Aspects of numerical analysis in the optimal control of nonlinear PDEs II: state constraints and problems with quasilinear equations

Fredi Tröltzsch

Technische Universität Berlin

Inverse Problems and Optimal Control for PDEs

Warwick, 23-27 May 2011

- Motivating industrial applications
- Elliptic problems with linear state equation
- Semilinear elliptic state equation
- State-constrained control problems
- The case of quasilinear elliptic equations
- Error estimates

Outline

Pointwise state constraints

- The control problem and necessary conditions
- A test example
- An open problem for SSC

Quasilinear elliptic control problems

- The problem and well-posedness of the state equation
- Optimality conditions
- Approximation by finite elements

The optimal control problem

Let real bounds $\alpha < \beta$, $y_a < 0 < y_b$ be given. Problem with control and state constraints:

$$(P) \quad \min J(y, u) := \frac{1}{2} \int_{\Omega} (y(x) - y_d(x))^2 \, dx + \frac{\lambda}{2} \int_{\Omega} (u(x))^2 \, dx$$
$$-\Delta y(x) + d(y(x)) = u(x) \quad \text{in } \Omega$$
$$y(x) = 0 \quad \text{on } \Gamma,$$
$$\alpha \le u(x) \le \beta, \quad \text{a.e. in } \Omega,$$
$$y_a \le y(x) \le y_b \quad \text{for all } x \in \overline{\Omega}.$$

It holds $y_u = G(u)$, $G : L^2(\Omega) \to H_0^1(\Omega) \cap C(\overline{\Omega})$, $n \leq 3$. Therefore, the state-constrained problem can be written as follows:

$(P) \qquad \min f(u), \quad \alpha \leq u(x) \leq \beta, \quad y_a \leq G(u) \leq y_b.$

It holds $y_u = G(u)$, $G : L^2(\Omega) \to H_0^1(\Omega) \cap C(\overline{\Omega})$, $n \leq 3$. Therefore, the state-constrained problem can be written as follows:

(P) $\min f(u), \quad \alpha \leq u(x) \leq \beta, \quad y_a \leq G(u) \leq y_b.$

For several reasons, we need $G: L^2(\Omega) \to C(\overline{\Omega})$ or (if n > 3), $G: L^p(\Omega) \to C(\overline{\Omega}), \ p > n/2.$

It holds $y_u = G(u)$, $G : L^2(\Omega) \to H_0^1(\Omega) \cap C(\overline{\Omega})$, $n \leq 3$. Therefore, the state-constrained problem can be written as follows:

(P) $\min f(u), \quad \alpha \leq u(x) \leq \beta, \quad y_a \leq G(u) \leq y_b.$

For several reasons, we need $G: L^2(\Omega) \to C(\overline{\Omega})$ or (if n > 3), $G: L^p(\Omega) \to C(\overline{\Omega}), \ p > n/2.$

Following the Lagrange formalism, we (formally) remove the state constraints by Lagrange multipliers.

It holds $y_u = G(u)$, $G : L^2(\Omega) \to H_0^1(\Omega) \cap C(\overline{\Omega})$, $n \leq 3$. Therefore, the state-constrained problem can be written as follows:

(P) $\min f(u), \quad \alpha \leq u(x) \leq \beta, \quad y_a \leq G(u) \leq y_b.$

For several reasons, we need $G: L^2(\Omega) \to C(\overline{\Omega})$ or (if n > 3), $G: L^p(\Omega) \to C(\overline{\Omega}), \ p > n/2.$

Following the Lagrange formalism, we (formally) remove the state constraints by Lagrange multipliers.

Lagrangian function

$$\mathcal{L}(u,\mu_a,\mu_b) := f(u) + \int_{\overline{\Omega}} (y_a - G(u)) d\mu_a + \int_{\overline{\Omega}} (G(u) - y_b) d\mu_b.$$

Fredi Tröltzsch (TU Berlin)

In \mathcal{L} , regular Borel measures μ_a , μ_b are Lagrange multipliers associated with the state constraints.

Definition: μ_a , μ_b are said to be Lagrange multipliers associated with \bar{u} , if

In \mathcal{L} , regular Borel measures μ_a , μ_b are Lagrange multipliers associated with the state constraints.

Definition: μ_a , μ_b are said to be Lagrange multipliers associated with \bar{u} , if

• The variational inequality

$$rac{\partial \mathcal{L}}{\partial u}(ar{u},\mu_{a},\mu_{b})(u-ar{u})\geq 0 \hspace{1em} orall u\in U_{ad}$$

is satisfied

In \mathcal{L} , regular Borel measures μ_a , μ_b are Lagrange multipliers associated with the state constraints.

Definition: μ_a , μ_b are said to be Lagrange multipliers associated with \bar{u} , if

• The variational inequality

$$rac{\partial \mathcal{L}}{\partial u}(ar{u},\mu_{a},\mu_{b})(u-ar{u})\geq 0 \hspace{1em} orall u\in U_{ad}$$

is satisfied (i.e. \bar{u} satisfies the necessary conditions for the problem of minimizing \mathcal{L} subject to $u \in U_{ad}$),

In \mathcal{L} , regular Borel measures μ_a , μ_b are Lagrange multipliers associated with the state constraints.

Definition: μ_a , μ_b are said to be Lagrange multipliers associated with \bar{u} , if

• The variational inequality

$$rac{\partial \mathcal{L}}{\partial u}(ar{u},\mu_{a},\mu_{b})(u-ar{u})\geq 0 \hspace{1em} orall u\in U_{ad}$$

is satisfied (i.e. \bar{u} satisfies the necessary conditions for the problem of minimizing \mathcal{L} subject to $u \in U_{ad}$),

• $\mu_a \geq 0, \, \mu_b \geq 0$ in the sense of $C(\bar{\Omega})^*$,

In \mathcal{L} , regular Borel measures μ_a , μ_b are Lagrange multipliers associated with the state constraints.

Definition: μ_a , μ_b are said to be Lagrange multipliers associated with \bar{u} , if

• The variational inequality

$$rac{\partial \mathcal{L}}{\partial u}(ar{u},\mu_{a},\mu_{b})(u-ar{u})\geq 0 \quad orall u\in U_{ad}$$

is satisfied (i.e. \bar{u} satisfies the necessary conditions for the problem of minimizing \mathcal{L} subject to $u \in U_{ad}$),

- $\mu_a \ge 0, \, \mu_b \ge 0$ in the sense of $C(\bar{\Omega})^*$,
- and the following complementarity conditions are satisfied:

$$\int_{\bar{\Omega}} (y_a - G(\bar{u})) d\mu_a = 0 = \int_{\bar{\Omega}} (G(\bar{u}) - y_b) d\mu_b.$$

$$\mathcal{L}(u,\mu_a,\mu_b) = f(u) + \int_{\bar{\Omega}} (y_a - G(u)) d\mu_a + \int_{\bar{\Omega}} (G(u) - y_b) d\mu_b$$

$$\mathcal{L}(u, \mu_{a}, \mu_{b}) = f(u) + \int_{\bar{\Omega}} (y_{a} - G(u)) d\mu_{a} + \int_{\bar{\Omega}} (G(u) - y_{b}) d\mu_{b}$$

$$\frac{\partial \mathcal{L}}{\partial u} (\bar{u}, \mu_{a}, \mu_{b}) v =$$

=

$$\mathcal{L}(u, \mu_{a}, \mu_{b}) = f(u) + \int_{\bar{\Omega}} (y_{a} - G(u)) d\mu_{a} + \int_{\bar{\Omega}} (G(u) - y_{b}) d\mu_{b}$$

$$\frac{\partial \mathcal{L}}{\partial u}(\bar{u}, \mu_{a}, \mu_{b}) v = f'(\bar{u}) v + \int_{\bar{\Omega}} (G'(\bar{u})v) d(\mu_{b} - \mu_{a})$$

