Density Estimation and Smoothing Based on Regularized Optimal Transport

Martin Burger¹, Marzena Franek¹, Carola-Bibiane Schönlieb²

 ¹Institute for Numerical und Applied Mathematics University of Münster (Germany)
 ²Department for Applied Mathematics and Theoretical Physics University of Cambridge, UK

Warwick -May, 27th 2011

Burger, Franek, Schönlieb (DAMTP)

Regularized Optimal Transport

Warwick - 27/05/2011 1 / 38

イヨト イヨト イヨト

The problem

Let $\Omega \subset \mathbb{R}^d$, d = 1, 2 and Ω is open and bounded. We shall investigate the solution of the variational problem

$$\frac{1}{2}W_2(\nu, u\mathcal{L}^d)^2 + \alpha E(u) \to \min_u,$$

where ν is a given probability measure on Ω and u is a probability density.

E(u) is a regularizing functional ...

< 同 > < 三 > < 三 >

Regularizer E(u)

The typical regularization energy we consider is the total variation (edge preserving)

$$E(u) = \int |\nabla u|$$

:=
$$\sup_{\mathbf{g} \in C_0^1(\Omega; \mathbb{R}^d), \|g\|_{\infty} \le 1} \int_{\Omega} u \, \nabla \cdot \mathbf{g} \, dx.$$

Alternatives:

- gradient squared (Dirichlet energy): $E(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 dx$
- squared L^2 -norm: $E(u) = \frac{1}{2} \int_{\Omega} u^2 dx$
- statistical functionals, log entropy: $E(u) = \int_{\Omega} u \ln u \, dx$

• Fisher information:
$$E(u) = \int_{\Omega} \frac{|\nabla u|^2}{u} dx$$

(日)

The Wasserstein distance

Let $(\Omega, |\cdot|)$ constitute our metric space. The (p - th) Wasserstein distance between two probability measures $\mu^1, \mu^2 \in \mathbb{P}_p(\Omega)$ is defined by

$$W_p(\mu^1, \mu^2)^p := \min_{\Pi \in \Gamma(\mu^1, \mu^2)} \int_{\Omega \times \Omega} |x - y|^p \, d\Pi(x, y).$$

Here $\Gamma(\mu^1,\mu^2)$ denotes the class of all transport plans $\gamma\in\mathbb{P}(\Omega^2)$ such that

$$\pi^1_{\#}\gamma = \mu^1, \quad \pi^2_{\#}\gamma = \mu^2,$$

where $\pi^i: \Omega^2 \to \Omega$, i = 1, 2, and $\pi^i_{\#} \gamma \in \mathbb{P}(\Omega)$ is the push-forward of γ through π^i . Here: p = 2 quadratic Wasserstein distance $W_2(\cdot, \cdot)$ on $\mathbb{P}_2(\Omega)$.

Regularized Optimal Transport

Gradient flow formulation - JKO

Idea: Interpretation of the variational problem

$$\min_{u\mathcal{L}^d \in \mathbb{P}(X)} \mathcal{J}(u) = \frac{1}{2} W_2(\nu, u\mathcal{L}^d)^2 + \alpha E(u)$$

as one timestep of size α of the discrete solution of the gradient flow of E(u) with respect to the L^2 -Wasserstein-distance. It means: Solving the diffusion-equation

$$\partial_t u = \nabla \cdot (u \nabla E'(u))$$
$$u(0, x) = u_0(x) \ge 0 \quad \int_{\Omega} u_0 dx = 1$$

approximately using the Jordan-Kinderlehrer-Otto (JKO) scheme

$$u^{k+1} = \arg\min_{u} \frac{1}{2} W_2(u^k \mathcal{L}^d, u\mathcal{L}^d)^2 + (t_{k+1} - t_k) E(u), \ k \ge 0.$$

Burger, Franek, Schönlieb (DAMTP)

Thin-film-equation

$$E(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 \, dx \Rightarrow \quad \partial_t u = div(u\nabla\Delta u)$$

• Porous Medium equation

$$E(u) = \frac{1}{2} \int_{\Omega} u^2 dx \Rightarrow \quad \partial_t u = \Delta u^2$$

Heat Equation

$$E(u) = \int_{\Omega} u \log(u) dx \Rightarrow \quad \partial_t u = \Delta u$$

Derrida-Lebowitz-Speer-Spohn equation

$$E(u) = \int_{\Omega} u \left| \nabla logu \right|^2 dx \Rightarrow \quad \partial_t u = -\Delta(u\Delta(logu))$$

• Highly nonlinear fourth order equation

$$E(u) = \int_{\Omega} |\nabla u| \, dx \Rightarrow \quad \partial_t u = -div \left(u \nabla div \left(\frac{\nabla u}{|\nabla u|} \right) \right)$$

Burger, Franek, Schönlieb (DAMTP)

< ロ > < 同 > < 回 > < 回 >

Numerics based on the JKO scheme

- numerical solution of diffusion equations with schemes that respect its gradient flow structure, e.g., schemes which guarantee monotonic decrease of the corresponding energy functional,
- such schemes raised growing interest in the last years, cf., e.g., [Gosse,Toscani 06; Carrillo, Moll 09; Düring, Matthes, Milisic 10; Burger, Carrillo, Wolfram 10].

