On Nonlinear Optimal Control Problems with an L^1 Norm

Eduardo Casas

Roland Herzog

Gerd Wachsmuth

University of Cantabria

Numerical Mathematics

CHEMNITZ UNIVERSITY OF TECHNOLOGY

Workshop on Inverse Problems and Optimal Control for PDEs Warwick, May 23–27, 2011

Warwick

1 / 34

- 2 1st- and 2nd-Order Optimality Conditions
- 3 Finite Element Error Estimates and Examples
- Extension: Directional Sparsity (joint with Georg Stadler, ICES, Texas)

Problem Setting for this Talk

Control problem

$$\begin{array}{ll} \text{Minimize} & \frac{1}{2} \|y - y_d\|_{L^2(\Omega)}^2 + \frac{\nu}{2} \|u\|_{L^2(\Omega)}^2 + \mu \|u\|_{L^1(\Omega)} \\ \text{such that} & u_a \leq u \leq u_b \qquad (u_a < 0 < u_b) \\ \text{and} & y \text{ solves the PDE} \end{array}$$

Semilinear partial differential equation

$$-\Delta y + \mathbf{a}(\cdot, \mathbf{y}) = u \text{ in } \Omega$$

 $y = 0 \text{ on } \Gamma$

- 一司

Why Consider
$$||u||_{L^1(\Omega)}$$
?

• The *L*¹-norm

$$\|u\|_{L^1(\Omega)} = \int_{\Omega} |u(x)| \,\mathrm{d}x$$

is often a natural measure of the true control cost.

• It also has the effect of promoting sparse controls.

[Vossen, Maurer (2006); Stadler (2009); Clason, Kunisch (2011)]

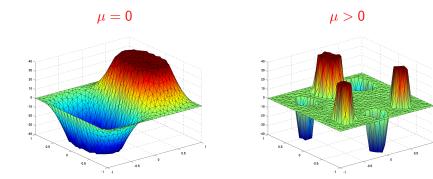
• The *L*¹-norm

$$\|u\|_{L^1(\Omega)} = \int_{\Omega} |u(x)| \,\mathrm{d}x$$

is often a natural measure of the true control cost.

- It also has the effect of promoting sparse controls.
- Applications in control:
 - actuator placement
 - on/off control structure desired
 - true measure of control cost
- Other applications using the 1-norm:
 - compressed sensing
 - TV-based image restoration

[Vossen, Maurer (2006); Stadler (2009); Clason, Kunisch (2011)]



Warwick

< 4 → <

5 / 34

э

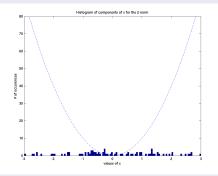
э

A First Glance at Sparsity

Smooth minimization problem

minimize $\frac{1}{2} ||x||_2^2$ s.t. Ax = b

Histogram (solution components' sizes)



A First Glance at Sparsity

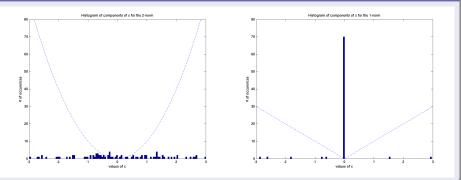
Smooth	minimization	problem

minimize $\frac{1}{2} ||x||_2^2$ s.t. Ax = b

Convex minimization problem

minimize $||x||_1$ s.t. Ax = b

Histogram (solution components' sizes)



Smooth minimization problem	Convex minimization problem	
minimize $\frac{1}{2} \ x\ _2^2$ s.t. $Ax = b$	minimize $ x _1$ s.t. $Ax = b$	
$egin{aligned} & x+A^{ op} p=0 \ & Ax-b=0 \end{aligned}$	$egin{aligned} &\lambda+A^{ op}p=0, \lambda\in\partial\ x\ _1\ &Ax-b=0 \end{aligned}$	

$$\lambda_i = -1 \quad \text{if } x_i < 0$$

$$\lambda_i = +1 \quad \text{if } x_i > 0$$

$$\lambda_i \in [-1, 1] \quad \text{if } x_i = 0$$

Warwick

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

6 / 34

æ

Smooth minimization problem	Convex minimization problem
minimize $\frac{1}{2} \ x\ _2^2$ s.t. $Ax = b$	minimize $ x _1$ s.t. $Ax = I$
$egin{array}{c} x+A^{ op}p=0\ Ax-b=0 \end{array}$	$egin{aligned} &\lambda + A^{ op} p = 0, \lambda \in \partial \ x\ _1 \ &Ax - b = 0 \end{aligned}$

$$\lambda + A^{\top} p = 0, \quad \lambda \in \partial \|x\|_1$$

 $Ax - b = 0$

s.t. Ax = b

$$\lambda_i = -1 \quad \text{if } x_i < 0$$

$$\lambda_i = +1 \quad \text{if } x_i > 0$$

$$\lambda_i \in [-1, 1] \quad \text{if } x_i = 0$$

$$x_i = \max\{0, x_i + c (\lambda_i - 1)\}$$

$$+ \min\{0, x_i + c (\lambda_i + 1)\}$$

<ロ> (日) (日) (日) (日) (日)

3

Problem Setting for this Talk

Control problem

$$\begin{array}{ll} \text{Minimize} & \frac{1}{2} \|y - y_d\|_{L^2(\Omega)}^2 + \frac{\nu}{2} \|u\|_{L^2(\Omega)}^2 + \mu \|u\|_{L^1(\Omega)} \\ \text{such that} & u_a \leq u \leq u_b \qquad (u_a < 0 < u_b) \\ \text{and} & y \text{ solves the PDE} \end{array}$$

Semilinear partial differential equation

$$-\Delta y + \mathbf{a}(\cdot, \mathbf{y}) = u \text{ in } \Omega$$

 $y = 0 \text{ on } \Gamma$

- 一司

Basic Assumptions Concerning the PDE

Semilinear partial differential equation

$$-\Delta y + a(\cdot, y) = u$$
 in Ω
 $y = 0$ on Γ

Assumptions

- $\Omega \subset \mathbb{R}^n$, $n \in \{2,3\}$, with $C^{1,1}$ -boundary or convex, polygonal set
- a is Carathéodory-function, monotone, C^2 w.r.t. y

Properties

- For $u \in L^p(\Omega)$, $n/2 the solution <math>y = G(u) \in W^{2,p}(\Omega)$
- $G: L^p(\Omega) \to W^{2,p}(\Omega)$ is C^2 , derivatives by linearization

Basic Assumptions Concerning the PDE

Semilinear partial differential equation

$$-\operatorname{div}(A \nabla y) + a(\cdot, y) = u \quad \text{in } \Omega$$
$$y = 0 \quad \text{on } \Gamma$$

Assumptions

CHEMATIZ UNITERST

- $\Omega \subset \mathbb{R}^n$, $n \in \{2,3\}$, with $C^{1,1}$ -boundary or convex, polygonal set
- a is Carathéodory-function, monotone, C^2 w.r.t. y
- $\xi^{\top} A(x) \xi \geq \underline{a} \|\xi\|^2$ for all $\xi \in \mathbb{R}^n$, $\underline{a} > 0$

Properties

- For $u \in L^p(\Omega)$, $n/2 the solution <math>y = G(u) \in W^{2,p}(\Omega)$
- $G: L^p(\Omega) \to W^{2,p}(\Omega)$ is C^2 , derivatives by linearization

