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1 Introduction and Problem Setting

2 1st- and 2nd-Order Optimality Conditions
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Problem Setting for this Talk

Control problem

Minimize
1

2
‖y − yd‖2

L2(Ω) +
ν

2
‖u‖2

L2(Ω) + µ ‖u‖L1(Ω)

such that ua ≤ u ≤ ub (ua < 0 < ub)

and y solves the PDE

f(u) j(u)

Semilinear partial differential equation

−∆y + a(·, y) = u in Ω

y = 0 on Γ
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Why Consider ‖u‖L1(Ω)?

The L1-norm

‖u‖L1(Ω) =

∫
Ω
|u(x)| dx

is often a natural measure of the true control cost.

It also has the effect of promoting sparse controls.

Applications in control:

actuator placement
on/off control structure desired
true measure of control cost

Other applications using the 1-norm:

compressed sensing
TV-based image restoration
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A First Glance at Sparsity

µ = 0 µ > 0
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A First Glance at Sparsity

Smooth minimization problem

minimize 1
2‖x‖

2
2 s.t. Ax = b

Convex minimization problem

minimize ‖x‖1 s.t. Ax = b

Histogram (solution components’ sizes)
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A First Glance at Sparsity

Smooth minimization problem

minimize 1
2‖x‖

2
2 s.t. Ax = b

Convex minimization problem

minimize ‖x‖1 s.t. Ax = b

x + A>p = 0

Ax − b = 0

λ+ A>p = 0, λ ∈ ∂‖x‖1

Ax − b = 0

λi = −1 if xi < 0

λi = +1 if xi > 0

λi ∈ [−1, 1] if xi = 0

xi = max{0, xi + c (λi − 1)}
+ min{0, xi + c (λi + 1)}
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Basic Assumptions Concerning the PDE

Semilinear partial differential equation

−∆y + a(·, y) = u in Ω

y = 0 on Γ

Assumptions

Ω ⊂ Rn, n ∈ {2, 3}, with C 1,1-boundary or convex, polygonal set

a is Carathéodory-function, monotone, C 2 w.r.t. y

ξ>A(x) ξ ≥ a ‖ξ‖2 for all ξ ∈ Rn, a > 0

Properties

For u ∈ Lp(Ω), n/2 < p ≤ 2 the solution y = G (u) ∈W 2,p(Ω)

G : Lp(Ω)→W 2,p(Ω) is C 2, derivatives by linearization
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a is Carathéodory-function, monotone, C 2 w.r.t. y

ξ>A(x) ξ ≥ a ‖ξ‖2 for all ξ ∈ Rn, a > 0

Properties

For u ∈ Lp(Ω), n/2 < p ≤ 2 the solution y = G (u) ∈W 2,p(Ω)

G : Lp(Ω)→W 2,p(Ω) is C 2, derivatives by linearization

Roland Herzog (TU Chemnitz) Sparsity in Nonlinear Optimal Control Warwick 8 / 34



Introduction and Problem Setting
1st- and 2nd-Order Optimality Conditions

Finite Element Error Estimates and Examples
Extension: Directional Sparsity

Overview

1 Introduction and Problem Setting

2 1st- and 2nd-Order Optimality Conditions

3 Finite Element Error Estimates and Examples

4 Extension: Directional Sparsity
(joint with Georg Stadler, ICES, Texas)

Roland Herzog (TU Chemnitz) Sparsity in Nonlinear Optimal Control Warwick 9 / 34



Introduction and Problem Setting
1st- and 2nd-Order Optimality Conditions

Finite Element Error Estimates and Examples
Extension: Directional Sparsity

Problem Setting

Control problem

Minimize
1

2
‖y − yd‖2

L2(Ω) +
ν

2
‖u‖2

L2(Ω) + µ ‖u‖L1(Ω)

such that ua ≤ u ≤ ub (ua < 0 < ub)

and y solves the PDE

f(u) j(u)

Semilinear partial differential equation

− div(A∇y) + a(·, y) = u in Ω

y = 0 on Γ

Roland Herzog (TU Chemnitz) Sparsity in Nonlinear Optimal Control Warwick 10 / 34



Introduction and Problem Setting
1st- and 2nd-Order Optimality Conditions

Finite Element Error Estimates and Examples
Extension: Directional Sparsity

Problem Setting

Control problem

Minimize
1

2
‖G (u)− yd‖2

L2(Ω) +
ν

2
‖u‖2

L2(Ω) + µ ‖u‖L1(Ω)

such that ua ≤ u ≤ ub (ua < 0 < ub)

and y solves the PDE

f(u) j(u)

