Aspects of numerical analysis in the optimal control of nonlinear PDEs
 II: state constraints and problems with quasilinear equations

Fredi Tröltzsch

Technische Universität Berlin
Inverse Problems and Optimal Control for PDEs

Warwick, 23-27 May 2011

Outline

- Motivating industrial applications
- Elliptic problems with linear state equation
- Semilinear elliptic state equation
- State-constrained control problems
- The case of quasilinear elliptic equations
- Error estimates

Outline

(9) Pointwise state constraints

- The control problem and necessary conditions
- A test example
- An open problem for SSC
(2) Quasilinear elliptic control problems
- The problem and well-posedness of the state equation
- Optimality conditions
- Approximation by finite elements

The optimal control problem

Let real bounds $\quad \alpha<\beta, \quad y_{a}<0<y_{b} \quad$ be given.
Problem with control and state constraints:

$$
\text { (P) } \begin{aligned}
& \min J(y, u):=\frac{1}{2} \int_{\Omega}\left(y(x)-y_{d}(x)\right)^{2} d x+\frac{\lambda}{2} \int_{\Omega}(u(x))^{2} d x \\
&-\Delta y(x)+d(y(x))=u(x) \quad \text { in } \Omega \\
& y(x)=0 \quad \text { on } \Gamma, \\
& \alpha \leq u(x) \leq \beta, \text { a.e. in } \Omega, \\
& y_{a} \leq y(x) \leq y_{b} \text { for all } x \in \bar{\Omega} .
\end{aligned}
$$

Lagrangian function

It holds $y_{u}=G(u), G: L^{2}(\Omega) \rightarrow H_{0}^{1}(\Omega) \cap C(\bar{\Omega}), n \leq 3$. Therefore, the state-constrained problem can be written as follows:
$(P) \quad \min f(u), \quad \alpha \leq u(x) \leq \beta, \quad y_{a} \leq G(u) \leq y_{b}$.

Lagrangian function

It holds $y_{u}=G(u), G: L^{2}(\Omega) \rightarrow H_{0}^{1}(\Omega) \cap C(\bar{\Omega}), n \leq 3$. Therefore, the state-constrained problem can be written as follows:

$$
(P) \quad \min f(u), \quad \alpha \leq u(x) \leq \beta, \quad y_{a} \leq G(u) \leq y_{b}
$$

For several reasons, we need $G: L^{2}(\Omega) \rightarrow C(\bar{\Omega})$ or (if $n>3$), $G: L^{p}(\Omega) \rightarrow C(\bar{\Omega}), p>n / 2$.

Lagrangian function

It holds $y_{u}=G(u), G: L^{2}(\Omega) \rightarrow H_{0}^{1}(\Omega) \cap C(\bar{\Omega}), n \leq 3$. Therefore, the state-constrained problem can be written as follows:

$$
(P) \quad \min f(u), \quad \alpha \leq u(x) \leq \beta, \quad y_{a} \leq G(u) \leq y_{b} .
$$

For several reasons, we need $G: L^{2}(\Omega) \rightarrow C(\bar{\Omega})$ or (if $n>3$), $G: L^{p}(\Omega) \rightarrow C(\bar{\Omega}), p>n / 2$.

Following the Lagrange formalism, we (formally) remove the state constraints by Lagrange multipliers.

Lagrangian function

It holds $y_{u}=G(u), G: L^{2}(\Omega) \rightarrow H_{0}^{1}(\Omega) \cap C(\bar{\Omega}), n \leq 3$. Therefore, the state-constrained problem can be written as follows:

$$
(P) \quad \min f(u), \quad \alpha \leq u(x) \leq \beta, \quad y_{a} \leq G(u) \leq y_{b}
$$

For several reasons, we need $G: L^{2}(\Omega) \rightarrow C(\bar{\Omega})$ or (if $n>3$), $G: L^{p}(\Omega) \rightarrow C(\bar{\Omega}), p>n / 2$.

Following the Lagrange formalism, we (formally) remove the state constraints by Lagrange multipliers.

Lagrangian function

$$
\mathcal{L}\left(u, \mu_{a}, \mu_{b}\right):=f(u)+\int_{\bar{\Omega}}\left(y_{a}-G(u)\right) d \mu_{a}+\int_{\bar{\Omega}}\left(G(u)-y_{b}\right) d \mu_{b} .
$$

Lagrange multipliers

In \mathcal{L}, regular Borel measures μ_{a}, μ_{b} are Lagrange multipliers associated with the state constraints.

Definition: μ_{a}, μ_{b} are said to be Lagrange multipliers associated with \bar{u}, if

Lagrange multipliers

In \mathcal{L}, regular Borel measures μ_{a}, μ_{b} are Lagrange multipliers associated with the state constraints.
Definition: μ_{a}, μ_{b} are said to be Lagrange multipliers associated with \bar{u}, if

- The variational inequality

$$
\frac{\partial \mathcal{L}}{\partial u}\left(\bar{u}, \mu_{a}, \mu_{b}\right)(u-\bar{u}) \geq 0 \quad \forall u \in U_{a d}
$$

is satisfied

Lagrange multipliers

In \mathcal{L}, regular Borel measures μ_{a}, μ_{b} are Lagrange multipliers associated with the state constraints.

Definition: μ_{a}, μ_{b} are said to be Lagrange multipliers associated with \bar{u}, if

- The variational inequality

$$
\frac{\partial \mathcal{L}}{\partial u}\left(\bar{u}, \mu_{a}, \mu_{b}\right)(u-\bar{u}) \geq 0 \quad \forall u \in U_{a d}
$$

is satisfied (i.e. \bar{u} satisfies the necessary conditions for the problem of minimizing \mathcal{L} subject to $u \in U_{a d}$),

Lagrange multipliers

In \mathcal{L}, regular Borel measures μ_{a}, μ_{b} are Lagrange multipliers associated with the state constraints.

Definition: μ_{a}, μ_{b} are said to be Lagrange multipliers associated with \bar{u}, if

- The variational inequality

$$
\frac{\partial \mathcal{L}}{\partial u}\left(\bar{u}, \mu_{\mathrm{a}}, \mu_{b}\right)(u-\bar{u}) \geq 0 \quad \forall u \in U_{a d}
$$

is satisfied (i.e. \bar{u} satisfies the necessary conditions for the problem of minimizing \mathcal{L} subject to $u \in U_{a d}$),

- $\mu_{a} \geq 0, \mu_{b} \geq 0$ in the sense of $C(\bar{\Omega})^{*}$,

Lagrange multipliers

In \mathcal{L}, regular Borel measures μ_{a}, μ_{b} are Lagrange multipliers associated with the state constraints.
Definition: $\mu_{\mathrm{a}}, \mu_{\mathrm{b}}$ are said to be Lagrange multipliers associated with \bar{u}, if

- The variational inequality

$$
\frac{\partial \mathcal{L}}{\partial u}\left(\bar{u}, \mu_{a}, \mu_{b}\right)(u-\bar{u}) \geq 0 \quad \forall u \in U_{a d}
$$

is satisfied (i.e. \bar{u} satisfies the necessary conditions for the problem of minimizing \mathcal{L} subject to $u \in U_{a d}$),

- $\mu_{a} \geq 0, \mu_{b} \geq 0$ in the sense of $C(\bar{\Omega})^{*}$,
- and the following complementarity conditions are satisfied:

$$
\int_{\bar{\Omega}}\left(y_{a}-G(\bar{u})\right) d \mu_{a}=0=\int_{\bar{\Omega}}\left(G(\bar{u})-y_{b}\right) d \mu_{b}
$$

Adjoint equation with measures

$$
\mathcal{L}\left(u, \mu_{a}, \mu_{b}\right)=f(u)+\int_{\bar{\Omega}}\left(y_{a}-G(u)\right) d \mu_{a}+\int_{\bar{\Omega}}\left(G(u)-y_{b}\right) d \mu_{b}
$$

Adjoint equation with measures

$$
\begin{aligned}
\mathcal{L}\left(u, \mu_{\mathrm{a}}, \mu_{b}\right) & =f(u)+\int_{\bar{\Omega}}\left(y_{a}-G(u)\right) d \mu_{a}+\int_{\bar{\Omega}}\left(G(u)-y_{b}\right) d \mu_{b} \\
\frac{\partial \mathcal{L}}{\partial u}\left(\bar{u}, \mu_{\mathrm{a}}, \mu_{b}\right) v & =
\end{aligned}
$$

Adjoint equation with measures

$$
\begin{aligned}
\mathcal{L}\left(u, \mu_{a}, \mu_{b}\right) & =f(u)+\int_{\bar{\Omega}}\left(y_{a}-G(u)\right) d \mu_{a}+\int_{\bar{\Omega}}\left(G(u)-y_{b}\right) d \mu_{b} \\
\frac{\partial \mathcal{L}}{\partial u}\left(\bar{u}, \mu_{a}, \mu_{b}\right) v & =f^{\prime}(\bar{u}) v+\int_{\bar{\Omega}}\left(G^{\prime}(\bar{u}) v\right) d\left(\mu_{b}-\mu_{a}\right) \\
& =
\end{aligned}
$$