=

$$\mathcal{L}(u, \mu_{a}, \mu_{b}) = f(u) + \int_{\overline{\Omega}} (y_{a} - G(u)) d\mu_{a} + \int_{\overline{\Omega}} (G(u) - y_{b}) d\mu_{b}$$

$$\frac{\partial \mathcal{L}}{\partial u} (\bar{u}, \mu_{a}, \mu_{b}) v = f'(\bar{u}) v + \int_{\overline{\Omega}} (G'(\bar{u})v) d(\mu_{b} - \mu_{a})$$

$$= \int_{\Omega} (\varphi_{\bar{u}} + \lambda \bar{u}) v dx + \int_{\Omega} \underbrace{(G'(\bar{u})^{*}(\mu_{b} - \mu_{a}))}_{\varphi_{\mu}} v dx$$

$$\mathcal{L}(u, \mu_{a}, \mu_{b}) = f(u) + \int_{\bar{\Omega}} (y_{a} - G(u)) d\mu_{a} + \int_{\bar{\Omega}} (G(u) - y_{b}) d\mu_{b}$$

$$\frac{\partial \mathcal{L}}{\partial u}(\bar{u}, \mu_{a}, \mu_{b}) v = f'(\bar{u}) v + \int_{\bar{\Omega}} (G'(\bar{u})v) d(\mu_{b} - \mu_{a})$$

$$= \int_{\Omega} (\varphi_{\bar{u}} + \lambda \bar{u}) v dx + \int_{\Omega} \underbrace{(G'(\bar{u})^{*}(\mu_{b} - \mu_{a}))}_{\varphi_{\mu}} v dx$$

$$= \int_{\Omega} (\varphi_{\bar{u}} + \varphi_{\mu} + \lambda \bar{u}) v dx = \int_{\Omega} (\bar{\varphi} + \lambda \bar{u}) v dx$$

$$\mathcal{L}(u, \mu_{a}, \mu_{b}) = f(u) + \int_{\overline{\Omega}} (y_{a} - G(u)) d\mu_{a} + \int_{\overline{\Omega}} (G(u) - y_{b}) d\mu_{b}$$

$$\frac{\partial \mathcal{L}}{\partial u}(\bar{u}, \mu_{a}, \mu_{b}) v = f'(\bar{u}) v + \int_{\overline{\Omega}} (G'(\bar{u})v) d(\mu_{b} - \mu_{a})$$

$$= \int_{\Omega} (\varphi_{\bar{u}} + \lambda \bar{u}) v dx + \int_{\Omega} \underbrace{(G'(\bar{u})^{*}(\mu_{b} - \mu_{a}))}_{\varphi_{\mu}} v dx$$

$$= \int_{\Omega} (\varphi_{\bar{u}} + \varphi_{\mu} + \lambda \bar{u}) v dx = \int_{\Omega} (\bar{\varphi} + \lambda \bar{u}) v dx$$

This new adjoint state $\bar{\varphi}$ is the weak solution of an adjoint elliptic equation. The first rigorous mathematical explanation of this fact was given by E. Casas.

Reference: E. Casas, *Control of an elliptic problem with pointwise state constraints*, SIAM J. Control and Optimization 1986.

Necessary optimality conditions

Theorem (Karush-Kuhn-Tucker conditions)

Let \bar{u} be locally optimal for (P) and let \bar{y} the associated state. Assume that a linearized Slater condition is satisfied: $\exists \tilde{u} \in U_{ad}$ such that

$$y_a < \Big(G(ar u) + G'(ar u)(ar u - ar u)\Big)(x) < y_b \quad orall x \in ar \Omega.$$

Necessary optimality conditions

Theorem (Karush-Kuhn-Tucker conditions)

Let \bar{u} be locally optimal for (P) and let \bar{y} the associated state. Assume that a linearized Slater condition is satisfied: $\exists \tilde{u} \in U_{ad}$ such that

$$y_a < \Big(G(ar u) + G'(ar u)(ar u - ar u)\Big)(x) < y_b \quad orall x \in ar \Omega.$$

Then there exist nonnegative regular Borel measures μ_a , μ_b on $\overline{\Omega}$ and an adjoint state $\overline{\varphi} \in W^{1,s}(\Omega) \quad \forall s < n/(n-1)$ such that

$$\begin{aligned} -\Delta\bar{\varphi} + d'(\bar{y})\bar{\varphi} &= \bar{y} - y_d + \mu_b - \mu_a \\ \bar{\varphi}|_{\Gamma} &= 0, \end{aligned}$$

$$\int\limits_{\Omega} (\bar{\varphi} + \lambda \bar{u})(u - \bar{u}) \, dx \ge 0 \qquad \forall u \in U_{ad},$$

$$\int_{\bar{\Omega}} (\bar{y} - y_b) d\mu_b = \int_{\bar{\Omega}} (\bar{y} - y_a) d\mu_a = 0.$$

Fredi Tröltzsch (TU Berlin)

To solve state-constrained problems numerically, the following options are useful:

To solve state-constrained problems numerically, the following options are useful:

• Discretize and solve the resulting large scale optimization problem by available software.

To solve state-constrained problems numerically, the following options are useful:

- Discretize and solve the resulting large scale optimization problem by available software.
- Reduce the problem to a control-constrained one by penalization:

$$\min_{u \in U_{ad}} f(u) + \rho \int_{\Omega} \left\{ ((y_a - y)_+)^2 + ((y - y_b)_+)^2 \right\} dx, \quad \rho >> 0$$

 \rightarrow Moreau-Yosida type regularization.

To solve state-constrained problems numerically, the following options are useful:

- Discretize and solve the resulting large scale optimization problem by available software.
- Reduce the problem to a control-constrained one by penalization:

$$\min_{u \in U_{ad}} f(u) + \rho \int_{\Omega} \left\{ ((y_a - y)_+)^2 + ((y - y_b)_+)^2 \right\} dx, \quad \rho >> 0$$

 \rightarrow Moreau-Yosida type regularization.

• If no control constraints are given, you may also regularize as follows:

$$y_a \leq y(x) \leq y_b \quad \longrightarrow \quad y_a \leq \varepsilon \, u(x) + y(x) \leq y_b, \quad \varepsilon > 0 \text{ small}$$

 \rightarrow Lavrentiev type regularization.

Measures? A numerical example

Problem with semilinear equation

$$\min \frac{1}{2} \|y - y_{\sigma}\|^{2} + \frac{\lambda}{2} \|u\|^{2}$$
$$-\Delta y + y + y^{3} = u \quad \text{in } \Omega$$
$$\partial_{\nu} y = 0 \quad \text{on } \Gamma$$
$$-1 \le y(x) \le 1 \quad \text{in } \Omega$$

in $\Omega = (0, 1)^2$, $y_d = 8 \sin(\pi x_1) \sin(\pi x_2) - 4$

Measures? A numerical example

Problem with semilinear equation

$$\begin{split} \min \frac{1}{2} \|y - y_d\|^2 + \frac{\lambda}{2} \|u\|^2 \\ -\Delta y + y + \frac{y^3}{2} = u \quad \text{in } \Omega \\ \partial_\nu y &= 0 \quad \text{on } \Gamma \\ -1 &\leq y(x) \leq 1 \quad \text{in } \Omega \end{split}$$

Target y_d

in $\Omega = (0, 1)^2$, $y_d = 8 \sin(\pi x_1) \sin(\pi x_2) - 4$

Computations: Christian Meyer, by regularization $-1 \le \varepsilon u + y \le 1$

Numerical Technique: SQP + primal dual active set strategy

Test run

Data: $\lambda = 10^{-5}, \varepsilon = 10^{-4}$

Lagrange multipliers μ_a , μ_b

Data: $\lambda = 10^{-5}, \varepsilon = 10^{-4}$

 μ_{a}

For non-convex problems, the KKT-conditions are not sufficient for optimality, hence higher-order conditions are needed to check for optimality.

For non-convex problems, the KKT-conditions are not sufficient for optimality, hence higher-order conditions are needed to check for optimality.

General form of second-order sufficient conditions (SSC):

The pair (\bar{y}, \bar{u}) satisfies the KKT conditions and there exists $\delta > 0$ such that

 $\mathcal{L}_{(\boldsymbol{y},\boldsymbol{u})}''(\bar{\boldsymbol{y}},\bar{\boldsymbol{u}},\bar{\boldsymbol{p}},\mu_{\boldsymbol{a}},\mu_{\boldsymbol{b}})(\boldsymbol{y},\boldsymbol{u})^{2}\geq\delta\|\boldsymbol{u}\|_{L^{2}}^{2}$

for all (y, u) belonging to the so-called critical cone (accounts for linearization and active state and control constraints).

For non-convex problems, the KKT-conditions are not sufficient for optimality, hence higher-order conditions are needed to check for optimality.

General form of second-order sufficient conditions (SSC):

The pair (\bar{y}, \bar{u}) satisfies the KKT conditions and there exists $\delta > 0$ such that

 $\mathcal{L}_{(\boldsymbol{y},\boldsymbol{u})}''(\bar{\boldsymbol{y}},\bar{\boldsymbol{u}},\bar{\boldsymbol{p}},\mu_{\boldsymbol{a}},\mu_{\boldsymbol{b}})(\boldsymbol{y},\boldsymbol{u})^{2}\geq\delta\|\boldsymbol{u}\|_{L^{2}}^{2}$

for all (y, u) belonging to the so-called critical cone (accounts for linearization and active state and control constraints).

