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Travel-time tomography

surface

Ω

qxs

q R1q R2q R3q R4q R5

given measured first arrival times T∗i at the receivers Ri

find v∗ : Ω̄→ R>0 velocity distribution

Idea minv∈A
∑

i |Ti(v)− T∗i |2, where

Ti(v) is the first arrival time at Ri given the velocity v
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Mathematical problem

• Ω ⊂ Rn (n = 2, 3) bounded domain,

• xs ∈ Ω source point,

• T∗ : ∂Ω→ R>0 measurements,

• velocity (slowness) model:

K = {a : Ω̄→ R | a(x) =
∑L

i=1 aiφi(x), amin ≤ ai ≤ amax}

(P) min
a∈K
J (a) =

1
2

∫
∂Ω
|Ta(x)− T∗(x)|2dS

where

Ta(x) = inf{
∫ 1

0
a(γ(r))|γ′(r)|dr | γ ∈ W1,∞([0, 1], Ω̄),

γ(0) = xs, γ(1) = x}.
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Evaluation of Ta

- Ray tracing (solution of BVPs for ODEs)

- Eikonal equation (Sei & Symes ’94)

given a : Ω̄→ R>0 continuous, xs ∈ Ω

find T : Ω̄→ R, such that

|∇T(x)| = a(x), x ∈ Ω \ {xs} (1)

∇T(x) · ν(x) ≥ 0, x ∈ ∂Ω (2)

T(xs) = 0 (3)

 PDE constrained optimisation problem
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Eikonal equation with Soner boundary condition

Definition A function T ∈ C0(Ω̄) is called a viscosity solution of (1), (2) if for
each ζ ∈ C∞(Rn): if T − ζ has a local maximum (minimum) at a point
x ∈ Ω \ {xs} (Ω̄ \ {xs}), then

|∇ζ(x)| ≤ a(x) (|∇ζ(x)| ≥ a(x)).

Theorem (Soner ’86, Capuzzo–Dolcetta & Lions ’90)

Problem (1), (2), (3) has a unique viscosity solution T ∈ C0,1(Ω̄), which is
given by

T(x) = inf{
∫ 1

0
a(γ(r))|γ′(r)|dr | γ ∈ W1,∞([0, 1], Ω̄),

γ(0) = xs, γ(1) = x}.
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Formal idea for uniqueness

Suppose that T1,T2 ∈ C0(Ω̄) ∩ C1(Ω̄ \ {xs}) are two solutions of (1),(2),(3).

Fix 0 < θ << 1 and choose x0 ∈ Ω̄ such that

(1− θ)T1(x0)− T2(x0) = max
x∈Ω̄
{(1− θ)T1(x)− T2(x)}.

Case 1 x0 ∈ Ω \ {xs}:

⇒ (1− θ)∇T1(x0)−∇T2(x0) = 0

⇒ (1− θ) |∇T1(x0)|︸ ︷︷ ︸
=a(x0)

= |∇T2(x0)|︸ ︷︷ ︸
=a(x0)
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Case 2 x0 ∈ ∂Ω:

Let v := − ∇T2(x0)
|∇T2(x0)| . Then

v · ν(x0) ≤ 0,
∂

∂v

(
(1− θ)T1 − T2

)
(x0) ≤ 0

⇒ |∇T2(x0)| ≤ (1− θ)∇T1(x0) · v ≤ (1− θ)|∇T1(x0)|  

In conclusion x0 = xs

⇒ max
x∈Ω̄
{(1− θ)T1(x)− T2(x)} = 0

θ ↘ 0 : T1(x) ≤ T2(x), x ∈ Ω̄.

Rigorous argument: Doubling of variables

Φ(x, y) = (1− θ)T1(x)− T2(y)− 1
ε
|x− y− εν(x0)|2 − 1

ρ
|y− x0|2
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Discretisation of the eikonal equation

Abgrall ’03, Leung & Qian ’06

• Ω̄h = {xα}: finite difference grid on Ω̄ ⊂ R2, xs ∈ Ωh

• Nα = {xβ ∈ Ω̄h | xβ is a neighbour of xα}.

given a : Ω̄→ R>0

find Th : Ω̄h → R such that Th(xs) = 0 and∑
xβ∈Nα

[(Th(xα)− Th(xβ)

hαβ

)+]2
= a(xα)2, xα ∈ Ω̄h \ {xs}.

Numerical solution: Fast Marching Method
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Fast marching

A discrete solution can be found efficiently, without iteration, using the fast
marching procedure, Sethian.

The idea behind this method is that the unique solution Tα at a grid point xα,
only depends on neighbouring values Tβ such that 0 ≤ Tβ < Tα so that the
solution can be obtained in increasing order of magnitude of the grid values
Tα. Solving the equation then becomes an issue of sorting the grid values.



Fast marching

First tag xα0 as known and tag as trial all points that are one grid point away
from this known point. Finally tag as far all remaining points. Now cycle
through the following Fast Marching Procedure:
• [Step 1] Compute a trial value of T̃α for every xα ∈ trial according to

discrete equation assuming that it is smaller than or equal to its trial
neighbours.

• [Step 2] Set xµ to be any trial point such that the trial values satisfy
T̃µ ≤ T̃α for all xα ∈ trial.

• [Step 3] Set Tµ = T̃µ for all such xµ and add xµ to known and remove
from trial.

• [Step 4] Tag all neighbours of known as trial if they are not known.
• [Step 5] If trial = {∅} STOP.
• [Step 6] Return to Step 1.



Fast marching

Lemma
The Fast Marching Procedure terminates in K cycles where K is the number
of distinct positive values taken by the solution Th .