Adjoint equation with measures

$$
\begin{aligned}
\mathcal{L}\left(u, \mu_{a}, \mu_{b}\right) & =f(u)+\int_{\bar{\Omega}}\left(y_{a}-G(u)\right) d \mu_{a}+\int_{\bar{\Omega}}\left(G(u)-y_{b}\right) d \mu_{b} \\
\frac{\partial \mathcal{L}}{\partial u}\left(\bar{u}, \mu_{a}, \mu_{b}\right) v & =f^{\prime}(\bar{u}) v+\int_{\bar{\Omega}}\left(G^{\prime}(\bar{u}) v\right) d\left(\mu_{b}-\mu_{a}\right) \\
& =\int_{\Omega}\left(\varphi_{\bar{u}}+\lambda \bar{u}\right) v d x+\int_{\Omega}^{\left(G^{\prime}(\bar{u})^{*}\left(\mu_{b}-\mu_{a}\right)\right)} v d x \\
& =
\end{aligned}
$$

Adjoint equation with measures

$$
\begin{aligned}
\mathcal{L}\left(u, \mu_{a}, \mu_{b}\right) & =f(u)+\int_{\bar{\Omega}}\left(y_{a}-G(u)\right) d \mu_{a}+\int_{\bar{\Omega}}\left(G(u)-y_{b}\right) d \mu_{b} \\
\frac{\partial \mathcal{L}}{\partial u}\left(\bar{u}, \mu_{a}, \mu_{b}\right) v & =f^{\prime}(\bar{u}) v+\int_{\bar{\Omega}}\left(G^{\prime}(\bar{u}) v\right) d\left(\mu_{b}-\mu_{a}\right) \\
& =\int_{\Omega}\left(\varphi_{\bar{u}}+\lambda \bar{u}\right) v d x+\int_{\Omega}^{\left(G^{\prime}(\bar{u})^{*}\left(\mu_{b}-\mu_{a}\right)\right)} v d x \\
& =\int_{\Omega}\left(\varphi_{\bar{u}}+\varphi_{\mu}+\lambda \bar{u}\right) v d x=\int_{\Omega}(\bar{\varphi}+\lambda \bar{u}) v d x
\end{aligned}
$$

Adjoint equation with measures

$$
\begin{aligned}
\mathcal{L}\left(u, \mu_{a}, \mu_{b}\right) & =f(u)+\int_{\bar{\Omega}}\left(y_{a}-G(u)\right) d \mu_{a}+\int_{\bar{\Omega}}\left(G(u)-y_{b}\right) d \mu_{b} \\
\frac{\partial \mathcal{L}}{\partial u}\left(\bar{u}, \mu_{a}, \mu_{b}\right) v & =f^{\prime}(\bar{u}) v+\int_{\bar{\Omega}}\left(G^{\prime}(\bar{u}) v\right) d\left(\mu_{b}-\mu_{a}\right) \\
& =\int_{\Omega}\left(\varphi_{\bar{u}}+\lambda \bar{u}\right) v d x+\int_{\Omega}^{\left(G^{\prime}(\bar{u})^{*}\left(\mu_{b}-\mu_{a}\right)\right)} v d x \\
& =\int_{\Omega}\left(\varphi_{\bar{u}}+\varphi_{\mu}+\lambda \bar{u}\right) v d x=\int_{\Omega}(\bar{\varphi}+\lambda \bar{u}) v d x
\end{aligned}
$$

This new adjoint state $\bar{\varphi}$ is the weak solution of an adjoint elliptic equation. The first rigorous mathematical explanation of this fact was given by E. Casas.

Reference: E. Casas, Control of an elliptic problem with pointwise state constraints, SIAM J. Control and Optimization 1986.

Necessary optimality conditions

Theorem (Karush-Kuhn-Tucker conditions)
Let \bar{u} be locally optimal for (P) and let \bar{y} the associated state. Assume that a linearized Slater condition is satisfied: $\exists \tilde{u} \in U_{a d}$ such that

$$
y_{a}<\left(G(\bar{u})+G^{\prime}(\bar{u})(\tilde{u}-\bar{u})\right)(x)<y_{b} \quad \forall x \in \bar{\Omega} .
$$

Necessary optimality conditions

Theorem (Karush-Kuhn-Tucker conditions)

Let \bar{u} be locally optimal for (P) and let \bar{y} the associated state. Assume that a linearized Slater condition is satisfied: $\exists \tilde{u} \in U_{a d}$ such that

$$
y_{a}<\left(G(\bar{u})+G^{\prime}(\bar{u})(\tilde{u}-\bar{u})\right)(x)<y_{b} \quad \forall x \in \bar{\Omega} .
$$

Then there exist nonnegative regular Borel measures μ_{a}, μ_{b} on $\bar{\Omega}$ and an adjoint state $\bar{\varphi} \in W^{1, s}(\Omega) \quad \forall s<n /(n-1)$ such that

$$
\begin{aligned}
&-\Delta \bar{\varphi}+d^{\prime}(\bar{y}) \bar{\varphi}=\bar{y}-y_{d}+\mu_{b}-\mu_{a} \\
&\left.\bar{\varphi}\right|_{\Gamma}=0, \\
& \int_{\Omega}(\bar{\varphi}+\lambda \bar{u})(u-\bar{u}) d x \geq 0 \quad \forall u \in U_{a d}, \\
& \int_{\bar{\Omega}}\left(\bar{y}-y_{b}\right) d \mu_{b}=\int_{\bar{\Omega}}\left(\bar{y}-y_{a}\right) d \mu_{a}=0 .
\end{aligned}
$$

Two main numerical approaches

To solve state-constrained problems numerically, the following options are useful:

Two main numerical approaches

To solve state-constrained problems numerically, the following options are useful:

- Discretize and solve the resulting large scale optimization problem by available software.

Two main numerical approaches

To solve state-constrained problems numerically, the following options are useful:

- Discretize and solve the resulting large scale optimization problem by available software.
- Reduce the problem to a control-constrained one by penalization:

$$
\min _{u \in U_{a d}} f(u)+\rho \int_{\Omega}\left\{\left(\left(y_{a}-y\right)_{+}\right)^{2}+\left(\left(y-y_{b}\right)_{+}\right)^{2}\right\} d x, \quad \rho \gg 0
$$

\rightarrow Moreau-Yosida type regularization.

Two main numerical approaches

To solve state-constrained problems numerically, the following options are useful:

- Discretize and solve the resulting large scale optimization problem by available software.
- Reduce the problem to a control-constrained one by penalization:

$$
\min _{u \in U_{a d}} f(u)+\rho \int_{\Omega}\left\{\left(\left(y_{a}-y\right)_{+}\right)^{2}+\left(\left(y-y_{b}\right)_{+}\right)^{2}\right\} d x, \quad \rho \gg 0
$$

\rightarrow Moreau-Yosida type regularization.

- If no control constraints are given, you may also regularize as follows:

$$
y_{a} \leq y(x) \leq y_{b} \quad \longrightarrow \quad y_{a} \leq \varepsilon u(x)+y(x) \leq y_{b}, \quad \varepsilon>0 \text { small }
$$

\rightarrow Lavrentiev type regularization.

Measures? A numerical example

Problem with semilinear equation

$$
\begin{gathered}
\min \frac{1}{2}\left\|y-y_{d}\right\|^{2}+\frac{\lambda}{2}\|u\|^{2} \\
-\Delta y+y+y^{3}=u \text { in } \Omega \\
\partial_{\nu} y=0 \text { on } \Gamma \\
-1 \leq y(x) \leq 1 \text { in } \Omega
\end{gathered}
$$

Target y_{d}

$$
\text { in } \Omega=(0,1)^{2}, \quad y_{d}=8 \sin \left(\pi x_{1}\right) \sin \left(\pi x_{2}\right)-4
$$

Measures? A numerical example

Problem with semilinear equation

$$
\begin{gathered}
\min \frac{1}{2}\left\|y-y_{d}\right\|^{2}+\frac{\lambda}{2}\|u\|^{2} \\
-\Delta y+y+y^{3}=u \quad \text { in } \Omega \\
\partial_{\nu} y=0 \text { on } \Gamma \\
-1 \leq y(x) \leq 1 \text { in } \Omega
\end{gathered}
$$

Target y_{d}
in $\Omega=(0,1)^{2}, \quad y_{d}=8 \sin \left(\pi x_{1}\right) \sin \left(\pi x_{2}\right)-4$
Computations: Christian Meyer, by regularization $-1 \leq \varepsilon u+y \leq 1$
Numerical Technique: SQP + primal dual active set strategy

Test run

Data: $\quad \lambda=10^{-5}, \varepsilon=10^{-4}$

Lagrange multipliers $\mu_{\mathrm{a}}, \mu_{\mathrm{b}}$

Data: $\quad \lambda=10^{-5}, \varepsilon=10^{-4}$

μ_{a}

μ_{b}

Sufficient second-order conditions

For non-convex problems, the KKT-conditions are not sufficient for optimality, hence higher-order conditions are needed to check for optimality.

Sufficient second-order conditions

For non-convex problems, the KKT-conditions are not sufficient for optimality, hence higher-order conditions are needed to check for optimality.

General form of second-order sufficient conditions (SSC):
The pair (\bar{y}, \bar{u}) satisfies the KKT conditions and there exists $\delta>0$ such that

$$
\mathcal{L}_{(y, u)}^{\prime \prime}\left(\bar{y}, \bar{u}, \bar{p}, \mu_{a}, \mu_{b}\right)(y, u)^{2} \geq \delta\|u\|_{L^{2}}^{2}
$$

for all (y, u) belonging to the so-called critical cone (accounts for linearization and active state and control constraints).

Sufficient second-order conditions

For non-convex problems, the KKT-conditions are not sufficient for optimality, hence higher-order conditions are needed to check for optimality.

