Identification of matrix parameters in elliptic PDEs

M. Hinze
Fachbereich Mathematik
Optimierung und Approximation, Universität Hamburg

(joint work with Klaus Deckelnick)

Warwick, May 24, 2011

Motivation

Kunisch/Sachs (SINUM 29, 1992) considered SQP-algorithms to solve the PIP

$$
\min _{q \in Q_{a q}} \frac{1}{2}\|y-z\|^{2}+\frac{\beta}{2}\|q\|_{H}^{2} \text { s.t. }-\operatorname{div}(q \nabla y)=f \text { in } \Omega, y=0 \text { on } \Gamma .
$$

Here

- $z \in L^{2}(\Omega)$ measurements
- H a Sobolev space ensuring $q \in L^{\infty}(\Omega)$,
- $Q_{a d}=\left\{q \in L^{\infty}(\Omega), q(x) \geq \nu>0\right.$ a.e. in $\left.\Omega\right\}$.

Solutions u are characterized as solution to an obstacle problem involving the Riesz isomorphism $\boldsymbol{R}: \boldsymbol{H} \rightarrow \boldsymbol{H}^{*}$.

Idea

- Relax the parameter space and allow q p.d.s. matrix,
- and thus allow more general groundwater models.

Parameter estimation in elliptic PDEs

Reconstruct diffusion matrix $A \in \mathbb{R}^{\boldsymbol{n}, \boldsymbol{n}}$ in

$$
(P D E) \quad-\operatorname{div}(A \nabla y)=g \text { in } \Omega, y=0 \text { on } \Gamma
$$

from measurements $z \in Z$. Here, $g \in H^{-1}(\Omega)$ is given and fixed.
Related work

- Alt, Hoffmann, Sprekels: Intern. Ser. Numer. Math. 68, 11-43 (1984).
- Hoffmann, Sprekels: Numer. Funct. Anal. Optim. 7, 157-177 (1984/85).
- Kohn, Lowe: RAIRO Modél. Math. Anal. Numér. 22, 119-158 (1988).
- Hsiao, Sprekels: Math. Meth. Appl. Sciences 10, 447-456 (1988).
- Rannacher, Vexler: SIAM J. Cont. Optim. 44, 1844-1863 (2005).
- Work related to scalar parameters: Chicone \& Gerlach (87), Falk (83), Kunisch (94), Richter (81), Kunisch \& Sachs (92), Vainikko \& Kunisch (93), Wang \& Zou (2010), ...

Parameter estimation in elliptic PDEs

Reconstruct diffusion matrix $A \in \mathbb{R}^{\boldsymbol{n}, \boldsymbol{n}}$ in

$$
(P D E) \quad-\operatorname{div}(A \nabla y)=g \text { in } \Omega, y=0 \text { on } \Gamma
$$

from measurements $z \in Z$. Here, $g \in H^{-1}(\Omega)$ is given and fixed.
This talk:

- Reformulation as optimization problem
- Existence of solutions
- Necessary optimality conditions
- Tailored discretization
- Algorithmic concepts
- Numerical example

Optimization problem

Consider

$$
\text { (P) } \min _{A \in \mathcal{M}} \frac{1}{2}\|y-z\|_{Z}^{2} \text { s.t. }(P D E)
$$

where for $\mathbf{0}<\boldsymbol{a}<\boldsymbol{b}<\infty$

$$
\mathcal{M}:=\left\{A \in L^{\infty}(\Omega)^{n, n} \mid A(x) \in K \text { a.e. in } \Omega\right\}
$$

with

$$
K:=\left\{A \in \mathcal{S}_{n} \mid a \leq \lambda_{i}(A) \leq b, i=1, \ldots, n\right\}
$$

Here, $\mathcal{S}_{\boldsymbol{n}}$ denotes the set of all symmetric $\boldsymbol{n} \times \boldsymbol{n}$ matrices endowed with the inner product $A \cdot B=\operatorname{trace}(A B)$, and $\lambda_{1}(A), \ldots, \lambda_{n}(A)$ denote the eigenvalues of A.

Existence of solutions

For given $A \in \mathcal{M}$ let $\boldsymbol{T}(A, g)$ denote the solution to (PDE).

Theorem (Tartar): \mathcal{M} is H -compact, i.e. every sequence $\left(A_{k}\right)_{k \in \mathbb{N}}$ in \mathcal{M} contains a subsequence $\left(A_{k^{\prime}}\right)_{k^{\prime} \in \mathbb{N}}$ converging to an element $A \in \mathcal{M}$ in the sense that for every $g \in H^{-1}(\Omega)$
$T\left(A_{k^{\prime}}, g\right) \rightharpoonup T(A, g)$ in $H_{0}^{1}(\Omega)$ and $A_{k^{\prime}} \nabla T\left(A_{k^{\prime}}, g\right) \rightharpoonup A \nabla T(A, g)$ in $L^{2}(\Omega)^{n}$.
$\left(A_{k^{\prime}}\right)_{k^{\prime} \in \mathcal{M}}$ is then said to be H -convergent to $A\left(A_{k^{\prime}} \xrightarrow{H} A\right)$.