For state-constraints, the difficulty is to show that such SSC are really sufficient for local optimality.

We are not able to set up second-order sufficient optimality conditions for important cases of elliptic and parabolic control problems.

Where is the obstacle?

We are not able to set up second-order sufficient optimality conditions for important cases of elliptic and parabolic control problems.

Where is the obstacle?

Consider first (P) for the (not that important) case: n = 4.

We are not able to set up second-order sufficient optimality conditions for important cases of elliptic and parabolic control problems.

Where is the obstacle?

Consider first (P) for the (not that important) case: n = 4.

$$\mathcal{L}(u,\mu_a,\mu_b) = f(u) + \int\limits_{\bar{\Omega}} (y_a - G(u)) d\mu_a + \int\limits_{\bar{\Omega}} (G(u) - y_b) d\mu_b.$$

We are not able to set up second-order sufficient optimality conditions for important cases of elliptic and parabolic control problems.

Where is the obstacle?

Consider first (P) for the (not that important) case: n = 4.

$$\mathcal{L}(u,\mu_{a},\mu_{b}) = f(u) + \int_{\bar{\Omega}} (y_{a} - G(u)) d\mu_{a} + \int_{\bar{\Omega}} (G(u) - y_{b}) d\mu_{b}.$$

$$\frac{\partial \mathcal{L}}{\partial u}(u,\mu_{a},\mu_{b}) \mathbf{v} = f'(u) \mathbf{v} + \int_{\bar{\Omega}} G'(u) \mathbf{v} d(\mu_{b} - \mu_{a}).$$

On open problem

We are not able to set up second-order sufficient optimality conditions for important cases of elliptic and parabolic control problems.

Where is the obstacle?

Consider first (P) for the (not that important) case: n = 4.

$$\mathcal{L}(u,\mu_{a},\mu_{b}) = f(u) + \int_{\bar{\Omega}} (y_{a} - G(u))d\mu_{a} + \int_{\bar{\Omega}} (G(u) - y_{b})d\mu_{b}.$$

$$\frac{\partial \mathcal{L}}{\partial u}(u,\mu_{a},\mu_{b}) v = f'(u) v + \int_{\bar{\Omega}} G'(u) v d(\mu_{b} - \mu_{a}).$$

We need the continuity of \mathcal{L}'' with respect to v in the L^2 -norm, in particular for the second part.

$$\left|\int_{\bar{\Omega}} \underbrace{G'(u) v}_{z} d(\mu_{b} - \mu_{a})\right| \leq c \|v\|_{L^{2}(\Omega)}.$$

$$\Big|\int\limits_{\bar{\Omega}} \underbrace{G'(u)\,v}_{z}\,d(\mu_b-\mu_a)\Big|\leq c\|v\|_{L^2(\Omega)}.$$

We have

$$\left|\int_{\bar{\Omega}} z \, d(\mu_b - \mu_a)\right| \leq \|z\|_{\mathcal{C}(\bar{\Omega})} \|\mu_b - \mu_a\|_{\mathcal{C}(\bar{\Omega})^*},$$

$$\Big|\int\limits_{\bar{\Omega}} \underbrace{G'(u) v}_{z} d(\mu_b - \mu_a)\Big| \leq c \|v\|_{L^2(\Omega)}.$$

We have

$$\left|\int_{\bar{\Omega}} z \, d(\mu_b - \mu_a)\right| \leq \|z\|_{C(\bar{\Omega})} \|\mu_b - \mu_a\|_{C(\bar{\Omega})^*},$$

hence we need

eed
$$\|z\|_{\mathcal{C}(\bar{\Omega})} \leq c \|v\|_{L^2(\Omega)},$$
 where

 $-\Delta z + d'(\bar{y})z = v.$

However, the mapping $v \mapsto z$ is not continuous from $L^2(\Omega)$ to $C(\overline{\Omega})$ for n > 3.

- We cannot establish the standard SSC for elliptic distributed control problems with pointwise state constraints, if $n = \dim \Omega > 3$. Even with stronger requirements, this problem cannot be fully resolved.
- This happens already for *n* > 2 in elliptic boundary control, if the state constraints are imposed in the whole domain.
- In parabolic distributed control we cannot have more than n = 1.
- There are no SSC for parabolic boundary control problems with state constraints in the whole domain.

Outline

Pointwise state constraints

- The control problem and necessary conditions
- A test example
- An open problem for SSC

Quasilinear elliptic control problems

- The problem and well-posedness of the state equation
- Optimality conditions
- Approximation by finite elements

Quasilinear control problem

We substitute $\Delta y(x)$ by div $[a(x, y(x)) \nabla y(x)]$.

$$P(P) \quad \min J(y, u) := \frac{1}{2} \int_{\Omega} (y(x) - y_d(x))^2 \, dx + \frac{\lambda}{2} \int_{\Omega} u(x)^2 \, dx$$
$$- \operatorname{div} \left[\frac{a(x, y(x))}{y(x)} \nabla y(x) \right] + \frac{d(y(x))}{y(x)} = \frac{u(x)}{y(x)} \quad \text{in} \quad \Omega$$
$$y(x) = 0 \quad \text{on} \quad \Gamma$$

We substitute $\Delta y(x)$ by div $[a(x, y(x)) \nabla y(x)]$.

$$\begin{array}{ll} (P) & \min J(y,u) := \frac{1}{2} \int_{\Omega} (y(x) - y_d(x))^2 \, dx + \frac{\lambda}{2} \int_{\Omega} u(x)^2 \, dx \\ & - \operatorname{div} \left[a(x,y(x)) \, \nabla y(x) \right] + d(y(x)) &= u(x) & \operatorname{in} \quad \Omega \\ & y(x) &= 0 & \operatorname{on} \quad \Gamma \\ & \alpha \leq u(x) \leq \beta \quad \text{a.e. in } \Omega, \quad u \in L^2(\Omega). \end{array}$$

We substitute $\Delta y(x)$ by div $[a(x, y(x)) \nabla y(x)]$.

$$P) \quad \min J(y, u) := \frac{1}{2} \int_{\Omega} (y(x) - y_d(x))^2 \, dx + \frac{\lambda}{2} \int_{\Omega} u(x)^2 \, dx$$
$$- \operatorname{div} \left[\frac{a(x, y(x))}{y(x)} \nabla y(x) \right] + \frac{d(y(x))}{y(x)} = \frac{u(x)}{2} \quad \text{in } \Omega$$
$$y(x) = 0 \quad \text{on } \Gamma$$
$$\alpha \le u(x) \le \beta \quad \text{a.e. in } \Omega, \quad u \in L^2(\Omega).$$

Remark:

Even if $y \mapsto a(x, y)$ is monotone, the state equation is not of monotone type!

The function $a: \Omega \times \mathbb{R} \to \mathbb{R}$ is a Carathéodory function,

 $\exists \alpha_0 > 0 \text{ such that } a(x, y) \ge \alpha_0 \text{ for a.e. } x \in \Omega \text{ and all } y \in \mathbb{R}$

The function $a: \Omega \times \mathbb{R} \to \mathbb{R}$ is a Carathéodory function,

 $\exists \alpha_0 > 0 \text{ such that } a(x, y) \ge \alpha_0 \text{ for a.e. } x \in \Omega \text{ and all } y \in \mathbb{R}$

The function $a(\cdot, 0)$ belongs to $L^{\infty}(\Omega)$ and for any M > 0 there exist a constant $C_M > 0$ such that for all $|y_1|, |y_2| \le M$

$$|a(x, y_2) - a(x, y_1)| \le C_M |y_2 - y_1|$$
 for a.e. $x \in \Omega$.

The function $a: \Omega \times \mathbb{R} \to \mathbb{R}$ is a Carathéodory function,

 $\exists \alpha_0 > 0 \text{ such that } a(x, y) \ge \alpha_0 \text{ for a.e. } x \in \Omega \text{ and all } y \in \mathbb{R}$

The function $a(\cdot, 0)$ belongs to $L^{\infty}(\Omega)$ and for any M > 0 there exist a constant $C_M > 0$ such that for all $|y_1|, |y_2| \le M$

$$|a(x, y_2) - a(x, y_1)| \le C_M |y_2 - y_1|$$
 for a.e. $x \in \Omega$.