Introduction and Problem Setting

2 1st- and 2nd-Order Optimality Conditions

3 Finite Element Error Estimates and Examples

 Extension: Directional Sparsity (joint with Georg Stadler, ICES, Texas)

Problem Setting

Control problem

$$\begin{array}{ll} \text{Minimize} & \frac{1}{2} \| y & -y_d \|_{L^2(\Omega)}^2 + \frac{\nu}{2} \| u \|_{L^2(\Omega)}^2 + \mu \| u \|_{L^1(\Omega)} \\ \text{such that} & u_a \leq u \leq u_b \qquad (u_a < 0 < u_b) \\ \text{and} & y \text{ solves the PDE} \end{array}$$

Semilinear partial differential equation

$$-\operatorname{div}(A \nabla y) + a(\cdot, y) = u \text{ in } \Omega$$

 $y = 0 \text{ on } \Gamma$

< 一型

э

Problem Setting

< ∃⇒

< 67 ▶

э

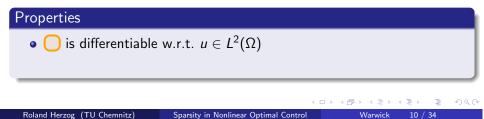
Control problem

$$\begin{array}{ll} \text{Minimize} & \frac{1}{2} \| \mathbf{G}(u) - y_d \|_{L^2(\Omega)}^2 + \frac{\nu}{2} \| u \|_{L^2(\Omega)}^2 + \mu \| u \|_{L^1(\Omega)} \\ \text{such that} & u_a \leq u \leq u_b \qquad (u_a < 0 < u_b) \end{array}$$

Problem Setting

Control problem

$$\begin{array}{ll} \text{Minimize} & \frac{1}{2} \| \mathcal{G}(u) - y_d \|_{L^2(\Omega)}^2 + \frac{\nu}{2} \| u \|_{L^2(\Omega)}^2 + \mu \| u \|_{L^1(\Omega)} \\ \text{such that} & u_a \leq u \leq u_b \quad (u_a < 0 < u_b) \end{array}$$



Problem Setting

Control problem

Minimize
$$\frac{\frac{1}{2} \|G(u) - y_d\|_{L^2(\Omega)}^2}{\|u\|_{L^2(\Omega)}^2} + \frac{\nu}{2} \|u\|_{L^2(\Omega)}^2 + \mu \|u\|_{L^1(\Omega)}$$

such that $u_a \le u \le u_b$ $(u_a < 0 < u_b)$

• is differentiable w.r.t. $u \in L^2(\Omega)$

Roland Herzog (TU Chemnitz)

Sparsity in Nonlinear Optimal Control

Warwick 10 / 34

1st- and 2nd-Order Optimality Conditions Finite Element Error Estimates and Examples Extension: Directional Sparsity

Problem Setting

Control problem

Minimize
$$\frac{\frac{1}{2}\|G(u) - y_d\|_{L^2(\Omega)}^2 + \frac{\nu}{2}\|u\|_{L^2(\Omega)}^2}{u_a \le u \le u_b} + \mu \|u\|_{L^1(\Omega)} + \mu \|u\|_{L^1(\Omega)}$$
such that $u_a \le u \le u_b$ $(u_a < 0 < u_b)$

Properties • () is differentiable w.r.t. $u \in L^2(\Omega)$ - 一司 -10 / 34

Roland Herzog (TU Chemnitz)

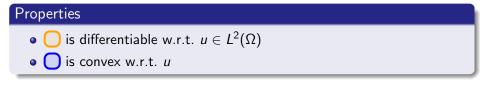
Sparsity in Nonlinear Optimal Control

Warwick

Problem Setting

Control problem

Minimize
$$\frac{\frac{1}{2} \|G(u) - y_d\|_{L^2(\Omega)}^2 + \frac{\nu}{2} \|u\|_{L^2(\Omega)}^2}{u_a \le u \le u_b} + \frac{\mu \|u\|_{L^1(\Omega)}}{(u_a < 0 < u_b)}$$



Warwick

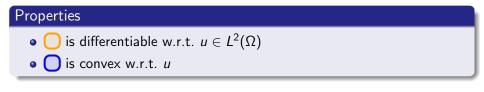
< 67 ▶

10 / 34

-

Problem Setting

Control problem Minimize $\frac{1}{2} \|G(u) - y_d\|_{L^2(\Omega)}^2 + \frac{\nu}{2} \|u\|_{L^2(\Omega)}^2 + \frac{\mu}{2} \|u\|_{L^1(\Omega)} + \frac{\mu}$



Warwick

- ∢ ⊢⊒ →

10 / 34

-∢∃>

Sums of Differentiable and Convex Function

Definition of a generalized subdifferential

Let f be differentiable and j convex, J = f + j. The generalized subdifferential $\partial J(x)$ is defined as

$$\partial J(x) = \nabla f(x) + \partial j(x)$$

- This coincides with known generalized derivatives (e.g. Fréchet, Clarke) on this class of functions.
- This ensures the uniqueness, i.e. ∂J does not depend on the splitting of J into f and j.

Sums of Differentiable and Convex Function

Definition of a generalized subdifferential

Let f be differentiable and j convex, J = f + j. The generalized subdifferential $\partial J(x)$ is defined as

$$\partial J(x) = \nabla f(x) + \partial j(x)$$

Necessary optimality condition of first order

 $0 \in \partial J(x) = \nabla f(x) + \partial j(x)$

First-Order Necessary Condition

$$f(u) = \frac{1}{2} \|G(u) - y_d\|_{L^2(\Omega)}^2 + \frac{\nu}{2} \|u\|_{L^2(\Omega)}^2, \qquad j(u) = \|u\|_{L^1(\Omega)}$$

< 一型

First-Order Necessary Condition

$$f(u) = \frac{1}{2} \|G(u) - y_d\|_{L^2(\Omega)}^2 + \frac{\nu}{2} \|u\|_{L^2(\Omega)}^2, \qquad j(u) = \|u\|_{L^1(\Omega)}$$
$$\nabla f(\overline{u}) = \underbrace{G'(\overline{u})^*(\overline{y} - y_d)}_{\text{adjoint state } \overline{p}} + \nu \overline{u}, \quad \text{where} \quad \overline{y} = G(\overline{u})$$

< 67 ▶

First-Order Necessary Condition

$$f(u) = \frac{1}{2} \|G(u) - y_d\|_{L^2(\Omega)}^2 + \frac{\nu}{2} \|u\|_{L^2(\Omega)}^2, \qquad j(u) = \|u\|_{L^1(\Omega)}$$
$$\nabla f(\overline{u}) = \underbrace{G'(\overline{u})^*(\overline{y} - y_d)}_{\text{adjoint state } \overline{p}} + \nu \,\overline{u}, \quad \text{where} \quad \overline{y} = G(\overline{u})$$

First-order necessary optimality conditions

$$0 \in \nabla f(\overline{u}) + \mu \, \partial j(\overline{u})$$

$$\Leftrightarrow \quad 0 = \nabla f(\overline{u}) + \mu \, \overline{\lambda}, \quad \overline{\lambda} \in \partial j(\overline{u})$$

