

Identification of matrix parameters in elliptic PDEs

M. Hinze

Fachbereich Mathematik Optimierung und Approximation, Universität Hamburg

(joint work with Klaus Deckelnick)

Warwick, May 24, 2011

Universität Hamburg

Motivation

Kunisch/Sachs (SINUM 29, 1992) considered SQP-algorithms to solve the PIP

$$\min_{q\in Q_{aq}}\frac{1}{2}\|y-z\|^2+\frac{\beta}{2}\|q\|_H^2 \text{ s.t. } -\operatorname{div}(q\nabla y)=f \text{ in } \Omega, y=0 \text{ on } \Gamma.$$

Here

- $z \in L^2(\Omega)$ measurements
- *H* a Sobolev space ensuring $q \in L^{\infty}(\Omega)$,
- $Q_{ad} = \{q \in L^{\infty}(\Omega), q(x) \ge \nu > 0 \text{ a.e. in } \Omega\}.$

Solutions *u* are characterized as solution to an obstacle problem involving the Riesz isomorphism $R: H \rightarrow H^*$.

Idea

- Relax the parameter space and allow q p.d.s. matrix,
- and thus allow more general groundwater models.

Parameter estimation in elliptic PDEs

Reconstruct diffusion matrix $A \in \mathbb{R}^{n,n}$ in

$$(PDE) \quad -\operatorname{div} (A\nabla y) = g \text{ in } \Omega, \ y = 0 \text{ on } \Gamma$$

from measurements $z \in Z$. Here, $g \in H^{-1}(\Omega)$ is given and fixed.

Related work

- Alt, Hoffmann, Sprekels: Intern. Ser. Numer. Math. 68, 11-43 (1984).
- Hoffmann, Sprekels: Numer. Funct. Anal. Optim. 7, 157-177 (1984/85).
- Kohn, Lowe: RAIRO Modél. Math. Anal. Numér. 22, 119–158 (1988).
- Hsiao, Sprekels: Math. Meth. Appl. Sciences 10, 447-456 (1988).
- Rannacher, Vexler: SIAM J. Cont. Optim. 44, 1844–1863 (2005).
- Work related to scalar parameters: Chicone & Gerlach (87), Falk (83), Kunisch (94), Richter (81), Kunisch & Sachs (92), Vainikko & Kunisch (93), Wang & Zou (2010), ...

Parameter estimation in elliptic PDEs

Reconstruct diffusion matrix $A \in \mathbb{R}^{n,n}$ in

$$(PDE) \quad -\operatorname{div} (A\nabla y) = g \text{ in } \Omega, \ y = 0 \text{ on } \Gamma$$

from measurements $z \in Z$. Here, $g \in H^{-1}(\Omega)$ is given and fixed.

This talk:

- Reformulation as optimization problem
- Existence of solutions
- Necessary optimality conditions
- Tailored discretization
- Algorithmic concepts
- Numerical example

Optimization problem

Consider

(P)
$$\min_{A \in \mathcal{M}} \frac{1}{2} ||y - z||_Z^2$$
 s.t. (PDE).

where for $0 < a < b < \infty$

$$\mathcal{M} := \{ A \in L^{\infty}(\Omega)^{n,n} \, | \, A(x) \in K \text{ a.e. in } \Omega \},$$

with

$$\mathcal{K} := \{ \mathbf{A} \in \mathcal{S}_n \mid \mathbf{a} \leq \lambda_i(\mathbf{A}) \leq \mathbf{b}, i = 1, \dots, n \}.$$

Here, S_n denotes the set of all symmetric $n \times n$ matrices endowed with the inner product $A \cdot B = \text{trace}(AB)$, and $\lambda_1(A), \ldots, \lambda_n(A)$ denote the eigenvalues of A.

Existence of solutions

For given $A \in \mathcal{M}$ let T(A, g) denote the solution to (PDE).

Theorem (Tartar): \mathcal{M} is H-compact, i.e. every sequence $(A_k)_{k\in\mathbb{N}}$ in \mathcal{M} contains a subsequence $(A_{k'})_{k'\in\mathbb{N}}$ converging to an element $A \in \mathcal{M}$ in the sense that for every $g \in H^{-1}(\Omega)$

$$T(A_{k'},g)
ightarrow T(A,g)$$
 in $H^1_0(\Omega)$ and $A_{k'} \nabla T(A_{k'},g)
ightarrow A \nabla T(A,g)$ in $L^2(\Omega)^n$.

