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Ill-Posed Problems

Operator equation

Fu = y

Setting:

I Available data y δ of y is noisy
I Ill-Posed:

y δ → y ̸⇒ uδ → u†

I In our setting: F is a linear operator between infinite
dimensional spaces (before discretization)



Examples of Ill–posed Problems

F=

1. Radon Transform: Computerized Tomography CT

2. Radon Transform squared: a problem of Schlieren Imaging

(nonlinear problem)

3. Spherical Radon Transform: Photoacoustic Imaging

4. Circular Radon Transform: GPRadar and Photoacoustic

Imaging



Three Kind of Variational Methods

ρ similarity functional for the data, Ψ an energy functional, δ an
estimate for the amount of noise.

1. Residual method (τ ≥ 1):

uRes = argminΨ(u)→ min subject to ρ(Fu, y δ) ≤ τδ

2. Tikhonov regularization with discrepancy principle (τ ≥ 1):

uδα := argmin
{
ρ2(Fu, y δ) + αΨ(u)

}
,

where α > 0 is chosen according to Morozov’s discrepancy

principle, i.e., the minimizer uδα of the Tikhonov functional

satisfies

ρ(Fuδα, y
δ) = τδ

3. Tikhonov regularization with a–priori parameter choice:

α = α(δ)



Relation between Methods

E.g. R convex and ρ2(a, b) = ∥a − b∥2

Residual Method ≡ Tikhonov with discrepancy principle



Parameter Dependent Regularization Method - Tikhonov

A method is a regularization method if the following holds:

I Stability for fixed α: y δ → y ⇒ uδα → uα
I Convergence: There exists a parameter choice α = α(δ) > 0
such that y δ → y ⇒ uδα(δ) → u

†

It is an efficient regularization method if there exists a parameter

choice α = α(δ) such that

D(uδα(δ), u
†) ≤ f (δ) ,

where D is an appropriate distance measure, f rate (f → 0 for
δ → 0)
Note: In general, residual method is not stable but convergent.



Quadratic Regularization in Hilbert Spaces - Folklore

uδα = argmin
{
∥Fu − y δ∥2 + α∥u − u0∥2

}
Assumptions:

I F is a bounded operator between Hilbert spaces U and Y
I

∥∥y − y δ∥∥ ≤ δ
Results:

I Stability (α > 0): y δ → y ⇒ uδα → uα
I Convergence: Choose

α = α(δ) such that δ2/α→ 0

If δ → 0, then uδα → u†, which solves Fu† = y



Convergence Rates

Assumptions:

I Source Condition: u† − u0 ∈ F ∗η
I α = α(δ) ∼ δ

Result: ∥∥uδα − u†∥∥2 = O(δ) and ∥∥Fuδα − y∥∥ = O(δ)

Here F ∗ is the adjoint of F , i.e.,

⟨Fu, y⟩ = ⟨u,F ∗y⟩

Reference: C. Groetsch (1984)



Non-Quadratic Regularization

1

2

∥∥Fu − y δ∥∥2 + αR(u)→ min
Examples:

I Total Variation regularization: R(u) =
∫
|∇u| the total

variation semi-norm

I ℓp regularization: R(u) =
∑
i wi |⟨u, ϕi⟩|

p , 1 ≤ p ≤ 2

ϕi is an orthonormal basis of a Hilbert space with inner

product ⟨·, ·⟩, wi are appropriate weights - we take wi ≡ 1



Non-Quadratic Regularization

Assumptions:

I F is a bounded operator between Hilbert spaces U and Y
with closed and convex domain D(F )

I R is weakly lower semi-continuous

Results:

I Stability: y δ → y ⇒ uδα ⇀ uα and R(uδα)→ R(uα)
I Convergence: y δ → y and α = α(δ) such that δ2/α→ 0,
then

uδα ⇀ u
† and R(uδα)→ R(u†)

Note, for quadratic regularization in H-spaces weak convergence

and convergence of the norm gives strong convergence



Convergence Rates, R convex

Assumptions:

I Source Condition: There exists η such that

ξ = F ∗η ∈ ∂R(u†)

I α ∼ δ
Result:

Dξ(u
δ
α, u

†) = O(δ) and
∥∥Fuδα − y∥∥ = O(δ)

Comments:

1. ∂R(v) is the subgradient of R at v , i.e., all elements ψ that
satisfy Dψ(u, v) := R(u)− R(v)− ⟨ψ, u − v⟩ ≥ 0 for all u

2. Dξ(u
δ
α, u

†) is the Bregman distance

3. References: Burger & Osher, Hofmann et al
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1. In general not a distance measure: It may be non-symmetric

and may vanish for different elements.

2. If R(·) = 1
2∥u − u0∥

2, then Dξ(u, v) =
1
2∥u − v∥

2. Thus

generalizes the H-space results.



Constrained ℓ1 - Compressed Sensing
U Hilbert space with inner product ⟨·, ·⟩, ϕi orthonormal basis, Y
H space, F : U → Y bounded.
Constrained optimization problem:

R(u) =
∑
i

|⟨u, ϕi⟩| → min such that Fu = y .