Warwick

12 / 34

First-Order Necessary Condition

$$f(u) = \frac{1}{2} \|G(u) - y_d\|_{L^2(\Omega)}^2 + \frac{\nu}{2} \|u\|_{L^2(\Omega)}^2, \qquad j(u) = \|u\|_{L^1(\Omega)}$$
$$\nabla f(\overline{u}) = \underbrace{G'(\overline{u})^*(\overline{y} - y_d)}_{\text{adjoint state } \overline{p}} + \nu \overline{u}, \quad \text{where} \quad \overline{y} = G(\overline{u})$$

First-order necessary optimality conditions

$$\begin{aligned} \mathsf{0} &\in \nabla f(\overline{u}) + \mu \, \partial j(\overline{u}) \\ \Leftrightarrow \quad \mathsf{0} &= \nabla f(\overline{u}) + \mu \, \overline{\lambda}, \quad \overline{\lambda} \in \partial j(\overline{u}) \end{aligned}$$

... with convex control constraints: $U_{ad} = \{u \in L^2(\Omega) : u_a \le u \le u_b\}$

 $0 \leq \langle \nabla f(\overline{u}) + \mu \, \overline{\lambda}, \ u - \overline{u} \rangle_{L^2(\Omega)} \quad \text{for all } u \in U_{\mathsf{ad}}, \quad \overline{\lambda} \in \partial j(\overline{u})$

Roland Herzog (TU Chemnitz)

Warwick 12 / 34

First-Order Necessary Condition

$$f(u) = \frac{1}{2} \|G(u) - y_d\|_{L^2(\Omega)}^2 + \frac{\nu}{2} \|u\|_{L^2(\Omega)}^2, \qquad j(u) = \|u\|_{L^1(\Omega)}$$
$$\nabla f(\overline{u}) = \underbrace{G'(\overline{u})^*(\overline{y} - y_d)}_{\text{adjoint state } \overline{p}} + \nu \overline{u}, \quad \text{where} \quad \overline{y} = G(\overline{u})$$

First-order necessary optimality conditions

$$\begin{aligned} \mathsf{0} &\in \nabla f(\overline{u}) + \mu \, \partial j(\overline{u}) \\ \Leftrightarrow \quad \mathsf{0} &= \nabla f(\overline{u}) + \mu \, \overline{\lambda}, \quad \overline{\lambda} \in \partial j(\overline{u}) \end{aligned}$$

... with convex control constraints: $U_{\mathsf{ad}} = \{ u \in L^2(\Omega) : u_{\mathsf{a}} \le u \le u_b \}$

 $0 \leq \langle \nabla f(\overline{u}) + \mu \, \overline{\lambda}, \ u - \overline{u} \rangle_{L^2(\Omega)} \quad \text{for all } u \in U_{\mathsf{ad}}, \quad \overline{\lambda} \in \partial j(\overline{u})$

Roland Herzog (TU Chemnitz)

Warwick 12 / 34

First-Order Necessary Condition

Theorem

Let \overline{u} be a local min. with state $\overline{y} = G(\overline{u})$. Then there exist an adjoint state $\overline{p} = G'(\overline{u})^*(\overline{y} - y_d)$ and a subgradient $\overline{\lambda} \in \partial j(\overline{u}) = \partial \|\overline{u}\|_{L^1(\Omega)}$ s.t.

 $\langle \overline{p} + \nu \, \overline{u} + \mu \, \overline{\lambda}, \, u - \overline{u} \rangle_{L^2(\Omega)} \ge 0$ for all $u \in U_{\mathsf{ad}}$.

First-Order Necessary Condition

Theorem

Let \overline{u} be a local min. with state $\overline{y} = G(\overline{u})$. Then there exist an adjoint state $\overline{p} = G'(\overline{u})^*(\overline{y} - y_d)$ and a subgradient $\overline{\lambda} \in \partial j(\overline{u}) = \partial \|\overline{u}\|_{L^1(\Omega)}$ s.t.

$$\langle \overline{p} +
u \, \overline{u} + \mu \, \overline{\lambda}, \, u - \overline{u}
angle_{L^2(\Omega)} \geq 0$$
 for all $u \in U_{\mathsf{ad}}$

Subgradient of the L^1 norm

$$\overline{\lambda}(x) egin{cases} = +1 & ext{where } \overline{u}(x) > 0 \ \in [-1,1] & ext{where } \overline{u}(x) = 0 \ = -1 & ext{where } \overline{u}(x) < 0 \end{cases}$$

First-Order Necessary Condition

Theorem

Let \overline{u} be a local min. with state $\overline{y} = G(\overline{u})$. Then there exist an adjoint state $\overline{p} = G'(\overline{u})^*(\overline{y} - y_d)$ and a subgradient $\overline{\lambda} \in \partial j(\overline{u}) = \partial \|\overline{u}\|_{L^1(\Omega)}$ s.t.

$$\langle \overline{p} +
u \, \overline{u} + \mu \, \overline{\lambda}, \, u - \overline{u}
angle_{L^2(\Omega)} \geq 0$$
 for all $u \in U_{\mathsf{ad}}$

Adjoint equation

$$\begin{aligned} -\operatorname{div}(A^{\top}\nabla p) + \frac{\partial a}{\partial y}(\cdot,\overline{y})\,\overline{p} &= \overline{y} - y_d \quad \text{in } \Omega\\ \overline{p} &= 0 \qquad \text{on } \Gamma\end{aligned}$$

-∢ ∃ ▶

First-Order Necessary Condition

Theorem

Let \overline{u} be a local min. with state $\overline{y} = G(\overline{u})$. Then there exist an adjoint state $\overline{p} = G'(\overline{u})^*(\overline{y} - y_d)$ and a subgradient $\overline{\lambda} \in \partial j(\overline{u}) = \partial \|\overline{u}\|_{L^1(\Omega)}$ s.t.

$$\langle \overline{p} +
u \, \overline{u} + \mu \, \overline{\lambda}, \, u - \overline{u}
angle_{L^2(\Omega)} \geq 0$$
 for all $u \in U_{\mathsf{ad}}$

Corollary: projection formulas

$$\overline{u}(x) = \operatorname{proj}_{[u_a, u_b]} \left(-\frac{1}{\nu} (\overline{p}(x) + \mu \,\overline{\lambda}(x)) \right)$$
$$\overline{\lambda}(x) = \operatorname{proj}_{[-1, +1]} \left(-\frac{1}{\mu} \overline{p}(x) \right)$$
$$\overline{u}(x) = 0 \quad \Longleftrightarrow \quad |\overline{p}(x)| \le \mu$$

13 / 34

First-Order Necessary Condition

Theorem

Let \overline{u} be a local min. with state $\overline{y} = G(\overline{u})$. Then there exist an adjoint state $\overline{p} = G'(\overline{u})^*(\overline{y} - y_d)$ and a subgradient $\overline{\lambda} \in \partial j(\overline{u}) = \partial \|\overline{u}\|_{L^1(\Omega)}$ s.t.

$$\langle \overline{p} +
u \, \overline{u} + \mu \, \overline{\lambda}, \, u - \overline{u}
angle_{L^2(\Omega)} \geq 0$$
 for all $u \in U_{\mathsf{ad}}$

Corollary: projection formulas

$$\overline{u}(x) = \operatorname{proj}_{[u_a, u_b]} \left(-\frac{1}{\nu} (\overline{p}(x) + \mu \,\overline{\lambda}(x)) \right)$$
$$\overline{\lambda}(x) = \operatorname{proj}_{[-1, +1]} \left(-\frac{1}{\mu} \overline{p}(x) \right)$$
$$\overline{u}(x) = 0 \quad \Longleftrightarrow \quad |\overline{p}(x)| \le \mu$$

It follows that $\overline{u}, \overline{\lambda} \in C^{0,1}(\overline{\Omega}) = W^{1,\infty}(\Omega)$. Moreover, $\overline{\lambda} \in \partial \|\overline{u}\|_{L^1(\Omega)}$ is unique.

