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The optimal control problem

Let real bounds α < β, ya < 0 < yb be given.

Problem with control and state constraints:

(P) min J(y ,u) :=
1
2

∫
Ω

(y(x)− yd (x))2 dx +
λ

2

∫
Ω

(u(x))2 dx

−∆y(x) + d(y(x)) = u(x) in Ω

y(x) = 0 on Γ,

α ≤ u(x) ≤ β, a.e. in Ω,

ya ≤ y(x) ≤ yb for all x ∈ Ω̄.
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Lagrangian function

It holds yu = G(u), G : L2(Ω)→ H1
0 (Ω) ∩ C(Ω̄), n ≤ 3. Therefore, the

state-constrained problem can be written as follows:

(P) min f (u), α ≤ u(x) ≤ β, ya ≤ G(u) ≤ yb.

For several reasons, we need G : L2(Ω)→ C(Ω̄) or (if n > 3),
G : Lp(Ω)→ C(Ω̄), p > n/2.

Following the Lagrange formalism, we (formally) remove the state constraints
by Lagrange multipliers.

Lagrangian function

L(u, µa, µb) := f (u) +

∫
Ω̄

(ya −G(u))dµa +

∫
Ω̄

(G(u)− yb)dµb.
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Lagrange multipliers

In L, regular Borel measures µa, µb are Lagrange multipliers associated with
the state constraints.

Definition: µa, µb are said to be Lagrange multipliers associated with ū, if

The variational inequality

∂L
∂u

(ū, µa, µb)(u − ū) ≥ 0 ∀u ∈ Uad

is satisfied (i.e. ū satisfies the necessary conditions for the problem of
minimizing L subject to u ∈ Uad ),

µa ≥ 0, µb ≥ 0 in the sense of C(Ω̄)∗,

and the following complementarity conditions are satisfied:∫
Ω̄

(ya −G(ū))dµa = 0 =

∫
Ω̄

(G(ū)− yb)dµb.

Fredi Tröltzsch (TU Berlin) Numerical Analysis Workshop Warwick 6 / 42



Lagrange multipliers

In L, regular Borel measures µa, µb are Lagrange multipliers associated with
the state constraints.

Definition: µa, µb are said to be Lagrange multipliers associated with ū, if
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(G(ū)− yb)dµb.

Fredi Tröltzsch (TU Berlin) Numerical Analysis Workshop Warwick 6 / 42



Lagrange multipliers

In L, regular Borel measures µa, µb are Lagrange multipliers associated with
the state constraints.

Definition: µa, µb are said to be Lagrange multipliers associated with ū, if
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Adjoint equation with measures

L(u, µa, µb) = f (u) +
∫̄
Ω

(ya −G(u))dµa +
∫̄
Ω

(G(u)− yb)dµb

∂L
∂u

(ū, µa, µb) v = f ′(ū) v +
∫̄
Ω

(G′(ū)v) d(µb − µa)

=

∫
Ω

(ϕū + λū) v dx +

∫
Ω

(G′(ū)∗(µb − µa))︸ ︷︷ ︸
ϕµ

v dx

=

∫
Ω

(ϕū + ϕµ + λū) v dx =

∫
Ω

(ϕ̄+ λū) v dx

This new adjoint state ϕ̄ is the weak solution of an adjoint elliptic equation. The
first rigorous mathematical explanation of this fact was given by E. Casas.

Reference: E. Casas, Control of an elliptic problem with pointwise state constraints,
SIAM J. Control and Optimization 1986.
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(ū, µa, µb) v =

f ′(ū) v +
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∫̄
Ω
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(G′(ū)∗(µb − µa))︸ ︷︷ ︸
ϕµ

v dx

=

∫
Ω
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Necessary optimality conditions

Theorem (Karush-Kuhn-Tucker conditions)
Let ū be locally optimal for (P) and let ȳ the associated state. Assume that a
linearized Slater condition is satisfied: ∃ũ ∈ Uad such that

ya <
(

G(ū) + G′(ū)(ũ − ū)
)

(x) < yb ∀x ∈ Ω̄.