Roland Herzog (TU Chemnitz) Sparsity in Nonlinear Optimal Control Warwick 10 / 34



Introduction and Problem Setting
1st- and 2nd-Order Optimality Conditions

Finite Element Error Estimates and Examples
Extension: Directional Sparsity

Problem Setting

Control problem

Minimize
1

2
‖G (u)− yd‖2

L2(Ω) +
ν

2
‖u‖2

L2(Ω) + µ ‖u‖L1(Ω)

such that ua ≤ u ≤ ub (ua < 0 < ub)

and y solves the PDE

f(u) j(u)

Properties

is differentiable w.r.t. u ∈ L2(Ω)

is convex w.r.t. u

Roland Herzog (TU Chemnitz) Sparsity in Nonlinear Optimal Control Warwick 10 / 34



Introduction and Problem Setting
1st- and 2nd-Order Optimality Conditions

Finite Element Error Estimates and Examples
Extension: Directional Sparsity

Problem Setting

Control problem

Minimize
1

2
‖G (u)− yd‖2

L2(Ω) +
ν

2
‖u‖2

L2(Ω) + µ ‖u‖L1(Ω)

such that ua ≤ u ≤ ub (ua < 0 < ub)

and y solves the PDE

f(u) j(u)

Properties

is differentiable w.r.t. u ∈ L2(Ω)

is convex w.r.t. u

Roland Herzog (TU Chemnitz) Sparsity in Nonlinear Optimal Control Warwick 10 / 34



Introduction and Problem Setting
1st- and 2nd-Order Optimality Conditions

Finite Element Error Estimates and Examples
Extension: Directional Sparsity

Problem Setting

Control problem

Minimize
1

2
‖G (u)− yd‖2

L2(Ω) +
ν

2
‖u‖2

L2(Ω) + µ ‖u‖L1(Ω)

such that ua ≤ u ≤ ub (ua < 0 < ub)

and y solves the PDE

f(u) j(u)

Properties

is differentiable w.r.t. u ∈ L2(Ω)

is convex w.r.t. u

Roland Herzog (TU Chemnitz) Sparsity in Nonlinear Optimal Control Warwick 10 / 34



Introduction and Problem Setting
1st- and 2nd-Order Optimality Conditions

Finite Element Error Estimates and Examples
Extension: Directional Sparsity

Problem Setting

Control problem

Minimize
1

2
‖G (u)− yd‖2

L2(Ω) +
ν

2
‖u‖2

L2(Ω) + µ ‖u‖L1(Ω)

such that ua ≤ u ≤ ub (ua < 0 < ub)

and y solves the PDE

f(u) j(u)

Properties

is differentiable w.r.t. u ∈ L2(Ω)

is convex w.r.t. u

Roland Herzog (TU Chemnitz) Sparsity in Nonlinear Optimal Control Warwick 10 / 34



Introduction and Problem Setting
1st- and 2nd-Order Optimality Conditions

Finite Element Error Estimates and Examples
Extension: Directional Sparsity

Problem Setting

Control problem

Minimize
1

2
‖G (u)− yd‖2

L2(Ω) +
ν

2
‖u‖2

L2(Ω) + µ ‖u‖L1(Ω)

such that ua ≤ u ≤ ub

(ua < 0 < ub)

and y solves the PDE

f(u) j(u)

Properties

is differentiable w.r.t. u ∈ L2(Ω)

is convex w.r.t. u

Roland Herzog (TU Chemnitz) Sparsity in Nonlinear Optimal Control Warwick 10 / 34



Introduction and Problem Setting
1st- and 2nd-Order Optimality Conditions

Finite Element Error Estimates and Examples
Extension: Directional Sparsity

Sums of Differentiable and Convex Function

Definition of a generalized subdifferential

Let f be differentiable and j convex, J = f + j . The generalized
subdifferential ∂J(x) is defined as

∂J(x) = ∇f (x) + ∂j(x)

This coincides with known generalized derivatives (e.g. Fréchet,
Clarke) on this class of functions.