Warwick

13 / 34

Second-Order Optimality Conditions

-

Critical cone at stationary point \overline{u} with associated $\overline{\lambda} \in \partial j(\overline{u})$

$$\mathcal{C}^+_{\overline{u}} := \left\{ v \in L^2(\Omega) : f'(\overline{u}) \, v + \mu \, \langle \overline{\lambda}, \, v \rangle = 0 \right\}$$

Second-Order Optimality Conditions

B ▶ < B ▶

Critical cone at stationary point \overline{u} with associated $\overline{\lambda} \in \partial j(\overline{u})$

$$\mathcal{C}^+_{\overline{u}} := \left\{ v \in L^2(\Omega) : f'(\overline{u}) \, v + \mu \, \langle \overline{\lambda}, \, v \rangle = 0 \right\}$$

$\langle f''(\overline{u}) \, v, \, v \rangle > 0$ for all $v \in \mathcal{C}^+_{\overline{u}} \setminus \{0\} \Rightarrow \overline{u}$ is locally optimal

Second-Order Optimality Conditions

Critical cone at stationary point \overline{u} with associated $\overline{\lambda} \in \partial j(\overline{u})$

$$\mathcal{C}^+_{\overline{u}} := \left\{ v \in L^2(\Omega) : f'(\overline{u}) \, v + \mu \, \langle \overline{\lambda}, \, v \rangle = 0 \right\}$$

 $\begin{array}{ll} \langle f''(\overline{u}) \, v, \, v \rangle > 0 & \text{for all } v \in \mathcal{C}_{\overline{u}}^+ \setminus \{0\} & \Rightarrow & \overline{u} \text{ is locally optimal} \\ \langle f''(\overline{u}) \, v, \, v \rangle \geq 0 & \text{for all } v \in \mathcal{C}_{\overline{u}}^+ & \notin & \overline{u} \text{ is locally optimal} \end{array}$

Second-Order Optimality Conditions

Critical cone at stationary point \overline{u} with associated $\overline{\lambda} \in \partial j(\overline{u})$

$$\mathcal{C}^+_{\overline{u}} := \left\{ v \in L^2(\Omega) : f'(\overline{u}) \, v + \mu \, \langle \overline{\lambda}, \, v \rangle = 0 \right\} \quad \text{ too large}$$

 $\begin{array}{ll} \langle f''(\overline{u})\,v,\,v\rangle > 0 \quad \text{for all } v \in \mathcal{C}^+_{\overline{u}} \setminus \{0\} \quad \Rightarrow \quad \overline{u} \text{ is locally optimal} \\ \langle f''(\overline{u})\,v,\,v\rangle \geq 0 \quad \text{for all } v \in \mathcal{C}^+_{\overline{u}} \qquad \notin \quad \overline{u} \text{ is locally optimal} \end{array}$

Second-Order Optimality Conditions

Critical cone at stationary point \overline{u} with associated $\overline{\lambda} \in \partial j(\overline{u})$

$$\begin{aligned} \mathcal{C}_{\overline{u}}^+ &:= \left\{ v \in L^2(\Omega) : f'(\overline{u}) \, v + \mu \, \langle \overline{\lambda}, \, v \rangle = 0 \right\} & \text{too large} \\ \mathcal{C}_{\overline{u}} &:= \left\{ v \in L^2(\Omega) : f'(\overline{u}) \, v + \mu j'(\overline{u}; v) = 0 \right\} & \text{correct} \end{aligned}$$

 $\begin{array}{ll} \langle f''(\overline{u})\,v,\,v\rangle > 0 \quad \text{for all } v \in \mathcal{C}_{\overline{u}} \setminus \{0\} \quad \Rightarrow \quad \overline{u} \text{ is locally optimal} \\ \langle f''(\overline{u})\,v,\,v\rangle \geq 0 \quad \text{for all } v \in \mathcal{C}_{\overline{u}} \qquad \Leftarrow \quad \overline{u} \text{ is locally optimal} \end{array}$

B ▶ < B ▶

Second-Order Optimality Conditions

Critical cone at stationary point \overline{u} with associated $\overline{\lambda} \in \partial j(\overline{u})$

$$\begin{aligned} \mathcal{C}_{\overline{u}}^+ &:= \left\{ v \in L^2(\Omega) : f'(\overline{u}) \, v + \mu \, \langle \overline{\lambda}, \, v \rangle = 0 \right\} & \text{too large} \\ \mathcal{C}_{\overline{u}} &:= \left\{ v \in L^2(\Omega) : f'(\overline{u}) \, v + \mu j'(\overline{u}; v) = 0 \right\} & \text{correct} \end{aligned}$$

$$\begin{array}{ll} \langle f''(\overline{u})\,v,\,v\rangle > 0 \quad \text{for all } v \in \mathcal{C}_{\overline{u}} \setminus \{0\} \quad \Rightarrow \quad \overline{u} \text{ is locally optimal} \\ \langle f''(\overline{u})\,v,\,v\rangle \geq 0 \quad \text{for all } v \in \mathcal{C}_{\overline{u}} \qquad \Leftarrow \quad \overline{u} \text{ is locally optimal} \end{array}$$

... with control constraints

$$\begin{array}{l} \mathcal{C}_{\overline{u}} := \left\{ v \in L^2(\Omega) : f'(\overline{u}) \, v + \mu j'(\overline{u}; v) = 0 \\ v \ge 0 \text{ where } \overline{u} = u_a \\ v \le 0 \text{ where } \overline{u} = u_b \end{array} \right\} \quad v \in \mathcal{T}_{U_{ad}}(\overline{u})$$

Roland Herzog (TU Chemnitz)

Sparsity in Nonlinear Optimal Control

Second-Order Sufficient Conditions

Critical cone (closed, convex)

$$C_{\overline{u}} := \{ v \in \mathcal{T}_{U_{ad}}(\overline{u}) : f'(\overline{u}) v + \mu j'(\overline{u}; v) = 0 \}$$

Theorem

Let $\overline{u} \in U_{ad}$ and $\overline{\lambda} \in \partial j(\overline{u})$ satisfy the first order necessary condition. Assume $\langle f''(\overline{u}) v, v \rangle > 0$ holds for all $v \in C_{\overline{u}} \setminus \{0\}$. Then there exist $\delta > 0$, $\varepsilon > 0$ such that

$$J(\overline{u}) + \frac{\delta}{2} \|u - \overline{u}\|_{L^2(\Omega)}^2 \leq J(u) \quad \text{for all } u \in U_{\mathsf{ad}} \cap B_{\varepsilon}^{L^2}(\overline{u}).$$

B ▶ < B ▶

Second-Order Sufficient Conditions

Critical cone (closed, convex)

$$C_{\overline{u}} := \{ v \in \mathcal{T}_{U_{ad}}(\overline{u}) : f'(\overline{u}) v + \mu j'(\overline{u}; v) = 0 \}$$