Then there exist nonnegative regular Borel measures µa, µb on Ω̄ and an
adjoint state ϕ̄ ∈W 1,s(Ω) ∀s < n/(n − 1) such that

−∆ϕ̄+ d ′(ȳ)ϕ̄ = ȳ − yd + µb − µa
ϕ̄|Γ = 0,∫

Ω

(ϕ̄+ λū)(u − ū) dx ≥ 0 ∀u ∈ Uad ,

∫
Ω̄

(ȳ − yb) dµb =

∫
Ω̄

(ȳ − ya) dµa = 0.
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(ϕ̄+ λū)(u − ū) dx ≥ 0 ∀u ∈ Uad ,

∫
Ω̄
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Two main numerical approaches

To solve state-constrained problems numerically, the following options are
useful:

Discretize and solve the resulting large scale optimization problem by
available software.

Reduce the problem to a control-constrained one by penalization:

min
u∈Uad

f (u) + ρ

∫
Ω

{
((ya − y)+)2 + ((y − yb)+)2} dx , ρ >> 0

→ Moreau-Yosida type regularization.

If no control constraints are given, you may also regularize as follows:

ya ≤ y(x) ≤ yb −→ ya ≤ εu(x) + y(x) ≤ yb, ε > 0 small

→ Lavrentiev type regularization.
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Measures? A numerical example

Problem with semilinear equation

min
1
2
‖y − yd‖2 +

λ

2
‖u‖2

−∆y + y + y3 = u in Ω

∂νy = 0 on Γ

− 1 ≤ y(x) ≤ 1 in Ω

Target yd
in Ω = (0,1)2, yd = 8 sin(π x1) sin(π x2)− 4

Computations: Christian Meyer, by regularization −1 ≤ εu + y ≤ 1

Numerical Technique: SQP + primal dual active set strategy
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Test run

Data: λ = 10−5, ε = 10−4

Control u State y
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Lagrange multipliers µa, µb

Data: λ = 10−5, ε = 10−4

µa µb
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Sufficient second-order conditions

For non-convex problems, the KKT-conditions are not sufficient for optimality,
hence higher-order conditions are needed to check for optimality.

General form of second-order sufficient conditions (SSC):

The pair (ȳ , ū) satisfies the KKT conditions and there exists δ > 0 such that

L′′(y,u)(ȳ , ū, p̄, µa, µb)(y ,u)2 ≥ δ‖u‖2
L2

for all (y ,u) belonging to the so-called critical cone (accounts for linearization
and active state and control constraints).

For state-constraints, the difficulty is to show that such SSC are really sufficient
for local optimality.
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On open problem

We are not able to set up second-order sufficient optimality conditions for
important cases of elliptic and parabolic control problems.

Where is the obstacle?

Consider first (P) for the (not that important) case: n = 4.

L(u, µa, µb) = f (u) +

∫
Ω̄

(ya −G(u))dµa +

∫
Ω̄

(G(u)− yb)dµb.

∂L
∂u

(u, µa, µb) v = f ′(u) v +

∫
Ω̄

G′(u) v d(µb − µa).

We need the continuity of L′′ with respect to v in the L2-norm, in
particular for the second part.
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(u, µa, µb) v = f ′(u) v +

∫
Ω̄

G′(u) v d(µb − µa).

We need the continuity of L′′ with respect to v in the L2-norm, in
particular for the second part.

Fredi Tröltzsch (TU Berlin) Numerical Analysis Workshop Warwick 14 / 42



∣∣∣ ∫
Ω̄

G′(u) v︸ ︷︷ ︸
z

d(µb − µa)
∣∣∣ ≤ c‖v‖L2(Ω).

We have ∣∣∣ ∫
Ω̄

z d(µb − µa)
∣∣∣ ≤ ‖z‖C(Ω̄)‖µb − µa‖C(Ω̄)∗ ,

hence we need ‖z‖C(Ω̄) ≤ c‖v‖L2(Ω),where

−∆z + d ′(ȳ)z = v .

However, the mapping v 7→ z is not continuous from L2(Ω) to C(Ω̄) for n > 3.
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Conclusion

We cannot establish the standard SSC for elliptic distributed control
problems with pointwise state constraints, if n = dim Ω > 3. Even with
stronger requirements, this problem cannot be fully resolved.

