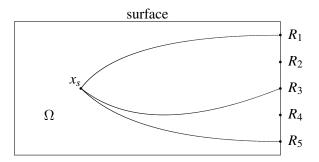
Numerical analysis of an inverse problem for the eikonal equation

Klaus Deckelnick (Magdeburg) Charles M. Elliott (Warwick) Vanessa Styles (Sussex) Num. Math. to appear

Warwick, May 2011

Travel-time tomography



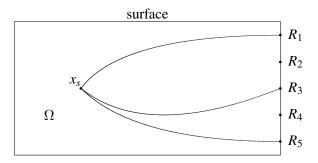
given measured first arrival times T_i^* at the receivers R_i

find $v^*: \overline{\Omega} \to \mathbb{R}_{>0}$ velocity distribution

Idea $\min_{v \in \mathcal{A}} \sum_i |T_i(v) - T_i^*|^2$, where

 $T_i(v)$ is the first arrival time at R_i given the velocity v

Travel-time tomography



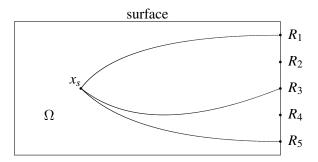
given measured first arrival times T_i^* at the receivers R_i

find $v^*: \overline{\Omega} \to \mathbb{R}_{>0}$ velocity distribution

Idea $\min_{v \in \mathcal{A}} \sum_i |T_i(v) - T_i^*|^2$, where

 $T_i(v)$ is the first arrival time at R_i given the velocity v

Travel-time tomography



given measured first arrival times T_i^* at the receivers R_i

find $v^*: \overline{\Omega} \to \mathbb{R}_{>0}$ velocity distribution

Idea $\min_{v \in A} \sum_i |T_i(v) - T_i^*|^2$, where $T_i(v)$ is the first arrival time at R_i given the velocity v

- $\Omega \subset \mathbb{R}^n \ (n = 2, 3)$ bounded domain,
- $x_s \in \Omega$ source point,
- $T^*: \partial \Omega \to \mathbb{R}_{>0}$ measurements,
- velocity (slowness) model:

 $K = \{a : \overline{\Omega} \to \mathbb{R} \mid a(x) = \sum_{i=1}^{L} a_i \phi_i(x), a_{\min} \le a_i \le a_{\max}\}$

(P)
$$\min_{a \in K} \mathcal{J}(a) = \frac{1}{2} \int_{\partial \Omega} |T_a(x) - T^*(x)|^2 dS$$

$$T_{a}(x) = \inf\{\int_{0}^{1} a(\gamma(r)) | \gamma'(r) | dr | \gamma \in W^{1,\infty}([0,1],\bar{\Omega}), \\ \gamma(0) = x_{s}, \gamma(1) = x\}.$$

- $\Omega \subset \mathbb{R}^n \ (n = 2, 3)$ bounded domain,
- $x_s \in \Omega$ source point,
- $T^*: \partial \Omega \to \mathbb{R}_{>0}$ measurements,
- velocity (slowness) model:

 $K = \{a : \overline{\Omega} \to \mathbb{R} \mid a(x) = \sum_{i=1}^{L} a_i \phi_i(x), a_{\min} \le a_i \le a_{\max}\}$

(P)
$$\min_{a \in K} \mathcal{J}(a) = \frac{1}{2} \int_{\partial \Omega} |T_a(x) - T^*(x)|^2 dS$$

$$T_{a}(x) = \inf\{\int_{0}^{1} a(\gamma(r)) | \gamma'(r) | dr | \gamma \in W^{1,\infty}([0,1],\bar{\Omega}), \\ \gamma(0) = x_{s}, \gamma(1) = x\}.$$

- $\Omega \subset \mathbb{R}^n \ (n = 2, 3)$ bounded domain,
- $x_s \in \Omega$ source point,
- $T^*: \partial \Omega \to \mathbb{R}_{>0}$ measurements,
- velocity (slowness) model:

$$K = \{a : \overline{\Omega} \to \mathbb{R} \mid a(x) = \sum_{i=1}^{L} a_i \phi_i(x), a_{\min} \le a_i \le a_{\max}\}$$

(P)
$$\min_{a \in K} \mathcal{J}(a) = \frac{1}{2} \int_{\partial \Omega} |T_a(x) - T^*(x)|^2 dS$$

$$T_{a}(x) = \inf\{\int_{0}^{1} a(\gamma(r)) | \gamma'(r) | dr | \gamma \in W^{1,\infty}([0,1],\bar{\Omega}), \\ \gamma(0) = x_{s}, \gamma(1) = x\}.$$

- $\Omega \subset \mathbb{R}^n \ (n = 2, 3)$ bounded domain,
- $x_s \in \Omega$ source point,
- $T^*: \partial \Omega \to \mathbb{R}_{>0}$ measurements,
- velocity (slowness) model:

$$K = \{a : \overline{\Omega} \to \mathbb{R} \mid a(x) = \sum_{i=1}^{L} a_i \phi_i(x), a_{\min} \le a_i \le a_{\max}\}$$

(P)
$$\min_{a \in K} \mathcal{J}(a) = \frac{1}{2} \int_{\partial \Omega} |T_a(x) - T^*(x)|^2 dS$$

$$T_{a}(x) = \inf\{\int_{0}^{1} a(\gamma(r)) | \gamma'(r) | dr | \gamma \in W^{1,\infty}([0,1],\bar{\Omega}), \\ \gamma(0) = x_{s}, \gamma(1) = x\}.$$

- $\Omega \subset \mathbb{R}^n \ (n = 2, 3)$ bounded domain,
- $x_s \in \Omega$ source point,
- $T^*: \partial \Omega \to \mathbb{R}_{>0}$ measurements,
- velocity (slowness) model:

$$K = \{a : \overline{\Omega} \to \mathbb{R} \mid a(x) = \sum_{i=1}^{L} a_i \phi_i(x), a_{\min} \le a_i \le a_{\max}\}$$