Theorem

Let $\overline{u} \in U_{ad}$ and $\overline{\lambda} \in \partial j(\overline{u})$ satisfy the first order necessary condition. Assume $\langle f''(\overline{u}) v, v \rangle > 0$ holds for all $v \in C_{\overline{u}} \setminus \{0\}$. Then there exist $\delta > 0$, $\varepsilon > 0$ such that

$$J(\overline{u}) + \frac{\delta}{2} \|u - \overline{u}\|_{L^2(\Omega)}^2 \leq J(u) \quad \text{for all } u \in U_{\mathsf{ad}} \cap B_{\varepsilon}^{L^2}(\overline{u}).$$

Corollary

There exist $\tau > 0$, $\delta_2 > 0$ such that $\langle f''(\overline{u}) v, v \rangle \ge \delta_2 \|v\|_{L^2(\Omega)}^2$ for all

$$\mathbf{v} \in C^{\tau}_{\overline{u}} = \{\mathbf{v} \in \mathcal{T}_{U_{ad}}(\overline{u}) : f'(\overline{u}) \mathbf{v} + \mu j'(\overline{u}; \mathbf{v}) \leq \tau \|\mathbf{v}\|_{L^{2}(\Omega)}\}$$

Introduction and Problem Setting

2 1st- and 2nd-Order Optimality Conditions

3 Finite Element Error Estimates and Examples

 Extension: Directional Sparsity (joint with Georg Stadler, ICES, Texas)

- Regular triangulation $\{\mathcal{T}_h\}$ of Ω , $\Omega_h = \cup_{\mathcal{T} \in \mathcal{T}_h} \mathcal{T}$.
- Discrete space of (adjoint) states (piecewise linear):

 $Y_h = \{ \underline{y_h} \in C(\overline{\Omega}) : \underline{y_h}_{|T} \in \mathcal{P}_1 \text{ for all } T \in \mathcal{T}_h, \text{ and } \underline{y_h} = 0 \text{ on } \overline{\Omega} \setminus \Omega_h \}$

• Discrete PDE:

$$\int_{\Omega_h} \nabla z_h^\top A \nabla y_h + a(\cdot, y_h) \, \mathrm{d}x = \int_{\Omega_h} u \, z_h \, \mathrm{d}x \quad \text{for all } z_h \in Y_h$$

• Discrete space of controls (piecewise constant):

$$U_h = \{u_h \in L^2(\Omega_h) : u_{h|T} \equiv \text{const for all } T \in \mathcal{T}_h\}$$

Discrete optimization problem

$$\begin{array}{ll} \text{Minimize} & \frac{1}{2} \|G_h(u_h) - y_d\|_{L^2(\Omega)}^2 + \frac{\nu}{2} \|u_h\|_{L^2(\Omega)}^2 + \mu \|u_h\|_{L^1(\Omega)} \\ \text{such that} & u_a \le u_h \le u_b \\ & \text{and} & u_h \in U_h \end{array}$$

Roland Herzog (TU Chemnitz) Sparsi

Warwick

18 / 34

- (E

Convergence of Minimizers

Theorem (approximation of global minima)

For every h > 0 let \overline{u}_h be a global solution of the discrete problem. Then the sequence $\{\overline{u}_h\}_{h>0}$ is bounded in $L^{\infty}(\Omega)$ and there exist subsequences, denoted in the same way, converging to a point \overline{u} in the weak^{*} $L^{\infty}(\Omega)$ topology. Any of these limit points is a global solution of the continuous problem. Moreover, we have

$$\lim_{h\to 0} \left\{ \|\overline{u} - \overline{u}_h\|_{L^{\infty}(\Omega_h)} \right\} = 0 \quad \text{ and } \quad \lim_{h\to 0} J_h(\overline{u}_h) = J(\overline{u}).$$

Convergence of Minimizers

Theorem (approximation of global minima)

For every h > 0 let \overline{u}_h be a global solution of the discrete problem. Then the sequence $\{\overline{u}_h\}_{h>0}$ is bounded in $L^{\infty}(\Omega)$ and there exist subsequences, denoted in the same way, converging to a point \overline{u} in the weak^{*} $L^{\infty}(\Omega)$ topology. Any of these limit points is a global solution of the continuous problem. Moreover, we have

$$\lim_{h\to 0} \left\{ \|\overline{u} - \overline{u}_h\|_{L^{\infty}(\Omega_h)} \right\} = 0 \quad \text{ and } \quad \lim_{h\to 0} J_h(\overline{u}_h) = J(\overline{u}).$$

Theorem (approximation of strict local minima)

Let \overline{u} be a strict local minimum of the continuous problem, then there exists a sequence $\{\overline{u}_h\}_{h>0}$ of local minima of the discrete problems which converge towards \overline{u} .

Roland Herzog (TU Chemnitz)

Sparsity in Nonlinear Optimal Control

Warwick 19/34

-∢∃>

Theorem (piecewise constant discretization)

Let \overline{u} be a solution of the continuous problem and $\{\overline{u}_h\}$ a sequence of solutions of the discrete problems converging towards \overline{u} . Moreover, assume that the second-order sufficient condition is satisfied. Then there exists C > 0 such that

$$\|\overline{u}-\overline{u}_h\|_{L^{\infty}(\Omega_h)}+\|\overline{y}-\overline{y}_h\|_{L^{\infty}(\Omega_h)}+\|\overline{p}-\overline{p}_h\|_{L^{\infty}(\Omega_h)}+\|\overline{\lambda}-\overline{\lambda}_h\|_{L^{\infty}(\Omega_h)}\leq Ch.$$

Theorem (piecewise constant discretization)

Let \overline{u} be a solution of the continuous problem and $\{\overline{u}_h\}$ a sequence of solutions of the discrete problems converging towards \overline{u} . Moreover, assume that the second-order sufficient condition is satisfied. Then there exists C > 0 such that

$$\|\overline{u}-\overline{u}_h\|_{L^{\infty}(\Omega_h)}+\|\overline{y}-\overline{y}_h\|_{L^{\infty}(\Omega_h)}+\|\overline{p}-\overline{p}_h\|_{L^{\infty}(\Omega_h)}+\|\overline{\lambda}-\overline{\lambda}_h\|_{L^{\infty}(\Omega_h)}\leq Ch.$$

Idea of the proof

Extend \overline{u}_h to $\Omega \setminus \Omega_h$ by \overline{u} . We obtain by optimality

$$f'(\overline{u})(\overline{u}_h - \overline{u}) + \mu \int_{\Omega} \overline{\lambda} \ (\overline{u}_h - \overline{u} \) \, dx \ge 0$$
$$f'_h(\overline{u}_h)(u_h - \overline{u}_h) + \mu \int_{\Omega} \overline{\lambda}_h(u_h - \overline{u}_h) \, dx \ge 0 \quad \text{for all } u_h \in U_h \cap U_{ad}$$

Theorem (piecewise constant discretization)

Let \overline{u} be a solution of the continuous problem and $\{\overline{u}_h\}$ a sequence of solutions of the discrete problems converging towards \overline{u} . Moreover, assume that the second-order sufficient condition is satisfied. Then there exists C > 0 such that

$$\|\overline{u}-\overline{u}_h\|_{L^{\infty}(\Omega_h)}+\|\overline{y}-\overline{y}_h\|_{L^{\infty}(\Omega_h)}+\|\overline{p}-\overline{p}_h\|_{L^{\infty}(\Omega_h)}+\|\overline{\lambda}-\overline{\lambda}_h\|_{L^{\infty}(\Omega_h)}\leq Ch.$$