This ensures the uniqueness, i.e. ∂J does not depend on the splitting
of J into f and j .
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Sums of Differentiable and Convex Function

Definition of a generalized subdifferential

Let f be differentiable and j convex, J = f + j . The generalized
subdifferential ∂J(x) is defined as

∂J(x) = ∇f (x) + ∂j(x)

Necessary optimality condition of first order

0 ∈ ∂J(x) = ∇f (x) + ∂j(x)

Necessary optimality conditions of second order

δx>f ′′(x) δx ≥ 0 for δJ(x ; δx) = 0 is necessary?
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First-Order Necessary Condition

f (u) =
1

2
‖G (u)− yd‖2

L2(Ω) +
ν

2
‖u‖2

L2(Ω), j(u) = ‖u‖L1(Ω)

∇f (u) = G ′(u)?(y − yd)︸ ︷︷ ︸
adjoint state p

+ν u, where y = G (u)

First-order necessary optimality conditions

0 ∈ ∇f (u) + µ∂j(u)

⇔ 0 = ∇f (u) + µλ, λ ∈ ∂j(u)

. . . with convex control constraints: Uad = {u ∈ L2(Ω) : ua ≤ u ≤ ub}

0 ≤ 〈∇f (u) + µλ, u − u〉L2(Ω) for all u ∈ Uad, λ ∈ ∂j(u)
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First-Order Necessary Condition

Theorem

Let u be a local min. with state y = G (u). Then there exist an adjoint
state p = G ′(u)?(y − yd) and a subgradient λ ∈ ∂j(u) = ∂‖u‖L1(Ω) s.t.

〈p + ν u + µλ, u − u〉L2(Ω) ≥ 0 for all u ∈ Uad.
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First-Order Necessary Condition

Theorem

Let u be a local min. with state y = G (u). Then there exist an adjoint
state p = G ′(u)?(y − yd) and a subgradient λ ∈ ∂j(u) = ∂‖u‖L1(Ω) s.t.

〈p + ν u + µλ, u − u〉L2(Ω) ≥ 0 for all u ∈ Uad.

Subgradient of the L1 norm

λ(x)


= +1 where u(x) > 0

∈ [−1, 1] where u(x) = 0

= −1 where u(x) < 0
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First-Order Necessary Condition

Theorem

Let u be a local min. with state y = G (u). Then there exist an adjoint
state p = G ′(u)?(y − yd) and a subgradient λ ∈ ∂j(u) = ∂‖u‖L1(Ω) s.t.

〈p + ν u + µλ, u − u〉L2(Ω) ≥ 0 for all u ∈ Uad.

Adjoint equation

− div(A>∇p) +
∂a

∂y
(·, y) p = y − yd in Ω

p = 0 on Γ
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First-Order Necessary Condition

Theorem

Let u be a local min. with state y = G (u). Then there exist an adjoint
state p = G ′(u)?(y − yd) and a subgradient λ ∈ ∂j(u) = ∂‖u‖L1(Ω) s.t.

〈p + ν u + µλ, u − u〉L2(Ω) ≥ 0 for all u ∈ Uad.

Corollary: projection formulas

u(x) = proj[ua,ub]

(
− 1

ν

(
p(x) + µλ(x)

))
λ(x) = proj[−1,+1]

(
− 1

µ
p(x)

)
u(x) = 0 ⇐⇒ |p(x)| ≤ µ

It follows that u, λ ∈ C 0,1(Ω) = W 1,∞(Ω).
Moreover, λ ∈ ∂‖u‖L1(Ω) is unique.
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Second-Order Optimality Conditions

Critical cone at stationary point u with associated λ ∈ ∂j(u)

C+
u :=

{
v ∈ L2(Ω) : f ′(u) v + µ 〈λ, v〉 = 0

}

too large

Cu :=
{

v ∈ L2(Ω) : f ′(u) v + µ j ′(u; v) = 0
}

correct

〈f ′′(u) v , v〉 > 0 for all v ∈ C+
u \ {0} ⇒ u is locally optimal

〈f ′′(u) v , v〉 ≥ 0 for all v ∈ C+
u 6⇐ u is locally optimal

. . . with control constraints

Cu :=
{

v ∈ L2(Ω) :f ′(u) v + µ j ′(u; v) = 0

v ≥ 0 where u = ua

v ≤ 0 where u = ub

} }
v ∈ TUad

(u)
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u 6⇐ u is locally optimal

. . . with control constraints

Cu :=
{

v ∈ L2(Ω) :f ′(u) v + µ j ′(u; v) = 0

v ≥ 0 where u = ua

v ≤ 0 where u = ub

} }
v ∈ TUad

(u)
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Second-Order Sufficient Conditions