(P)
$$\min_{a \in K} \mathcal{J}(a) = \frac{1}{2} \int_{\partial \Omega} |T_a(x) - T^*(x)|^2 dS$$

$$T_{a}(x) = \inf\{\int_{0}^{1} a(\gamma(r)) |\gamma'(r)| dr \mid \gamma \in W^{1,\infty}([0,1],\bar{\Omega}), \\ \gamma(0) = x_{s}, \gamma(1) = x\}.$$

- Ray tracing (solution of BVPs for ODEs)

- Eikonal equation (Sei & Symes '94)

given $a: \overline{\Omega} \to \mathbb{R}_{>0}$ continuous, $x_s \in \Omega$ find $T: \overline{\Omega} \to \mathbb{R}$, such that

$$\begin{aligned} |\nabla T(x)| &= a(x), \quad x \in \Omega \setminus \{x_s\} \end{aligned} \tag{1}$$

$$\nabla T(x) \cdot \nu(x) &\geq 0, \quad x \in \partial \Omega \end{aligned} \tag{2}$$

$$T(x_s) &= 0 \end{aligned} \tag{3}$$

- Ray tracing (solution of BVPs for ODEs)
- Eikonal equation (Sei & Symes '94)

given $a: \overline{\Omega} \to \mathbb{R}_{>0}$ continuous, $x_s \in \Omega$ find $T: \overline{\Omega} \to \mathbb{R}$, such that

$$\begin{aligned} |\nabla T(x)| &= a(x), \quad x \in \Omega \setminus \{x_s\} \end{aligned} \tag{1}$$

$$\nabla T(x) \cdot \nu(x) &\geq 0, \quad x \in \partial \Omega \end{aligned} \tag{2}$$

$$T(x_s) &= 0 \end{aligned} \tag{3}$$

- Ray tracing (solution of BVPs for ODEs)
- Eikonal equation (Sei & Symes '94)

given $a: \overline{\Omega} \to \mathbb{R}_{>0}$ continuous, $x_s \in \Omega$ find $T: \overline{\Omega} \to \mathbb{R}$, such that

$$|\nabla T(x)| = a(x), \quad x \in \Omega \setminus \{x_s\}$$
(1)
$$\nabla T(x) \cdot \nu(x) \ge 0, \quad x \in \partial \Omega$$
(2)

$$T(x_s) = 0 \tag{3}$$

- Ray tracing (solution of BVPs for ODEs)
- Eikonal equation (Sei & Symes '94)

given $a : \overline{\Omega} \to \mathbb{R}_{>0}$ continuous, $x_s \in \Omega$ find $T : \overline{\Omega} \to \mathbb{R}$, such that

$$|\nabla T(x)| = a(x), \quad x \in \Omega \setminus \{x_s\}$$
(1)

$$\nabla T(x) \cdot \nu(x) \ge 0, \quad x \in \partial \Omega$$
 (2)

$$T(x_s) = 0 \tag{3}$$

Eikonal equation with Soner boundary condition

Definition A function $T \in C^0(\overline{\Omega})$ is called a viscosity solution of (1), (2) if for each $\zeta \in C^{\infty}(\mathbb{R}^n)$: if $T - \zeta$ has a local maximum (minimum) at a point $x \in \Omega \setminus \{x_s\}$ ($\overline{\Omega} \setminus \{x_s\}$), then

$$|\nabla \zeta(x)| \le a(x) \quad (|\nabla \zeta(x)| \ge a(x)).$$

Theorem (Soner '86, Capuzzo–Dolcetta & Lions '90)

Problem (1), (2), (3) has a unique viscosity solution $T \in C^{0,1}(\overline{\Omega})$, which is given by

$$T(x) = \inf\{\int_0^1 a(\gamma(r)) | \gamma'(r) | dr | \gamma \in W^{1,\infty}([0,1],\bar{\Omega}), \\ \gamma(0) = x_s, \gamma(1) = x\}.$$

Eikonal equation with Soner boundary condition

Definition A function $T \in C^0(\overline{\Omega})$ is called a viscosity solution of (1), (2) if for each $\zeta \in C^{\infty}(\mathbb{R}^n)$: if $T - \zeta$ has a local maximum (minimum) at a point $x \in \Omega \setminus \{x_s\}$ ($\overline{\Omega} \setminus \{x_s\}$), then

$$|\nabla \zeta(x)| \le a(x) \quad (|\nabla \zeta(x)| \ge a(x)).$$

Theorem (Soner '86, Capuzzo–Dolcetta & Lions '90)

Problem (1), (2), (3) has a unique viscosity solution $T \in C^{0,1}(\overline{\Omega})$, which is given by

$$T(x) = \inf\{\int_0^1 a(\gamma(r)) |\gamma'(r)| dr \mid \gamma \in W^{1,\infty}([0,1],\bar{\Omega}), \\ \gamma(0) = x_s, \gamma(1) = x\}.$$

Suppose that $T_1, T_2 \in C^0(\overline{\Omega}) \cap C^1(\overline{\Omega} \setminus \{x_s\})$ are two solutions of (1),(2),(3).