Remarks:

The function $a: \Omega \times \mathbb{R} \to \mathbb{R}$ is a Carathéodory function,

 $\exists \alpha_0 > 0 \text{ such that } a(x, y) \ge \alpha_0 \text{ for a.e. } x \in \Omega \text{ and all } y \in \mathbb{R}$

The function $a(\cdot, 0)$ belongs to $L^{\infty}(\Omega)$ and for any M > 0 there exist a constant $C_M > 0$ such that for all $|y_1|, |y_2| \le M$

$$|a(x, y_2) - a(x, y_1)| \le C_M |y_2 - y_1|$$
 for a.e. $x \in \Omega$.

Remarks:

 Instead of d(y), a more general function d(x, y) can be considered under associated assumptions.

The function $a: \Omega \times \mathbb{R} \to \mathbb{R}$ is a Carathéodory function,

 $\exists \alpha_0 > 0 \text{ such that } a(x, y) \ge \alpha_0 \text{ for a.e. } x \in \Omega \text{ and all } y \in \mathbb{R}$

The function $a(\cdot, 0)$ belongs to $L^{\infty}(\Omega)$ and for any M > 0 there exist a constant $C_M > 0$ such that for all $|y_1|, |y_2| \le M$

$$|a(x, y_2) - a(x, y_1)| \le C_M |y_2 - y_1|$$
 for a.e. $x \in \Omega$.

Remarks:

- Instead of d(y), a more general function d(x, y) can be considered under associated assumptions.
- We shall also need the derivatives $\frac{\partial a}{\partial y}(x, y)$ and $\frac{\partial^2 a}{\partial y^2}(x, y)$.

Well-posedness of the state equation

Define: p > n and q > n/2.

Theorem

Under our assumptions, for any element $u \in W^{-1,p}(\Omega)$, the quasilinear state equation has a unique solution $y_u \in H_0^1(\Omega) \cap L^\infty(\Omega)$. Moreover there exists $\mu \in (0, 1)$ independent of u such that $y_u \in C^{\mu}(\overline{\Omega})$ and for any bounded set $U \subset W^{-1,p}(\Omega)$

$$\|\mathbf{y}_u\|_{H^1_0(\Omega)} + \|\mathbf{y}_u\|_{C^{\mu}(\bar{\Omega})} \leq C_U \ \forall u \in U$$

for some constant $C_U > 0$. Finally, if $u_k \to u$ in $W^{-1,p}(\Omega)$, then $y_{u_k} \to y_u$ in $H^1_0(\Omega) \cap C^{\mu}(\overline{\Omega})$.

a) **Existence:** Depending on M > 0, we introduce the truncated function a_M by

$$a_M(x,y) = \left\{ egin{array}{ccc} a(x,y), & |y| & \leq & M \ a(x,+M), & y & > & +M \ a(x,-M), & y & < & -M. \end{array}
ight.$$

a) **Existence:** Depending on M > 0, we introduce the truncated function a_M by

$$a_M(x,y) = \left\{ egin{array}{ccc} a(x,y), & |y| \leq M \ a(x,+M), & y > +M \ a(x,-M), & y < -M. \end{array}
ight.$$

Analogously, the truncation d_M of d is defined.

a) **Existence:** Depending on M > 0, we introduce the truncated function a_M by

$$a_M(x,y) = \left\{ egin{array}{ccc} a(x,y), & |y| & \leq & M \ a(x,+M), & y & > & +M \ a(x,-M), & y & < & -M. \end{array}
ight.$$

Analogously, the truncation d_M of d is defined. We prove that

$$-\operatorname{div} \left[a_M(x, y) \nabla y \right] + d_M(y) = u \quad \text{in } \Omega$$
$$y = 0 \quad \text{on } \Gamma$$

has at least one solution $y \in H_0^1(\Omega)$.

a) **Existence:** Depending on M > 0, we introduce the truncated function a_M by

$$a_M(x,y) = \left\{ egin{array}{ccc} a(x,y), & |y| & \leq & M \ a(x,+M), & y & > & +M \ a(x,-M), & y & < & -M. \end{array}
ight.$$

Analogously, the truncation d_M of d is defined. We prove that

$$-\operatorname{div} \left[a_M(x, y) \nabla y \right] + d_M(y) = u \quad \text{in } \Omega$$
$$y = 0 \quad \text{on } \Gamma$$

has at least one solution $y \in H_0^1(\Omega)$. For fixed *u*, consider the linear equation

$$-\operatorname{div} \left[a_M(x,z) \nabla y \right] + d_M(z) = u \quad \text{in } \Omega$$
$$y = 0 \quad \text{on } \Gamma.$$

a) **Existence:** Depending on M > 0, we introduce the truncated function a_M by

$$a_M(x,y) = \left\{ egin{array}{ccc} a(x,y), & |y| & \leq & M \ a(x,+M), & y & > & +M \ a(x,-M), & y & < & -M. \end{array}
ight.$$

Analogously, the truncation d_M of d is defined. We prove that

$$-\operatorname{div} \left[a_M(x, y) \nabla y \right] + d_M(y) = u \quad \text{in } \Omega$$
$$y = 0 \quad \text{on } \Gamma$$

has at least one solution $y \in H_0^1(\Omega)$. For fixed *u*, consider the linear equation

$$-\operatorname{div} \left[a_{M}(x,z) \nabla y \right] + d_{M}(z) = u \quad \text{in } \Omega$$
$$y = 0 \quad \text{on } \Gamma.$$

Define $F : L^2(\Omega) \to L^2(\Omega)$ by $F : z \mapsto y$.

a) **Existence:** Depending on M > 0, we introduce the truncated function a_M by

$$a_M(x,y) = \left\{ egin{array}{ccc} a(x,y), & |y| & \leq & M \ a(x,+M), & y & > & +M \ a(x,-M), & y & < & -M. \end{array}
ight.$$

Analogously, the truncation d_M of d is defined. We prove that

$$-\operatorname{div} \left[a_M(x, y) \nabla y \right] + d_M(y) = u \quad \text{in } \Omega$$
$$y = 0 \quad \text{on } \Gamma$$

has at least one solution $y \in H_0^1(\Omega)$. For fixed *u*, consider the linear equation

$$-\operatorname{div} \left[a_M(x,z) \nabla y \right] + d_M(z) = u \quad \text{in } \Omega$$
$$y = 0 \quad \text{on } \Gamma.$$

Define $F : L^2(\Omega) \to L^2(\Omega)$ by $F : z \mapsto y$. Compact embedding of $H^1(\Omega)$ in $L^2(\Omega)$, Schauder fixed point theorem

a) **Existence:** Depending on M > 0, we introduce the truncated function a_M by

$$a_M(x,y) = \left\{ egin{array}{ccc} a(x,y), & |y| & \leq & M \ a(x,+M), & y & > & +M \ a(x,-M), & y & < & -M. \end{array}
ight.$$

Analogously, the truncation d_M of d is defined. We prove that

$$-\operatorname{div} \left[a_M(x, y) \nabla y \right] + d_M(y) = u \quad \text{in } \Omega$$
$$y = 0 \quad \text{on } \Gamma$$

has at least one solution $y \in H_0^1(\Omega)$. For fixed *u*, consider the linear equation

$$-\operatorname{div} \left[a_M(x,z) \nabla y \right] + d_M(z) = u \quad \text{in } \Omega$$
$$y = 0 \quad \text{on } \Gamma.$$

Define $F : L^2(\Omega) \to L^2(\Omega)$ by $F : z \mapsto y$. Compact embedding of $H^1(\Omega)$ in $L^2(\Omega)$, Schauder fixed point theorem $\Rightarrow F$ has a fixed point y_M .

$$\|\mathbf{y}_{\mathbf{M}}\|_{L^{\infty}(\Omega)} \leq \mathbf{c}_{\infty},$$

where c_{∞} does not depend on *M*.

$$\|\mathbf{y}_{\mathbf{M}}\|_{L^{\infty}(\Omega)} \leq \mathbf{c}_{\infty},$$

where c_{∞} does not depend on *M*. Taking *M* sufficiently large, the solution y_M is shown to be a solution of the state equation.

$$\|\mathbf{y}_{\mathbf{M}}\|_{L^{\infty}(\Omega)} \leq \mathbf{c}_{\infty},$$

where c_{∞} does not depend on *M*. Taking *M* sufficiently large, the solution y_M is shown to be a solution of the state equation.

Hölder regularity of *y*: results of Gilbarg and Trudinger.

 $\|\mathbf{y}_{\mathbf{M}}\|_{L^{\infty}(\Omega)} \leq \mathbf{c}_{\infty},$

where c_{∞} does not depend on *M*. Taking *M* sufficiently large, the solution y_M is shown to be a solution of the state equation.