Critical cone (closed, convex)

Cu := {v ∈ TUad
(u) : f ′(u) v + µ j ′(u; v) = 0}

Theorem

Let u ∈ Uad and λ ∈ ∂j(u) satisfy the first order necessary condition.
Assume 〈f ′′(u) v , v〉 > 0 holds for all v ∈ Cu \ {0}. Then there exist
δ > 0, ε > 0 such that

J(u) +
δ

2
‖u − u‖2

L2(Ω) ≤ J(u) for all u ∈ Uad ∩ BL2

ε (u).
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Assume 〈f ′′(u) v , v〉 > 0 holds for all v ∈ Cu \ {0}. Then there exist
δ > 0, ε > 0 such that

J(u) +
δ

2
‖u − u‖2

L2(Ω) ≤ J(u) for all u ∈ Uad ∩ BL2

ε (u).

Corollary

There exist τ > 0, δ2 > 0 such that 〈f ′′(u) v , v〉 ≥ δ2 ‖v‖2
L2(Ω) for all

v ∈ C τ
u = {v ∈ TUad

(u) : f ′(u) v + µ j ′(u; v) ≤ τ ‖v‖L2(Ω)}
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1 Introduction and Problem Setting

2 1st- and 2nd-Order Optimality Conditions

3 Finite Element Error Estimates and Examples

4 Extension: Directional Sparsity
(joint with Georg Stadler, ICES, Texas)
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Finite Element Approximation

Regular triangulation {Th} of Ω, Ωh = ∪T∈ThT .

Discrete space of (adjoint) states (piecewise linear):

Yh = {yh ∈ C (Ω) : yh|T ∈ P1 for all T ∈ Th, and yh = 0 on Ω \ Ωh}

Discrete PDE:∫
Ωh

∇z>h A∇yh + a(·, yh) dx =

∫
Ωh

u zh dx for all zh ∈ Yh

Discrete space of controls (piecewise constant):

Uh = {uh ∈ L2(Ωh) : uh|T ≡ const for all T ∈ Th}
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Discrete Problem

Discrete optimization problem

Minimize
1

2
‖Gh(uh)− yd‖2

L2(Ω) +
ν

2
‖uh‖2

L2(Ω) + µ ‖uh‖L1(Ω)

such that ua ≤ uh ≤ ub

and uh ∈ Uh
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Convergence of Minimizers

Theorem (approximation of global minima)

For every h > 0 let uh be a global solution of the discrete problem. Then
the sequence {uh}h>0 is bounded in L∞(Ω) and there exist subsequences,
denoted in the same way, converging to a point u in the weak? L∞(Ω)
topology. Any of these limit points is a global solution of the continuous
problem. Moreover, we have

lim
h→0

{
‖u − uh‖L∞(Ωh)

}
= 0 and lim

h→0
Jh(uh) = J(u).

Theorem (approximation of strict local minima)

Let u be a strict local minimum of the continuous problem, then there
exists a sequence {uh}h>0 of local minima of the discrete problems which
converge towards u.
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Error Estimates

Theorem (piecewise constant discretization)

Let u be a solution of the continuous problem and {uh} a sequence of
solutions of the discrete problems converging towards u. Moreover, assume
that the second-order sufficient condition is satisfied.
Then there exists C > 0 such that

‖u−uh‖L∞(Ωh) +‖y−yh‖L∞(Ωh) +‖p−ph‖L∞(Ωh) +‖λ−λh‖L∞(Ωh) ≤ C h.
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Error Estimates

Theorem (piecewise constant discretization)

Let u be a solution of the continuous problem and {uh} a sequence of
solutions of the discrete problems converging towards u. Moreover, assume
that the second-order sufficient condition is satisfied.
Then there exists C > 0 such that

‖u−uh‖L∞(Ωh) +‖y−yh‖L∞(Ωh) +‖p−ph‖L∞(Ωh) +‖λ−λh‖L∞(Ωh) ≤ C h.