Fix 0 < heta << 1 and choose $x_0 \in \overline{\Omega}$ such that

$$(1-\theta)T_1(x_0) - T_2(x_0) = \max_{x \in \bar{\Omega}} \{ (1-\theta)T_1(x) - T_2(x) \}.$$

$$\Rightarrow (1-\theta)\nabla T_1(x_0) - \nabla T_2(x_0) = 0$$
$$\Rightarrow (1-\theta) \underbrace{|\nabla T_1(x_0)|}_{=a(x_0)} = \underbrace{|\nabla T_2(x_0)|}_{=a(x_0)} \quad \notin$$

Formal idea for uniqueness

Suppose that $T_1, T_2 \in C^0(\overline{\Omega}) \cap C^1(\overline{\Omega} \setminus \{x_s\})$ are two solutions of (1),(2),(3). Fix $0 < \theta << 1$ and choose $x_0 \in \overline{\Omega}$ such that

$$(1-\theta)T_1(x_0) - T_2(x_0) = \max_{x \in \bar{\Omega}} \{ (1-\theta)T_1(x) - T_2(x) \}.$$

$$\Rightarrow (1-\theta)\nabla T_1(x_0) - \nabla T_2(x_0) = 0$$
$$\Rightarrow (1-\theta) \underbrace{|\nabla T_1(x_0)|}_{=a(x_0)} = \underbrace{|\nabla T_2(x_0)|}_{=a(x_0)} \quad \Leftrightarrow$$

Formal idea for uniqueness

Suppose that $T_1, T_2 \in C^0(\overline{\Omega}) \cap C^1(\overline{\Omega} \setminus \{x_s\})$ are two solutions of (1),(2),(3). Fix $0 < \theta << 1$ and choose $x_0 \in \overline{\Omega}$ such that

$$(1-\theta)T_1(x_0) - T_2(x_0) = \max_{x \in \bar{\Omega}} \{ (1-\theta)T_1(x) - T_2(x) \}.$$

$$\Rightarrow (1-\theta)\nabla T_1(x_0) - \nabla T_2(x_0) = 0$$
$$\Rightarrow (1-\theta) \underbrace{|\nabla T_1(x_0)|}_{=a(x_0)} = \underbrace{|\nabla T_2(x_0)|}_{=a(x_0)} \quad \notin$$

Formal idea for uniqueness

Suppose that $T_1, T_2 \in C^0(\overline{\Omega}) \cap C^1(\overline{\Omega} \setminus \{x_s\})$ are two solutions of (1),(2),(3). Fix $0 < \theta << 1$ and choose $x_0 \in \overline{\Omega}$ such that

$$(1-\theta)T_1(x_0) - T_2(x_0) = \max_{x \in \bar{\Omega}} \{(1-\theta)T_1(x) - T_2(x)\}.$$

$$\Rightarrow (1-\theta)\nabla T_1(x_0) - \nabla T_2(x_0) = 0$$

$$\Rightarrow (1-\theta) \underbrace{|\nabla T_1(x_0)|}_{=a(x_0)} = \underbrace{|\nabla T_2(x_0)|}_{=a(x_0)} \quad \notin$$

Case 2
$$x_0 \in \partial \Omega$$
:
Let $v := -\frac{\nabla T_2(x_0)}{|\nabla T_2(x_0)|}$. Then
 $v \cdot \nu(x_0) \le 0, \quad \frac{\partial}{\partial \nu} ((1-\theta)T_1 - T_2)(x_0) \le 0$

 $\Rightarrow |\nabla T_2(x_0)| \le (1-\theta) \nabla T_1(x_0) \cdot \nu \le (1-\theta) |\nabla T_1(x_0)| \quad \notin$

In conclusion $x_0 = x_s$

$$\Rightarrow \max_{x\in\bar{\Omega}} \{ (1-\theta)T_1(x) - T_2(x) \} = 0$$

$$0 \searrow 0: \quad T_1(x) \le T_2(x), x \in \bar{\Omega}.$$

$$\Phi(x,y) = (1-\theta)T_1(x) - T_2(y) - \frac{1}{\epsilon}|x - y - \epsilon\nu(x_0)|^2 - \frac{1}{\rho}|y - x_0|^2$$

Case 2
$$x_0 \in \partial \Omega$$
:
Let $v := -\frac{\nabla T_2(x_0)}{|\nabla T_2(x_0)|}$. Then
 $v \cdot \nu(x_0) \le 0, \quad \frac{\partial}{\partial \nu} ((1-\theta)T_1 - T_2)(x_0) \le 0$
 $\Rightarrow |\nabla T_2(x_0)| \le (1-\theta)\nabla T_1(x_0) \cdot \nu \le (1-\theta)|\nabla T_1(x_0)| \quad \notin$

In conclusion $x_0 = x_s$

$$\Rightarrow \max_{x\in\bar{\Omega}} \{ (1-\theta)T_1(x) - T_2(x) \} = 0$$

$$\theta \searrow 0: \quad T_1(x) \le T_2(x), x \in \bar{\Omega}.$$

$$\Phi(x,y) = (1-\theta)T_1(x) - T_2(y) - \frac{1}{\epsilon}|x - y - \epsilon\nu(x_0)|^2 - \frac{1}{\rho}|y - x_0|^2$$

Case 2
$$x_0 \in \partial \Omega$$
:
Let $v := -\frac{\nabla T_2(x_0)}{|\nabla T_2(x_0)|}$. Then
 $v \cdot \nu(x_0) \le 0, \quad \frac{\partial}{\partial v} ((1-\theta)T_1 - T_2)(x_0) \le 0$
 $\Rightarrow |\nabla T_2(x_0)| \le (1-\theta)\nabla T_1(x_0) \cdot v \le (1-\theta)|\nabla T_1(x_0)| \quad \notin$

In conclusion $x_0 = x_s$

$$\Rightarrow \max_{x\in\bar{\Omega}} \{(1-\theta)T_1(x) - T_2(x)\} = 0$$

$$\theta \searrow 0: \quad T_1(x) \le T_2(x), x \in \bar{\Omega}.$$

$$\Phi(x,y) = (1-\theta)T_1(x) - T_2(y) - \frac{1}{\epsilon}|x - y - \epsilon\nu(x_0)|^2 - \frac{1}{\rho}|y - x_0|^2$$

Case 2
$$x_0 \in \partial \Omega$$
:
Let $v := -\frac{\nabla T_2(x_0)}{|\nabla T_2(x_0)|}$. Then
 $v \cdot \nu(x_0) \le 0, \quad \frac{\partial}{\partial v} ((1-\theta)T_1 - T_2)(x_0) \le 0$
 $\Rightarrow |\nabla T_2(x_0)| \le (1-\theta)\nabla T_1(x_0) \cdot v \le (1-\theta)|\nabla T_1(x_0)| \quad \notin$