Idea of the proof

$$\leq \left[f'(\overline{u}_h) - f'(\overline{u})
ight](\overline{u}_h - \overline{u}) \leq \dots$$

-∢∃>

Theorem (piecewise constant discretization)

Let \overline{u} be a solution of the continuous problem and $\{\overline{u}_h\}$ a sequence of solutions of the discrete problems converging towards \overline{u} . Moreover, assume that the second-order sufficient condition is satisfied. Then there exists C > 0 such that

$$\|\overline{u}-\overline{u}_h\|_{L^{\infty}(\Omega_h)}+\|\overline{y}-\overline{y}_h\|_{L^{\infty}(\Omega_h)}+\|\overline{p}-\overline{p}_h\|_{L^{\infty}(\Omega_h)}+\|\overline{\lambda}-\overline{\lambda}_h\|_{L^{\infty}(\Omega_h)}\leq Ch.$$

Idea of the proof

$$rac{\partial}{\partial 2} \| \overline{u}_h - \overline{u} \|_{L^2(\Omega)}^2 \leq ig[f'(\overline{u}_h) - f'(\overline{u}) ig] (\overline{u}_h - \overline{u}) \leq \dots$$

since $\overline{u}_h - \overline{u} \in C_{\overline{u}}^{\tau}$ and SSC hold

ヨト イヨト

Image: A matrix and a matrix

Theorem (piecewise constant discretization)

Let \overline{u} be a solution of the continuous problem and $\{\overline{u}_h\}$ a sequence of solutions of the discrete problems converging towards \overline{u} . Moreover, assume that the second-order sufficient condition is satisfied. Then there exists C > 0 such that

$$\|\overline{u}-\overline{u}_h\|_{L^{\infty}(\Omega_h)}+\|\overline{y}-\overline{y}_h\|_{L^{\infty}(\Omega_h)}+\|\overline{p}-\overline{p}_h\|_{L^{\infty}(\Omega_h)}+\|\overline{\lambda}-\overline{\lambda}_h\|_{L^{\infty}(\Omega_h)}\leq C h.$$

Theorem (variational discretization, Hinze (2005))

Let \overline{u} be a solution of the continuous problem and $\{\overline{u}_h\}$ a sequence of solutions of the variational discretized probem, converging towards \overline{u} . Moreover, assume that the second-order sufficient condition is satisfied. Then there is C > 0, such that

$$\|\overline{u}-\overline{u}_h\|_{L^2(\Omega_h)}+\|\overline{y}-\overline{y}_h\|_{L^2(\Omega_h)}+\|\overline{p}-\overline{p}_h\|_{L^2(\Omega_h)}+\|\overline{\lambda}-\overline{\lambda}_h\|_{L^2(\Omega_h)}\leq C h^2.$$

Control problem

$$\begin{array}{ll} \text{Minimize} & \frac{1}{2} \|y - y_d\|_{L^2(\Omega)}^2 + 10^{-3} \|u\|_{L^2(\Omega)}^2 + 3 \cdot 10^{-2} \|u\|_{L^1(\Omega)} \\ \text{such that} & u_a \le u \le u_b \end{array}$$

•
$$y_d(x_1, x_2) = 2 \sin(2\pi x_1) \sin(\pi x_2) \exp(x_1)$$

• PDE:
 $-\Delta y + y^3 = u \text{ in } \Omega$
 $y = 0 \text{ on } \Gamma$

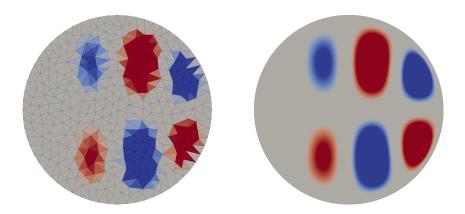
Warwick

Image: A matrix and a matrix

э

E ► < E ►

Solutions for $h = 2^{-3}$ and $h = 2^{-8}$



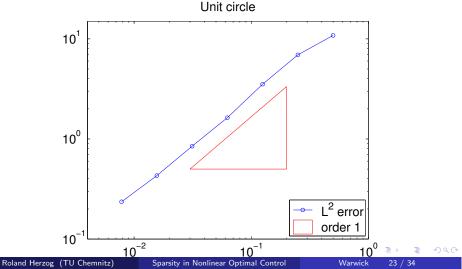
-

-

Convergence (Full Discretization)

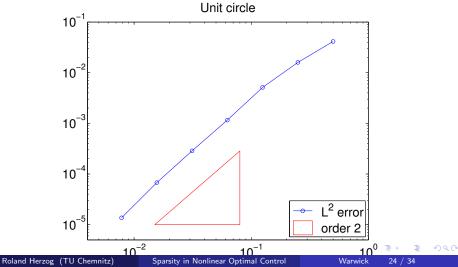
Error in the control:

CHEMILITZ UNIVERSIT



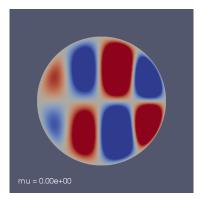
Convergence (Variational Discretization)

Error in the adjoint:



Influence of Parameter μ

$$\begin{array}{ll} \text{Minimize} & \frac{1}{2} \|G(u) - y_d\|_{L^2(\Omega)}^2 + \frac{\nu}{2} \|u\|_{L^2(\Omega)}^2 + \mu \|u\|_{L^1(\Omega)} \\ \text{such that} & u_a \le u \le u_b \qquad (u_a < 0 < u_b) \end{array}$$



 $\mu = 0.00$

Roland Herzog (TU Chemnitz)

Sparsity in Nonlinear Optimal Control

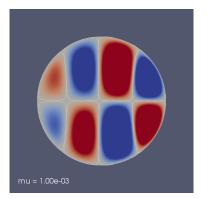
Warwick

(日) (同) (三) (三)

25 / 34

Influence of Parameter μ

$$\begin{array}{ll} \text{Minimize} & \frac{1}{2} \|G(u) - y_d\|_{L^2(\Omega)}^2 + \frac{\nu}{2} \|u\|_{L^2(\Omega)}^2 + \mu \|u\|_{L^1(\Omega)} \\ \text{such that} & u_a \le u \le u_b \qquad (u_a < 0 < u_b) \end{array}$$



 $\mu = 1.00\text{E-03}$

Roland Herzog (TU Chemnitz)

Sparsity in Nonlinear Optimal Control

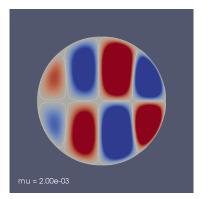
Warwick

(日) (同) (三) (三)

25 / 34

Influence of Parameter μ

$$\begin{array}{ll} \text{Minimize} & \frac{1}{2} \|G(u) - y_d\|_{L^2(\Omega)}^2 + \frac{\nu}{2} \|u\|_{L^2(\Omega)}^2 + \mu \|u\|_{L^1(\Omega)} \\ \text{such that} & u_a \le u \le u_b \qquad (u_a < 0 < u_b) \end{array}$$



 $\mu = 2.00E-03$

Roland Herzog (TU Chemnitz)