General form of second-order sufficient conditions (SSC):
The pair (\bar{y}, \bar{u}) satisfies the KKT conditions and there exists $\delta>0$ such that

$$
\mathcal{L}_{(y, u)}^{\prime \prime}\left(\bar{y}, \bar{u}, \bar{p}, \mu_{a}, \mu_{b}\right)(y, u)^{2} \geq \delta\|u\|_{L^{2}}^{2}
$$

for all (y, u) belonging to the so-called critical cone (accounts for linearization and active state and control constraints).

For state-constraints, the difficulty is to show that such SSC are really sufficient for local optimality.

On open problem

We are not able to set up second-order sufficient optimality conditions for important cases of elliptic and parabolic control problems.

Where is the obstacle?

On open problem

We are not able to set up second-order sufficient optimality conditions for important cases of elliptic and parabolic control problems.

Where is the obstacle?
Consider first (P) for the (not that important) case: $\mathrm{n}=4$.

On open problem

We are not able to set up second-order sufficient optimality conditions for important cases of elliptic and parabolic control problems.
Where is the obstacle?
Consider first (P) for the (not that important) case: $\mathrm{n}=4$.

$$
\mathcal{L}\left(u, \mu_{a}, \mu_{b}\right)=f(u)+\int_{\bar{\Omega}}\left(y_{a}-G(u)\right) d \mu_{a}+\int_{\bar{\Omega}}\left(G(u)-y_{b}\right) d \mu_{b}
$$

On open problem

We are not able to set up second-order sufficient optimality conditions for important cases of elliptic and parabolic control problems.

Where is the obstacle?
Consider first (P) for the (not that important) case: $\mathrm{n}=4$.

$$
\begin{gathered}
\mathcal{L}\left(u, \mu_{a}, \mu_{b}\right)=f(u)+\int_{\bar{\Omega}}\left(y_{a}-G(u)\right) d \mu_{a}+\int_{\bar{\Omega}}\left(G(u)-y_{b}\right) d \mu_{b} \\
\frac{\partial \mathcal{L}}{\partial u}\left(u, \mu_{a}, \mu_{b}\right) v=f^{\prime}(u) v+\int_{\bar{\Omega}} G^{\prime}(u) v d\left(\mu_{b}-\mu_{a}\right) .
\end{gathered}
$$

On open problem

We are not able to set up second-order sufficient optimality conditions for important cases of elliptic and parabolic control problems.
Where is the obstacle?
Consider first (P) for the (not that important) case: $\mathrm{n}=4$.

$$
\begin{gathered}
\mathcal{L}\left(u, \mu_{a}, \mu_{b}\right)=f(u)+\int_{\bar{\Omega}}\left(y_{a}-G(u)\right) d \mu_{a}+\int_{\bar{\Omega}}\left(G(u)-y_{b}\right) d \mu_{b} \\
\frac{\partial \mathcal{L}}{\partial u}\left(u, \mu_{a}, \mu_{b}\right) v=f^{\prime}(u) v+\int_{\bar{\Omega}} G^{\prime}(u) v d\left(\mu_{b}-\mu_{a}\right) .
\end{gathered}
$$

We need the continuity of $\mathcal{L}^{\prime \prime}$ with respect to v in the L^{2}-norm, in particular for the second part.

$$
|\int_{\bar{\Omega}} \underbrace{G^{\prime}(u) v}_{z} d\left(\mu_{b}-\mu_{a}\right)| \leq c\|v\|_{L^{2}(\Omega)} .
$$

$$
|\int_{\bar{\Omega}} \underbrace{G^{\prime}(u) v}_{z} d\left(\mu_{b}-\mu_{a}\right)| \leq c\|v\|_{L^{2}(\Omega)}
$$

We have

$$
\left|\int_{\bar{\Omega}} z d\left(\mu_{b}-\mu_{a}\right)\right| \leq\|z\|_{C(\bar{\Omega})}\left\|\mu_{b}-\mu_{a}\right\|_{C(\bar{\Omega})^{*}}
$$

$$
|\int_{\bar{\Omega}} \underbrace{G^{\prime}(u) v}_{z} d\left(\mu_{b}-\mu_{a}\right)| \leq c\|v\|_{L^{2}(\Omega)}
$$

We have

$$
\left|\int_{\bar{\Omega}} z d\left(\mu_{b}-\mu_{a}\right)\right| \leq\|z\|_{C(\bar{\Omega})}\left\|\mu_{b}-\mu_{a}\right\|_{C(\bar{\Omega})^{*}}
$$

hence we need $\quad\|z\|_{C(\bar{\Omega})} \leq c\|v\|_{L^{2}(\Omega)}$, where

$$
-\Delta z+d^{\prime}(\bar{y}) z=v .
$$

However, the mapping $v \mapsto z$ is not continuous from $L^{2}(\Omega)$ to $C(\bar{\Omega})$ for $n>3$.

Conclusion

- We cannot establish the standard SSC for elliptic distributed control problems with pointwise state constraints, if $n=\operatorname{dim} \Omega>3$. Even with stronger requirements, this problem cannot be fully resolved.
- This happens already for $n>2$ in elliptic boundary control, if the state constraints are imposed in the whole domain.
- In parabolic distributed control we cannot have more than $n=1$.
- There are no SSC for parabolic boundary control problems with state constraints in the whole domain.

Outline

(1) Pointwise state constraints

- The control problem and necessary conditions
- A test example
- An open problem for SSC
(2) Quasilinear elliptic control problems
- The problem and well-posedness of the state equation
- Optimality conditions
- Approximation by finite elements

Quasilinear control problem

We substitute $\Delta y(x)$ by $\operatorname{div}[a(x, y(x)) \nabla y(x)]$.

$$
\begin{aligned}
& \text { (P) } \quad \min J(y, u):=\frac{1}{2} \int_{\Omega}\left(y(x)-y_{d}(x)\right)^{2} d x+\frac{\lambda}{2} \int_{\Omega} u(x)^{2} d x \\
&-\operatorname{div}[a(x, y(x)) \nabla y(x)]+d(y(x))=u(x) \\
& y(x)=0
\end{aligned} \quad \text { in } \Omega, \Gamma
$$

Quasilinear control problem

We substitute $\Delta y(x)$ by $\operatorname{div}[a(x, y(x)) \nabla y(x)]$.

$$
\begin{aligned}
& \text { (P) } \quad \min J(y, u):=\frac{1}{2} \int_{\Omega}\left(y(x)-y_{d}(x)\right)^{2} d x+\frac{\lambda}{2} \int_{\Omega} u(x)^{2} d x \\
&-\operatorname{div}[a(x, y(x)) \nabla y(x)]+d(y(x))=u(x) \quad \text { in } \Omega \\
& y(x)=0 \quad \text { on } \Gamma \\
& \alpha \leq u(x) \leq \beta \quad \text { a.e. in } \Omega, u \in L^{2}(\Omega) .
\end{aligned}
$$

Quasilinear control problem

We substitute $\Delta y(x)$ by $\operatorname{div}[a(x, y(x)) \nabla y(x)]$.

$$
\begin{aligned}
& \text { (P) } \quad \min J(y, u):=\frac{1}{2} \int_{\Omega}\left(y(x)-y_{d}(x)\right)^{2} d x+\frac{\lambda}{2} \int_{\Omega} u(x)^{2} d x \\
&-\operatorname{div}[a(x, y(x)) \nabla y(x)]+d(y(x))=u(x) \quad \text { in } \Omega \\
& y(x)=0 \quad \text { on } \Gamma \\
& \alpha \leq u(x) \leq \beta \quad \text { a.e. in } \Omega, u \in L^{2}(\Omega) .
\end{aligned}
$$

Remark:
Even if $y \mapsto a(x, y)$ is monotone, the state equation is not of monotone type!

Assumptions on a

The function a : $\Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function,

$$
\exists \alpha_{0}>0 \text { such that } a(x, y) \geq \alpha_{0} \text { for a.e. } \boldsymbol{x} \in \Omega \text { and all } \boldsymbol{y} \in \mathbb{R}
$$

Assumptions on a

The function a : $\Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function,

$$
\exists \alpha_{0}>0 \text { such that } a(x, y) \geq \alpha_{0} \text { for a.e. } \boldsymbol{x} \in \Omega \text { and all } \boldsymbol{y} \in \mathbb{R}
$$

The function $a(\cdot, 0)$ belongs to $L^{\infty}(\Omega)$ and for any $M>0$ there exist a constant $C_{M}>0$ such that for all $\left|y_{1}\right|,\left|y_{2}\right| \leq M$

$$
\left|a\left(x, y_{2}\right)-a\left(x, y_{1}\right)\right| \leq C_{M}\left|y_{2}-y_{1}\right| \text { for a.e. } x \in \Omega \text {. }
$$

Assumptions on a

The function a : $\Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function,

$$
\exists \alpha_{0}>0 \text { such that } a(x, y) \geq \alpha_{0} \text { for a.e. } \boldsymbol{x} \in \Omega \text { and all } \boldsymbol{y} \in \mathbb{R}
$$

The function $a(\cdot, 0)$ belongs to $L^{\infty}(\Omega)$ and for any $M>0$ there exist a constant $C_{M}>0$ such that for all $\left|y_{1}\right|,\left|y_{2}\right| \leq M$

$$
\left|a\left(x, y_{2}\right)-a\left(x, y_{1}\right)\right| \leq C_{M}\left|y_{2}-y_{1}\right| \text { for a.e. } x \in \Omega \text {. }
$$

Remarks:

Assumptions on a

The function a : $\Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function,

$$
\exists \alpha_{0}>0 \text { such that } a(x, y) \geq \alpha_{0} \text { for a.e. } \boldsymbol{x} \in \Omega \text { and all } \boldsymbol{y} \in \mathbb{R}
$$

The function $a(\cdot, 0)$ belongs to $L^{\infty}(\Omega)$ and for any $M>0$ there exist a constant $C_{M}>0$ such that for all $\left|y_{1}\right|,\left|y_{2}\right| \leq M$

$$
\left|a\left(x, y_{2}\right)-a\left(x, y_{1}\right)\right| \leq C_{M}\left|y_{2}-y_{1}\right| \text { for a.e. } x \in \Omega \text {. }
$$

Remarks:

- Instead of $d(y)$, a more general function $d(x, y)$ can be considered under associated assumptions.