In conclusion $x_0 = x_s$

$$\Rightarrow \max_{x\in\bar{\Omega}} \{ (1-\theta)T_1(x) - T_2(x) \} = 0$$

$$\theta \searrow 0: \quad T_1(x) \le T_2(x), x \in \bar{\Omega}.$$

$$\Phi(x,y) = (1-\theta)T_1(x) - T_2(y) - \frac{1}{\epsilon}|x-y-\epsilon\nu(x_0)|^2 - \frac{1}{\rho}|y-x_0|^2$$

Discretisation of the eikonal equation

Abgrall '03, Leung & Qian '06

- $\bar{\Omega}_h = \{x_\alpha\}$: finite difference grid on $\bar{\Omega} \subset \mathbb{R}^2, x_s \in \Omega_h$
- $\mathcal{N}_{\alpha} = \{x_{\beta} \in \overline{\Omega}_h \, | \, x_{\beta} \text{ is a neighbour of } x_{\alpha}\}.$

given $a : \overline{\Omega} \to \mathbb{R}_{>0}$ find $T_h : \overline{\Omega}_h \to \mathbb{R}$ such that $T_h(x_s) = 0$ and $\sum_{i \in I} \left[\left(\frac{T_h(x_\alpha) - T_h(x_\beta)}{h_{\alpha\beta}} \right)^+ \right]^2 = a(x_\alpha)^2, \quad x_\alpha \in \overline{\Omega}_h \setminus \{x_s\}.$

Numerical solution: Fast Marching Method

Discretisation of the eikonal equation

Abgrall '03, Leung & Qian '06

given $a : \overline{\Omega} \to \mathbb{R}_{>0}$ find $T_h : \overline{\Omega}_h \to \mathbb{R}$ such that $T_h(x_s) = 0$ and $\sum_{x_\beta \in \mathcal{N}_\alpha} \left[\left(\frac{T_h(x_\alpha) - T_h(x_\beta)}{h_{\alpha\beta}} \right)^+ \right]^2 = a(x_\alpha)^2, \quad x_\alpha \in \overline{\Omega}_h \setminus \{x_s\}.$

Numerical solution: Fast Marching Method

Discretisation of the eikonal equation

Abgrall '03, Leung & Qian '06

given $a : \overline{\Omega} \to \mathbb{R}_{>0}$ find $T_h : \overline{\Omega}_h \to \mathbb{R}$ such that $T_h(x_s) = 0$ and $\sum_{x_\beta \in \mathcal{N}_\alpha} \left[\left(\frac{T_h(x_\alpha) - T_h(x_\beta)}{h_{\alpha\beta}} \right)^+ \right]^2 = a(x_\alpha)^2, \quad x_\alpha \in \overline{\Omega}_h \setminus \{x_s\}.$

Numerical solution: Fast Marching Method

A discrete solution can be found efficiently, without iteration, using the fast marching procedure, Sethian.

The idea behind this method is that the unique solution T_{α} at a grid point x_{α} , only depends on neighbouring values T_{β} such that $0 \le T_{\beta} < T_{\alpha}$ so that the solution can be obtained in increasing order of magnitude of the grid values T_{α} . Solving the equation then becomes an issue of sorting the grid values. First tag x_{α_0} as *known* and tag as *trial* all points that are one grid point away from this *known* point. Finally tag as *far* all remaining points. Now cycle through the following *Fast Marching Procedure*:

- [Step 1] Compute a trial value of *T̃*_α for every *x*_α ∈ *trial* according to discrete equation assuming that it is smaller than or equal to its *trial* neighbours.
- [Step 2] Set x_{μ} to be any *trial* point such that the trial values satisfy $\tilde{T}_{\mu} \leq \tilde{T}_{\alpha}$ for all $x_{\alpha} \in trial$.
- [Step 3] Set $T_{\mu} = \tilde{T}_{\mu}$ for all such x_{μ} and add x_{μ} to *known* and remove from *trial*.
- [Step 4] Tag all neighbours of *known* as *trial* if they are not *known*.
- [Step 5] If $trial = \{\emptyset\}$ STOP.
- [Step 6] Return to Step 1.

Lemma

The Fast Marching Procedure terminates in K cycles where K is the number of distinct positive values taken by the solution T_h .

Observe that the unique solution of the equation

$$\sum_{x_{\beta}\in\mathcal{N}_{m,\alpha}}\left[\left(\frac{r-U_{\beta}}{h_{\alpha\beta}}\right)^{+}\right]^{2}=a(x_{\alpha})^{2}$$

defining the trial values may be found by solving a quadratic equation and taking the largest root.

Theorem

Let $a: \overline{\Omega} \to \mathbb{R}_{>0}$ be Lipschitz continuous, $T: \overline{\Omega} \to \mathbb{R}$ the viscosity solution of (1), (2), (3) and $T_h: \overline{\Omega}_h \to \mathbb{R}$ the corresponding discrete solution. Then

$$\max_{x_{\alpha}\in\bar{\Omega}_{h}}|T(x_{\alpha})-T_{h}(x_{\alpha})|\leq C\sqrt{h}.$$

The constant C depends on Ω , $\min_{\overline{\Omega}} a$ and the Lipschitz constant of a.

Idea of proof

Choose $x_{\beta} \in \overline{\Omega}_h$ with

$$(1-\mu\sqrt{h})T(x_{\beta})-T_{h}(x_{\beta})=\max_{x_{\alpha}\in\bar{\Omega}_{h}}\left\{(1-\mu\sqrt{h})T(x_{\alpha})-T_{h}(x_{\alpha})\right\}$$

Case 1
$$|x_s - x_\beta| > \sqrt{h}$$

Use the fact that T is a viscosity solution and the properties of the scheme in order to exclude this case.