 $(A_{k'})_{k' \in \mathcal{M}}$ is then said to be H-convergent to A $(A_{k'} \xrightarrow{H} A)$.

Theorem: (P) admits a solution $A \in \mathcal{M}$ with corresponding state y = y(A) (Ronny Hoffmann, Diploma Thesis, TU Dresden (2005)).

Tychonov regularization

For $\gamma > 0$ consider

$$(P)_{\gamma} \quad \min_{A \in \mathcal{M}} \underbrace{\frac{1}{2} \|y - z\|_{Z}^{2} + \frac{\gamma}{2} \|A\|_{L^{2}(n,n)}^{2}}_{J_{\gamma}(y,A)} \text{ s.t. } (PDE).$$

Theorem: $(P)_{\gamma}$ admits a solution.

This follows from the fact that $A_k \xrightarrow{H} A$ and $A_k \xrightarrow{*} A_0$ in $L^{\infty}(\Omega)^{n,n}$ imply $A(x) \leq A_0(x)$ a.e. in Ω , and

$$\|A\|^{2} \leq \|A_{0}\|^{2} \leq \liminf_{k \to \infty} \|A_{k}\|^{2}.$$

Optimality condition

Let $(a \otimes b)_{kl} := \frac{1}{2}(a_k b_l + a_l b_k), k, l = 1, ..., n.$

$$J(A) := J_{\gamma}(T(A,g),A).$$

Then

$$J_{\gamma}'(A)H = \int_{\Omega} (
abla y \otimes
abla p + \gamma A) \cdot H dx, \quad H \in L^{\infty}(\Omega)^{n,n},$$

where the adjoint state p satisfies

$$\int_{\Omega} A \nabla v \cdot \nabla p dx = (y - z, v)_Z \quad \text{ for all } v \in H^1_0(\Omega).$$

Let $A \in \mathcal{M}$ be a solution of $(P)_{\gamma}$. Then for every $\lambda > 0$

$$A(x) = P_{\mathcal{K}} \left(A(x) - \lambda \left(\gamma A(x) + \nabla y(x) \otimes \nabla p(x) \right) \right) \text{ a.e. in } \Omega,$$

where

$$P_{\mathcal{K}}(A) = S^{t} \operatorname{diag} \left(P_{[a,b]}(\lambda_{1}(A)), \ldots, P_{[a,b]}(\lambda_{n}(A)) \right) S,$$

S^t diag($\lambda_{1}(A), \ldots, \lambda_{n}(A)$)S.

Discretization of $(P)_{\gamma}$

Consider

$$(P_h)_{\gamma} \quad \min_{A \in \mathcal{M}} \frac{1}{2} \|y_h - z\|_Z^2 + \frac{\gamma}{2} \|A\|_{L^{2(n,n)}}^2 \text{ s.t. } (PDE_h),$$

where (PDE_h) denotes the c(1) FE discretization of (PDE).

- $(P_h)_{\gamma}$ admits a solution $A_h \in \mathcal{M}$. This follows with H-convergence. However, $T(A_h, g)$ are not finite element functions.
- adapt discrete H- convergence of Eymard/Galouët to FE methods): Let $(A_h)_{h>0}$ be a sequence in \mathcal{M} . Then there exists a subsequence $(A_{h'})_{h'>0}$ and $A \in \mathcal{M}$ such that for every $g \in H^{-1}(\Omega)$

 $T_{h'}(A_{h'},g)
ightarrow T(A,g) ext{ in } H^1_0(\Omega) ext{ and } A_{h'} \nabla T_{h'}(A_{h'},g)
ightarrow A \nabla T(A,g) ext{ in } L^2(\Omega)^n.$

This means $(A_{h'})_{h' \in \mathcal{M}}$ Hd-converges to A, i.e. $A_{h'} \xrightarrow{Hd} A$.

• Any solution A_h of $(P_h)_{\gamma}$ satisfies

$$A_h(x) = P_K \left(A_h(x) - \lambda \left(\gamma A_h(x) + \nabla y_h(x) \otimes \nabla p_h(x) \right) \right)$$
 a.e. in Ω .