Theorem: (P) admits a solution $A \in \mathcal{M}$ with corresponding state $y=y(A)$ (Ronny Hoffmann, Diploma Thesis, TU Dresden (2005)).

Tychonov regularization

For $\gamma>0$ consider

$$
(P)_{\gamma} \min _{A \in \mathcal{M}} \underbrace{\frac{1}{2}\|y-z\|_{Z}^{2}+\frac{\gamma}{2}\|A\|_{L^{2}(n, n)}^{2}}_{J_{\gamma}(y, A)} \text { s.t. (PDE). }
$$

Theorem: $(P)_{\gamma}$ admits a solution.

This follows from the fact that $A_{k} \xrightarrow{H} A$ and $A_{k} \xrightarrow{*} A_{0}$ in $L^{\infty}(\Omega)^{n, n}$ imply $A(x) \leq A_{0}(x)$ a.e. in Ω, and

$$
\|A\|^{2} \leq\left\|A_{0}\right\|^{2} \leq \liminf _{k \rightarrow \infty}\left\|A_{k}\right\|^{2}
$$

ifi Universität Hamburg

Optimality condition

Let $(a \otimes b)_{k l}:=\frac{1}{2}\left(a_{k} b_{l}+a_{l} b_{k}\right), k, I=1, \ldots, n$.

$$
J(A):=J_{\gamma}(T(A, g), A)
$$

Then

$$
J_{\gamma}^{\prime}(A) H=\int_{\Omega}(\nabla y \otimes \nabla p+\gamma A) \cdot H d x, \quad H \in L^{\infty}(\Omega)^{n, n}
$$

where the adjoint state p satisfies

$$
\int_{\Omega} A \nabla v \cdot \nabla p d x=(y-z, v) z \quad \text { for all } v \in H_{0}^{1}(\Omega) .
$$

Let $A \in \mathcal{M}$ be a solution of $(P)_{\gamma}$. Then for every $\lambda>0$

$$
A(x)=P_{K}(A(x)-\lambda(\gamma A(x)+\nabla y(x) \otimes \nabla p(x))) \text { a.e. in } \Omega
$$

where

$$
P_{K}(A)=S^{t} \operatorname{diag}\left(P_{[a, b]}\left(\lambda_{1}(A)\right), \ldots, P_{[a, b]}\left(\lambda_{n}(A)\right)\right) S
$$

if $A=S^{t} \operatorname{diag}\left(\lambda_{1}(A), \ldots, \lambda_{n}(A)\right) S$.

Universität Hamburg

Discretization of $(P)_{\gamma}$

Consider

$$
\left(P_{h}\right)_{\gamma} \quad \min _{A \in \mathcal{M}} \frac{1}{2}\left\|y_{h}-z\right\|_{Z}^{2}+\frac{\gamma}{2}\|A\|_{L^{2(n, n)}}^{2} \text { s.t. }\left(P D E_{h}\right),
$$

where $\left(P D E_{h}\right)$ denotes the $c(1)$ FE discretization of (PDE).

- $\left(P_{h}\right)_{\gamma}$ admits a solution $A_{h} \in \mathcal{M}$. This follows with H -convergence. However, $T\left(A_{h}, g\right)$ are not finite element functions.
- adapt discrete \boldsymbol{H} - convergence of Eymard/Galouët to FE methods): Let $\left(A_{h}\right)_{h>0}$ be a sequence in \mathcal{M}. Then there exists a subsequence $\left(A_{h^{\prime}}\right)_{h^{\prime}>0}$ and $A \in \mathcal{M}$ such that for every $g \in H^{-1}(\Omega)$

$$
T_{h^{\prime}}\left(A_{h^{\prime}}, g\right) \rightharpoonup T(A, g) \text { in } H_{0}^{1}(\Omega) \text { and } A_{h^{\prime}} \nabla T_{h^{\prime}}\left(A_{h^{\prime}}, g\right) \rightharpoonup A \nabla T(A, g) \text { in } L^{2}(\Omega)^{n}
$$

This means $\left(A_{h^{\prime}}\right)_{h^{\prime} \in \mathcal{M}} \mathrm{Hd}$-converges to A, i.e. $\boldsymbol{A}_{h^{\prime}} \xrightarrow{H d} A$.

- Any solution A_{h} of $\left(P_{h}\right)_{\gamma}$ satisfies

$$
A_{h}(x)=P_{K}\left(A_{h}(x)-\lambda\left(\gamma A_{h}(x)+\nabla y_{h}(x) \otimes \nabla p_{h}(x)\right)\right) \text { a.e. in } \Omega
$$

- Use projected gradient or Newton-type methods to solve

$$
G_{h}(A):=A_{h}-P_{K}\left(\frac{1}{\gamma} \nabla p_{h} \otimes \nabla y_{h}\right)=0 .
$$

ii) Universität Hamburg

Main result

Theorem: Let $A_{h} \in \mathcal{M}$ be a solution of $\left(P_{h}\right)$. Then there exists a subsequence $\left(A_{h^{\prime}}\right)_{h^{\prime}>0}$ and $A \in \mathcal{M}$ such that $A_{h^{\prime}} \rightarrow A$ in $L^{2}(\Omega)^{n, n}, T_{h^{\prime}}\left(A_{h^{\prime}}, g\right) \rightarrow T(A, g)$ in Z, and A is a solution of (P).