Idea of the proof

Extend uh to Ω \ Ωh by u. We obtain by optimality

f ′(u)(uh − u) + µ

∫
Ω
λ (uh − u ) dx ≥ 0

f ′h(uh)(uh − uh) + µ

∫
Ω
λh(uh − uh) dx ≥ 0 for all uh ∈ Uh ∩ Uad
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Idea of the proof

δ

2
‖uh − u‖2

L2(Ω)

≤
[
f ′(uh)− f ′(u)

]
(uh − u) ≤ . . .

since uh − u ∈ C τ
u and SSC hold
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Error Estimates

Theorem (piecewise constant discretization)

Let u be a solution of the continuous problem and {uh} a sequence of
solutions of the discrete problems converging towards u. Moreover, assume
that the second-order sufficient condition is satisfied.
Then there exists C > 0 such that

‖u−uh‖L∞(Ωh) +‖y−yh‖L∞(Ωh) +‖p−ph‖L∞(Ωh) +‖λ−λh‖L∞(Ωh) ≤ C h.

Theorem (variational discretization, Hinze (2005))

Let u be a solution of the continuous problem and {uh} a sequence of
solutions of the variational discretized probem, converging towards u.
Moreover, assume that the second-order sufficient condition is satisfied.
Then there is C > 0, such that

‖u− uh‖L2(Ωh) + ‖y − yh‖L2(Ωh) + ‖p− ph‖L2(Ωh) + ‖λ− λh‖L2(Ωh) ≤ C h2.
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Test Problem

Control problem

Minimize
1

2
‖y − yd‖2

L2(Ω) + 10−3 ‖u‖2
L2(Ω) + 3 · 10−2 ‖u‖L1(Ω)

such that ua ≤ u ≤ ub

yd(x1, x2) = 2 sin(2π x1) sin(π x2) exp(x1)

PDE:
−∆y + y 3 = u in Ω

y = 0 on Γ
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Solutions for h = 2−3 and h = 2−8
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Convergence (Full Discretization)

Error in the control:
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Convergence (Variational Discretization)

Error in the adjoint:
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Influence of Parameter µ

Minimize
1

2
‖G (u)− yd‖2

L2(Ω) +
ν

2
‖u‖2

L2(Ω) + µ ‖u‖L1(Ω)

such that ua ≤ u ≤ ub (ua < 0 < ub)

µ = 0.00
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Influence of Parameter µ

Minimize
1

2
‖G (u)− yd‖2

L2(Ω) +
ν

2
‖u‖2

L2(Ω) + µ ‖u‖L1(Ω)

such that ua ≤ u ≤ ub (ua < 0 < ub)

µ = 1.00E–03
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Influence of Parameter µ

Minimize
1

2
‖G (u)− yd‖2

L2(Ω) +
ν

2
‖u‖2

L2(Ω) + µ ‖u‖L1(Ω)

such that ua ≤ u ≤ ub (ua < 0 < ub)

µ = 2.00E–03
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Influence of Parameter µ

Minimize
1

2
‖G (u)− yd‖2

L2(Ω) +
ν

2
‖u‖2

L2(Ω) + µ ‖u‖L1(Ω)

such that ua ≤ u ≤ ub (ua < 0 < ub)

µ = 4.00E–03
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Influence of Parameter µ

Minimize
1

2
‖G (u)− yd‖2

L2(Ω) +
ν

2
‖u‖2

L2(Ω) + µ ‖u‖L1(Ω)

such that ua ≤ u ≤ ub (ua < 0 < ub)

µ = 8.00E–03
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Influence of Parameter µ

Minimize
1

2
‖G (u)− yd‖2

L2(Ω) +
ν

2
‖u‖2

L2(Ω) + µ ‖u‖L1(Ω)

such that ua ≤ u ≤ ub (ua < 0 < ub)

µ = 1.60E–02
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Influence of Parameter µ

Minimize
1

2
‖G (u)− yd‖2

L2(Ω) +
ν

2
‖u‖2

L2(Ω) + µ ‖u‖L1(Ω)

such that ua ≤ u ≤ ub (ua < 0 < ub)

µ = 3.20E–02
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Influence of Parameter µ

Minimize
1

2
‖G (u)− yd‖2

L2(Ω) +
ν

2
‖u‖2

L2(Ω) + µ ‖u‖L1(Ω)

such that ua ≤ u ≤ ub (ua < 0 < ub)

µ = 6.40E–02
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Influence of Parameter µ

Minimize
1

2
‖G (u)− yd‖2

L2(Ω) +
ν

2
‖u‖2

L2(Ω) + µ ‖u‖L1(Ω)

such that ua ≤ u ≤ ub (ua < 0 < ub)

µ = 1.28E–01
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Overview

1 Introduction and Problem Setting

2 1st- and 2nd-Order Optimality Conditions

3 Finite Element Error Estimates and Examples

4 Extension: Directional Sparsity
(joint with Georg Stadler, ICES, Texas)
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Can we do Better Than Just Sparse?