Hölder regularity of *y*: results of Gilbarg and Trudinger.

b) Uniqueness: First surprise: Very delicate!

Application of a comparison principle; we use ideas of Douglas/Dupont/Serrin (1971) and Křížek/Liu (2003).

W^{1,*p*}-regularity

Assume slightly higher regularity of a, Γ and u:

Theorem

Assume in addition that $a : \overline{\Omega} \times \mathbb{R} \longrightarrow \mathbb{R}$ is continuous and Γ is of class C^1 . Then the state equation has a unique solution $y_u \in W_0^{1,p}(\Omega)$. Moreover, for any bounded set $U \subset W^{-1,p}(\Omega)$, there exists a constant $C_U > 0$ such that

$$\|\mathbf{y}_{u}\|_{W_{0}^{1,p}(\Omega)} \leq C_{U} \ \forall u \in U.$$

If $u_k \to u$ in $W^{-1,p}(\Omega)$ then $y_{u_k} \to y_u$ strongly in $W_0^{1,p}(\Omega)$.

Assume slightly higher regularity of a, Γ and u:

Theorem

Assume in addition that $a : \overline{\Omega} \times \mathbb{R} \longrightarrow \mathbb{R}$ is continuous and Γ is of class C^1 . Then the state equation has a unique solution $y_u \in W_0^{1,p}(\Omega)$. Moreover, for any bounded set $U \subset W^{-1,p}(\Omega)$, there exists a constant $C_U > 0$ such that

$$\|\mathbf{y}_{u}\|_{W_{0}^{1,p}(\Omega)} \leq C_{U} \ \forall u \in U.$$

If $u_k \to u$ in $W^{-1,p}(\Omega)$ then $y_{u_k} \to y_u$ strongly in $W_0^{1,p}(\Omega)$.

Follows from $W^{1,p}(\Omega)$ -results for linear elliptic equations; Giaquinta (1993) and Morrey (1966).

Notice that $\hat{a}(x) = a(x, y_u(x))$ is continuous in $\overline{\Omega}$ and $u - d(y_u) \in W^{-1,p}(\Omega)$.

Assume more smoothness of *a*:

$$|a(x_1, y_1) - a(x_2, y_2)| \le c_M \{|x_1 - x_2| + |y_1 - y_2|\}$$

for all $x_i \in \bar{\Omega}, y_i \in [-M, M], i = 1, 2.$

 $W^{2,p}$ -regularity

Assume more smoothness of *a*:

$$|a(x_1, y_1) - a(x_2, y_2)| \le c_M \{|x_1 - x_2| + |y_1 - y_2|\}$$

for all $x_i \in \overline{\Omega}$, $y_i \in [-M, M]$, i = 1, 2.

Theorem

Let this additional assumption be satisfied and Γ be of class $C^{1,1}$. Then for any $u \in L^q(\Omega)$, the quasilinear equation has one solution $y_u \in W^{2,q}(\Omega)$. Moreover, for any bounded set $U \subset L^q(\Omega)$, there exists a constant $C_U > 0$ such that

 $\|\mathbf{y}_u\|_{W^{2,q}(\Omega)} \leq C_U \ \forall u \in U.$

Main trick of the proof: Expand the divergence term a(x, y) and divide by a:

Main trick of the proof: Expand the divergence term a(x, y) and divide by a: We have $y \in W^{1,p}(\Omega)$ for all $p < \infty$, in particular in $W^{1,2q}(\Omega)$.

Consider the case $q \ge n$.

Main trick of the proof: Expand the divergence term a(x, y) and divide by a: We have $y \in W^{1,p}(\Omega)$ for all $p < \infty$, in particular in $W^{1,2q}(\Omega)$.

Consider the case $q \ge n$.

$$-\Delta y = \underbrace{\frac{1}{a}}_{L^{\infty}} \Big\{ \underbrace{u - d(y)}_{L^{q}} + \sum_{j=1}^{n} \underbrace{\partial_{j}a(x, y)}_{L^{\infty}} \underbrace{\partial_{j}y}_{L^{q}} + \underbrace{\frac{\partial a}{\partial y}}_{L^{\infty}} \underbrace{|\nabla y|^{2}}_{L^{q}} \Big\},$$

 \Rightarrow right-hand side in $L^q(\Omega)$.

 $\frac{\partial a}{\partial v} \in L^{\infty}$: By the Lipschitz property and $y \in L^{\infty}(\Omega)$.

Main trick of the proof: Expand the divergence term a(x, y) and divide by a: We have $y \in W^{1,p}(\Omega)$ for all $p < \infty$, in particular in $W^{1,2q}(\Omega)$.

Consider the case $q \ge n$.

$$-\Delta y = \underbrace{\frac{1}{a}}_{L^{\infty}} \Big\{ \underbrace{u - d(y)}_{L^{q}} + \sum_{j=1}^{n} \underbrace{\partial_{j} a(x, y)}_{L^{\infty}} \underbrace{\partial_{j} y}_{L^{q}} + \underbrace{\frac{\partial a}{\partial y}}_{L^{\infty}} \underbrace{|\nabla y|^{2}}_{L^{q}} \Big\},$$

 \Rightarrow right-hand side in $L^q(\Omega)$.

 $\frac{\partial a}{\partial v} \in L^{\infty}$: By the Lipschitz property and $y \in L^{\infty}(\Omega)$.

The $C^{1,1}$ -smoothness of Γ permits to apply a result by Grisvard (1985) to get $y \in W^{2,q}(\Omega)$. The case n/2 < q < n follows by some embedding results.

Differentiability of G

Since $n \le 3$, q = 2 > n/2 is satisfied.

Therefore, $G: u \mapsto y_u$ is continuous from $L^2(\Omega)$ to $H^2(\Omega) \cap H^1_0(\Omega)$. The choice q = 2 is possible in the theorems below.

Differentiability of *G*

Since $n \le 3$, q = 2 > n/2 is satisfied.

Therefore, $G: u \mapsto y_u$ is continuous from $L^2(\Omega)$ to $H^2(\Omega) \cap H^1_0(\Omega)$. The choice q = 2 is possible in the theorems below.

Additional assumption:

The function *a* is of class C^2 with respect to the second variable and, $\forall M > 0 \exists D_M > 0$ such that

$$\left|\frac{\partial a}{\partial y}(x,y)\right| + \left|\frac{\partial^2 a}{\partial y^2}(x,y)\right| \le D_M \text{ for a.e. } x \in \Omega \text{ and all } |y| \le M.$$

Differentiability of *G*

Since $n \le 3$, q = 2 > n/2 is satisfied.

Therefore, $G: u \mapsto y_u$ is continuous from $L^2(\Omega)$ to $H^2(\Omega) \cap H^1_0(\Omega)$. The choice q = 2 is possible in the theorems below.

Additional assumption:

The function *a* is of class C^2 with respect to the second variable and, $\forall M > 0 \exists D_M > 0$ such that

$$\left|\frac{\partial a}{\partial y}(x,y)\right| + \left|\frac{\partial^2 a}{\partial y^2}(x,y)\right| \le D_M \text{ for a.e. } x \in \Omega \text{ and all } |y| \le M.$$

Next surprise: The differentiability of *G* is very delicate, too.

Differentiability of *G*

Since $n \le 3$, q = 2 > n/2 is satisfied.

Therefore, $G: u \mapsto y_u$ is continuous from $L^2(\Omega)$ to $H^2(\Omega) \cap H^1_0(\Omega)$. The choice q = 2 is possible in the theorems below.

Additional assumption:

The function *a* is of class C^2 with respect to the second variable and, $\forall M > 0 \exists D_M > 0$ such that

$$\left| \frac{\partial a}{\partial y}(x,y) \right| + \left| \frac{\partial^2 a}{\partial y^2}(x,y) \right| \le D_M \text{ for a.e. } x \in \Omega \text{ and all } |y| \le M.$$

Next surprise: The differentiability of *G* is very delicate, too.

Differentiability will hold, if the linearized equation defines an isomorphism in the associated spaces.

Given $y \in W^{1,p}(\Omega)$, for any $v \in H^{-1}(\Omega)$ the linearized equation

$$-\operatorname{div}\left[a(x,y)\nabla z + \frac{\partial a}{\partial y}(x,y)z\nabla y\right] + d'(y)z = v \text{ in }\Omega$$
$$z = 0 \text{ on }\Gamma$$

has a unique solution $z_v \in H_0^1(\Omega)$.