Case 2 $|x_s - x_\beta| \le \sqrt{h}$

 $T(x_{\beta}) - T_h(x_{\beta}) \le |T(x_{\beta}) - T(x_s)| + |T_h(x_s) - T_h(x_{\beta})| \le C\sqrt{h}$

Idea of proof

Choose $x_{\beta} \in \overline{\Omega}_h$ with

$$(1-\mu\sqrt{h})T(x_{\beta})-T_{h}(x_{\beta})=\max_{x_{\alpha}\in\bar{\Omega}_{h}}\{(1-\mu\sqrt{h})T(x_{\alpha})-T_{h}(x_{\alpha})\}$$

Case 1 $|x_s - x_\beta| > \sqrt{h}$

Use the fact that T is a viscosity solution and the properties of the scheme in order to exclude this case.

Case 2 $|x_s - x_\beta| \le \sqrt{h}$

 $T(x_{\beta}) - T_h(x_{\beta}) \le |T(x_{\beta}) - T(x_s)| + |T_h(x_s) - T_h(x_{\beta})| \le C\sqrt{h}$

Idea of proof

Choose $x_{\beta} \in \overline{\Omega}_h$ with

$$(1-\mu\sqrt{h})T(x_{\beta})-T_{h}(x_{\beta})=\max_{x_{\alpha}\in\bar{\Omega}_{h}}\{(1-\mu\sqrt{h})T(x_{\alpha})-T_{h}(x_{\alpha})\}$$

Case 1
$$|x_s - x_\beta| > \sqrt{h}$$

Use the fact that T is a viscosity solution and the properties of the scheme in order to exclude this case.

Case 2
$$|x_s - x_\beta| \le \sqrt{h}$$

 $T(x_\beta) - T_h(x_\beta) \le |T(x_\beta) - T(x_s)| + |T_h(x_s) - T_h(x_\beta)| \le C\sqrt{h}$

The discrete functional

$$(\mathbf{P_h}) \qquad \min_{a \in K} \mathcal{J}_h(a) = \frac{1}{2} \sum_{x_\alpha \in \partial \Omega_h} h_\alpha |T_h(x_\alpha) - T^*(x_\alpha)|^2 + \frac{\delta_h}{2} \int_{\Omega} |\nabla a|^2,$$

where $\lim_{h\to 0} \delta_h = 0$.

Theorem

(i) $(\mathbf{P_h})$ has a solution $\bar{a}_h \in K$. There exists a sequence $h \to 0$ such that $\bar{a}_h \to \bar{a}$ and \bar{a} is a solution of (\mathbf{P}) .

(ii) If
$$\lim_{h\to 0} \frac{\delta_h}{\sqrt{h}} = 0$$
, then $\int_{\Omega} |\nabla \bar{a}|^2 \le \int_{\Omega} |\nabla \tilde{a}|^2$ for all solutions \tilde{a} of (**P**).

The discrete functional

$$(\mathbf{P}_{\mathbf{h}}) \qquad \min_{a \in K} \mathcal{J}_h(a) = \frac{1}{2} \sum_{x_\alpha \in \partial \Omega_h} h_\alpha |T_h(x_\alpha) - T^*(x_\alpha)|^2 + \frac{\delta_h}{2} \int_{\Omega} |\nabla a|^2,$$

where $\lim_{h\to 0} \delta_h = 0$.

Theorem

(i) $(\mathbf{P}_{\mathbf{h}})$ has a solution $\bar{a}_h \in K$. There exists a sequence $h \to 0$ such that $\bar{a}_h \to \bar{a}$ and \bar{a} is a solution of (\mathbf{P}) .

(ii) If $\lim_{h\to 0} \frac{\delta_h}{\sqrt{h}} = 0$, then $\int_{\Omega} |\nabla \bar{a}|^2 \le \int_{\Omega} |\nabla \tilde{a}|^2$ for all solutions \tilde{a} of (**P**).

The discrete functional

$$(\mathbf{P}_{\mathbf{h}}) \qquad \min_{a \in K} \mathcal{J}_h(a) = \frac{1}{2} \sum_{x_\alpha \in \partial \Omega_h} h_\alpha |T_h(x_\alpha) - T^*(x_\alpha)|^2 + \frac{\delta_h}{2} \int_{\Omega} |\nabla a|^2,$$

where $\lim_{h\to 0} \delta_h = 0$.

Theorem

(i) $(\mathbf{P}_{\mathbf{h}})$ has a solution $\bar{a}_h \in K$. There exists a sequence $h \to 0$ such that $\bar{a}_h \to \bar{a}$ and \bar{a} is a solution of (\mathbf{P}) .

(ii) If
$$\lim_{h\to 0} \frac{\delta_h}{\sqrt{h}} = 0$$
, then $\int_{\Omega} |\nabla \bar{a}|^2 \le \int_{\Omega} |\nabla \tilde{a}|^2$ for all solutions \tilde{a} of (**P**).

given $a = \sum_{i=1}^{L} a_i \phi_i$ with corresponding $T = T_a$ solve $\nabla \cdot (p \nabla T_a) = 0$ in $\Omega \setminus \{x_s\}; \quad p \frac{\partial T_a}{\partial \nu} = T_a - T^*$ on $\partial \Omega$

$$\frac{\partial \mathcal{J}}{\partial a_m}(a) = \frac{1}{2} \frac{\partial}{\partial a_m} \int_{\partial \Omega} |T_a - T^*|^2 = \int_{\partial \Omega} \underbrace{(T_a - T^*)}_{=p \frac{\partial T_a}{\partial \nu}} \frac{\partial T_a}{\partial a_m}$$
$$= \int_{\Omega} \underbrace{\nabla \cdot (p \nabla T_a)}_{=0} \frac{\partial T_a}{\partial a_m} + \int_{\Omega} p \underbrace{\nabla T_a \cdot \nabla \frac{\partial T_a}{\partial a_m}}_{=\frac{1}{2} \frac{\partial}{\partial a_m} |\nabla T_a|^2 = \frac{1}{2} \frac{\partial}{\partial a_m} d^2}$$
$$= \int p a \phi_m$$