Goal is to recover sparse solutions:

supp(u) := {i : ⟨u, ϕi⟩ ̸= 0} is finite

Comments:

1. References: e.g. Candes & Rhomberg & Tao

2. Here everything is infinite dimensional!

3. For noisy data

R(u)→ min subject to
∥∥Fu − y δ∥∥ ≤ τδ



Sparsity Regularization

Unconstrained Optimization∥∥Fu − y δ∥∥2 + αR(u)→ min
General theory for sparsity regularization:

I Stability: y δ → y ⇒ uδα ⇀ uα and
∥∥uδα∥∥ℓ1 → ∥uα∥ℓ1

I Convergence: y δ → y ⇒ uδα ⇀ uδα and
∥∥uδα∥∥ℓ1 → ∥∥u†∥∥

ℓ1
if

δ2/α→ 0.
If α is chosen according to the discrepancy principle, then Sparsity

Regularization ≡ Constrained ℓ1 - Compressed Sensing



Convergence Rates: Sparsity Regularization

Assumptions:

I Source Condition: There exists η such that

ξ = F ∗η ∈ ∂R(u†) .

Formally this means that ξi = sgn(u
†
i ) and u

† is sparse
(means in the domain of ∂R)

I α ∼ δ
Result:

Dξ(u
δ
α, u

†) = O(δ) and
∥∥Fuδα − y∥∥ = O(δ)

Comment: Rate is optimal for a choice α ∼ δ.



Convergence Rates: Compressed Sensing

Assumption: Source condition

ξ = F ∗η ∈ ∂R(u†)

Then

Dξ(u
δ, u†) ≤ 2∥η∥δ

for every

uδ ∈ argmin
{
R(u) :

∥∥Fu − y δ∥∥ ≤ δ}
Remark: Candes et al have rate δ with respect to the finite

dimensional norm and not the Bregman distance.



What is the Bregman Distance of ℓ1

Because ϕi is an orthonormal basis the Bregman distance

simplifies to

Dξ(u, u
†) = R(u)− R(u†)− ⟨ξ, u − u†⟩

= R(u)− ⟨ξ, u⟩

=
∑
i

(
|⟨u, ϕi⟩| − ⟨ξ, ϕi⟩⟨u, ϕi⟩

)
=:

∑
i

|ui | − ξiui

Note, by the definition of the subgradient |⟨ξ, ϕi⟩| ≤ 1



Rates with respect to the norm: On the big set
Recall source condition ξ = F ∗η ∈ ∂R(u†)
Define

Γ(η) := {i : |ξi | = 1} (which is finite – solution is sparse)

and the number (take into account that the coefficients of ζ are

in ℓ2)

mη := max {|ξi | : i ̸∈ Γ(η)} < 1

Then

Dξ(u, u
†) =

∑
i

|ui | − ξiui ≥ (1−mη)
∑
i ̸∈Γ(η)

|ui |

Consequently∥∥∥∥∥∥∥πN\Γ(η)(uδ)− πN\Γ(η)(u†)︸ ︷︷ ︸
0

∥∥∥∥∥∥∥ ≤ Dξ(u, u†) ≤ Cδ



Rates with respect to the Norm: On the small set

Additional Assumption: Restricted injectivity:

The mapping FΓ(η) is injective.

Thus on Γ(η) the problem is well–posed and Consequently∥∥πΓ(η)(uδ)− πΓ(η)(u†)∥∥ ≤ Cδ
Together with previous transparency:∥∥uδ − u†∥∥ ≤ Cδ
Reference: Grasmair et al, Bredis & Lorenz



Restricted Isometry Property

Candes, Rhomberg, Tao: Key ingredient in proving linear

convergence rates for the finite dimensional ℓ1-residual method:

The s-restricted isometry constant ϑs of F is defined as the

smallest number ϑ ≥ 0 that satisfies

(1− ϑ)∥u∥2 ≤ ∥Fu∥2 ≤ (1+ ϑ)∥u∥2

for all s-sparse u ∈ X . The (s, s ′)-restricted orthogonality
constant ϑs,s ′ of F is defined as the smallest number ϑ ≥ 0 such
that ∣∣⟨Fu,Fu′⟩∣∣ ≤ ϑ∥u∥∥∥u′∥∥
for all s-sparse u and s ′-sparse u′ with supp(u) ∩ supp(u′) = ∅.
The mapping F satisfies the s-restricted isometry property, if

ϑs + ϑs,s + ϑs,2s < 1



Linear Convergence of Candes & Rhomberg & Tao

Assumptions:

1. F satisfies the s-restricted isometry property

2. u† is s-sparse

Result: ∥∥uδ − u†∥∥ ≤ csδ
However: These condition imply the source condition and the

restricted injectivity.



Conclusion on Sparsity

I Convergence rates results can be proven under standard
assumptions of variational regularization

I The essential ingredient for rates is the Karush-Kuhn-Tucker
condition (which in the inverse problems community is called

source condition) from convex optimization

I Taking into account restricted injectivity gives a convergence
rate O(δ). Otherwise: linear convergence in the Bregman
distance



0 < p < 1: Nonconvex sparsity regularization

∥∥Fu − y δ∥∥2 +∑
|⟨u, ϕi⟩|p → min

is stable, convergent, and well–posed in the Hilbert-space norm

I Zarzer: O(
√
δ)

I Grasmair + IP ⇒ O(δ)

Recent developments: Replacement of subgradient by Clarke

subdifferentials (nonconvex theory) (Grasmair 2010)
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