Assumptions on a

The function a : $\Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function,

$$
\exists \alpha_{0}>0 \text { such that } a(x, y) \geq \alpha_{0} \text { for a.e. } x \in \Omega \text { and all } y \in \mathbb{R}
$$

The function $a(\cdot, 0)$ belongs to $L^{\infty}(\Omega)$ and for any $M>0$ there exist a constant $C_{M}>0$ such that for all $\left|y_{1}\right|,\left|y_{2}\right| \leq M$

$$
\left|a\left(x, y_{2}\right)-a\left(x, y_{1}\right)\right| \leq C_{M}\left|y_{2}-y_{1}\right| \text { for a.e. } x \in \Omega \text {. }
$$

Remarks:

- Instead of $d(y)$, a more general function $d(x, y)$ can be considered under associated assumptions.
- We shall also need the derivatives $\frac{\partial a}{\partial y}(x, y)$ and $\frac{\partial^{2} a}{\partial y^{2}}(x, y)$.

Well-posedness of the state equation

Define: $\quad p>n$ and $q>n / 2$.

Theorem

Under our assumptions, for any element $u \in W^{-1, p}(\Omega)$, the quasilinear state equation has a unique solution $y_{u} \in H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega)$. Moreover there exists $\mu \in(0,1)$ independent of u such that $y_{u} \in C^{\mu}(\bar{\Omega})$ and for any bounded set $U \subset W^{-1, p}(\Omega)$

$$
\left\|y_{u}\right\|_{H_{0}^{\prime}(\Omega)}+\left\|y_{u}\right\|_{C^{\mu}(\bar{\Omega})} \leq C_{U} \quad \forall u \in U
$$

for some constant $C_{u}>0$. Finally, if $u_{k} \rightarrow u$ in $W^{-1, p}(\Omega)$, then $y_{u_{k}} \rightarrow y_{u}$ in $H_{0}^{1}(\Omega) \cap C^{\mu}(\bar{\Omega})$.

Idea of proof:

Idea of proof:
a) Existence: Depending on $M>0$, we introduce the truncated function a_{M} by

$$
a_{M}(x, y)= \begin{cases}a(x, y), & |y| \leq M \\ a(x,+M), & y>+M \\ a(x,-M), & y<-M .\end{cases}
$$

Idea of proof:
a) Existence: Depending on $M>0$, we introduce the truncated function a_{M} by

$$
a_{M}(x, y)= \begin{cases}a(x, y), & |y| \leq M \\ a(x,+M), & y>+M \\ a(x,-M), & y<-M\end{cases}
$$

Analogously, the truncation d_{M} of d is defined.

Idea of proof:
a) Existence: Depending on $M>0$, we introduce the truncated function a_{M} by

$$
a_{M}(x, y)=\left\{\begin{array}{lll}
a(x, y), & \mid y \leq M \\
a(x,+M), & y>+M \\
a(x,-M), & y<-M .
\end{array}\right.
$$

Analogously, the truncation d_{M} of d is defined. We prove that

$$
\begin{aligned}
-\operatorname{div}\left[a_{M}(x, y) \nabla y\right]+d_{M}(y) & =u \text { in } \Omega \\
y & =0 \text { on } \Gamma
\end{aligned}
$$

has at least one solution $y \in H_{0}^{1}(\Omega)$.

Idea of proof:
a) Existence: Depending on $M>0$, we introduce the truncated function a_{M} by

$$
a_{M}(x, y)=\left\{\begin{array}{lll}
a(x, y), & \mid y \leq M \\
a(x,+M), & y>+M \\
a(x,-M), & y<-M .
\end{array}\right.
$$

Analogously, the truncation d_{M} of d is defined. We prove that

$$
\begin{aligned}
-\operatorname{div}\left[a_{M}(x, y) \nabla y\right]+d_{M}(y) & =u \text { in } \Omega \\
y & =0 \text { on } \Gamma
\end{aligned}
$$

has at least one solution $y \in H_{0}^{1}(\Omega)$. For fixed u, consider the linear equation

$$
\begin{aligned}
-\operatorname{div}\left[a_{M}(x, z) \nabla y\right]+d_{M}(z) & =u \text { in } \Omega \\
y & =0 \text { on } \Gamma .
\end{aligned}
$$

Idea of proof:
a) Existence: Depending on $M>0$, we introduce the truncated function a_{M} by

$$
a_{M}(x, y)=\left\{\begin{array}{lll}
a(x, y), & \mid y \leq M \\
a(x,+M), & y>+M \\
a(x,-M), & y<-M .
\end{array}\right.
$$

Analogously, the truncation d_{M} of d is defined. We prove that

$$
\begin{aligned}
-\operatorname{div}\left[a_{M}(x, y) \nabla y\right]+d_{M}(y) & =u \text { in } \Omega \\
y & =0 \text { on } \Gamma
\end{aligned}
$$

has at least one solution $y \in H_{0}^{1}(\Omega)$. For fixed u, consider the linear equation

$$
\begin{aligned}
-\operatorname{div}\left[a_{M}(x, z) \nabla y\right]+d_{M}(z) & =u \text { in } \Omega \\
y & =0 \text { on } \Gamma .
\end{aligned}
$$

Define $F: L^{2}(\Omega) \rightarrow L^{2}(\Omega)$ by $F: z \mapsto y$.

Idea of proof:
a) Existence: Depending on $M>0$, we introduce the truncated function a_{M} by

$$
a_{M}(x, y)=\left\{\begin{array}{lll}
a(x, y), & \mid y \leq M \\
a(x,+M), & y>+M \\
a(x,-M), & y<-M .
\end{array}\right.
$$

Analogously, the truncation d_{M} of d is defined. We prove that

$$
\begin{aligned}
-\operatorname{div}\left[a_{M}(x, y) \nabla y\right]+d_{M}(y) & =u \text { in } \Omega \\
y & =0 \text { on } \Gamma
\end{aligned}
$$

has at least one solution $y \in H_{0}^{1}(\Omega)$. For fixed u, consider the linear equation

$$
\begin{aligned}
-\operatorname{div}\left[a_{M}(x, z) \nabla y\right]+d_{M}(z) & =u \text { in } \Omega \\
y & =0 \text { on } \Gamma .
\end{aligned}
$$

Define $F: L^{2}(\Omega) \rightarrow L^{2}(\Omega)$ by $F: z \mapsto y$. Compact embedding of $H^{1}(\Omega)$ in $L^{2}(\Omega)$, Schauder fixed point theorem

Idea of proof:
a) Existence: Depending on $M>0$, we introduce the truncated function a_{M} by

$$
a_{M}(x, y)=\left\{\begin{array}{lll}
a(x, y), & \mid y \leq M \\
a(x,+M), & y>+M \\
a(x,-M), & y<-M .
\end{array}\right.
$$

Analogously, the truncation d_{M} of d is defined. We prove that

$$
\begin{aligned}
-\operatorname{div}\left[a_{M}(x, y) \nabla y\right]+d_{M}(y) & =u \text { in } \Omega \\
y & =0 \text { on } \Gamma
\end{aligned}
$$

has at least one solution $y \in H_{0}^{1}(\Omega)$. For fixed u, consider the linear equation

$$
\begin{aligned}
-\operatorname{div}\left[a_{M}(x, z) \nabla y\right]+d_{M}(z) & =u \text { in } \Omega \\
y & =0 \text { on } \Gamma .
\end{aligned}
$$

Define $F: L^{2}(\Omega) \rightarrow L^{2}(\Omega)$ by $F: z \mapsto y$. Compact embedding of $H^{1}(\Omega)$ in $L^{2}(\Omega)$, Schauder fixed point theorem $\Rightarrow F$ has a fixed point y_{M}.

Stampacchia truncation method \Rightarrow

$$
\left\|y_{M}\right\|_{L^{\infty}(\Omega)} \leq c_{\infty},
$$

where c_{∞} does not depend on M.

Stampacchia truncation method \Rightarrow

$$
\left\|y_{M}\right\|_{L^{\infty}(\Omega)} \leq c_{\infty},
$$

where c_{∞} does not depend on M. Taking M sufficiently large, the solution y_{M} is shown to be a solution of the state equation.

Stampacchia truncation method \Rightarrow

$$
\left\|y_{M}\right\|_{L^{\infty}(\Omega)} \leq c_{\infty},
$$

where c_{∞} does not depend on M. Taking M sufficiently large, the solution y_{M} is shown to be a solution of the state equation.
Hölder regularity of y : results of Gilbarg and Trudinger.

Stampacchia truncation method \Rightarrow

$$
\left\|y_{M}\right\|_{L^{\infty}(\Omega)} \leq c_{\infty},
$$

where c_{∞} does not depend on M. Taking M sufficiently large, the solution y_{M} is shown to be a solution of the state equation.
Hölder regularity of y : results of Gilbarg and Trudinger.
b) Uniqueness: First surprise: Very delicate!

Application of a comparison principle; we use ideas of Douglas/Dupont/Serrin (1971) and Křížek/Liu (2003).