Observe that the unique solution of the equation∑
xβ∈Nm,α

[(r − Uβ

hαβ

)+]2
= a(xα)2

defining the trial values may be found by solving a quadratic equation and
taking the largest root.



Error bound

Theorem

Let a : Ω̄→ R>0 be Lipschitz continuous, T : Ω̄→ R the viscosity solution
of (1), (2), (3) and Th : Ω̄h → R the corresponding discrete solution. Then

max
xα∈Ω̄h

|T(xα)− Th(xα)| ≤ C
√

h.

The constant C depends on Ω, minΩ̄ a and the Lipschitz constant of a.



Idea of proof

Choose xβ ∈ Ω̄h with

(1− µ
√

h)T(xβ)− Th(xβ) = max
xα∈Ω̄h

{(1− µ
√

h)T(xα)− Th(xα)}

Case 1 |xs − xβ| >
√

h

Use the fact that T is a viscosity solution and the properties of the scheme in
order to exclude this case.

Case 2 |xs − xβ| ≤
√

h

T(xβ)− Th(xβ) ≤ |T(xβ)− T(xs)|+ |Th(xs)− Th(xβ)| ≤ C
√

h
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The discrete functional

(Ph) min
a∈K
Jh(a) =

1
2

∑
xα∈∂Ωh

hα|Th(xα)− T∗(xα)|2 +
δh

2

∫
Ω
|∇a|2,

where limh→0 δh = 0.

Theorem

(i) (Ph) has a solution āh ∈ K. There exists a sequence h→ 0 such that
āh → ā and ā is a solution of (P).

(ii) If lim
h→0

δh√
h

= 0, then
∫

Ω
|∇ā|2 ≤

∫
Ω
|∇ã|2 for all solutions ã of (P).



The discrete functional

(Ph) min
a∈K
Jh(a) =

1
2

∑
xα∈∂Ωh

hα|Th(xα)− T∗(xα)|2 +
δh

2

∫
Ω
|∇a|2,

where limh→0 δh = 0.

Theorem
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Adjoint equation

given a =
∑L

i=1 aiφi with corresponding T = Ta

solve ∇ · (p∇Ta) = 0 in Ω \ {xs}; p
∂Ta

∂ν
= Ta − T∗ on ∂Ω

∂J
∂am

(a) =
1
2
∂

∂am

∫
∂Ω
|Ta − T∗|2 =

∫
∂Ω

(Ta − T∗)︸ ︷︷ ︸
=p ∂Ta

∂ν

∂Ta

∂am
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Ω
∇ ·
(
p∇Ta

)︸ ︷︷ ︸
=0

∂Ta

∂am
+

∫
Ω

p ∇Ta · ∇
∂Ta

∂am︸ ︷︷ ︸
= 1

2
∂
∂am
|∇Ta|2= 1

2
∂
∂am

a2

=

∫
Ω

paφm
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Discrete adjoint equation

given a ∈ K with corresponding discrete state Th : Ω̄h → R

find Ph : Ω̄h \ {xs} → R such that

∑
xβ∈Nα

([Th(xα)− Th(xβ)

hαβ

]+ Ph(xα)

hαβ
−
[Th(xβ)− Th(xα)

hαβ

]+ Ph(xβ)

hαβ

)

=


0 , xα ∈ Ωh \ {xs}

hα
h2

(
Th(xα)− T∗(xα)

)
, xα ∈ ∂Ωh.

Lemma The above problem has a unique solution.

Remark Ph can be efficiently calculated by using an ordering of the grid
points with respect to the size of Th.
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Derivative of Jh

Lemma

Let a =

L∑
i=1

aiφi ∈ K. Then, for m = 1, . . . ,L

∂Jh

∂am
(a) = h2

∑
xα∈Ω̄h\{xs}

Ph(xα)a(xα)φm(xα) + δh

∫
Ω
∇a · ∇φm

In practice

- min
a∈K
J (a) =

1
2

p∑
j=1

∫
∂Ω
|T j

a(x)− T j,∗(x)|2dS

- Minimisation of Jh by a projected gradient method
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Test example

Ω = [−1, 1]× [0, 2]

h = 0.02, δh = h,L = 121

T∗(xα) = Th(xα) + Λn(xα), xα ∈ Ω̄h, where

- Th is the discrete solution for a given a : Ω̄→ R>0;

- n(xα) ∈ [−1, 1] is random noise
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Figure: The distribution of 12 source points in Ω
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Behaviour of ‖a− ah‖

h ‖ahf − ah‖0 eoc
0.04 5.69 · 10−3 -
0.03 5.04 · 10−3 0.665
0.025 4.29 · 10−3 0.560
0.02 3.48 · 10−3 0.938
0.016 2.91 · 10−3 0.981

Effect of noise

Λ Jh(ah) ‖a− ah‖0

0 2.22 · 10−6 1.30 · 10−3

0.01 1.57 · 10−3 2.45 · 10−3

0.05 3.92 · 10−2 1.11 · 10−2

0.1 1.57 · 10−1 2.24 · 10−2
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Figure: a(x) (upper plots), ah(x) with L = 121, δh = h and 12 source points (lower
plots)



Concluding remarks

• Contribution

• Analysis of model and numerical analysis of scheme
• Efficient solution of discrete adjoint equation

• Issues

• Observations may not be the first arrival time
• Velocity model: the slowness may be discontinuous across interfaces

Another model

K = {a : Ω̄→ R|a(x) = (a1 − a0)φ(x) + a0φ(x)}

Jφ(a) = J (a) + σ
( ∫

Ω

[
ε

2
|∇φ|2 +

1
ε

W(φ)]dx
)