given
$$a = \sum_{i=1}^{L} a_i \phi_i$$
 with corresponding $T = T_a$
solve $\nabla \cdot (p \nabla T_a) = 0$ in $\Omega \setminus \{x_s\}; \quad p \frac{\partial T_a}{\partial \nu} = T_a - T^*$ on $\partial \Omega$

$$\begin{aligned} \frac{\partial \mathcal{J}}{\partial a_m}(a) &= \frac{1}{2} \frac{\partial}{\partial a_m} \int_{\partial \Omega} |T_a - T^*|^2 = \int_{\partial \Omega} \underbrace{(T_a - T^*)}_{=p \frac{\partial T_a}{\partial \nu}} \frac{\partial T_a}{\partial a_m} \\ &= \int_{\Omega} \underbrace{\nabla \cdot (p \nabla T_a)}_{=p \frac{\partial T_a}{\partial a_m}} \frac{\partial T_a}{\partial a_m} + \int_{\Omega} p \underbrace{\nabla T_a \cdot \nabla \frac{\partial T_a}{\partial a_m}}_{=p \frac{\partial T_a}{\partial \mu}} \end{aligned}$$

given
$$a = \sum_{i=1}^{L} a_i \phi_i$$
 with corresponding $T = T_a$
solve $\nabla \cdot (p \nabla T_a) = 0$ in $\Omega \setminus \{x_s\}; \quad p \frac{\partial T_a}{\partial \nu} = T_a - T^*$ on $\partial \Omega$

$$\begin{aligned} \frac{\partial \mathcal{J}}{\partial a_m}(a) &= \frac{1}{2} \frac{\partial}{\partial a_m} \int_{\partial \Omega} |T_a - T^*|^2 = \int_{\partial \Omega} \underbrace{(T_a - T^*)}_{=p \frac{\partial T_a}{\partial \nu}} \frac{\partial T_a}{\partial a_m} \\ &= \int_{\Omega} \underbrace{\nabla \cdot \left(p \nabla T_a\right)}_{=0} \frac{\partial T_a}{\partial a_m} + \int_{\Omega} p \underbrace{\nabla T_a \cdot \nabla \frac{\partial T_a}{\partial a_m}}_{=\frac{1}{2} \frac{\partial}{\partial a_m} |\nabla T_a|^2 = \frac{1}{2} \frac{\partial}{\partial a_m} a^2} \\ &= \int_{\Omega} p a \phi_m \end{aligned}$$

given
$$a = \sum_{i=1}^{L} a_i \phi_i$$
 with corresponding $T = T_a$
solve $\nabla \cdot (p \nabla T_a) = 0$ in $\Omega \setminus \{x_s\}; \quad p \frac{\partial T_a}{\partial \nu} = T_a - T^*$ on $\partial \Omega$

$$\begin{aligned} \frac{\partial \mathcal{J}}{\partial a_m}(a) &= \frac{1}{2} \frac{\partial}{\partial a_m} \int_{\partial \Omega} |T_a - T^*|^2 = \int_{\partial \Omega} \underbrace{(T_a - T^*)}_{=p \frac{\partial T_a}{\partial \nu}} \frac{\partial T_a}{\partial a_m} \\ &= \int_{\Omega} \underbrace{\nabla \cdot (p \nabla T_a)}_{=0} \frac{\partial T_a}{\partial a_m} + \int_{\Omega} p \underbrace{\nabla T_a \cdot \nabla \frac{\partial T_a}{\partial a_m}}_{=\frac{1}{2} \frac{\partial}{\partial a_m} |\nabla T_a|^2 = \frac{1}{2} \frac{\partial}{\partial a_m} a^2} \\ &= \int_{\Omega} p a \phi_m \end{aligned}$$

given
$$a = \sum_{i=1}^{L} a_i \phi_i$$
 with corresponding $T = T_a$
solve $\nabla \cdot (p \nabla T_a) = 0$ in $\Omega \setminus \{x_s\}; \quad p \frac{\partial T_a}{\partial \nu} = T_a - T^*$ on $\partial \Omega$

$$\frac{\partial \mathcal{J}}{\partial a_m}(a) = \frac{1}{2} \frac{\partial}{\partial a_m} \int_{\partial \Omega} |T_a - T^*|^2 = \int_{\partial \Omega} \underbrace{(T_a - T^*)}_{=p \frac{\partial T_a}{\partial \nu}} \frac{\partial T_a}{\partial a_m}$$
$$= \int_{\Omega} \underbrace{\nabla \cdot (p \nabla T_a)}_{=0} \frac{\partial T_a}{\partial a_m} + \int_{\Omega} p \underbrace{\nabla T_a \cdot \nabla \frac{\partial T_a}{\partial a_m}}_{=\frac{1}{2} \frac{\partial}{\partial a_m} |\nabla T_a|^2 = \frac{1}{2} \frac{\partial}{\partial a_m} a^2}$$
$$= \int_{\Omega} p a \phi_m$$

given
$$a = \sum_{i=1}^{L} a_i \phi_i$$
 with corresponding $T = T_a$
solve $\nabla \cdot (p \nabla T_a) = 0$ in $\Omega \setminus \{x_s\}; \quad p \frac{\partial T_a}{\partial \nu} = T_a - T^*$ on $\partial \Omega$

$$\frac{\partial \mathcal{J}}{\partial a_m}(a) = \frac{1}{2} \frac{\partial}{\partial a_m} \int_{\partial \Omega} |T_a - T^*|^2 = \int_{\partial \Omega} \underbrace{(T_a - T^*)}_{=p \frac{\partial T_a}{\partial \nu}} \frac{\partial T_a}{\partial a_m}$$
$$= \int_{\Omega} \underbrace{\nabla \cdot (p \nabla T_a)}_{=0} \frac{\partial T_a}{\partial a_m} + \int_{\Omega} p \underbrace{\nabla T_a \cdot \nabla \frac{\partial T_a}{\partial a_m}}_{=\frac{1}{2} \frac{\partial}{\partial a_m} |\nabla T_a|^2 = \frac{1}{2} \frac{\partial}{\partial a_m} a^2}$$
$$= \int_{\Omega} p a \phi_m$$