Note, however

With our variational approach we are not aiming to compute solutions of the gradient flow! Minimizer will be solution after one timestep of size α.

Burger, Franek, Schönlieb (DAMTP)

Regularized Optimal Transport

・ロッ ・雪 ・ ・ ヨ ・ ・

Density estimation

1. Estimation of densities from given measurements.

- Densities of intensities and locations of terrestial incidents computed from given data measured over time, see, e.g., [Ogata 1998; Egozcue, Barbat, Canas, Miquel, Banda 2006]
- Estimate crime probabilities for different districts or localities within a city [Bertozzi, Goldstein, Keegan, Mohler, Osher, Short, Smith, Wittman 2009/10]
- Wildfire predictions [Schoenberg, Chang, Keeley, Pompa, Woods, Xu 2007]

Burger, Franek, Schönlieb (DAMTP)

Regularized Optimal Transport

Density estimation (cont.)

State of the art techniques:

 $u^* \in \operatorname{argmin}_u \left[D(u, \nu) + \alpha E(u) \right],$

where

- D distance measure between density u and discrete measure ν (a sum of point densities), e.g., L², log-likelihood
- $\alpha > 0$ regularisation parameter,

< ロ > < 同 > < 回 > < 回 > < 回 > <

Density estimation (cont.)

State of the art techniques (cont.):

MPLE:

 $u^* \in \operatorname{argmin}_u \left[D(u, \nu) + \alpha E(u) \right],$

where

- *E* appropriate regularisation functional, e.g., [Good, Gaskins 1971; Eggermont, LaRiccia 2001] (model special structure of densities, e.g. discontinuities)
- ⇒ total variation regularization, e.g., [Koenker, Mizera 2007; Obereder, Scherzer, Kovac 2007; Mohler, Bertozzi, Goldstein, Osher 2010; Sardy, P. Tseng 2010]

 Others: Kernel density estimation techniques [Silverman 1982/86],taut string method, e.g., [Davies, Kovac 2004], logspline technique [Kooperberg, Stone 2002].

(日)

Connection to MPLE

Discrete version of our model motivated from a MPLE:

Let x_1, \ldots, x_N be observations of *N* i.i.d. random variables, with unknown mean μ_i and variance σ (Gaussian error model).

Maximum a-posteriori probability estimation model derived from minimising

$$\frac{1}{2\sigma^2}\sum_i (x_i - \mu_i)^2 + \alpha E(\mu_1, \dots, \mu_N).$$

For the empirical data $\nu = \frac{1}{N} \sum_{i} \delta_{x_i}$, $u = \frac{1}{N} \sum_{i} \delta_{\mu_i}$, the squared distance term can be translated into a multiple of $W_2^2(\nu, u)$.

Advantage:

- Mass Conservation!
- We can work with continuous probability measures or with discrete, i.e. densities which are sums of dirac delta functions.

Smoothing of densities and cartoon-structure decomposition

2. Smoothing of noisy density images (i.e. medical images (MRI))

3. Cartoon-texture decomposition of images ... pictures later.

Burger, Franek, Schönlieb (DAMTP)

Regularized Optimal Transport

Warwick - 27/05/2011 12 / 38

Kantorovich formulation

Burger, Franek, Schönlieb (DAMTP)

Regularized Optimal Transport

Warwick - 27/05/2011 13 / 38

э

Kantorovich formulation

The Benamou Brenier Ansatz

Burger, Franek, Schönlieb (DAMTP)

Regularized Optimal Transport

Warwick - 27/05/2011 13 / 38

★ ∃ → < ∃</p>

< A >

Kantorovich formulation

The Benamou Brenier Ansatz

A B > A B

< A >

Kantorovich formulation

2) The Benamou Brenier Ansatz

Burger, Franek, Schönlieb (DAMTP)

Regularized Optimal Transport

Warwick - 27/05/2011 14 / 38

・ 同 ト ・ ヨ ト ・ ヨ

Regularized Kantorovich formulation

 $(X,d)=(\Omega,|\cdot|),$ Kantorovich formulation with regularization:

$$J(u) = \frac{1}{2} \int_{\Omega \times \Omega} |x - y|^2 d\Pi(x, y) + \alpha E(u) \to \min_{\Pi, u}$$

subject to

$$\begin{split} &\int_{A\times\Omega}d\Pi(x,y)=\int_Ad\nu(y)\\ &\int_{\Omega\times A}d\Pi(x,y)=\int_Au(x)dx \end{split}$$

for $A \subset \Omega$ measurable, u probability density, ν probability measure, Π probability measure on $\Omega \times \Omega$.