Sketch of proof:

- $A_{h^{\prime}} \xrightarrow{H d} A, A_{h^{\prime}} \xrightarrow{*} A_{0}$ with $\|A\| \leq\left\|A_{0}\right\|$,
- $J(A) \leq \liminf J_{h}\left(A_{h}\right)$,
- $J(\bar{A})=J(A)$ with \bar{A} solution to (P),
- $\frac{1}{2}\left\|y-y_{h}\right\|_{Z}^{2}+\frac{\gamma}{2}\left\|A_{h}-A\right\|^{2} \rightarrow 0$ for $\boldsymbol{h} \rightarrow 0$.

Numerical experiment

$$
\begin{aligned}
& \Omega:=(-1,1)^{2} \subset \mathbb{R}^{2}, \text { data }(z, g) \text { given by } z=I_{h} y \text { where } \\
& \quad y\left(x_{1}, x_{2}\right)=\left(1-x_{1}^{2}\right)\left(1-x_{2}^{2}\right) \text { and } g\left(x_{1}, x_{2}\right)=\left(1-x_{2}^{2}\right)\left(6 x_{1}^{2}+2\right)+2\left(1-x_{1}^{2}\right) .
\end{aligned}
$$

Then y is the solution to (PDE) when

$$
A\left(x_{1}, x_{2}\right)=\left[\begin{array}{cc}
1+x_{1}^{2} & 0 \\
0 & 1
\end{array}\right]
$$

We choose $a=0.5$ and $b=10 .\left(P_{h}\right)_{\gamma}$.
Projected steepest descent method with Armijo step size rule; A given, compute

$$
A^{+}=A(\tau) \text { with } \tau=\max _{l \in \mathbb{N}}\left\{\beta^{\prime} ; J_{h}\left(A\left(\beta^{\prime}\right)\right)-J_{h}(A) \leq-\frac{\sigma}{\beta^{\prime}}\left\|A\left(\beta^{\prime}\right)-A\right\|^{2}\right\}
$$

where $\beta \in(0,1)$ and

$$
A(\tau)_{\mid T}:=P_{K}\left(A_{\mid T}+\tau\left(\nabla y_{h \mid T} \otimes \nabla p_{h \mid T}-\gamma A_{\mid T}\right)\right), \quad T \in \mathcal{T}_{h}
$$

Initial matrix

$$
A^{0}:=\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right] .
$$

Stopping criterion: $\left\|A^{+}-A(1)\right\| \leq \tau_{a}+\tau_{r}\left\|A^{0}-A^{0}(1)\right\|$ or the maximum number of 5000 iterations is reached.

Numerical experiment $\left(\gamma=1 . \times 10^{-3}\right)$

We set $\sigma=10^{-4}, \beta=0.5$. For $\tau_{a}=10^{-3}$ and $\tau_{r}=10^{-2}$ we have

$$
\left\|A^{0}-A^{0}(1)\right\|=7.94 \times 10^{-2}, J_{h}\left(A^{0}\right)=2.18 \times 10^{-1}
$$

and the algorithm terminates after 400 iterations with \tilde{A} and $\tilde{y}_{h}=T_{h}(\tilde{A}, g)$ such that

$$
\left\|\tilde{y}_{h}-z\right\|=1.02 \times 10^{-2}, \quad\|A-\tilde{A}\|=2.05 \text { and } J_{h}(\tilde{A})=2.77 \times 10^{-2} .
$$

Numerical solution, desired state, error (large, where $\nabla \boldsymbol{y}=0$).

Numerical experiment $(\gamma=0)$

By combining the projected gradient method with a homotopy in the parameter γ we treat the case $\gamma=0$. We start with $\gamma=1$ and reduce γ by a factor of 0.8 after every ten iterations. After 5000 iterations

$$
\left\|\tilde{y}_{h}-z\right\|=9.61 \times 10^{-4}, \quad\|A-\tilde{A}\|=1.40
$$

Numerical solution, desired state, error (large, where $\nabla y=0$).
Numerical results partly based on a MATLAB code developed by Ronny Hoffmann in his diploma thesis.
iti Universität Hamburg
Next steps

- We expect to prove error estimates for norm-minimal solutions which are inactive,
- Techniques also apply in free material optimization (compare work of Leugering, Stingl).
iti Universität Hamburg
Next steps
- We expect to prove error estimates for norm-minimal solutions which are inactive,
- Techniques also apply in free material optimization (compare work of Leugering, Stingl).

Thank you very much for your attention