This happens already for n > 2 in elliptic boundary control, if the state
constraints are imposed in the whole domain.

In parabolic distributed control we cannot have more than n = 1.

There are no SSC for parabolic boundary control problems with state
constraints in the whole domain.
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Quasilinear control problem

We substitute ∆y(x) by div [a(x , y(x))∇y(x)].

(P) min J(y ,u) :=
1
2

∫
Ω

(y(x)− yd (x))2 dx +
λ

2

∫
Ω

u(x)2 dx

− div [a(x , y(x))∇y(x)] + d(y(x)) = u(x) in Ω
y(x) = 0 on Γ

α ≤ u(x) ≤ β a.e. in Ω, u ∈ L2(Ω).

Remark:

Even if y 7→ a(x , y) is monotone, the state equation is not of monotone type!
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Assumptions on a

The function a : Ω× R→ R is a Carathéodory function,

∃α0 > 0 such that a(x , y) ≥ α0 for a.e. x ∈ Ω and all y ∈ R

The function a(·,0) belongs to L∞(Ω) and for any M > 0 there exist a constant
CM > 0 such that for all |y1|, |y2| ≤ M

|a(x , y2)− a(x , y1)| ≤ CM |y2 − y1| for a.e. x ∈ Ω.

Remarks:

Instead of d(y), a more general function d(x , y) can be considered under
associated assumptions.

We shall also need the derivatives ∂a
∂y (x , y) and ∂2a

∂y2 (x , y).
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Well-posedness of the state equation

Define: p > n and q > n/2.

Theorem
Under our assumptions, for any element u ∈W−1,p(Ω), the quasilinear state
equation has a unique solution yu ∈ H1

0 (Ω) ∩ L∞(Ω). Moreover there exists
µ ∈ (0,1) independent of u such that yu ∈ Cµ(Ω̄) and for any bounded set
U ⊂W−1,p(Ω)

‖yu‖H1
0 (Ω) + ‖yu‖Cµ(Ω̄) ≤ CU ∀u ∈ U

for some constant CU > 0. Finally, if uk → u in W−1,p(Ω), then yuk → yu in
H1

0 (Ω) ∩ Cµ(Ω̄).
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Idea of proof:

a) Existence: Depending on M > 0, we introduce the truncated function aM by

aM(x , y) =

 a(x , y), |y | ≤ M
a(x ,+M), y > +M
a(x ,−M), y < −M.

Analogously, the truncation dM of d is defined. We prove that

−div [aM(x , y)∇y ] + dM(y) = u in Ω
y = 0 on Γ

has at least one solution y ∈ H1
0 (Ω). For fixed u, consider the linear equation

−div [aM(x , z)∇y ] + dM(z) = u in Ω
y = 0 on Γ.

Define F : L2(Ω)→ L2(Ω) by F : z 7→ y . Compact embedding of H1(Ω) in
L2(Ω), Schauder fixed point theorem ⇒ F has a fixed point yM .
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Stampacchia truncation method⇒

‖yM‖L∞(Ω) ≤ c∞,

where c∞ does not depend on M.

Taking M sufficiently large, the solution yM
is shown to be a solution of the state equation.

Hölder regularity of y : results of Gilbarg and Trudinger.

b) Uniqueness: First surprise: Very delicate!

Application of a comparison principle; we use ideas of Douglas/Dupont/Serrin
(1971) and Křížek/Liu (2003).

�
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W 1,p-regularity

Assume slightly higher regularity of a, Γ and u:

Theorem
Assume in addition that a : Ω̄× R −→ R is continuous and Γ is of class C1.
Then the state equation has a unique solution yu ∈W 1,p

0 (Ω). Moreover, for any
bounded set U ⊂W−1,p(Ω), there exists a constant CU > 0 such that

‖yu‖W 1,p
0 (Ω)

≤ CU ∀u ∈ U.

If uk → u in W−1,p(Ω) then yuk → yu strongly in W 1,p
0 (Ω).

Follows from W 1,p(Ω)-results for linear elliptic equations; Giaquinta (1993) and
Morrey (1966).