given $a \in K$ with corresponding discrete state $T_h : \overline{\Omega}_h \to \mathbb{R}$ find $P_h : \overline{\Omega}_h \setminus \{x_s\} \to \mathbb{R}$ such that

$$\sum_{x_{\beta}\in\mathcal{N}_{\alpha}} \left(\left[\frac{T_{h}(x_{\alpha}) - T_{h}(x_{\beta})}{h_{\alpha\beta}} \right]^{+} \frac{P_{h}(x_{\alpha})}{h_{\alpha\beta}} - \left[\frac{T_{h}(x_{\beta}) - T_{h}(x_{\alpha})}{h_{\alpha\beta}} \right]^{+} \frac{P_{h}(x_{\beta})}{h_{\alpha\beta}} \right)$$
$$= \begin{cases} 0 & , x_{\alpha} \in \Omega_{h} \setminus \{x_{s}\} \\ \frac{h_{\alpha}}{h^{2}} \left(T_{h}(x_{\alpha}) - T^{*}(x_{\alpha}) \right) & , x_{\alpha} \in \partial\Omega_{h}. \end{cases}$$

Lemma The above problem has a unique solution.

given $a \in K$ with corresponding discrete state $T_h : \overline{\Omega}_h \to \mathbb{R}$ find $P_h : \overline{\Omega}_h \setminus \{x_s\} \to \mathbb{R}$ such that

$$\sum_{x_{\beta} \in \mathcal{N}_{\alpha}} \left(\left[\frac{T_{h}(x_{\alpha}) - T_{h}(x_{\beta})}{h_{\alpha\beta}} \right]^{+} \frac{P_{h}(x_{\alpha})}{h_{\alpha\beta}} - \left[\frac{T_{h}(x_{\beta}) - T_{h}(x_{\alpha})}{h_{\alpha\beta}} \right]^{+} \frac{P_{h}(x_{\beta})}{h_{\alpha\beta}} \right)$$
$$= \begin{cases} 0 & , x_{\alpha} \in \Omega_{h} \setminus \{x_{s}\} \\ \frac{h_{\alpha}}{h^{2}} \left(T_{h}(x_{\alpha}) - T^{*}(x_{\alpha}) \right) & , x_{\alpha} \in \partial\Omega_{h}. \end{cases}$$

Lemma The above problem has a unique solution.

given $a \in K$ with corresponding discrete state $T_h : \overline{\Omega}_h \to \mathbb{R}$ find $P_h : \overline{\Omega}_h \setminus \{x_s\} \to \mathbb{R}$ such that

$$\sum_{x_{\beta} \in \mathcal{N}_{\alpha}} \left(\left[\frac{T_{h}(x_{\alpha}) - T_{h}(x_{\beta})}{h_{\alpha\beta}} \right]^{+} \frac{P_{h}(x_{\alpha})}{h_{\alpha\beta}} - \left[\frac{T_{h}(x_{\beta}) - T_{h}(x_{\alpha})}{h_{\alpha\beta}} \right]^{+} \frac{P_{h}(x_{\beta})}{h_{\alpha\beta}} \right)$$
$$= \begin{cases} 0 & , x_{\alpha} \in \Omega_{h} \setminus \{x_{s}\} \\ \frac{h_{\alpha}}{h^{2}} \left(T_{h}(x_{\alpha}) - T^{*}(x_{\alpha}) \right) & , x_{\alpha} \in \partial\Omega_{h}. \end{cases}$$

Lemma The above problem has a unique solution.

given $a \in K$ with corresponding discrete state $T_h : \overline{\Omega}_h \to \mathbb{R}$ find $P_h : \overline{\Omega}_h \setminus \{x_s\} \to \mathbb{R}$ such that

$$\begin{split} \sum_{x_{\beta} \in \mathcal{N}_{\alpha}} \left(\left[\frac{T_{h}(x_{\alpha}) - T_{h}(x_{\beta})}{h_{\alpha\beta}} \right]^{+} \frac{P_{h}(x_{\alpha})}{h_{\alpha\beta}} - \left[\frac{T_{h}(x_{\beta}) - T_{h}(x_{\alpha})}{h_{\alpha\beta}} \right]^{+} \frac{P_{h}(x_{\beta})}{h_{\alpha\beta}} \right) \\ &= \begin{cases} 0 & , x_{\alpha} \in \Omega_{h} \setminus \{x_{s}\} \\ \frac{h_{\alpha}}{h^{2}} \left(T_{h}(x_{\alpha}) - T^{*}(x_{\alpha}) \right) & , x_{\alpha} \in \partial\Omega_{h}. \end{cases} \end{split}$$

Lemma The above problem has a unique solution.

Lemma

Let
$$a = \sum_{i=1}^{L} a_i \phi_i \in K$$
. Then, for $m = 1, ..., L$
$$\frac{\partial \mathcal{J}_h}{\partial a_m}(a) = h^2 \sum_{x_\alpha \in \overline{\Omega}_h \setminus \{x_s\}} P_h(x_\alpha) a(x_\alpha) \phi_m(x_\alpha) + \delta_h \int_{\Omega} \nabla a \cdot \nabla \phi_m$$

In practice

$$-\min_{a\in K}\mathcal{J}(a) = \frac{1}{2}\sum_{j=1}^{p}\int_{\partial\Omega}|T_a^j(x) - T^{j,*}(x)|^2dS$$

- Minimisation of \mathcal{J}_h by a projected gradient method

Lemma

Let
$$a = \sum_{i=1}^{L} a_i \phi_i \in K$$
. Then, for $m = 1, ..., L$
$$\frac{\partial \mathcal{J}_h}{\partial a_m}(a) = h^2 \sum_{x_\alpha \in \overline{\Omega}_h \setminus \{x_s\}} P_h(x_\alpha) a(x_\alpha) \phi_m(x_\alpha) + \delta_h \int_{\Omega} \nabla a \cdot \nabla \phi_m$$