$W^{1, p}$-regularity

Assume slightly higher regularity of a, Γ and u :

Theorem

Assume in addition that a : $\bar{\Omega} \times \mathbb{R} \longrightarrow \mathbb{R}$ is continuous and Γ is of class C^{1}. Then the state equation has a unique solution $y_{u} \in W_{0}^{1, p}(\Omega)$. Moreover, for any bounded set $U \subset W^{-1, p}(\Omega)$, there exists a constant $C_{U}>0$ such that

$$
\left\|y_{u}\right\|_{W_{0}^{1, p}(\Omega)} \leq C_{U} \quad \forall u \in U .
$$

If $u_{k} \rightarrow u$ in $W^{-1, p}(\Omega)$ then $y_{u_{k}} \rightarrow y_{u}$ strongly in $W_{0}^{1, p}(\Omega)$.

$W^{1, p}$-regularity

Assume slightly higher regularity of a, Γ and u :

Theorem

Assume in addition that a : $\bar{\Omega} \times \mathbb{R} \longrightarrow \mathbb{R}$ is continuous and Γ is of class C^{1}. Then the state equation has a unique solution $y_{u} \in W_{0}^{1, p}(\Omega)$. Moreover, for any bounded set $U \subset W^{-1, p}(\Omega)$, there exists a constant $C_{U}>0$ such that

$$
\left\|y_{u}\right\|_{W_{0}^{1, p}(\Omega)} \leq C_{U} \quad \forall u \in U .
$$

If $u_{k} \rightarrow u$ in $W^{-1, p}(\Omega)$ then $y_{u_{k}} \rightarrow y_{u}$ strongly in $W_{0}^{1, p}(\Omega)$.
Follows from $W^{1, p}(\Omega)$-results for linear elliptic equations; Giaquinta (1993) and Morrey (1966).
Notice that $\hat{a}(x)=a\left(x, y_{u}(x)\right)$ is continuous in $\bar{\Omega}$ and $u-d\left(y_{u}\right) \in W^{-1, p}(\Omega)$.

$W^{2, p}$-regularity

Assume more smoothness of a:

$$
\left|a\left(x_{1}, y_{1}\right)-a\left(x_{2}, y_{2}\right)\right| \leq c_{M}\left\{\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right|\right\}
$$

for all $x_{i} \in \bar{\Omega}, y_{i} \in[-M, M], i=1,2$.

$W^{2, p}$-regularity

Assume more smoothness of a :

$$
\left|a\left(x_{1}, y_{1}\right)-a\left(x_{2}, y_{2}\right)\right| \leq c_{M}\left\{\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right|\right\}
$$

for all $x_{i} \in \bar{\Omega}, y_{i} \in[-M, M], i=1,2$.

Theorem

Let this additional assumption be satisfied and Γ be of class $C^{1,1}$. Then for any $u \in L^{q}(\Omega)$, the quasilinear equation has one solution $y_{u} \in W^{2, q}(\Omega)$. Moreover, for any bounded set $U \subset L^{q}(\Omega)$, there exists a constant $C_{U}>0$ such that

$$
\left\|y_{u}\right\|_{w^{2, q}(\Omega)} \leq C_{U} \quad \forall u \in U
$$

Main trick of the proof: Expand the divergence term $a(x, y)$ and divide by a :

Main trick of the proof: Expand the divergence term $a(x, y)$ and divide by a : We have $y \in W^{1, p}(\Omega)$ for all $p<\infty$, in particular in $W^{1,2 q}(\Omega)$.

Consider the case $q \geq n$.

Main trick of the proof: Expand the divergence term $a(x, y)$ and divide by a : We have $y \in W^{1, p}(\Omega)$ for all $p<\infty$, in particular in $W^{1,2 q}(\Omega)$.
Consider the case $q \geq n$.

$$
-\Delta y=\underbrace{\frac{1}{a}}_{L^{\infty}}\{\underbrace{u-d(y)}_{L^{q}}+\sum_{j=1}^{n} \underbrace{\partial_{j a} a(x, y)}_{L^{\infty}} \underbrace{\partial_{j} y}_{\llcorner q}+\underbrace{\frac{\partial a}{\partial y}}_{L^{\infty}} \underbrace{|\nabla y|^{2}}_{\llcorner q}\},
$$

\Rightarrow right-hand side in $L^{q}(\Omega)$.
$\frac{\partial a}{\partial y} \in L^{\infty}$: By the Lipschitz property and $y \in L^{\infty}(\Omega)$.

Main trick of the proof: Expand the divergence term $a(x, y)$ and divide by a: We have $y \in W^{1, p}(\Omega)$ for all $p<\infty$, in particular in $W^{1,2 q}(\Omega)$.
Consider the case $q \geq n$.

$$
-\Delta y=\underbrace{\frac{1}{a}}_{L^{\infty}}\{\underbrace{u-d(y)}_{L^{q}}+\sum_{j=1}^{n} \underbrace{\partial_{j a} a(x, y)}_{L^{\infty}} \underbrace{\partial_{j} y}_{L a}+\underbrace{\frac{\partial a}{\partial y}}_{L^{\infty}} \underbrace{|\nabla y|^{2}}_{L a}\},
$$

\Rightarrow right-hand side in $L^{q}(\Omega)$.
$\frac{\partial a}{\partial y} \in L^{\infty}$: By the Lipschitz property and $y \in L^{\infty}(\Omega)$.
The $C^{1,1}$-smoothness of Γ permits to apply a result by Grisvard (1985) to get $y \in W^{2, q}(\Omega)$. The case $n / 2<q<n$ follows by some embedding results.

Differentiability of G

Since $n \leq 3, q=2>n / 2$ is satisfied.
Therefore, $G: u \mapsto y_{u}$ is continuous from $L^{2}(\Omega)$ to $H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$. The choice $q=2$ is possible in the theorems below.

Differentiability of G

Since $n \leq 3, q=2>n / 2$ is satisfied.
Therefore, $G: u \mapsto y_{u}$ is continuous from $L^{2}(\Omega)$ to $H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$.
The choice $q=2$ is possible in the theorems below.
Additional assumption:
The function a is of class C^{2} with respect to the second variable and, $\forall M>0$
$\exists D_{M}>0$ such that

$$
\left|\frac{\partial a}{\partial y}(x, y)\right|+\left|\frac{\partial^{2} a}{\partial y^{2}}(x, y)\right| \leq D_{M} \text { for a.e. } x \in \Omega \text { and all }|y| \leq M
$$

Differentiability of G

Since $n \leq 3, q=2>n / 2$ is satisfied.
Therefore, $G: u \mapsto y_{u}$ is continuous from $L^{2}(\Omega)$ to $H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$.
The choice $q=2$ is possible in the theorems below.
Additional assumption:
The function a is of class C^{2} with respect to the second variable and, $\forall M>0$
$\exists D_{M}>0$ such that

$$
\left|\frac{\partial a}{\partial y}(x, y)\right|+\left|\frac{\partial^{2} a}{\partial y^{2}}(x, y)\right| \leq D_{M} \text { for a.e. } x \in \Omega \text { and all }|y| \leq M
$$

Next surprise: The differentiability of G is very delicate, too.

Differentiability of G

Since $n \leq 3, q=2>n / 2$ is satisfied.
Therefore, $G: u \mapsto y_{u}$ is continuous from $L^{2}(\Omega)$ to $H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$.
The choice $q=2$ is possible in the theorems below.
Additional assumption:
The function a is of class C^{2} with respect to the second variable and, $\forall M>0$
$\exists D_{M}>0$ such that

$$
\left|\frac{\partial a}{\partial y}(x, y)\right|+\left|\frac{\partial^{2} a}{\partial y^{2}}(x, y)\right| \leq D_{M} \text { for a.e. } x \in \Omega \text { and all }|y| \leq M
$$

Next surprise: The differentiability of G is very delicate, too.
Differentiability will hold, if the linearized equation defines an isomorphism in the associated spaces.

Theorem

Given $y \in W^{1, p}(\Omega)$, for any $v \in H^{-1}(\Omega)$ the linearized equation

$$
\begin{aligned}
-\operatorname{div}\left[a(x, y) \nabla z+\frac{\partial a}{\partial y}(x, y) z \nabla y\right]+d^{\prime}(y) z & =v \text { in } \Omega \\
z & =0 \text { on } \Gamma
\end{aligned}
$$

has a unique solution $z_{v} \in H_{0}^{1}(\Omega)$.

Theorem

Given $y \in W^{1, p}(\Omega)$, for any $v \in H^{-1}(\Omega)$ the linearized equation

$$
\begin{aligned}
-\operatorname{div}\left[a(x, y) \nabla z+\frac{\partial a}{\partial y}(x, y) z \nabla y\right]+d^{\prime}(y) z & =v \text { in } \Omega \\
z & =0 \text { on } \Gamma
\end{aligned}
$$

has a unique solution $z_{v} \in H_{0}^{1}(\Omega)$.

Steps of the proof:
a) The uniqueness is shown by a comparison principle as for the state equation.

Idea of proof

b) A homotopy with respect to $t \in[0,1]$ is considered:

$$
\begin{aligned}
-\operatorname{div}\left[a(x, y) \nabla z+t \frac{\partial a}{\partial y}(x, y) z \nabla y_{u}\right]+d^{\prime}(y) z & =v \text { in } \Omega \\
z & =0 \text { on } \Gamma .
\end{aligned}
$$

Idea of proof

b) A homotopy with respect to $t \in[0,1]$ is considered:

$$
\begin{aligned}
-\operatorname{div}\left[a(x, y) \nabla z+t \frac{\partial a}{\partial y}(x, y) z \nabla y_{u}\right]+d^{\prime}(y) z & =v \text { in } \Omega \\
z & =0 \text { on } \Gamma .
\end{aligned}
$$

- For $t=0$: Apply the Lax-Milgram Theorem.

