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BURGERS AND HAMILTON-JACOBI EQUATIONS

We consider Burgers equation with white noise forcing:

%—F(U-V)u: F(x)W(t), ueR? xecRY,

Assume: f(x) = —VF(x), and u(t,x) = V(t,x);
¢ satisfies the Hamilton-Jacobi equation:

0p(x, t)
ot

+ 51900 P + FRW(H) = 0

e Burgers equation is a model for studying turbulence. It also has
applications in non-equilibrium mechanics.



BURGERS AND HAMILTON-JACOBI EQUATIONS

e We are interested in long time behavior: we consider the
equations on (—oo, T].

e Suppose at t, to, ..., t,, Observations are made for velocity u
and velocity potential ¢ (subject to Gaussian noise);

we make inference on the white noise forcing on (—oo, T].

e Bayesian inverse problem for Navier-Stokes equations with model
errors (stochastic forcing) is considered by Cotter, Dashti,
Robinson and Stuart (2009)



SOLUTION FORMULA

e Given an initial condition ¢(x, to) = ¢o(x), ¢(-,t) is determined
by Lax operator.
O(+ t) = Kig 0.

e Lax-Oleinik formula:
. t1,. 5 .
8(x,6) = inf {¢0(’7(t0)) + [ FheR - F(V(T))W(T)df},

where inf is taken with respect to all absolutely continuous curves
v st y(t) = x.

o \We are interested in solutions that exist for all time, i.e.

o, t) = Kg)v,td)(" to), Vitp < t.



PERIODIC SETTING

e E, Khanin, Mazel and Sinai (2000) and lturriaga and Khanin
(2003):

there is a unique solution ¢ (within an additive constant) that
exists for all time, i.e.

¢(’7 t) = ’Ctv‘o/,t(b(a tO)? Vig <t
e For all t: ¢(-,t) is continuous, and Lipschitz.

e There is a unique spatially periodic solution u(t,x) for the
Burgers equation that exists for all time.



NON-PERIODIC SETTING

e For potential F(x) with a "big” maximum and a “big”
minimum, H. and Khanin (2003) show that there is a solution ¢
and a solution u that exist for all time.

e They are limit of finite time solutions with zero initial conditions.



BAYESIAN INVERSE PROBLEM FOR H-J EQUATION

e Formulation: As ¢ is uniquely determined within a constant, and
is continuous

GW) = {o" (xi, t1) — oW (x0, 10), i=1,...,m} € R™,
is uniquely determined by W.
Let y be a noisy observation of G(W):
y=G(W)+o.

The prior probability pg is the Wiener measure on C(—00, tmax]
(tmax = max t,').

Determine Y (W) = P(W|y).



BAYESIAN INVERSE PROBLEM FOR H-J EQUATION

Assuming a Gaussian noise o ~ N (0,X), we aim to show:

e Bayes' formula holds:

du¥
—— o exp(—d(W;
T ep(—0(W:))

where

1 1 _
O(Wiy) = Sly-G(W)ls = 5(> Y2 (y—G(W)), =72 (y—G(W))).
e The posterior 1” is well-posed; in particular

dien(p?, 1) < c(r)ly — [,

when |y|gm < r and |y/|gm < r.



BANACH SPACE SETTING

For y = G(x) + o, x € X a Banach space:
Cotter, Dashti, Robinson and Stuart showed:
() If G : X — R™ is measurable, e.g. when it is continuous with
respect to x, the Bayes' formula holds.
(1) When py is Gaussian,
when |y1‘Rm <r, ‘yz‘Rm <r
|[D(xiy1) = @(xiy2)| < K(r)(L+ [Ix[I%)Iy1 — yolre

then the posterior measure p? is well-posed, i.e.

den (1, 17?) < c(r)lyr — ya|rm.



METRIC SPACE SETTING

e Our space C(—00, tmax] is not Banach;

e |t is a metric space with the metric:

1 SUP_ p<t<timax ‘Wl(t) - W2(t)‘

D(Wi, Wo) =S = ,
(4. 12) = 2" L4 sup_p<e<tn, |Wa(t) — Wa(t)|

e We need to formulate Bayesian inverse problems for metric
spaces.

e For a metric space X, condition (I) of Cotter et al. still holds: If
G is continuous, then the Bayes' formula holds.



METRIC SPACE SETTING

For well-posedness: Condition (I1) needs to be generalized.

(1

i) @ is locally bounded: for r > 0, if |y|gm < r
0 < P(x;y) < M(r),
for x € X(r) C X, po(X(r)) > 0.
i) Thereisa G : R x X — R: G(r,.) € L>(X,dug), and
[P(xiy) = @y < G(r, X)ly = ¥'|gm,
when |y|rm < r and |y/|gm < r.

Then
duen(p?, 11”) < c(r)ly — y'|rm.



PERIODIC H-J EQUATION

e We consider the periodic case first:

the forcing function f(x) and forcing potential F(x) are periodic;
problems are on TY.

