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BURGERS AND HAMILTON-JACOBI EQUATIONS

We consider Burgers equation with white noise forcing:

∂u

∂t
+ (u · ∇)u = f (x)Ẇ (t), u ∈ R

d , x ∈ R
d .

Assume: f (x) = −∇F (x), and u(t, x) = ∇φ(t, x);

φ satisfies the Hamilton-Jacobi equation:

∂φ(x , t)

∂t
+

1

2
|∇φ(x , t)|2 + F (x)Ẇ (t) = 0.

• Burgers equation is a model for studying turbulence. It also has
applications in non-equilibrium mechanics.



BURGERS AND HAMILTON-JACOBI EQUATIONS

• We are interested in long time behavior: we consider the
equations on (−∞,T ].

• Suppose at t1, t2, . . . , tm, observations are made for velocity u

and velocity potential φ (subject to Gaussian noise);

we make inference on the white noise forcing on (−∞,T ].

• Bayesian inverse problem for Navier-Stokes equations with model
errors (stochastic forcing) is considered by Cotter, Dashti,
Robinson and Stuart (2009)



SOLUTION FORMULA

• Given an initial condition φ(x , t0) = φ0(x), φ(·, t) is determined
by Lax operator:

φ(·, t) = KW
t0,tφ0.

• Lax-Oleinik formula:

φ(x , t) = inf

{

φ0(γ(t0)) +

∫ t

t0

1

2
|γ̇(τ)|2 − F (γ(τ))Ẇ (τ)dτ

}

,

where inf is taken with respect to all absolutely continuous curves

γ s.t. γ(t) = x .

• We are interested in solutions that exist for all time, i.e.

φ(·, t) = KW
t0,tφ(·, t0), ∀t0 < t.



PERIODIC SETTING

• E, Khanin, Mazel and Sinai (2000) and Iturriaga and Khanin
(2003):

there is a unique solution φ (within an additive constant) that
exists for all time, i.e.

φ(·, t) = KW
t0,tφ(·, t0), ∀ t0 < t.

• For all t: φ(·, t) is continuous, and Lipschitz.

• There is a unique spatially periodic solution u(t, x) for the
Burgers equation that exists for all time.



NON-PERIODIC SETTING

• For potential F (x) with a “big” maximum and a “big”
minimum, H. and Khanin (2003) show that there is a solution φ

and a solution u that exist for all time.

• They are limit of finite time solutions with zero initial conditions.



BAYESIAN INVERSE PROBLEM FOR H-J EQUATION

• Formulation: As φ is uniquely determined within a constant, and
is continuous

G(W ) = {φW (xi , ti)− φW (x0, t0), i = 1, . . . ,m} ∈ R
m,

is uniquely determined by W .

Let y be a noisy observation of G(W ):

y = G(W ) + σ.

The prior probability µ0 is the Wiener measure on C (−∞, tmax]
(tmax = max ti ).

Determine µy (W ) = P(W |y).



BAYESIAN INVERSE PROBLEM FOR H-J EQUATION

Assuming a Gaussian noise σ ∼ N (0,Σ), we aim to show:

• Bayes’ formula holds:

dµy

dµ0
∝ exp(−Φ(W ; y))

where

Φ(W ; y) =
1

2
|y−G(W )|2Σ =

1

2
〈Σ−1/2(y−G(W )),Σ−1/2(y−G(W ))〉.

• The posterior µy is well-posed; in particular

dHell(µ
y , µy ′

) ≤ c(r)|y − y ′|Rm ,

when |y |Rm ≤ r and |y ′|Rm ≤ r .



BANACH SPACE SETTING

For y = G(x) + σ, x ∈ X a Banach space:

Cotter, Dashti, Robinson and Stuart showed:

(I) If G : X → R
m is measurable, e.g. when it is continuous with

respect to x , the Bayes’ formula holds.

(II) When µ0 is Gaussian,
when |y1|Rm ≤ r , |y2|Rm ≤ r

|Φ(x ; y1)− Φ(x ; y2)| ≤ K (r)(1 + ‖x‖q
X
)|y1 − y2|Rm

then the posterior measure µy is well-posed, i.e.

dHell(µ
y1, µy2) ≤ c(r)|y1 − y2|Rm .



METRIC SPACE SETTING

• Our space C (−∞, tmax] is not Banach;

• It is a metric space with the metric:

D(W1,W2) =
∞
∑

n=1

1

2n
sup−n≤t≤tmax

|W1(t)−W2(t)|

1 + sup−n≤t≤tmax
|W1(t)−W2(t)|

.

• We need to formulate Bayesian inverse problems for metric

spaces.

• For a metric space X , condition (I) of Cotter et al. still holds: If
G is continuous, then the Bayes’ formula holds.



METRIC SPACE SETTING

For well-posedness: Condition (II) needs to be generalized.

(III)
i) Φ is locally bounded: for r > 0, if |y |Rm ≤ r

0 ≤ Φ(x ; y) ≤ M(r),

for x ∈ X (r) ⊂ X , µ0(X (r)) > 0.

ii) There is a G : R× X → R: G (r , .) ∈ L2(X , dµ0), and

|Φ(x ; y)− Φ(x ; y ′)| ≤ G (r , x)|y − y ′|Rm ,

when |y |Rm ≤ r and |y ′|Rm ≤ r .

Then
dHell(µ

y , µy ′

) ≤ c(r)|y − y ′|Rm .



PERIODIC H-J EQUATION

• We consider the periodic case first:

the forcing function f (x) and forcing potential F (x) are periodic;
problems are on T

d .

•
G(W ) = {φ(xi , ti )− φ(x0, t0) : i = 1, . . . ,m}.

