i=1

|E [x(ti; q)|P ]− d̂i|2

is continuous in the ρ topology. Continuity of P → J(P ) allows us to
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assert the existence of a solution to min J(P ) over P ∈ P(Q).

These results give us the following theorem.

Theorem 2. The Prohorov metric metrizes the weak* topology of

P(Q).

Now we may consider whether there are other (equivalent) metrics

that metrize the weak* topology on P. But first we point out an

application in statistics where the need for metrics on distributions

arises.

Robust Statistics

Inference procedures - “robust” to derivations in underlying

assumptions - “distributional robustness” insensitivity to “small”

derivations in distributions. There is a need for distributional metrics.
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• “Robust” < “Nonparametric” < “Distribution free” procedures

and statistical tests.

• Statisticians refer to the “weak” topology on P: (actually,

mathematically it is weak* topology on measures).

• “Weak” topology on P: weakest topology on P such that for

every bounded continuous ψ (ψ ∈ CB(Ω)) the map

P →
∫
Q

ψdP

is continuous, i.e. consider P ⊂ C∗B(Ω).

It is desirable to know when P(Q) is a Polish space. A Polish space is

a complete, separate, metrizable space.
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Levy Metric

On for Q = R1, where P1 ∼ cdf F1,

ρL(P1, P2) = inf{ε|∀x, P1(x− ε)− ε ≤ P2(x) ≤ P1(x+ ε) + ε}.

We can argue that it is symmetric and indeed defines a metric.

Remarks

•
√

2ρL(P1, P2) is maximum distance between graphs of P1, P2

measured along 45o direction. It is a theorem that the Levy

metric metrizes the weak topology of P.

• The Prohorov metric is more difficult to visualize but is

applicable when Q is any complete separable metric space (Polish

space), not just the real line (Levy case). For example, when Q is

a function space such as growth rates or mortality rates in

Sinko-Streiffer (mosquito fish problem), the Prohorov metric is
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applicable whereas the Levy metric is not.

We have already noted that both Levy and Prohorov metrics metrize

the weak topology on P, the former only when Q = R1. Moreover,

we can argue that for Q complete separable metric space, then

(P(Q), ρPR) is a complete separable metric space.

Separability: Qo is countably dense ⊂ Ω.

Po = {measures with finite support in Qo with rational masses}

= {P =
∑

finite

piδqi |pi rational, {qi} ⊂ Qo}
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Bounded Lipschitz metric:

Assume without loss of generality that distance function d on Q is

bounded by 1. If necessary, replace by d̃(q1, q2) = d(q1,q2)
1+d(q1,q2) . Define

ρBL(P1, P2) = sup
ψ∈Ψ

∣∣∣∣∫
Q

ψdP1 −
∫
Q

dP2

∣∣∣∣
Ψ = {ψ ∈ C(Q) : |ψ(q1)− ψ(q2)| ≤ d(q1, q2)}

Theorem 0.1. For all P1, P2 ∈ P(Q),

ρPR(P1, P2)2 ≤ ρBL(P1, P2) ≤ 2ρPR(P1, P2).

Thus, ρPR and ρBL define the same topology and hence ρBL also

metrizes the weak topology on P(Q).
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Other metrics

• Total variation:

ρTV (P1, P2) = sup
A∈B
|P1(A)− P2(A)|

• Kolmogorov: (Q = R1)

ρK(P1, P2) = sup
x∈R′

|P1(x)− P2(x)|

These metrics do not metrize the weak topology, but do satisfy

ρL ≤ ρPR ≤ ρTV
ρL ≤ ρK ≤ ρTV .
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Why is the knowledge about ρBL versus ρPR useful? We have that

∆k ≡
∣∣∣∣∫ G(g)dPk(g)−

∫
G(g)dP (g)

∣∣∣∣
=

∣∣∣∣∫ G(g)fk(g)dg −
∫
G(g)f(g)dg

∣∣∣∣
=

∣∣∣∣∫ G(g)[fk(g)− f(g)]dg

∣∣∣∣
≤ ρBL(Pk, P )

≤ 2ρPR(Pk, P ).

Therefore, if we know Pk → P in ρBR, it may be useful in direct

estimates. But ∆k → 0 is Prohorov metric convergence itself if

G ∈ CB(Q).
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