Sparsity in Nonlinear Optimal Control

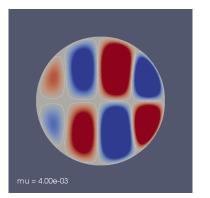
Warwick

(日) (同) (三) (三)

25 / 34

Influence of Parameter μ

$$\begin{array}{ll} \text{Minimize} & \frac{1}{2} \|G(u) - y_d\|_{L^2(\Omega)}^2 + \frac{\nu}{2} \|u\|_{L^2(\Omega)}^2 + \mu \|u\|_{L^1(\Omega)} \\ \text{such that} & u_a \le u \le u_b \qquad (u_a < 0 < u_b) \end{array}$$



 $\mu = 4.00E-03$

Roland Herzog (TU Chemnitz)

Sparsity in Nonlinear Optimal Control

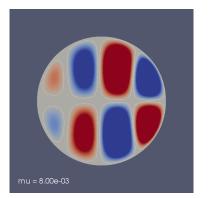
Warwick

(日) (同) (三) (三)

25 / 34

Influence of Parameter μ

$$\begin{array}{ll} \text{Minimize} & \frac{1}{2} \|G(u) - y_d\|_{L^2(\Omega)}^2 + \frac{\nu}{2} \|u\|_{L^2(\Omega)}^2 + \mu \|u\|_{L^1(\Omega)} \\ \text{such that} & u_a \le u \le u_b \qquad (u_a < 0 < u_b) \end{array}$$



 $\mu = 8.00\text{E--03}$

Roland Herzog (TU Chemnitz)

Sparsity in Nonlinear Optimal Control

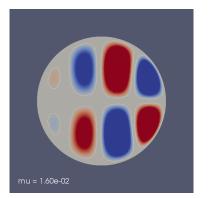
Warwick

(日) (同) (三) (三)

25 / 34

Influence of Parameter μ

$$\begin{array}{ll} \text{Minimize} & \frac{1}{2} \|G(u) - y_d\|_{L^2(\Omega)}^2 + \frac{\nu}{2} \|u\|_{L^2(\Omega)}^2 + \mu \|u\|_{L^1(\Omega)} \\ \text{such that} & u_a \le u \le u_b \qquad (u_a < 0 < u_b) \end{array}$$



 $\mu = 1.60\text{E--02}$

Image: A math a math

Roland Herzog (TU Chemnitz)

Sparsity in Nonlinear Optimal Control

Warwick

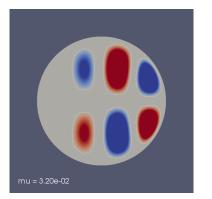
25 / 34

3

- ∢ ≣ →

Influence of Parameter μ

$$\begin{array}{ll} \text{Minimize} & \frac{1}{2} \|G(u) - y_d\|_{L^2(\Omega)}^2 + \frac{\nu}{2} \|u\|_{L^2(\Omega)}^2 + \mu \|u\|_{L^1(\Omega)} \\ \text{such that} & u_a \le u \le u_b \qquad (u_a < 0 < u_b) \end{array}$$



 $\mu = 3.20\text{E-}02$

Roland Herzog (TU Chemnitz)

Sparsity in Nonlinear Optimal Control

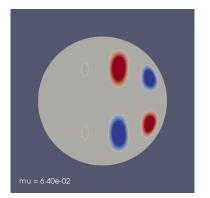
Warwick

(日) (同) (三) (三)

25 / 34

Influence of Parameter μ

$$\begin{array}{ll} \text{Minimize} & \frac{1}{2} \|G(u) - y_d\|_{L^2(\Omega)}^2 + \frac{\nu}{2} \|u\|_{L^2(\Omega)}^2 + \mu \|u\|_{L^1(\Omega)} \\ \text{such that} & u_a \le u \le u_b \qquad (u_a < 0 < u_b) \end{array}$$



 $\mu = 6.40E-02$

Roland Herzog (TU Chemnitz)

Sparsity in Nonlinear Optimal Control

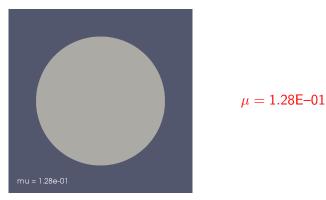
Warwick

(日) (同) (三) (三)

25 / 34

Influence of Parameter μ

$$\begin{array}{ll} \text{Minimize} & \frac{1}{2} \|G(u) - y_d\|_{L^2(\Omega)}^2 + \frac{\nu}{2} \|u\|_{L^2(\Omega)}^2 + \mu \|u\|_{L^1(\Omega)} \\ \text{such that} & u_a \le u \le u_b \qquad (u_a < 0 < u_b) \end{array}$$



< □ ▷ < @ ▷ < 볼 ▷ < 볼 ▷ Warwick 25

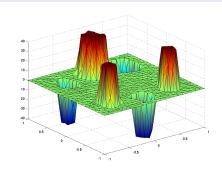
25 / 34

Introduction and Problem Setting

- 2 1st- and 2nd-Order Optimality Conditions
- **3** Finite Element Error Estimates and Examples
- Extension: Directional Sparsity (joint with Georg Stadler, ICES, Texas)

Can we do Better Than Just Sparse?

Sparsity



Objective function

$$\frac{1}{2} \|y - y_d\|_{L^2}^2 + \beta \|u\|_{L^1}$$

Roland Herzog (TU Chemnitz)

Sparsity in Nonlinear Optimal Control

Warwick

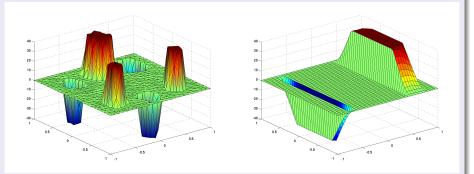
- 一司

27 / 34

э

Can we do Better Than Just Sparse?

Sparsity vs. directional sparsity



Objective function

$$\frac{1}{2} \|y - y_d\|_{L^2}^2 + \beta \|u\|_{L^1}$$

Objective function

$$\frac{1}{2} \|y - y_d\|_{L^2}^2 + \beta \, \|u\|_{L^1(L^2)}$$

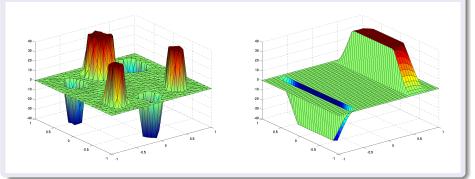
Roland Herzog (TU Chemnitz)

Sparsity in Nonlinear Optimal Control

Warwick 27 / 34

Can we do Better Than Just Sparse?

Sparsity vs. directional sparsity



Properties

 no structural assumptions made

Roland Herzog (TU Chemnitz)

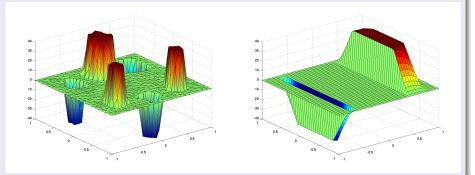
Sparsity in Nonlinear Optimal Control

Warwick

- 一司

Can we do Better Than Just Sparse?