• To show the validity of the Bayes’ formula, we show that
G : C (−∞, tmax] → R

m is continuous.

• To show well-posedness, we show conditions (III)(i) and (III)(ii).



PERIODIC H-J EQUATION

• First we show that G is continuous.

• From the Lax-Oleinik formula: when D(Wk ,W ) → 0, there are
ck independent of xi and ti s.t.

φWk (xi , ti )− φW (xi , ti )− ck → 0, i = 0, 1, . . . ,m.

• G(W ) = {φW (xi , ti )− φW (x0, t0), i = 1, . . . ,m},

G : C (−∞, tmax] → R
m is continuous.

• The Bayes’ formula holds:

dµy

dµ0
∝ exp(−Φ(W ; y)) = exp(−

1

2
|y − G(W )|2Σ).



PERIODIC H-J EQUATION

• For well-posedness, we show (III)(i) and (III)(ii):

(III)(i) 0 ≤ Φ(W ; y) ≤ M(r) when |y |Rm ≤ r ;

W ∈ X (r) ⊂ C (−∞, tmax], X (r) of positive µ0 measure.

from the Lax operator

|G(W )|Rm = |{φW (xi , ti )− φW (x0, t0)}|Rm

≤ c

(

1 +
m
∑

i=1

max
t0−1≤τ≤ti

|W (τ)−W (ti)|
2

)

.

Φ(W ; y) =
1

2
|y − G(W )|2Σ ≤ c(r + |G(W )|Rm)2 when |y |Rm ≤ r .

Fixing M > 0, the set W s.t. |G(W )|Rm < M has a positive
Wiener measure. (III)(i) is thus shown.



PERIODIC H-J EQN

(III)(ii)

|Φ(W ; y)− Φ(W ; y ′)| ≤ G (r ,W )|y − y ′|Rm

when |y |Rm ≤ r , |y ′|Rm ≤ r and G (r , ·) is in L2(C (−∞, tmax], dµ0).

• With Φ(W ; y) =
1

2
|y − G(W )|2Σ:

|Φ(W ; y)− Φ(W ; y ′)|

≤
1

2
‖Σ−1/2‖2

Rm ,Rm(|y |Rm + |y ′|Rm + 2|G(W )|Rm )|y − y ′|Rm

≤ ‖Σ−1/2‖2
Rm,Rm(r + |G(W )|Rm )|y − y ′|Rm .

With the bound in the previous slice, this is square integrable.



NONPERIODIC H-J EQN

• We consider the non-periodic case where the forcing potential
F (x) has a “big” maximum and a “big” minimum.

• To show Bayes’ formula, we show that

G(W ) = {φW (xi , ti )− φW (x0, t0), i = 1, . . . ,m}

is continuous from C (−∞, tmax] to R
m.

This is shown similarly as in the periodic case: there are constants
ck so that:

lim
k→∞

φWk (xi , ti )− φW (xi , ti )− ck = 0.

• The Bayes’ formula thus holds.



NONPERIODIC H-J EQN

• The well-posedness of the posterior measure µy , we show
conditions (III)(i) and (III)(ii).

• We show the bound:

|G(W )|Rm ≤ S(W ),

where

S(W ) = c + c

m
∑

i=1

tmax
∑

l=Ti (W )

(1 + max
l≤τ≤l+1

|W (τ)−W (l + 1)|2).

• The constant Ti(W ) depends on the Wiener path W .



NONPERIODIC H-J EQN

• The Lax operator

φ(·, t) = KW
s,tφ(·, s);

•

φ(xi , ti ) = inf
γ, γ(ti )=xi

{

φ(γ(s), s))+

∫ t

t0

1

2
|γ̇(τ)|2−F (γ(τ))Ẇ (τ)dτ

}

.

• We show that all the minimizers γ are inside a compact set at a
time;

γ must be inside the compact set at a time larger than Ti (W ),
which is independent of s.



NONPERIODIC H-J EQN

• For the condition (III)(i): we show

Φ(W ; y) =
1

2
|y − G(W )|2Σ ≤ c(r + |G(W )|Rm )2 ≤ c(r + S(W ))2

is less than M(r) for W ∈ X (r) of positive Wiener measure.

• There is a constant T such that the set of paths W with
Ti (W ) > T has a positive Wiener measure.

• We can choose a constant M s.t. out of these paths, the set of
paths W such that S(W ) < M has a positive Wiener measure.



NONPERIODIC H-J EQN

• For the condition (III)(ii):

|Φ(W ; y)− Φ(W ; y ′)| ≤ ‖Σ−1/2‖2
Rm,Rm(r + G (W ))|y − y ′|Rm .

≤ ‖Σ−1/2‖2Rm,Rm(r + S(W ))|y − y ′|Rm .

• To show that G (r ,W ) = ‖Σ−1/2‖2
Rm ,Rm(r + S(W )) is in

L2(C (−∞, tmax], dµ0)

we show S(W ) ∈ L2(C (−∞, tmax], dµ0).

• This is achieved by using estimates for the convergence rates for
the law of large numbers.



BAYESIAN INVERSE PROBLEMS FOR BURGERS EQN

• There are shocks where the solution u is discontinuous; u is not
defined everywhere, but u(·, t) ∈ L1

loc
(Rd) for all t.

• For i = 1, . . . ,m, let li : L
1
loc

(Rd ) → R be continuous and
bounded.

• Define

G(W ) = (l1(u(·, t1)), . . . , lm(u(·, tm)) ∈ R
m.

• Noisy observation
y = G(W ) + σ.

• Determine µy (W ) = P(W |y).