There exists a unique solution $z_{0} \in H_{0}^{1}(\Omega)$ for every $v \in H^{-1}(\Omega)$.

Idea of proof

b) A homotopy with respect to $t \in[0,1]$ is considered:

$$
\begin{aligned}
-\operatorname{div}\left[a(x, y) \nabla z+t \frac{\partial a}{\partial y}(x, y) z \nabla y_{u}\right]+d^{\prime}(y) z & =v \text { in } \Omega \\
z & =0 \text { on } \Gamma .
\end{aligned}
$$

- For $t=0$: Apply the Lax-Milgram Theorem.

There exists a unique solution $z_{0} \in H_{0}^{1}(\Omega)$ for every $v \in H^{-1}(\Omega)$.

- Let S be the set of points $t \in[0,1]$ for which the equation above defines an isomorphism between $H_{0}^{1}(\Omega)$ and $H^{-1}(\Omega) ; 0 \in S$.

Idea of proof

b) A homotopy with respect to $t \in[0,1]$ is considered:

$$
\begin{aligned}
-\operatorname{div}\left[a(x, y) \nabla z+t \frac{\partial a}{\partial y}(x, y) z \nabla y_{u}\right]+d^{\prime}(y) z & =v \text { in } \Omega \\
z & =0 \text { on } \Gamma .
\end{aligned}
$$

- For $t=0$: Apply the Lax-Milgram Theorem.

There exists a unique solution $z_{0} \in H_{0}^{1}(\Omega)$ for every $v \in H^{-1}(\Omega)$.

- Let S be the set of points $t \in[0,1]$ for which the equation above defines an isomorphism between $H_{0}^{1}(\Omega)$ and $H^{-1}(\Omega) ; 0 \in S$.
- $t_{\max }:=\sup S$. First, it is shown $t_{\max } \in S$ and second $t_{\max }=1$.

Theorem

Let all previous assumptions be satisfied. Then $G: W^{-1, p}(\Omega) \rightarrow W_{0}^{1, p}(\Omega)$, $G: u \mapsto y_{u}$, is of class C^{2}.

Theorem

Let all previous assumptions be satisfied. Then $G: W^{-1, p}(\Omega) \rightarrow W_{0}^{1, p}(\Omega)$, $G: u \mapsto y_{u}$, is of class C^{2}. For any $v \in W^{-1, p}(\Omega)$ the function $z_{v}=G^{\prime}(u) v$ is the unique solution in $W_{0}^{1, p}(\Omega)$ of

$$
\begin{aligned}
-\operatorname{div}\left[a\left(x, y_{u}\right) \nabla z+\frac{\partial a}{\partial y}\left(x, y_{u}\right) z \nabla y_{u}\right]+d^{\prime}(y) z & =v \text { in } \Omega \\
z & =0 \text { on } \Gamma .
\end{aligned}
$$

Theorem

Let all previous assumptions be satisfied. Then $G: W^{-1, p}(\Omega) \rightarrow W_{0}^{1, p}(\Omega)$, $G: u \mapsto y_{u}$, is of class C^{2}. For any $v \in W^{-1, p}(\Omega)$ the function $z_{v}=G^{\prime}(u) v$ is the unique solution in $W_{0}^{1, p}(\Omega)$ of

$$
\begin{aligned}
-\operatorname{div}\left[a\left(x, y_{u}\right) \nabla z+\frac{\partial a}{\partial y}\left(x, y_{u}\right) z \nabla y_{u}\right]+d^{\prime}(y) z & =v \text { in } \Omega \\
z & =0 \text { on } \Gamma .
\end{aligned}
$$

For all $v_{1}, v_{2} \in W^{-1, p}(\Omega)$ the function $z_{v_{1}, v_{2}}=G^{\prime \prime}(u)\left[v_{1}, v_{2}\right]$ is the unique solution in $W_{0}^{1, p}(\Omega)$ of

$$
\begin{array}{r}
\quad-\operatorname{div}\left[a\left(x, y_{u}\right) \nabla z+\frac{\partial a}{\partial y}\left(x, y_{u}\right) z \nabla y_{u}\right]+d^{\prime}\left(y_{u}\right) z=-d^{\prime \prime}\left(y_{u}\right) z_{v_{1}} z_{v_{2}} \\
+\operatorname{div}\left[\frac{\partial a}{\partial y}\left(x, y_{u}\right)\left(z_{v_{1}} \nabla z_{v_{2}}+\nabla z_{v_{1}} z_{v_{2}}\right)+\frac{\partial^{2} a}{\partial y^{2}}\left(x, y_{u}\right) z_{v_{1}} z_{v_{2}} \nabla y_{u}\right] \text { in } \Omega \\
z=0 \text { on } \Gamma .
\end{array}
$$

respectively, where $z_{v_{i}}=G^{\prime}(u) v_{i}, i=1,2$.

Other spaces for G^{\prime}

Additional assumption: $\forall M>0 \exists c_{M}>0$ such that

$$
\left|\frac{\partial^{j} a}{\partial y^{j}}\left(x_{1}, y_{1}\right)-\frac{\partial^{j} a}{\partial y^{j}}\left(x_{2}, y_{2}\right)\right| \leq d_{M}\left\{\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right|\right\}
$$

for all $x_{i} \in \bar{\Omega}, y_{i} \in[-M, M], i=1,2$ and $j=1,2$.

Theorem

Let all previous assumptions be satisfied and Γ be of class $C^{1,1}$. Then the control-to-state mapping $G: L^{q}(\Omega) \rightarrow W^{2, q}(\Omega), G(u)=y_{u}$, is of class C^{2} for all $q>n / 2$.

Adjoint equation

With theses prerequisites, first-order necessary and second-order sufficient optimality conditions can be shown. Take $q:=2$ in the sequel

Adjoint equation

With theses prerequisites, first-order necessary and second-order sufficient optimality conditions can be shown. Take $q:=2$ in the sequel
Adjoint equation: Associated with u, the adjoint state $\varphi_{u} \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ is obtained from

$$
\begin{aligned}
-\operatorname{div}\left[a\left(x, y_{u}\right) \nabla \varphi\right]+\frac{\partial a}{\partial y}\left(x, y_{u}\right) \nabla y_{u} \cdot \nabla \varphi+d^{\prime}\left(y_{u}\right) \varphi & =y_{u}-y_{d} & & \text { in } \Omega \\
\varphi & =0 & & \text { on } \Gamma
\end{aligned}
$$

Adjoint equation

With theses prerequisites, first-order necessary and second-order sufficient optimality conditions can be shown. Take $q:=2$ in the sequel
Adjoint equation: Associated with u, the adjoint state $\varphi_{u} \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ is obtained from

$$
\begin{aligned}
-\operatorname{div}\left[a\left(x, y_{u}\right) \nabla \varphi\right]+\frac{\partial a}{\partial y}\left(x, y_{u}\right) \nabla y_{u} \cdot \nabla \varphi+d^{\prime}\left(y_{u}\right) \varphi & =y_{u}-y_{d} & & \text { in } \Omega \\
\varphi & =0 & & \text { on } \Gamma
\end{aligned}
$$

Reduced gradient: Define as before $\quad f(u):=J\left(y_{u}, u\right)=J(G(u), u)$.

$$
f^{\prime}(u) v=\int_{\Omega}\left(\varphi_{u}(x)+\lambda u(x)\right) v(x) d x
$$

Adjoint equation

With theses prerequisites, first-order necessary and second-order sufficient optimality conditions can be shown. Take $q:=2$ in the sequel
Adjoint equation: Associated with u, the adjoint state $\varphi_{u} \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ is obtained from

$$
\begin{array}{rlrl}
-\operatorname{div}\left[a\left(x, y_{u}\right) \nabla \varphi\right]+\frac{\partial a}{\partial y}\left(x, y_{u}\right) \nabla y_{u} \cdot \nabla \varphi+d^{\prime}\left(y_{u}\right) \varphi & =y_{u}-y_{d} & \text { in } \Omega \\
\varphi & =0 & & \text { on } \Gamma
\end{array}
$$

Reduced gradient: Define as before $\quad f(u):=J\left(y_{u}, u\right)=J(G(u), u)$.

$$
f^{\prime}(u) v=\int_{\Omega}\left(\varphi_{u}(x)+\lambda u(x)\right) v(x) d x
$$

Riesz identification: $\quad f^{\prime}(u) \cong \varphi_{u}+\lambda u$

First-order necessary condition

Theorem

If \bar{u} is locally optimal for (P) (in the sense of L^{2}) and $\bar{\varphi}:=\varphi_{\bar{u}}$ is the associated adjoint state, then

$$
\int_{\Omega}(\bar{\varphi}+\lambda \bar{u})(u-\bar{u}) d x \geq 0 \quad \forall u \in U_{a d}
$$

This is equivalent to the projection formula

$$
\bar{u}(x)=\mathbb{P}_{[\alpha, \beta]}\left(-\frac{\bar{\varphi}(x)}{\lambda}\right) \quad \text { a.e. in } \Omega .
$$

This result gives different options for the numerical treatment.