Notice that â(x) = a(x , yu(x)) is continuous in Ω̄ and u − d(yu) ∈W−1,p(Ω).
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W 2,p-regularity

Assume more smoothness of a:

|a(x1, y1)− a(x2, y2)| ≤ cM {|x1 − x2|+ |y1 − y2|}

for all xi ∈ Ω̄, yi ∈ [−M,M], i = 1,2.

Theorem
Let this additional assumption be satisfied and Γ be of class C1,1. Then for any
u ∈ Lq(Ω), the quasilinear equation has one solution yu ∈W 2,q(Ω). Moreover,
for any bounded set U ⊂ Lq(Ω), there exists a constant CU > 0 such that

‖yu‖W 2,q(Ω) ≤ CU ∀u ∈ U.
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Main trick of the proof: Expand the divergence term a(x , y) and divide by a:

We have y ∈W 1,p(Ω) for all p <∞, in particular in W 1,2q(Ω).

Consider the case q ≥ n.

−∆y =
1
a︸︷︷︸

L∞

{
u − d(y)︸ ︷︷ ︸

Lq

+
n∑

j=1

∂ja(x , y)︸ ︷︷ ︸
L∞

∂jy︸︷︷︸
Lq

+
∂a
∂y︸︷︷︸
L∞

|∇y |2︸ ︷︷ ︸
Lq

}
,

⇒ right-hand side in Lq(Ω).
∂a
∂y ∈ L∞: By the Lipschitz property and y ∈ L∞(Ω).

The C1,1-smoothness of Γ permits to apply a result by Grisvard (1985) to get
y ∈W 2,q(Ω). The case n/2 < q < n follows by some embedding results. �

Fredi Tröltzsch (TU Berlin) Numerical Analysis Workshop Warwick 25 / 42



Main trick of the proof: Expand the divergence term a(x , y) and divide by a:
We have y ∈W 1,p(Ω) for all p <∞, in particular in W 1,2q(Ω).

Consider the case q ≥ n.

−∆y =
1
a︸︷︷︸

L∞

{
u − d(y)︸ ︷︷ ︸

Lq

+
n∑

j=1

∂ja(x , y)︸ ︷︷ ︸
L∞

∂jy︸︷︷︸
Lq

+
∂a
∂y︸︷︷︸
L∞

|∇y |2︸ ︷︷ ︸
Lq

}
,

⇒ right-hand side in Lq(Ω).
∂a
∂y ∈ L∞: By the Lipschitz property and y ∈ L∞(Ω).

The C1,1-smoothness of Γ permits to apply a result by Grisvard (1985) to get
y ∈W 2,q(Ω). The case n/2 < q < n follows by some embedding results. �

Fredi Tröltzsch (TU Berlin) Numerical Analysis Workshop Warwick 25 / 42



Main trick of the proof: Expand the divergence term a(x , y) and divide by a:
We have y ∈W 1,p(Ω) for all p <∞, in particular in W 1,2q(Ω).

Consider the case q ≥ n.

−∆y =
1
a︸︷︷︸

L∞

{
u − d(y)︸ ︷︷ ︸

Lq

+
n∑

j=1

∂ja(x , y)︸ ︷︷ ︸
L∞

∂jy︸︷︷︸
Lq

+
∂a
∂y︸︷︷︸
L∞

|∇y |2︸ ︷︷ ︸
Lq

}
,

⇒ right-hand side in Lq(Ω).
∂a
∂y ∈ L∞: By the Lipschitz property and y ∈ L∞(Ω).

The C1,1-smoothness of Γ permits to apply a result by Grisvard (1985) to get
y ∈W 2,q(Ω). The case n/2 < q < n follows by some embedding results. �

Fredi Tröltzsch (TU Berlin) Numerical Analysis Workshop Warwick 25 / 42



Main trick of the proof: Expand the divergence term a(x , y) and divide by a:
We have y ∈W 1,p(Ω) for all p <∞, in particular in W 1,2q(Ω).

Consider the case q ≥ n.