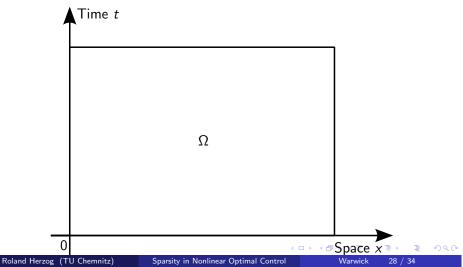
Sparsity vs. directional sparsity



Properties		Properties			
 no structural assumptions 		 exploits known or desired 			
made		group sparsity structure			
Roland Herzog (TU Chemnitz)	Sparsity in Nonlinear Optimal Control		Warwick	27 / 34	

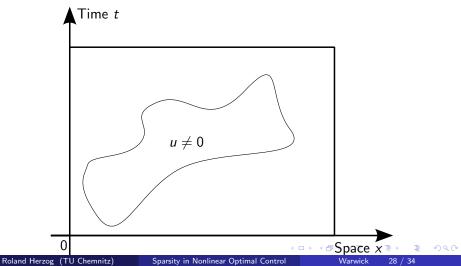
Directional Sparsity with Parabolic PDEs

Placement of actuators for a parabolic problem



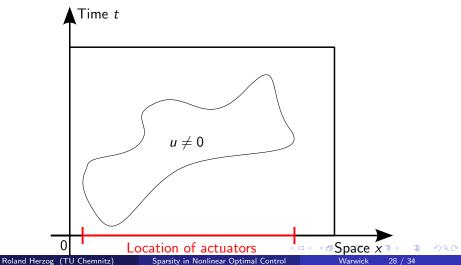
Directional Sparsity with Parabolic PDEs

With Sparsity functional



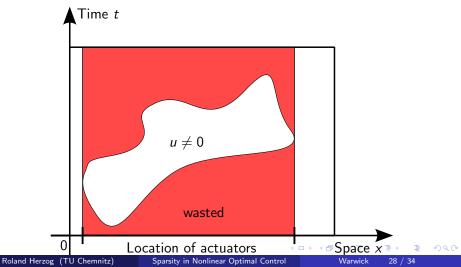
Directional Sparsity with Parabolic PDEs

With Sparsity functional



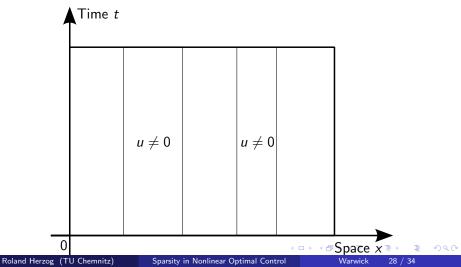
Directional Sparsity with Parabolic PDEs

With Sparsity functional



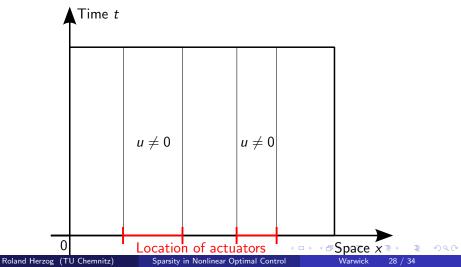
Directional Sparsity with Parabolic PDEs

With Directional Sparsity functional



Directional Sparsity with Parabolic PDEs

With Directional Sparsity functional



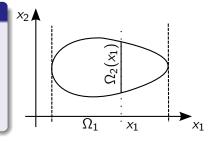
Directional Sparsity: Basic Definition

Problem formulation

min
$$\frac{1}{2} \|Su - y_d\|_H^2 + \frac{\alpha}{2} \|u\|_{L^2(\Omega)}^2$$

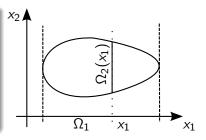
+ $\beta \|u\|_{L^1(L^2)}$

s.t.
$$u_a \leq u \leq u_b$$
 a.e. in Ω



Directional Sparsity: Basic Definition

Problem formulation min $\frac{1}{2} \|Su - y_d\|_H^2 + \frac{\alpha}{2} \|u\|_{L^2(\Omega)}^2$ $+ \beta \int_{\Omega_1} \left(\int_{\Omega_2(x_1)} u(x_1, x_2)^2 dx_2 \right)^{1/2} dx_1$ s.t. $u_a \le u \le u_b$ a.e. in Ω



Related Approaches

Joint sparsity in image restoration

$$\Psi(u) = \sum_{\lambda \in \Lambda} \omega_{\lambda} \, |ec{u}_{\lambda}|_{q}^{p}, \quad q = 2, p = 1$$

•
$$\Omega_1 \cong \Lambda$$

•
$$\Omega_2 = \{1, 2, \dots, \# \text{ of channels}\}$$

• with $dx_2 = counting measure$

[Fornasier, Ramlau, Teschke (2008)]

TV-based image restoration

$$\Psi(u) = \int_{\Omega_1} |\nabla u| \, dx_1, \quad \Omega_2 = \{1, 2, \dots, N\}$$
 for N-D images

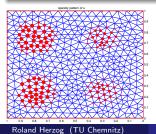
Roland Herzog (TU Chemnitz)

Warwick

Parabolic Example with Spatial Sparsity

Parabolic example

$$\begin{array}{ll} \text{minimize} & \frac{1}{2} \| y - y_d \|_{L^2(\Omega)}^2 + \beta \, \| u \|_{L^1(L^2)} \\ \text{s.t.} & \begin{cases} y_t - \frac{1}{10} \Delta y = u & \text{in } \Omega = \Omega_1 \times (0, T) \\ y = 0 & \text{on } \Gamma \times (0, T) \\ y(\cdot, 0) = 0 & \text{in } \Omega_1 \\ \text{and} & u_a \leq u \leq u_b \quad \text{a.e. in } \Omega \end{cases}$$



- n = 2 sparse directions (space)
- N n = 1 non-sparse direction (time)

Warwick

- ∢ 🗇 እ

- use of $||u||_{L^1}$ induces sparse solutions
- it is often an appropriate measure of control cost
- applications in actuator placement problems
- presented 1st- and new 2nd-order optimality conditions
- used them to derive FE error estimates
- extension to directional sparsity concept

References I

E. Casas, R. Herzog, and G. Wachsmuth.

Optimality conditions and error analysis of semilinear elliptic control problems with L^1 cost functional.

Technical report, 2010.

C. Clason and K. Kunisch.

A duality-based approach to elliptic control problems in non-reflexive Banach spaces. *ESAIM: Control, Optimisation, and Calculus of Variations,* in print. doi: 10.1051/cocv/2010003.

M. Fornasier, R. Ramlau, and G. Teschke.

The application of joint sparsity and total variation minimization algorithms in a real-life art restoration problem.

Advances in Computational Mathematics, 31(1-3):301-329, 2009. URL http://dx.doi.org/10.1007/s10444-008-9103-6.

M. Hinze.

A variational discretization concept in control constrained optimization: The linear-quadratic case.

Computational Optimization and Applications, 30(1):45–61, 2005.

Warwick

< 4 → <

33 / 34

- ∢ ≣ →

G. Stadler.

Elliptic optimal control problems with L^1 -control cost and applications for the placement of control devices.

Computational Optimization and Applications, 44(2):159-181, 2009. URL http://dx.doi.org/10.1007/s10589-007-9150-9.

G. Vossen and H. Maurer.

On L^1 -minimization in optimal control and applications to robotics. *Optimal Control Applications and Methods*, 27(6):301–321, 2006.