The nonsmooth optimality system

Optimality system

$$
\begin{aligned}
-\operatorname{div}[a(x, y) \nabla y]+d(y) & =\mathbb{P}_{[\alpha, \beta]}\left(\lambda^{-1} \varphi\right) \\
-\operatorname{div}[a(x, y) \nabla \varphi]+\frac{\partial a}{\partial y}(x, y) \nabla y \cdot \nabla \varphi+d^{\prime}(y) \varphi & =y-y_{d}
\end{aligned}
$$

(in Ω subject to homogeneous Dirichlet boundary condition.)

The nonsmooth optimality system

Optimality system

$$
\begin{aligned}
-\operatorname{div}[a(x, y) \nabla y]+d(y) & =\mathbb{P}_{[\alpha, \beta]}\left(\lambda^{-1} \varphi\right) \\
-\operatorname{div}[a(x, y) \nabla \varphi]+\frac{\partial a}{\partial y}(x, y) \nabla y \cdot \nabla \varphi+d^{\prime}(y) \varphi & =y-y_{d}
\end{aligned}
$$

(in Ω subject to homogeneous Dirichlet boundary condition.)
Numerical options:

- Semismooth Newton method
- Direct solution of the system by COMSOL Multiphysics

Both methods were tested by V. Dhamo (TU Berlin) - very good experience.

Second-order derivative of f

For error estimates and the local convergence of numerical methods we need again second-order sufficient optimality conditions.

Theorem

Under our previous assumptions, the functional $f: L^{2}(\Omega) \rightarrow \mathbb{R}$ is of class C^{2}. We have

$$
\begin{aligned}
J^{\prime \prime}(u) v_{1} v_{2} & =\int_{\Omega}\left\{z_{v_{1}} z_{v_{2}}+\lambda v_{1} v_{2}-\varphi_{u} d^{\prime \prime}(u) z_{v_{1}} z_{v_{2}}\right. \\
& \left.-\nabla \varphi_{u}\left[\frac{\partial a}{\partial y}\left(x, y_{u}\right)\left(z_{v_{1}} \nabla z_{v_{2}}+\nabla z_{v_{1}} z_{v_{2}}\right)+\frac{\partial^{2} a}{\partial y^{2}}(x, y) z_{v_{1}} z_{v_{2}} \nabla y_{u}\right]\right\} d x
\end{aligned}
$$

where $\varphi_{u} \in W_{0}^{1, p}(\Omega) \cap W^{2, q}(\Omega)$ is the adjoint state associated with u and $z_{v_{i}}=G^{\prime}(u) v_{i}$.

Second-order sufficient optimality condition

Theorem

Assume that $\bar{u} \in U_{\text {ad }}$ satisfies the first-order necessary optimality conditions with the associated adjoint state $\bar{\varphi} \in W_{0}^{1, p}(\Omega)$.
Let there exist $\delta, \tau>0$ such that

$$
f^{\prime \prime}(\bar{u}) v^{2} \geq \delta\|v\|_{L^{2}(\Omega)}^{2} \quad \forall v \in C_{\bar{u}}^{\tau}
$$

where

$$
C_{\bar{u}}^{\tau}=\left\{v \in L^{2}(\Omega): v(x)=\left\{\begin{array}{ll}
\geq 0 & \text { if } \bar{u}(x)=\alpha \\
\leq 0 & \text { if } \bar{u}(x)=\beta \\
=0 & \text { if }|\bar{\varphi}(x)+\lambda \bar{u}(x)|>\tau
\end{array} \quad \text { for a.e. } x \in \Omega\right\} .\right.
$$

Then \bar{u} is locally optimal in the sense of $L^{2}(\Omega)$.

Remarks

- No two-norm discrepancy (quadratic structure of f).
- We discussed more general functionals of the form

$$
f(u)=\int_{\Omega} L\left(x, y_{u}, u\right) d x
$$

Here the two-norm discrepancy will occur in general.

- The condition $f^{\prime \prime}(\bar{u}) v^{2}>0$ for all nonzero v of the critical cone is equivalent to the condition above under some additional requirements on the Hamiltonian.

Approximation by finite elements

Family of regular triangulations: $\left\{\mathcal{T}_{h}\right\}_{h>0}$ of $\bar{\Omega}$:

Approximation by finite elements

Family of regular triangulations: $\left\{\mathcal{I}_{h}\right\}_{h>0}$ of $\bar{\Omega}$:
Associate to all $T \in \mathcal{T}_{h}$ the numbers $\rho(T)$ (diameter of T) and $\sigma(T)$ (diameter of the largest ball in T).

Approximation by finite elements

Family of regular triangulations: $\left\{\mathcal{T}_{h}\right\}_{h>0}$ of $\bar{\Omega}$:
Associate to all $T \in \mathcal{T}_{h}$ the numbers $\rho(T)$ (diameter of T) and $\sigma(T)$ (diameter of the largest ball in T).

$$
h:=\max _{T \in \mathcal{I}_{h}} \rho(T) \quad \text { (mesh size) }
$$

Approximation by finite elements

Family of regular triangulations: $\left\{\mathcal{T}_{h}\right\}_{h>0}$ of $\bar{\Omega}$:
Associate to all $T \in \mathcal{T}_{h}$ the numbers $\rho(T)$ (diameter of T) and $\sigma(T)$ (diameter of the largest ball in T).

$$
h:=\max _{T \in \mathcal{I}_{h}} \rho(T) \quad \text { (mesh size) }
$$

Regularity assumptions:

Approximation by finite elements

Family of regular triangulations: $\left\{\mathcal{T}_{h}\right\}_{h>0}$ of $\bar{\Omega}$:
Associate to all $T \in \mathcal{T}_{h}$ the numbers $\rho(T)$ (diameter of T) and $\sigma(T)$ (diameter of the largest ball in T).

$$
h:=\max _{T \in \mathcal{I}_{h}} \rho(T) \quad \text { (mesh size) }
$$

Regularity assumptions:

- $\exists \rho>0, \sigma>0$ such that

$$
\frac{\rho(T)}{\sigma(T)} \leq \sigma, \quad \frac{h}{\rho(T)} \leq \rho \quad \forall T \in \mathcal{T}_{h}, h>0 .
$$

Approximation by finite elements

Family of regular triangulations: $\left\{\mathcal{T}_{h}\right\}_{h>0}$ of $\bar{\Omega}$:
Associate to all $T \in \mathcal{T}_{h}$ the numbers $\rho(T)$ (diameter of T) and $\sigma(T)$ (diameter of the largest ball in T).

$$
h:=\max _{T \in \mathcal{I}_{h}} \rho(T) \quad \text { (mesh size) }
$$

Regularity assumptions:

- $\exists \rho>0, \sigma>0$ such that

$$
\frac{\rho(T)}{\sigma(T)} \leq \sigma, \quad \frac{h}{\rho(T)} \leq \rho \quad \forall T \in \mathcal{T}_{h}, h>0
$$

- Define $\bar{\Omega}_{h}=\cup_{T \in \mathcal{I}_{h}} T$ with interior Ω_{h} and boundary Γ_{h}.

Approximation by finite elements

Family of regular triangulations: $\left\{\mathcal{I}_{h}\right\}_{h>0}$ of $\bar{\Omega}$:
Associate to all $T \in \mathcal{T}_{h}$ the numbers $\rho(T)$ (diameter of T) and $\sigma(T)$ (diameter of the largest ball in T).

$$
h:=\max _{T \in \mathcal{T}_{h}} \rho(T) \quad \text { (mesh size) }
$$

Regularity assumptions:

- $\exists \rho>0, \sigma>0$ such that

$$
\frac{\rho(T)}{\sigma(T)} \leq \sigma, \quad \frac{h}{\rho(T)} \leq \rho \quad \forall T \in \mathcal{T}_{h}, h>0 .
$$

- Define $\bar{\Omega}_{h}=\cup_{T \in \mathcal{T}_{h}} T$ with interior Ω_{h} and boundary Γ_{h}. Assume that $\bar{\Omega}_{h}$ is convex and that the vertices of \mathcal{T}_{h} placed on the boundary Γ_{h} are points of Γ.

Finite element approximation

Assumption: $\Omega \subset \mathbb{R}^{n}$ is open, convex and bounded $n \in\{2,3\}$, with boundary Γ of class $C^{1,1}$. For $n=2, \Omega$ is allowed to be polygonal instead of of class $C^{1,1}$.

Finite element approximation

Assumption: $\Omega \subset \mathbb{R}^{n}$ is open, convex and bounded $n \in\{2,3\}$, with boundary Γ of class $C^{1,1}$. For $n=2, \Omega$ is allowed to be polygonal instead of of class $C^{1,1}$.