Given $y \in W^{1,p}(\Omega)$, for any $v \in H^{-1}(\Omega)$ the linearized equation

$$-\operatorname{div} \left[a(x,y)\nabla z + \frac{\partial a}{\partial y}(x,y)z \nabla y \right] + d'(y)z = v \text{ in } \Omega$$
$$z = 0 \text{ on } \Gamma$$

has a unique solution $z_v \in H_0^1(\Omega)$.

Steps of the proof:

a) The uniqueness is shown by a comparison principle as for the state equation.

b) A homotopy with respect to $t \in [0, 1]$ is considered:

$$-\operatorname{div}\left[a(x,y)\nabla z + t\frac{\partial a}{\partial y}(x,y)z\nabla y_{u}\right] + d'(y)z = v \text{ in }\Omega$$
$$z = 0 \text{ on }\Gamma.$$

b) A homotopy with respect to $t \in [0, 1]$ is considered:

$$-\operatorname{div}\left[a(x,y)\nabla z + \frac{\partial a}{\partial y}(x,y)z\nabla y_{u}\right] + d'(y)z = v \text{ in }\Omega$$
$$z = 0 \text{ on }\Gamma.$$

For t = 0: Apply the Lax-Milgram Theorem.
 There exists a unique solution z₀ ∈ H¹₀(Ω) for every v ∈ H⁻¹(Ω).

b) A homotopy with respect to $t \in [0, 1]$ is considered:

$$-\operatorname{div}\left[a(x,y)\nabla z + \frac{\partial a}{\partial y}(x,y)z\nabla y_{u}\right] + d'(y)z = v \text{ in }\Omega$$
$$z = 0 \text{ on }\Gamma.$$

- For t = 0: Apply the Lax-Milgram Theorem. There exists a unique solution $z_0 \in H_0^1(\Omega)$ for every $v \in H^{-1}(\Omega)$.
- Let S be the set of points t ∈ [0, 1] for which the equation above defines an isomorphism between H¹₀(Ω) and H⁻¹(Ω); 0 ∈ S.

b) A homotopy with respect to $t \in [0, 1]$ is considered:

$$-\operatorname{div}\left[a(x,y)\nabla z + \frac{\partial a}{\partial y}(x,y)z\nabla y_{u}\right] + d'(y)z = v \text{ in }\Omega$$
$$z = 0 \text{ on }\Gamma.$$

- For t = 0: Apply the Lax-Milgram Theorem. There exists a unique solution $z_0 \in H_0^1(\Omega)$ for every $v \in H^{-1}(\Omega)$.
- Let S be the set of points t ∈ [0, 1] for which the equation above defines an isomorphism between H¹₀(Ω) and H⁻¹(Ω); 0 ∈ S.
- $t_{max} := \sup S$. First, it is shown $t_{max} \in S$ and second $t_{max} = 1$.

Let all previous assumptions be satisfied. Then $G: W^{-1,p}(\Omega) \to W^{1,p}_0(\Omega)$, $G: u \mapsto y_u$, is of class C^2 .

Let all previous assumptions be satisfied. Then $G: W^{-1,p}(\Omega) \to W_0^{1,p}(\Omega)$, $G: u \mapsto y_u$, is of class C^2 . For any $v \in W^{-1,p}(\Omega)$ the function $z_v = G'(u)v$ is the unique solution in $W_0^{1,p}(\Omega)$ of

$$-\operatorname{div}\left[a(x,y_u)\nabla z + \frac{\partial a}{\partial y}(x,y_u)z\nabla y_u\right] + d'(y)z = v \text{ in }\Omega$$
$$z = 0 \text{ on }\Gamma.$$

Let all previous assumptions be satisfied. Then $G: W^{-1,p}(\Omega) \to W_0^{1,p}(\Omega)$, $G: u \mapsto y_u$, is of class C^2 . For any $v \in W^{-1,p}(\Omega)$ the function $z_v = G'(u)v$ is the unique solution in $W_0^{1,p}(\Omega)$ of

$$-\operatorname{div}\left[a(x,y_u)\nabla z + \frac{\partial a}{\partial y}(x,y_u)z\nabla y_u\right] + d'(y)z = v \text{ in }\Omega$$
$$z = 0 \text{ on }\Gamma.$$

For all $v_1, v_2 \in W^{-1,p}(\Omega)$ the function $z_{v_1,v_2} = G''(u)[v_1, v_2]$ is the unique solution in $W_0^{1,p}(\Omega)$ of

$$-\operatorname{div}\left[a(x, y_{u})\nabla z + \frac{\partial a}{\partial y}(x, y_{u})z\nabla y_{u}\right] + d'(y_{u})z = -d''(y_{u})z_{v_{1}}z_{v_{2}}$$
$$+\operatorname{div}\left[\frac{\partial a}{\partial y}(x, y_{u})(z_{v_{1}}\nabla z_{v_{2}} + \nabla z_{v_{1}}z_{v_{2}}) + \frac{\partial^{2}a}{\partial y^{2}}(x, y_{u})z_{v_{1}}z_{v_{2}}\nabla y_{u}\right] \text{ in }\Omega$$
$$z = 0 \text{ on }\Gamma.$$

respectively, where $z_{v_i} = G'(u)v_i$, i = 1, 2.

Additional assumption: $\forall M > 0 \exists c_M > 0$ such that

$$\left|\frac{\partial^j a}{\partial y^j}(x_1, y_1) - \frac{\partial^j a}{\partial y^j}(x_2, y_2)\right| \leq d_M \left\{|x_1 - x_2| + |y_1 - y_2|\right\}$$

for all $x_i \in \overline{\Omega}$, $y_i \in [-M, M]$, i = 1, 2 and j = 1, 2.

Theorem

Let all previous assumptions be satisfied and Γ be of class $C^{1,1}$. Then the control-to-state mapping $G : L^q(\Omega) \to W^{2,q}(\Omega)$, $G(u) = y_u$, is of class C^2 for all q > n/2.

With theses prerequisites, first-order necessary and second-order sufficient optimality conditions can be shown. Take q := 2 in the sequel

With theses prerequisites, first-order necessary and second-order sufficient optimality conditions can be shown. Take q := 2 in the sequel

Adjoint equation: Associated with u, the adjoint state $\varphi_u \in H^2(\Omega) \cap H^1_0(\Omega)$ is obtained from

$$-\operatorname{div}\left[a(x,y_u)\nabla\varphi\right] + \frac{\partial a}{\partial y}(x,y_u)\nabla y_u \cdot \nabla\varphi + d'(y_u)\varphi = y_u - y_d \quad \text{in } \Omega$$
$$\varphi = 0 \qquad \text{on } \Gamma$$

With theses prerequisites, first-order necessary and second-order sufficient optimality conditions can be shown. Take q := 2 in the sequel

Adjoint equation: Associated with u, the adjoint state $\varphi_u \in H^2(\Omega) \cap H^1_0(\Omega)$ is obtained from

$$-\operatorname{div}\left[a(x, y_u)\nabla\varphi\right] + \frac{\partial a}{\partial y}(x, y_u)\nabla y_u \cdot \nabla\varphi + d'(y_u)\varphi = y_u - y_d \quad \text{in } \Omega$$
$$\varphi = 0 \qquad \text{on } \Gamma$$

Reduced gradient: Define as before $f(u) := J(y_u, u) = J(G(u), u)$.

$$f'(u) v = \int_{\Omega} \left(\varphi_u(x) + \lambda u(x) \right) v(x) \, dx$$

With theses prerequisites, first-order necessary and second-order sufficient optimality conditions can be shown. Take q := 2 in the sequel

Adjoint equation: Associated with u, the adjoint state $\varphi_u \in H^2(\Omega) \cap H^1_0(\Omega)$ is obtained from

$$-\operatorname{div}\left[a(x, y_u)\nabla\varphi\right] + \frac{\partial a}{\partial y}(x, y_u)\nabla y_u \cdot \nabla\varphi + d'(y_u)\varphi = y_u - y_d \quad \text{in } \Omega$$
$$\varphi = 0 \qquad \text{on } \Gamma$$

Reduced gradient: Define as before $f(u) := J(y_u, u) = J(G(u), u)$.

$$f'(u) v = \int_{\Omega} \left(\varphi_u(x) + \lambda u(x) \right) v(x) \, dx$$

Riesz identification: $f'(u) \cong \varphi_u + \lambda u$

Fredi Tröltzsch (TU Berlin)

If \bar{u} is locally optimal for (P) (in the sense of L^2) and $\bar{\varphi} := \varphi_{\bar{u}}$ is the associated adjoint state, then

$$\int\limits_{\Omega} (ar{arphi}+\lambda\,ar{u})(u-ar{u})\, dx\geq 0 \quad orall u\in U_{ad}.$$

This is equivalent to the projection formula

$$\bar{u}(x) = \mathbb{P}_{[\alpha,\beta]}\left(-rac{ar{arphi}(x)}{\lambda}
ight)$$
 a.e. in Ω .