Sparsity

vs. directional sparsity

Objective function

1
2‖y − yd‖2

L2 + β ‖u‖L1
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Can we do Better Than Just Sparse?

Sparsity vs. directional sparsity

Objective function

1
2‖y − yd‖2

L2 + β ‖u‖L1

Objective function

1
2‖y − yd‖2

L2 + β ‖u‖L1(L2)
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Can we do Better Than Just Sparse?

Sparsity vs. directional sparsity

Properties

no structural assumptions
made
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Can we do Better Than Just Sparse?

Sparsity vs. directional sparsity

Properties

no structural assumptions
made

Properties

exploits known or desired
group sparsity structure

Roland Herzog (TU Chemnitz) Sparsity in Nonlinear Optimal Control Warwick 27 / 34



Introduction and Problem Setting
1st- and 2nd-Order Optimality Conditions

Finite Element Error Estimates and Examples
Extension: Directional Sparsity

Directional Sparsity with Parabolic PDEs

Placement of actuators for a parabolic problem

Ω

0

Time t

Space x
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Directional Sparsity with Parabolic PDEs

With Sparsity functional

u 6= 0

0

Time t

Space x
Roland Herzog (TU Chemnitz) Sparsity in Nonlinear Optimal Control Warwick 28 / 34



Introduction and Problem Setting
1st- and 2nd-Order Optimality Conditions

Finite Element Error Estimates and Examples
Extension: Directional Sparsity

Directional Sparsity with Parabolic PDEs

With Sparsity functional

u 6= 0

Location of actuators0

Time t
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With Sparsity functional

u 6= 0

Location of actuators

wasted

0

Time t
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Directional Sparsity: Basic Definition

Problem formulation

min
1

2
‖Su − yd‖2

H +
α

2
‖u‖2

L2(Ω)

+ β ‖u‖L1(L2)

s.t. ua ≤ u ≤ ub a.e. in Ω x1

x2

Ω
2
(x

1
)

x1Ω1

Problem data

ua, ub ∈ L2(Ω), S ∈ L(L2(Ω),H), Ω ⊂ RN = Rn × RN−n

Existence and uniqueness

For α > 0 (or α = 0 and S injective) and β ≥ 0, there exists a unique
solution u.
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Directional Sparsity: Basic Definition

Problem formulation

min
1

2
‖Su − yd‖2

H +
α

2
‖u‖2

L2(Ω)

+ β

∫
Ω1

(∫
Ω2(x1)

u(x1, x2)2 dx2

)1/2
dx1

s.t. ua ≤ u ≤ ub a.e. in Ω x1

x2

Ω
2
(x

1
)

x1Ω1

Problem data

ua, ub ∈ L2(Ω), S ∈ L(L2(Ω),H), Ω ⊂ RN = Rn × RN−n

Existence and uniqueness

For α > 0 (or α = 0 and S injective) and β ≥ 0, there exists a unique
solution u.
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Related Approaches

Joint sparsity in image restoration

Ψ(u) =
∑
λ∈Λ

ωλ |~uλ|pq, q = 2, p = 1

Ω1 =̂ Λ

Ω2 = {1, 2, . . . ,# of channels}
with dx2 = counting measure

[Fornasier, Ramlau, Teschke (2008)]

TV-based image restoration

Ψ(u) =

∫
Ω1

|∇u| dx1, Ω2 = {1, 2, . . . ,N} for N-D images
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Parabolic Example with Spatial Sparsity

Parabolic example

minimize 1
2‖y − yd‖2

L2(Ω) + β ‖u‖L1(L2)

s.t.


yt − 1

10 ∆y = u in Ω = Ω1 × (0,T )

y = 0 on Γ× (0,T )

y(·, 0) = 0 in Ω1

and ua ≤ u ≤ ub a.e. in Ω
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sparsity pattern of u

n = 2 sparse directions (space)

N − n = 1 non-sparse direction (time)
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Summary

use of ‖u‖L1 induces sparse solutions

it is often an appropriate measure of control cost

applications in actuator placement problems

presented 1st- and new 2nd-order optimality conditions

used them to derive FE error estimates

extension to directional sparsity concept
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