Then, with some $C>0$.

$$
\left|\Omega \backslash \Omega_{h}\right| \leq C h^{2} .
$$

Finite element approximation

Assumption: $\Omega \subset \mathbb{R}^{n}$ is open, convex and bounded $n \in\{2,3\}$, with boundary Γ of class $C^{1,1}$. For $n=2, \Omega$ is allowed to be polygonal instead of of class $C^{1,1}$.
Then, with some $C>0$.

$$
\left|\Omega \backslash \Omega_{h}\right| \leq C h^{2} .
$$

Piecewise linear approximation of the states:

$$
Y_{h}=\left\{y_{h} \in C(\bar{\Omega}) \mid y_{h \mid T} \in \mathcal{P}_{1}, \text { for all } T \in \mathcal{T}_{h}, \text { and } y_{h}=0 \text { on } \bar{\Omega} \backslash \Omega_{h}\right\} .
$$

Finite element approximation

Assumption: $\Omega \subset \mathbb{R}^{n}$ is open, convex and bounded $n \in\{2,3\}$, with boundary Γ of class $C^{1,1}$. For $n=2, \Omega$ is allowed to be polygonal instead of of class $C^{1,1}$.
Then, with some $C>0$.

$$
\left|\Omega \backslash \Omega_{h}\right| \leq C h^{2}
$$

Piecewise linear approximation of the states:

$$
Y_{h}=\left\{y_{h} \in C(\bar{\Omega}) \mid y_{h \mid T} \in \mathcal{P}_{1}, \text { for all } T \in \mathcal{T}_{h}, \text { and } y_{h}=0 \text { on } \bar{\Omega} \backslash \Omega_{h}\right\} .
$$

Discretized state equation

$$
\left\{\begin{array}{l}
\text { Find } y_{h} \in Y_{h} \text { such that, for all } z_{h} \in Y_{h}, \\
\int_{\Omega_{h}}\left[a\left(x, y_{h}(x)\right) \nabla y_{h} \cdot \nabla z_{h}+d\left(y_{h}(x)\right) z_{h}\right] d x=\int_{\Omega_{h}} u z_{h} d x .
\end{array}\right.
$$

Local uniqueness of discretized states

- By the Brouwer fixed point theorem, the existence of solutions y_{h} to the discretized equation can be shown.
- We did not assume (global) boundedness of $a(x, y)$. To our surprise, we were not able to show uniqueness in this case. If a is bounded, then the uniqueness can be shown for all sufficiently small $h>0$.
- Therefore, in the unbounded case, we had to work with local uniqueness of y_{h} as in the setting of the implicit function theorem.

Local uniqueness of discretized states

- By the Brouwer fixed point theorem, the existence of solutions y_{h} to the discretized equation can be shown.
- We did not assume (global) boundedness of $a(x, y)$. To our surprise, we were not able to show uniqueness in this case. If a is bounded, then the uniqueness can be shown for all sufficiently small $h>0$.
- Therefore, in the unbounded case, we had to work with local uniqueness of y_{h} as in the setting of the implicit function theorem.

Assume for simplicity boundedness of a and that h is sufficiently small so that the mapping $u \mapsto y_{h}(u)$ is well defined:
Definition: For given $u \in U_{a d}, y_{h}(u)$ is the solution to the discretized equation.

Discretized optimal control problem

Under the same simplification as above, we define

$$
f_{h}(u)=\frac{1}{2} \int_{\Omega_{h}}\left(y_{h}(u)-y_{d}\right)^{2} d x+\frac{\lambda}{2} \int_{\Omega_{h}} u^{2} d x
$$

Discretized optimal control problem

Under the same simplification as above, we define

$$
f_{h}(u)=\frac{1}{2} \int_{\Omega_{h}}\left(y_{h}(u)-y_{d}\right)^{2} d x+\frac{\lambda}{2} \int_{\Omega_{h}} u^{2} d x
$$

Set of discretized control functions: $U_{a d}^{h} \subset U_{a d}$

Discretized optimal control problem

Under the same simplification as above, we define

$$
f_{h}(u)=\frac{1}{2} \int_{\Omega_{h}}\left(y_{h}(u)-y_{d}\right)^{2} d x+\frac{\lambda}{2} \int_{\Omega_{h}} u^{2} d x
$$

Set of discretized control functions: $U_{a d}^{h} \subset U_{a d}$

$$
\left(P_{h}\right) \quad \min f_{h}\left(u_{h}\right), \quad u_{h} \in U_{a d}^{h} .
$$

Discretized optimal control problem

Under the same simplification as above, we define

$$
f_{h}(u)=\frac{1}{2} \int_{\Omega_{h}}\left(y_{h}(u)-y_{d}\right)^{2} d x+\frac{\lambda}{2} \int_{\Omega_{h}} u^{2} d x
$$

Set of discretized control functions: $U_{a d}^{h} \subset U_{a d}$

$$
\left(P_{h}\right) \quad \min f_{h}\left(u_{h}\right), \quad u_{h} \in U_{a d}^{h} .
$$

We considered the following sets $U_{a d}^{h}$:

- $U_{a d}^{h}=U_{a d} \quad \forall h>0$ (variational discretization)
- All piecewise constant functions on Ω_{h} (constant on each triangle) with values in $[\alpha, \beta]$
- All piecewise linear functions on Ω_{h} with values in $[\alpha, \beta]$.

Theorem (Piecewise constant controls, L^{2}-estimate)

Let a locally optimal control ū of (P) satisfy the second-order sufficient conditions introduced above and let $U_{a d}^{h}$ be defined by piecewise constant functions. Assume that \bar{u}_{h} is a sequence of locally optimal (piecewise constant) solutions to $\left(P_{h}\right)$ that converges strongly in $L^{2}(\Omega)$ to \bar{u}. Then there is some constant $C>0$ not depending on h such that

$$
\left\|\bar{u}_{h}-\bar{u}\right\|_{L^{2}\left(\Omega_{h}\right)} \leq C h \quad \forall h>0 .
$$

Theorem (Piecewise constant controls, L^{2}-estimate)

Let a locally optimal control ū of (P) satisfy the second-order sufficient conditions introduced above and let $U_{a d}^{h}$ be defined by piecewise constant functions. Assume that \bar{u}_{h} is a sequence of locally optimal (piecewise constant) solutions to $\left(P_{h}\right)$ that converges strongly in $L^{2}(\Omega)$ to \bar{u}. Then there is some constant $C>0$ not depending on h such that

$$
\left\|\bar{u}_{h}-\bar{u}\right\|_{L^{2}\left(\Omega_{h}\right)} \leq C h \quad \forall h>0 .
$$

Survey of other results:

- Same estimate in the L^{∞}-norm for piecewise constant controls
- Order h^{2} for variational discretization (L^{2} and L^{∞})
- $\lim _{h \rightarrow 0} h^{-1}\left\|\bar{u}_{h}-\bar{u}\right\|_{L^{2}\left(\Omega_{h}\right)}=0$ for piecewise linear controls
- L^{2}-estimate of order $h^{3 / 2}$ for piecewise linear controls under some standard structural assumption on the triangles, where the reduced gradient vanishes on a positive measure.

General tool for error estimates

General tool for error estimates

To simplify the derivation of error estimates, we proved a general theorem on error estimates that is formulated below for our concrete setting.

General tool for error estimates

To simplify the derivation of error estimates, we proved a general theorem on error estimates that is formulated below for our concrete setting. In our problem, we have a sequence $\varepsilon_{h} \rightarrow 0$ such that

$$
\left|\left[f_{h}^{\prime}(u)-f^{\prime}(u)\right] v\right| \leq \varepsilon_{h}\|v\|_{L^{2}(\Omega)}
$$

for all $(u, v) \in U_{a d} \times L^{2}(\Omega)$ with $v=u_{h}-\bar{u}$ with $u_{h} \in U_{a d}^{h}$.

General tool for error estimates

To simplify the derivation of error estimates, we proved a general theorem on error estimates that is formulated below for our concrete setting. In our problem, we have a sequence $\varepsilon_{h} \rightarrow 0$ such that

$$
\left|\left[f_{h}^{\prime}(u)-f^{\prime}(u)\right] v\right| \leq \varepsilon_{h}\|v\|_{L^{2}(\Omega)}
$$

for all $(u, v) \in U_{a d} \times L^{2}(\Omega)$ with $v=u_{h}-\bar{u}$ with $u_{h} \in U_{a d}^{h}$.

Theorem

Let $\left\{\bar{u}_{h}\right\}_{h>0}$ be a sequence of local solutions to $\left(P_{h}\right)$ converging strongly to \bar{u} in $L^{2}(\Omega)$. Under the second-order sufficiency condition, there exist $C>0$ and $h_{0}>0$ such that

$$
\left\|\bar{u}-\bar{u}_{h}\right\|_{L^{2}(\Omega)} \leq C\left[\varepsilon_{h}^{2}+\left\|\bar{u}-u_{h}\right\|_{L^{2}(\Omega)}^{2}+f^{\prime}(\bar{u})\left(u_{h}-\bar{u}\right)\right]^{1 / 2} \forall u_{h} \in U_{a d}^{h}, \forall h<h_{0}
$$

General tool for error estimates

To simplify the derivation of error estimates, we proved a general theorem on error estimates that is formulated below for our concrete setting. In our problem, we have a sequence $\varepsilon_{h} \rightarrow 0$ such that

$$
\left|\left[f_{h}^{\prime}(u)-f^{\prime}(u)\right] v\right| \leq \varepsilon_{h}\|v\|_{L^{2}(\Omega)}
$$

for all $(u, v) \in U_{a d} \times L^{2}(\Omega)$ with $v=u_{h}-\bar{u}$ with $u_{h} \in U_{a d}^{h}$.

Theorem

Let $\left\{\bar{u}_{h}\right\}_{h>0}$ be a sequence of local solutions to $\left(P_{h}\right)$ converging strongly to \bar{u} in $L^{2}(\Omega)$. Under the second-order sufficiency condition, there exist $C>0$ and $h_{0}>0$ such that

$$
\left\|\bar{u}-\bar{u}_{h}\right\|_{L^{2}(\Omega)} \leq C\left[\varepsilon_{h}^{2}+\left\|\bar{u}-u_{h}\right\|_{L^{2}(\Omega)}^{2}+f^{\prime}(\bar{u})\left(u_{h}-\bar{u}\right)\right]^{1 / 2} \forall u_{h} \in U_{a d}^{h}, \forall h<h_{0} .
$$

Reference: E. Casas, F.T., A general theorem on error estimates with application to a quasilinear elliptic optimal control problem, submitted 2011.