In practice

$$-\min_{a\in K}\mathcal{J}(a) = \frac{1}{2}\sum_{j=1}^p \int_{\partial\Omega} |T_a^j(x) - T^{j,*}(x)|^2 dS$$

- Minimisation of \mathcal{J}_h by a projected gradient method

Lemma

Let
$$a = \sum_{i=1}^{L} a_i \phi_i \in K$$
. Then, for $m = 1, ..., L$
$$\frac{\partial \mathcal{J}_h}{\partial a_m}(a) = h^2 \sum_{x_\alpha \in \overline{\Omega}_h \setminus \{x_s\}} P_h(x_\alpha) a(x_\alpha) \phi_m(x_\alpha) + \delta_h \int_{\Omega} \nabla a \cdot \nabla \phi_m$$

In practice

$$-\min_{a\in K}\mathcal{J}(a) = \frac{1}{2}\sum_{j=1}^p \int_{\partial\Omega} |T_a^j(x) - T^{j,*}(x)|^2 dS$$

- Minimisation of \mathcal{J}_h by a projected gradient method

Test example

 $\Omega = [-1,1] \times [0,2]$

 $h = 0.02, \delta_h = h, L = 121$

 $T^*(x_{\alpha}) = T_h(x_{\alpha}) + \Lambda n(x_{\alpha}), x_{\alpha} \in \overline{\Omega}_h$, where

- T_h is the discrete solution for a given $a: \overline{\Omega} \to \mathbb{R}_{>0}$;

 $-n(x_{\alpha}) \in [-1, 1]$ is random noise

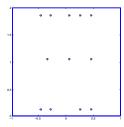


Figure: The distribution of 12 source points in Ω

Test example

 $\Omega = [-1,1] \times [0,2]$

 $h = 0.02, \delta_h = h, L = 121$

$$T^*(x_{\alpha}) = T_h(x_{\alpha}) + \Lambda n(x_{\alpha}), x_{\alpha} \in \overline{\Omega}_h$$
, where

- T_h is the discrete solution for a given $a: \overline{\Omega} \to \mathbb{R}_{>0}$;

- $n(x_{\alpha}) \in [-1, 1]$ is random noise

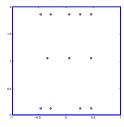


Figure: The distribution of 12 source points in Ω

Test example

 $\Omega = [-1,1] \times [0,2]$

 $h = 0.02, \delta_h = h, L = 121$

$$T^*(x_{\alpha}) = T_h(x_{\alpha}) + \Lambda n(x_{\alpha}), x_{\alpha} \in \overline{\Omega}_h$$
, where

- T_h is the discrete solution for a given $a: \overline{\Omega} \to \mathbb{R}_{>0}$;

- $n(x_{\alpha}) \in [-1, 1]$ is random noise

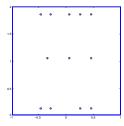


Figure: The distribution of 12 source points in Ω

Behaviour of $||a - a_h||$

h	$\ a_{h_f} - a_h\ _0$	eoc
0.04	$5.69 \cdot 10^{-3}$	-
0.03	$5.04 \cdot 10^{-3}$	0.665
0.025	$4.29 \cdot 10^{-3}$	0.560
0.02	$3.48 \cdot 10^{-3}$	0.938
0.016	$2.91 \cdot 10^{-3}$	0.981

Effect of noise

Λ	$\mathcal{J}_h(a_h)$	$ a - a_h _0$
0	$2.22 \cdot 10^{-6}$	$1.30 \cdot 10^{-3}$
0.01	$1.57 \cdot 10^{-3}$	$2.45 \cdot 10^{-3}$
0.05	$3.92 \cdot 10^{-2}$	$1.11 \cdot 10^{-2}$
0.1	$1.57 \cdot 10^{-1}$	$2.24 \cdot 10^{-2}$

Behaviour of $||a - a_h||$

h	$ a_{h_f} - a_h _0$	eoc
0.04	$5.69 \cdot 10^{-3}$	-
0.03	$5.04 \cdot 10^{-3}$	0.665
0.025	$4.29 \cdot 10^{-3}$	0.560
0.02	$3.48 \cdot 10^{-3}$	0.938
0.016	$2.91 \cdot 10^{-3}$	0.981

Effect of noise

Λ	$\mathcal{J}_h(a_h)$	$ a - a_h _0$
0	$2.22 \cdot 10^{-6}$	$1.30 \cdot 10^{-3}$
0.01	$1.57 \cdot 10^{-3}$	$2.45 \cdot 10^{-3}$
0.05	$3.92 \cdot 10^{-2}$	$1.11 \cdot 10^{-2}$
0.1	$1.57 \cdot 10^{-1}$	$2.24 \cdot 10^{-2}$

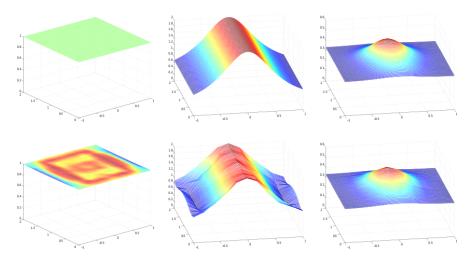


Figure: a(x) (upper plots), $a_h(x)$ with L = 121, $\delta_h = h$ and 12 source points (lower plots)

Concluding remarks

• Contribution

- Analysis of model and numerical analysis of scheme
- Efficient solution of discrete adjoint equation

• Issues

- Observations may not be the first arrival time
- Velocity model: the slowness may be discontinuous across interfaces Another model

$$K = \{a : \bar{\Omega} \to \mathbb{R} | a(x) = (a_1 - a_0)\phi(x) + a_0\phi(x) \}$$
$$\mathcal{J}_{\phi}(a) = \mathcal{J}(a) + \sigma \Big(\int_{\Omega} [\frac{\epsilon}{2} |\nabla \phi|^2 + \frac{1}{\epsilon} W(\phi)] dx \Big)$$