−∆y =
1
a︸︷︷︸

L∞

{
u − d(y)︸ ︷︷ ︸

Lq

+
n∑

j=1

∂ja(x , y)︸ ︷︷ ︸
L∞

∂jy︸︷︷︸
Lq

+
∂a
∂y︸︷︷︸
L∞

|∇y |2︸ ︷︷ ︸
Lq

}
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Differentiability of G

Since n ≤ 3, q = 2 > n/2 is satisfied.

Therefore, G : u 7→ yu is continuous from L2(Ω) to H2(Ω) ∩ H1
0 (Ω).

The choice q = 2 is possible in the theorems below.

Additional assumption:

The function a is of class C2 with respect to the second variable and, ∀ M > 0
∃ DM > 0 such that∣∣∣∣∂a

∂y
(x , y)

∣∣∣∣+

∣∣∣∣∂2a
∂y2 (x , y)

∣∣∣∣ ≤ DM for a.e. x ∈ Ω and all |y | ≤ M.

Next surprise: The differentiability of G is very delicate, too.

Differentiability will hold, if the linearized equation defines an isomorphism in
the associated spaces.
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Theorem
Given y ∈W 1,p(Ω), for any v ∈ H−1(Ω) the linearized equation

−div
[
a(x , y)∇z+

∂a
∂y

(x , y)z∇y
]

+ d ′(y) z = v in Ω

z = 0 on Γ

has a unique solution zv ∈ H1
0 (Ω).

Steps of the proof:

a) The uniqueness is shown by a comparison principle as for the state
equation.
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Idea of proof

b) A homotopy with respect to t ∈ [0,1] is considered:

−div
[
a(x , y)∇z + t

∂a
∂y

(x , y)z∇yu

]
+ d ′(y) z = v in Ω

z = 0 on Γ.

For t = 0: Apply the Lax-Milgram Theorem.
There exists a unique solution z0 ∈ H1

0 (Ω) for every v ∈ H−1(Ω).

Let S be the set of points t ∈ [0,1] for which the equation above defines
an isomorphism between H1

0 (Ω) and H−1(Ω); 0 ∈ S.

tmax := sup S. First, it is shown tmax ∈ S and second tmax = 1. �
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Theorem
Let all previous assumptions be satisfied. Then G : W−1,p(Ω)→W 1,p

0 (Ω),
G : u 7→ yu, is of class C2.

For any v ∈W−1,p(Ω) the function zv = G′(u)v is
the unique solution in W 1,p

0 (Ω) of

−div
[
a(x , yu)∇z +

∂a
∂y

(x , yu)z∇yu

]
+ d ′(y) z = v in Ω

z = 0 on Γ.

For all v1, v2 ∈W−1,p(Ω) the function zv1,v2 = G′′(u)[v1, v2] is the unique
solution in W 1,p

0 (Ω) of

−div
[
a(x , yu)∇z +

∂a
∂y

(x , yu)z∇yu

]
+ d ′(yu) z = −d ′′(yu)zv1zv2

+div
[
∂a
∂y

(x , yu)(zv1∇zv2 +∇zv1zv2 ) +
∂2a
∂y2 (x , yu)zv1zv2∇yu

]
in Ω

z = 0 on Γ.

respectively, where zvi = G′(u)vi , i = 1,2.
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Other spaces for G′

Additional assumption: ∀ M > 0 ∃cM > 0 such that∣∣∣∣∂ ja
∂y j (x1, y1)− ∂ ja

∂y j (x2, y2)

∣∣∣∣ ≤ dM {|x1 − x2|+ |y1 − y2|}

for all xi ∈ Ω̄, yi ∈ [−M,M], i = 1,2 and j = 1,2.

Theorem
Let all previous assumptions be satisfied and Γ be of class C1,1. Then the
control-to-state mapping G : Lq(Ω)→W 2,q(Ω), G(u) = yu, is of class C2 for all
q > n/2.