G(W) ={o(xi, ti) — ¢(x0,t0) : i=1,...,m}.

e To show the validity of the Bayes' formula, we show that
G : C(—00, tmax] — R™ is continuous.

e To show well-posedness, we show conditions (III)(i) and (II1)(ii).



PERIODIC H-J EQUATION

o First we show that G is continuous.

e From the Lax-Oleinik formula: when D(Wj, W) — 0, there are
¢k independent of x; and t; s.t.

o™i (xit) — ¢V (xi t)) = =0, i=0,1,....m.

e G(W) ={o"(xi, ti) — 9" (%0, t0), i =1,...,m},

G : C(—00, tmax] — R™ is continuous.
e The Bayes' formula holds:
du

d—'ZO x exp(—P(W;y)) = exp(—%\y —G(W)3).



PERIODIC H-J EQUATION

e For well-posedness, we show (III)(i) and (I11)(ii):

UDIO; 0<O(W;y) < M(r) when |y|gm < r;
W e X(r) C C(—0o0, tmax], X(r) of positive pig measure.
from the Lax operator

GW)lem = 6" (xi, ti) — 6" (30, to) }
c<1 + ; max |W(1) — W(t;)\z).

IN

— tp—1<7<¢t;
i=1

1
*(Wiy)=3ly - GIW)|E < c(r+ |G(W)[gm)? when |y|gm < r.

Fixing M > 0, the set W s.t. |G(W)|gm < M has a positive
Wiener measure.  (I11)(i) is thus shown.



PERIODIC H-J EQN

(i)
[O(Wiy) — &(W;y)| < G(r, W)y — y'[re

when |y|grm < r, |y/|rm < rand G(r,-) is in L?(C(—00, tmax], dtto)-

. 1
o With &(W;y) = Sy = G(W)[3:

[O(Wiy) — &(W;y")|

1,
< SIETY2 fm (I lem + 1y Jrem + 20G(W)[rm)ly — [
<NZ 2[R e (r + [G(W) [m)]y = ¥ [em.

With the bound in the previous slice, this is square integrable.



NONPERIODIC H-J EQN

e We consider the non-periodic case where the forcing potential
F(x) has a "big" maximum and a “big" minimum.

e To show Bayes' formula, we show that
GW) = {8V (xi. ti) — 6" (x0, t0), i =1,...,m}
is continuous from C(—00, tmax] to R™.

This is shown similarly as in the periodic case: there are constants
Ck So that:

lim ¢Wk(x;, t;) — ¢ (xi, ti) — ¢k = 0.
k— 00

e The Bayes' formula thus holds.



NONPERIODIC H-J EQN

e The well-posedness of the posterior measure ©”, we show
conditions (I11)(i) and (I11)(ii).

e We show the bound:

[G(W)|rm < S(W),

where
m tmax
SWy=c+ecd >, 1+ max [W(r)-W(+1)P).
i=1 [=T;(W) -

e The constant T;(W) depends on the Wiener path W.



NONPERIODIC H-J EQN

e The Lax operator

¢(‘7 t) = ’C!}é(b(v 5);

vs Y(ti)=xi to

. £1,. :
Oxi,t) = inf {d»(v(s), )+ [ 5\7(7)\2—F(v(f))vv(r)df}.
o We show that all the minimizers v are inside a compact set at a
time;

~ must be inside the compact set at a time larger than T;(W),
which is independent of s.



NONPERIODIC H-J EQN

e For the condition (III)(i): we show
O(W:y) = %Iy —GW)Ig < c(r+1G(W)len)? < c(r + S(W))?

is less than M(r) for W € X(r) of positive Wiener measure.

e There is a constant T such that the set of paths W with
Ti(W) > T has a positive Wiener measure.

e We can choose a constant M s.t. out of these paths, the set of
paths W such that S(W) < M has a positive Wiener measure.



NONPERIODIC H-J EQN

e For the condition (III)(ii):

|D(W;y) —o(W;y)| < [IZ7Y2)3mgm(r + G(W))]ly — y'|rm.
< Hz_l/zufw,n&m(f +S(W))ly — y'[rm.

e To show that G(r, W) = Hz_l/zuﬁmﬂgm(l’ + S(W)) is in
LQ(C(—OO, tmax]a dNO)

we show S(W) € L2(C(—00, tmax], diio).

e This is achieved by using estimates for the convergence rates for
the law of large numbers.



BAYESIAN INVERSE PROBLEMS FOR BURGERS EQN

e There are shocks where the solution v is discontinuous; u is not
defined everywhere, but u(-, t) € LL (R9) for all t.

eFori=1,....m, let i : L} (RY) — R be continuous and
bounded.

o Define
G(W) = (h(u(-,t1)), -y Im(u(-, tm)) € R™.

o Noisy observation
y=G(W)+o.

e Determine p¥ (W) = P(Wly).