This result gives different options for the numerical treatment.

The nonsmooth optimality system

Optimality system

$$-\operatorname{div}\left[a(x,y)\nabla y\right] + d(y) = \mathbb{P}_{[\alpha,\beta]}(\lambda^{-1}\varphi)$$
$$-\operatorname{div}\left[a(x,y)\nabla \varphi\right] + \frac{\partial a}{\partial y}(x,y)\nabla y \cdot \nabla \varphi + d'(y)\varphi = y - y_d$$

(in Ω subject to homogeneous Dirichlet boundary condition.)

The nonsmooth optimality system

Optimality system

$$-\operatorname{div}\left[a(x,y)\nabla y\right] + d(y) = \mathbb{P}_{[\alpha,\beta]}(\lambda^{-1}\varphi)$$
$$-\operatorname{div}\left[a(x,y)\nabla \varphi\right] + \frac{\partial a}{\partial y}(x,y)\nabla y \cdot \nabla \varphi + d'(y)\varphi = y - y_d$$

(in Ω subject to homogeneous Dirichlet boundary condition.)

Numerical options:

- Semismooth Newton method
- Direct solution of the system by COMSOL Multiphysics

Both methods were tested by V. Dhamo (TU Berlin) - very good experience.

For error estimates and the local convergence of numerical methods we need again second-order sufficient optimality conditions.

Theorem

Under our previous assumptions, the functional $f: L^2(\Omega) \to \mathbb{R}$ is of class C^2 . We have

$$J''(u)v_1v_2 = \int_{\Omega} \left\{ z_{v_1}z_{v_2} + \lambda v_1v_2 - \varphi_u d''(u)z_{v_1}z_{v_2} - \nabla \varphi_u \Big[\frac{\partial a}{\partial y}(x, y_u)(z_{v_1}\nabla z_{v_2} + \nabla z_{v_1}z_{v_2}) + \frac{\partial^2 a}{\partial y^2}(x, y)z_{v_1}z_{v_2}\nabla y_u \Big] \right\} dx$$

where $\varphi_u \in W_0^{1,p}(\Omega) \cap W^{2,q}(\Omega)$ is the adjoint state associated with u and $z_{v_i} = G'(u)v_i$.

Assume that $\bar{u} \in U_{ad}$ satisfies the first-order necessary optimality conditions with the associated adjoint state $\bar{\varphi} \in W_0^{1,p}(\Omega)$. Let there exist $\delta, \tau > 0$ such that

$$f''(\bar{u})v^2 \geq \delta \|v\|_{L^2(\Omega)}^2 \quad \forall v \in C_{\bar{u}}^{\tau}$$

where

$$C_{\bar{u}}^{\tau} = \Big\{ \mathbf{v} \in L^{2}(\Omega) : \mathbf{v}(\mathbf{x}) = \begin{cases} \geq 0 & \text{if } \bar{u}(\mathbf{x}) = \alpha \\ \leq 0 & \text{if } \bar{u}(\mathbf{x}) = \beta \\ = 0 & \text{if } |\bar{\varphi}(\mathbf{x}) + \lambda \bar{u}(\mathbf{x})| > \tau \end{cases} \text{ for a.e. } \mathbf{x} \in \Omega \Big\}.$$

Then \bar{u} is locally optimal in the sense of $L^2(\Omega)$.

- No two-norm discrepancy (quadratic structure of *f*).
- We discussed more general functionals of the form

$$f(u)=\int\limits_{\Omega}L(x,y_u,u)\,dx.$$

Here the two-norm discrepancy will occur in general.

• The condition $f''(\bar{u})v^2 > 0$ for all nonzero v of the critical cone is equivalent to the condition above under some additional requirements on the Hamiltonian.

Family of regular triangulations: $\{T_h\}_{h>0}$ of $\overline{\Omega}$:

Family of regular triangulations: $\{T_h\}_{h>0}$ of $\overline{\Omega}$:

Associate to all $T \in T_h$ the numbers $\rho(T)$ (diameter of T) and $\sigma(T)$ (diameter of the largest ball in T).

Family of regular triangulations: $\{\mathcal{T}_h\}_{h>0}$ of $\overline{\Omega}$:

Associate to all $T \in T_h$ the numbers $\rho(T)$ (diameter of T) and $\sigma(T)$ (diameter of the largest ball in T).

$$h := \max_{T \in \mathcal{T}_h} \rho(T)$$
 (mesh size)

Family of regular triangulations: $\{\mathcal{T}_h\}_{h>0}$ of $\overline{\Omega}$:

Associate to all $T \in T_h$ the numbers $\rho(T)$ (diameter of T) and $\sigma(T)$ (diameter of the largest ball in T).

$$h := \max_{T \in \mathcal{T}_h} \rho(T)$$
 (mesh size)

Regularity assumptions:

Family of regular triangulations: $\{\mathcal{T}_h\}_{h>0}$ of $\overline{\Omega}$:

Associate to all $T \in T_h$ the numbers $\rho(T)$ (diameter of T) and $\sigma(T)$ (diameter of the largest ball in T).

$$h := \max_{T \in \mathcal{T}_h} \rho(T)$$
 (mesh size)

Regularity assumptions:

• $\exists \rho > 0, \sigma > 0$ such that

$$rac{
ho(T)}{\sigma(T)} \leq \sigma, \quad rac{h}{
ho(T)} \leq
ho \quad \forall \ T \in \mathcal{T}_h, h > 0.$$

Family of regular triangulations: $\{T_h\}_{h>0}$ of $\overline{\Omega}$:

Associate to all $T \in T_h$ the numbers $\rho(T)$ (diameter of T) and $\sigma(T)$ (diameter of the largest ball in T).

$$h := \max_{T \in \mathcal{T}_h} \rho(T)$$
 (mesh size)

Regularity assumptions:

• $\exists \rho > 0, \sigma > 0$ such that $\frac{\rho(T)}{\sigma(T)} \le \sigma, \quad \frac{h}{\rho(T)} \le \rho \quad \forall T \in T_h, h > 0.$

• Define $\overline{\Omega}_h = \bigcup_{T \in \mathcal{T}_h} T$ with interior Ω_h and boundary Γ_h .

Family of regular triangulations: $\{T_h\}_{h>0}$ of $\overline{\Omega}$:

Associate to all $T \in T_h$ the numbers $\rho(T)$ (diameter of T) and $\sigma(T)$ (diameter of the largest ball in T).

$$h := \max_{T \in \mathcal{T}_h} \rho(T)$$
 (mesh size)

Regularity assumptions:

• $\exists \rho > 0, \sigma > 0$ such that

$$rac{
ho(T)}{\sigma(T)} \leq \sigma, \quad rac{h}{
ho(T)} \leq
ho \quad orall \ T \in \mathcal{T}_h, h > 0.$$

Define Ω_h = ∪_{T∈T_h}T with interior Ω_h and boundary Γ_h.
 Assume that Ω_h is convex and that the vertices of T_h placed on the boundary Γ_h are points of Γ.

Assumption: $\Omega \subset \mathbb{R}^n$ is open, convex and bounded $n \in \{2, 3\}$, with boundary Γ of class $C^{1,1}$. For n = 2, Ω is allowed to be polygonal instead of of class $C^{1,1}$.

Assumption: $\Omega \subset \mathbb{R}^n$ is open, convex and bounded $n \in \{2, 3\}$, with boundary Γ of class $C^{1,1}$. For n = 2, Ω is allowed to be polygonal instead of of class $C^{1,1}$.

Then, with some C > 0.