Fredi Tröltzsch (TU Berlin) Numerical Analysis Workshop Warwick 30 / 42



Adjoint equation

With theses prerequisites, first-order necessary and second-order sufficient
optimality conditions can be shown. Take q := 2 in the sequel

Adjoint equation: Associated with u, the adjoint state ϕu ∈ H2(Ω) ∩ H1
0 (Ω) is

obtained from

−div [a(x , yu)∇ϕ] +
∂a
∂y

(x , yu)∇yu · ∇ϕ+ d ′(yu)ϕ = yu − yd in Ω

ϕ = 0 on Γ

Reduced gradient: Define as before f (u) := J(yu,u) = J(G(u),u).

f ′(u) v =

∫
Ω

(
ϕu(x) + λu(x)

)
v(x) dx

Riesz identification: f ′(u) ∼= ϕu + λu
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First-order necessary condition

Theorem
If ū is locally optimal for (P) (in the sense of L2) and ϕ̄ := ϕū is the associated
adjoint state, then ∫

Ω

(ϕ̄+ λ ū)(u − ū) dx ≥ 0 ∀u ∈ Uad .

This is equivalent to the projection formula

ū(x) = P[α,β]

(
− ϕ̄(x)

λ

)
a.e. in Ω.

This result gives different options for the numerical treatment.
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The nonsmooth optimality system

Optimality system

− div [a(x , y)∇y ] + d(y) = P[α,β](λ
−1ϕ)

−div [a(x , y)∇ϕ] +
∂a
∂y

(x , y)∇y · ∇ϕ+ d ′(y)ϕ = y − yd

(in Ω subject to homogeneous Dirichlet boundary condition.)

Numerical options:

Semismooth Newton method

Direct solution of the system by COMSOL Multiphysics

Both methods were tested by V. Dhamo (TU Berlin) – very good experience.
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Second-order derivative of f

For error estimates and the local convergence of numerical methods we need
again second-order sufficient optimality conditions.

Theorem
Under our previous assumptions, the functional f : L2(Ω)→ R is of class C2.
We have

J ′′(u)v1v2 =

∫
Ω

{
zv1zv2 + λv1v2 − ϕu d ′′(u)zv1zv2

−∇ϕu

[∂a
∂y

(x , yu)(zv1∇zv2 +∇zv1zv2 ) +
∂2a
∂y2 (x , y)zv1zv2∇yu

]}
dx

where ϕu ∈W 1,p
0 (Ω) ∩W 2,q(Ω) is the adjoint state associated with u and

zvi = G′(u)vi .
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Second-order sufficient optimality condition

Theorem
Assume that ū ∈ Uad satisfies the first-order necessary optimality conditions
with the associated adjoint state ϕ̄ ∈W 1,p

0 (Ω).
Let there exist δ, τ > 0 such that

f ′′(ū)v2 ≥ δ‖v‖2
L2(Ω) ∀v ∈ Cτ

ū

where

Cτ
ū =

{
v ∈ L2(Ω) : v(x) =

 ≥ 0 if ū(x) = α
≤ 0 if ū(x) = β
= 0 if |ϕ̄(x) + λū(x)| > τ

for a.e. x ∈ Ω
}
.

Then ū is locally optimal in the sense of L2(Ω).

Fredi Tröltzsch (TU Berlin) Numerical Analysis Workshop Warwick 35 / 42



Remarks

No two-norm discrepancy (quadratic structure of f ).

We discussed more general functionals of the form

f (u) =

∫
Ω

L(x , yu,u) dx .

Here the two-norm discrepancy will occur in general.

The condition f ′′(ū)v2 > 0 for all nonzero v of the critical cone is
equivalent to the condition above under some additional requirements on
the Hamiltonian.
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Approximation by finite elements

Family of regular triangulations: {Th}h>0 of Ω̄:

Associate to all T ∈ Th the numbers ρ(T ) (diameter of T ) and σ(T ) (diameter
of the largest ball in T ).

h := max
T∈Th

ρ(T ) (mesh size)

Regularity assumptions:

∃ ρ > 0, σ > 0 such that

ρ(T )

σ(T )
≤ σ, h

ρ(T )
≤ ρ ∀ T ∈ Th,h > 0.

Define Ωh = ∪T∈Th T with interior Ωh and boundary Γh.
Assume that Ωh is convex and that the vertices of Th placed on the
boundary Γh are points of Γ.
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Finite element approximation

Assumption: Ω ⊂ Rn is open, convex and bounded n ∈ {2,3}, with boundary Γ
of class C1,1. For n = 2, Ω is allowed to be polygonal instead of of class C1,1.