Use projected gradient or Newton-type methods to solve

$$G_h(A) := A_h - P_K\left(rac{1}{\gamma}
abla
ho_h \otimes
abla y_h
ight) = 0.$$

Main result

Theorem: Let $A_h \in \mathcal{M}$ be a solution of (P_h) . Then there exists a subsequence $(A_{h'})_{h'>0}$ and $A \in \mathcal{M}$ such that $A_{h'} \to A$ in $L^2(\Omega)^{n,n}$, $T_{h'}(A_{h'},g) \to T(A,g)$ in Z, and A is a solution of (P).

Sketch of proof:

•
$$A_{h'} \xrightarrow{Hd} A$$
, $A_{h'} \xrightarrow{*} A_0$ with $||A|| \leq ||A_0||$,

•
$$J(A) \leq \liminf J_h(A_h)$$
,

•
$$J(\overline{A}) = J(A)$$
 with \overline{A} solution to (P),

•
$$\frac{1}{2} \| \mathbf{y} - \mathbf{y}_h \|_Z^2 + \frac{\gamma}{2} \| \mathbf{A}_h - \mathbf{A} \|^2 \rightarrow 0$$
 for $h \rightarrow 0$.

Numerical experiment

 $\Omega:=(-1,1)^2\subset \mathbb{R}^2$, data (z,g) given by $z=I_hy$ where

 $y(x_1, x_2) = (1 - x_1^2)(1 - x_2^2)$ and $g(x_1, x_2) = (1 - x_2^2)(6x_1^2 + 2) + 2(1 - x_1^2)$.

Then y is the solution to (PDE) when

$$A(x_1, x_2) = \begin{bmatrix} 1 + x_1^2 & 0 \\ 0 & 1 \end{bmatrix}.$$

We choose a = 0.5 and b = 10. $(P_h)_{\gamma}$.

Projected steepest descent method with Armijo step size rule; A given, compute

$$A^+ = A(\tau) \text{ with } \tau = \max_{l \in \mathbb{N}} \{\beta^l; J_h(A(\beta^l)) - J_h(A) \leq -\frac{\sigma}{\beta^l} \|A(\beta^l) - A\|^2 \}$$

where $\beta \in (0, 1)$ and

$$oldsymbol{A}(au)_{|T} := oldsymbol{P}_{K} \Big(oldsymbol{A}_{|T} + au ig(
abla oldsymbol{y}_{h|T} \otimes
abla oldsymbol{p}_{h|T} - \gamma oldsymbol{A}_{|T} ig) \Big), \quad T \in \mathcal{T}_{h}.$$

Initial matrix

$$A^0 := \left[egin{array}{cc} 2 & -1 \ -1 & 2 \end{array}
ight].$$

Stopping criterion: $||A^+ - A(1)|| \le \tau_a + \tau_r ||A^0 - A^0(1)||$ or the maximum number of 5000 iterations is reached.

Numerical experiment ($\gamma = 1. \times 10^{-3}$)

We set $\sigma = 10^{-4}$, $\beta = 0.5$. For $\tau_a = 10^{-3}$ and $\tau_r = 10^{-2}$ we have $\|A^0 - A^0(1)\| = 7.94 \times 10^{-2}$, $J_h(A^0) = 2.18 \times 10^{-1}$

and the algorithm terminates after 400 iterations with \tilde{A} and $\tilde{y}_h = T_h(\tilde{A}, g)$ such that

$$\| ilde{y}_h - z\| = 1.02 imes 10^{-2}, \quad \|A - ilde{A}\| = 2.05 ext{ and } J_h(ilde{A}) = 2.77 imes 10^{-2},$$

Numerical solution, desired state, error (large, where $\nabla y = 0$).

Numerical experiment ($\gamma = 0$)

💾 Universität Hamburg

UН

By combining the projected gradient method with a homotopy in the parameter γ we treat the case $\gamma = 0$. We start with $\gamma = 1$ and reduce γ by a factor of 0.8 after every ten iterations. After 5000 iterations

$$\|\tilde{y}_h - z\| = 9.61 \times 10^{-4}, \quad \|A - \tilde{A}\| = 1.40$$

Numerical solution, desired state, error (large, where $\nabla y = 0$). Numerical results partly based on a MATLAB code developed by Ronny Hoffmann in his diploma thesis.

- We expect to prove error estimates for norm-minimal solutions which are inactive,
- Techniques also apply in free material optimization (compare work of Leugering, Stingl).

Thank you very much for your attention

- We expect to prove error estimates for norm-minimal solutions which are inactive,
- Techniques also apply in free material optimization (compare work of Leugering, Stingl).

Thank you very much for your attention