 $|\Omega \setminus \Omega_h| \leq Ch^2.$

Assumption: $\Omega \subset \mathbb{R}^n$ is open, convex and bounded $n \in \{2,3\}$, with boundary Γ of class $C^{1,1}$. For n = 2, Ω is allowed to be polygonal instead of of class $C^{1,1}$. Then, with some C > 0.

$$|\Omega \setminus \Omega_h| \leq Ch^2.$$

Piecewise linear approximation of the states:

 $Y_h = \{y_h \in \mathcal{C}(\bar{\Omega}) \mid y_{h|T} \in \mathcal{P}_1, \text{ for all } T \in \mathcal{T}_h, \text{ and } y_h = 0 \text{ on } \bar{\Omega} \setminus \Omega_h\}.$

Assumption: $\Omega \subset \mathbb{R}^n$ is open, convex and bounded $n \in \{2,3\}$, with boundary Γ of class $C^{1,1}$. For n = 2, Ω is allowed to be polygonal instead of of class $C^{1,1}$. Then, with some C > 0.

$$|\Omega \setminus \Omega_h| \leq Ch^2.$$

Piecewise linear approximation of the states:

$$Y_h = \{y_h \in \mathcal{C}(\bar{\Omega}) \mid y_{h|T} \in \mathcal{P}_1, \text{ for all } T \in \mathcal{T}_h, \text{ and } y_h = 0 \text{ on } \bar{\Omega} \setminus \Omega_h \}.$$

Discretized state equation

$$\begin{cases} \text{ Find } y_h \in Y_h \text{ such that, for all } z_h \in Y_h, \\ \int_{\Omega_h} [a(x, y_h(x)) \nabla y_h \cdot \nabla z_h + d(y_h(x)) z_h] \, dx = \int_{\Omega_h} uz_h \, dx. \end{cases}$$

Local uniqueness of discretized states

- By the Brouwer fixed point theorem, the existence of solutions *y_h* to the discretized equation can be shown.
- We did not assume (global) boundedness of a(x, y). To our surprise, we were not able to show uniqueness in this case. If *a* is bounded, then the uniqueness can be shown for all sufficiently small h > 0.
- Therefore, in the unbounded case, we had to work with local uniqueness
 of y_h as in the setting of the implicit function theorem.

Local uniqueness of discretized states

- By the Brouwer fixed point theorem, the existence of solutions y_h to the discretized equation can be shown.
- We did not assume (global) boundedness of a(x, y). To our surprise, we were not able to show uniqueness in this case. If *a* is bounded, then the uniqueness can be shown for all sufficiently small h > 0.
- Therefore, in the unbounded case, we had to work with local uniqueness of y_h as in the setting of the implicit function theorem.

Assume for simplicity boundedness of *a* and that *h* is sufficiently small so that the mapping $u \mapsto y_h(u)$ is well defined:

Definition: For given $u \in U_{ad}$, $y_h(u)$ is the solution to the discretized equation.

Under the same simplification as above, we define

$$f_h(u)=\frac{1}{2}\int\limits_{\Omega_h}(y_h(u)-y_d)^2\,dx+\frac{\lambda}{2}\int\limits_{\Omega_h}u^2\,dx.$$

Under the same simplification as above, we define

$$f_h(u)=\frac{1}{2}\int\limits_{\Omega_h}(y_h(u)-y_d)^2\,dx+\frac{\lambda}{2}\int\limits_{\Omega_h}u^2\,dx.$$

Set of discretized control functions: $U_{ad}^h \subset U_{ad}$

Under the same simplification as above, we define

$$f_h(u) = rac{1}{2}\int\limits_{\Omega_h}(y_h(u)-y_d)^2\,dx + rac{\lambda}{2}\int\limits_{\Omega_h}u^2\,dx.$$

Set of discretized control functions: $U_{ad}^h \subset U_{ad}$

$$(P_h)$$
 min $f_h(u_h)$, $u_h \in U_{ad}^h$.

Under the same simplification as above, we define

$$f_h(u)=\frac{1}{2}\int\limits_{\Omega_h}(y_h(u)-y_d)^2\,dx+\frac{\lambda}{2}\int\limits_{\Omega_h}u^2\,dx.$$

Set of discretized control functions: $U_{ad}^h \subset U_{ad}$

$$P_h$$
) min $f_h(u_h)$, $u_h \in U_{ad}^h$.

We considered the following sets U_{ad}^h :

- $U_{ad}^h = U_{ad}$ $\forall h > 0$ (variational discretization)
- All piecewise constant functions on Ω_h (constant on each triangle) with values in [α, β]
- All piecewise linear functions on Ω_h with values in $[\alpha, \beta]$.

Theorem (Piecewise constant controls, L²-estimate)

Let a locally optimal control \bar{u} of (*P*) satisfy the second-order sufficient conditions introduced above and let U_{ad}^h be defined by piecewise constant functions. Assume that \bar{u}_h is a sequence of locally optimal (piecewise constant) solutions to (*P*_h) that converges strongly in $L^2(\Omega)$ to \bar{u} . Then there is some constant *C* > 0 not depending on *h* such that

 $\|\bar{u}_h - \bar{u}\|_{L^2(\Omega_h)} \leq C h \quad \forall h > 0.$

Theorem (Piecewise constant controls, L²-estimate)

Let a locally optimal control \bar{u} of (*P*) satisfy the second-order sufficient conditions introduced above and let U_{ad}^h be defined by piecewise constant functions. Assume that \bar{u}_h is a sequence of locally optimal (piecewise constant) solutions to (*P*_h) that converges strongly in $L^2(\Omega)$ to \bar{u} . Then there is some constant *C* > 0 not depending on *h* such that

 $\|\bar{u}_h-\bar{u}\|_{L^2(\Omega_h)}\leq C\,h\quad \forall h>0.$

Survey of other results:

- Same estimate in the L[∞]-norm for piecewise constant controls
- Order h^2 for variational discretization (L^2 and L^{∞})
- $\lim_{h\to 0} h^{-1} \|\bar{u}_h \bar{u}\|_{L^2(\Omega_h)} = 0$ for piecewise linear controls
- *L*²-estimate of order *h*^{3/2} for piecewise linear controls under some standard structural assumption on the triangles, where the reduced gradient vanishes on a positive measure.

To simplify the derivation of error estimates, we proved a general theorem on error estimates that is formulated below for our concrete setting.

To simplify the derivation of error estimates, we proved a general theorem on error estimates that is formulated below for our concrete setting. In our problem, we have a sequence $\varepsilon_h \rightarrow 0$ such that

 $|[f'_h(u) - f'(u)]v| \le \varepsilon_h \|v\|_{L^2(\Omega)}$

for all $(u, v) \in U_{ad} \times L^2(\Omega)$ with $v = u_h - \overline{u}$ with $u_h \in U_{ad}^h$.

To simplify the derivation of error estimates, we proved a general theorem on error estimates that is formulated below for our concrete setting. In our problem, we have a sequence $\varepsilon_h \rightarrow 0$ such that

 $|[f'_h(u) - f'(u)]v| \le \varepsilon_h \|v\|_{L^2(\Omega)}$

for all $(u, v) \in U_{ad} \times L^2(\Omega)$ with $v = u_h - \overline{u}$ with $u_h \in U_{ad}^h$.

Theorem

Let $\{\bar{u}_h\}_{h>0}$ be a sequence of local solutions to (P_h) converging strongly to \bar{u} in $L^2(\Omega)$. Under the second-order sufficiency condition, there exist C > 0 and $h_0 > 0$ such that

$$\|\bar{u}-\bar{u}_h\|_{L^2(\Omega)} \leq C \left[\varepsilon_h^2 + \|\bar{u}-u_h\|_{L^2(\Omega)}^2 + f'(\bar{u})(u_h-\bar{u})\right]^{1/2} \quad \forall u_h \in U_{ad}^h, \ \forall h < h_0.$$

To simplify the derivation of error estimates, we proved a general theorem on error estimates that is formulated below for our concrete setting. In our problem, we have a sequence $\varepsilon_h \rightarrow 0$ such that

 $|[f'_h(u) - f'(u)]v| \le \varepsilon_h \|v\|_{L^2(\Omega)}$

for all $(u, v) \in U_{ad} \times L^2(\Omega)$ with $v = u_h - \overline{u}$ with $u_h \in U_{ad}^h$.

Theorem

Let $\{\bar{u}_h\}_{h>0}$ be a sequence of local solutions to (P_h) converging strongly to \bar{u} in $L^2(\Omega)$. Under the second-order sufficiency condition, there exist C > 0 and $h_0 > 0$ such that

$$\|\bar{u}-\bar{u}_h\|_{L^2(\Omega)} \leq C \left[\varepsilon_h^2 + \|\bar{u}-u_h\|_{L^2(\Omega)}^2 + f'(\bar{u})(u_h-\bar{u})\right]^{1/2} \quad \forall u_h \in U_{ad}^h, \ \forall h < h_0.$$

Reference: E. Casas, F.T., A general theorem on error estimates with application to a quasilinear elliptic optimal control problem, submitted 2011.

Fredi Tröltzsch (TU Berlin)

Numerical Analysis