Then, with some C > 0.
|Ω \ Ωh| ≤ Ch2.

Piecewise linear approximation of the states:

Yh = {yh ∈ C(Ω̄) | yh|T ∈ P1, for all T ∈ Th, and yh = 0 on Ω̄ \ Ωh}.

Discretized state equation
Find yh ∈ Yh such that, for all zh ∈ Yh,∫

Ωh

[a(x , yh(x))∇yh · ∇zh + d(yh(x)) zh] dx =

∫
Ωh

uzh dx .
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Local uniqueness of discretized states

By the Brouwer fixed point theorem, the existence of solutions yh to the
discretized equation can be shown.

We did not assume (global) boundedness of a(x , y). To our surprise, we
were not able to show uniqueness in this case. If a is bounded, then the
uniqueness can be shown for all sufficiently small h > 0.

Therefore, in the unbounded case, we had to work with local uniqueness
of yh as in the setting of the implicit function theorem.

Assume for simplicity boundedness of a and that h is sufficiently small so that
the mapping u 7→ yh(u) is well defined:

Definition: For given u ∈ Uad , yh(u) is the solution to the discretized equation.
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Discretized optimal control problem

Under the same simplification as above, we define

fh(u) =
1
2

∫
Ωh

(yh(u)− yd )2 dx +
λ

2

∫
Ωh

u2 dx .

Set of discretized control functions: Uh
ad ⊂ Uad

(Ph) min fh(uh), uh ∈ Uh
ad .

We considered the following sets Uh
ad :

Uh
ad = Uad ∀h > 0 (variational discretization)

All piecewise constant functions on Ωh (constant on each triangle) with
values in [α, β]

All piecewise linear functions on Ωh with values in [α, β].
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Theorem (Piecewise constant controls, L2-estimate)
Let a locally optimal control ū of (P) satisfy the second-order sufficient
conditions introduced above and let Uh

ad be defined by piecewise constant
functions. Assume that ūh is a sequence of locally optimal (piecewise
constant) solutions to (Ph) that converges strongly in L2(Ω) to ū. Then there is
some constant C > 0 not depending on h such that

‖ūh − ū‖L2(Ωh) ≤ C h ∀h > 0.

Survey of other results:

Same estimate in the L∞-norm for piecewise constant controls

Order h2 for variational discretization (L2 and L∞)

limh→0 h−1‖ūh − ū‖L2(Ωh) = 0 for piecewise linear controls

L2-estimate of order h3/2 for piecewise linear controls under some
standard structural assumption on the triangles, where the reduced
gradient vanishes on a positive measure.
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Let a locally optimal control ū of (P) satisfy the second-order sufficient
conditions introduced above and let Uh

ad be defined by piecewise constant
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some constant C > 0 not depending on h such that
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General tool for error estimates

To simplify the derivation of error estimates, we proved a general theorem on
error estimates that is formulated below for our concrete setting.
In our problem, we have a sequence εh → 0 such that

|[f ′h(u)− f ′(u)]v | ≤ εh‖v‖L2(Ω)

for all (u, v) ∈ Uad × L2(Ω) with v = uh − ū with uh ∈ Uh
ad .

Theorem
Let {ūh}h>0 be a sequence of local solutions to (Ph) converging strongly to ū in
L2(Ω). Under the second-order sufficiency condition, there exist C > 0 and
h0 > 0 such that

‖ū − ūh‖L2(Ω) ≤ C
[
ε2

h + ‖ū − uh‖2
L2(Ω) + f ′(ū)(uh − ū)

]1/2
∀uh ∈ Uh

ad , ∀h < h0.

Reference: E. Casas, F.T., A general theorem on error estimates with application to a
quasilinear elliptic optimal control problem, submitted 2011.
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Let {ūh}h>0 be a sequence of local solutions to (Ph) converging strongly to ū in
L2(Ω). Under the second-order sufficiency condition, there exist C > 0 and
h0 > 0 such that
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