Burger, Franek, Schönlieb (DAMTP)

Dual formulation

$$\inf_u \sup_{(\varphi,\psi)} \left(D(\varphi,\psi,u) = \int_\Omega \varphi(x) u(x) dx + \int_\Omega \psi(y) d\nu(y) + \alpha E(u) \right),$$

subject to

$$\varphi(x) + \psi(y) \le \frac{1}{2} \left| x - y \right|^2,\tag{1}$$

$$\inf_{\Pi\in\Gamma(\mu,\nu),u}J(u)=\inf_u \sup_{(\varphi,\psi)\in\Phi_c}D(\varphi,\psi,u)$$

 Φ_c is the set of all (φ, ψ) which satisfy (1).

Burger, Franek, Schönlieb (DAMTP)

Warwick - 27/05/2011 16 / 38

< 同 > < 三 > < 三

Properties of the model

Existence

The functional $\mathcal{J}(u) = \frac{1}{2}W_2(\nu, u\mathcal{L}^d)^2 + \alpha E(u)$ has a minimizer $u\mathcal{L}^d \in \mathbb{P}(X)$.

→ ∃ → < ∃</p>

Properties of the model

Existence

The functional $\mathcal{J}(u) = \frac{1}{2}W_2(\nu, u\mathcal{L}^d)^2 + \alpha E(u)$ has a minimizer $u\mathcal{L}^d \in \mathbb{P}(X)$.

Uniqueness

Let *E* be differentiable and strictly convex. Then there exists at most one minimizer of $\mathcal{J}(u)$.

Properties of the model

Existence

The functional $\mathcal{J}(u) = \frac{1}{2}W_2(\nu, u\mathcal{L}^d)^2 + \alpha E(u)$ has a minimizer $u\mathcal{L}^d \in \mathbb{P}(X)$.

Uniqueness

Let *E* be differentiable and strictly convex. Then there exists at most one minimizer of $\mathcal{J}(u)$.

Stability

Let E be differentiable and strictly convex and let $\alpha>0$ then

$$D_E(u_1, u_2) = \alpha \langle E'(u_1) - E'(u_2), u_1 - u_2 \rangle \le W_2(\nu_1, \nu_2),$$

where D_E denotes the symmetric Bregman distance.

Burger, Franek, Schönlieb (DAMTP)

Regularized Optimal Transport

Convex optimization problem

 $\{x_1, ..., x_n\}, \{y_1, ..., y_m\} \subset \mathbb{R}^d$, *n* sources, *m* destinations

Algorithm

$$\min_{x,u} \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{m} c_{ij} p_{ij} + \alpha E(u)$$

$$\sum_{i=1}^{n} p_{ij} = v_j \quad j = 1...m, \quad \sum_{j=1}^{m} p_{ij} = u_i \quad i = 1...n$$

$$0 \le p_{ij} \quad 0 \le u_i \qquad i = 1...n, \quad j = 1...m,$$

$$\sum_{ij} p_{ij} = 1, \quad \sum_i u_i = 1,$$

with $c_{ij} = |x_i - y_j|^2$ and $p \in \mathbb{R}^{n \times m}$. Only efficiently solvable in 1D

Numerical results

TV-Regularization $E(u) = \int_{\Omega} |\nabla u| \, dx \approx \int_{\Omega} \sqrt{|\nabla u|^2 + \epsilon^2}$

Regularized Optimal Transport

Warwick - 27/05/2011 19 / 38

< A

Numerical results

Regularized Optimal Transport

э Warwick - 27/05/2011 20/38

э

Self-similar solutions

The regularised densities u we have just computed are self-similar solutions of the problem:

 $d\nu = \frac{1}{\delta^d} u\left(\frac{x}{\delta}\right) dx.$

which you can explicitly compute using the Benamou-Brenier formulation:

$$\rho(x,t) = \frac{1}{(at+b)^d} u\left(\frac{x}{at+b}\right), \quad v(x,t) = \frac{ax}{at+b}, \quad \lambda(x,t) = \frac{a|x|^2}{2(at+b)}$$

with nonnegative constants a and b such that a + b = 1.

Burger, Franek, Schönlieb (DAMTP)

Regularized Optimal Transport

Warwick - 27/05/2011 21 / 38

Kantorovich formulation

The Benamou Brenier Ansatz

Burger, Franek, Schönlieb (DAMTP)

Regularized Optimal Transport

Warwick - 27/05/2011 22 / 38

・ 同 ト ・ ヨ ト ・ ヨ ト

The Benamou Brenier Ansatz

- Let [0,T] be a fix time interval, $t \in [0,T], x \in \mathbb{R}^N$.
- $\rho(t,x) \ge 0$ density
- $v(t,x) \in \mathbb{R}^N$ velocity field.

 $W_2^2(
ho_0,
ho_T)$ is equivalent to the infimum of

$$T\int_{\Omega}\int_{0}^{T}\rho(t,x)|v(t,x)|^{2}dxdt$$

over all (ρ, v) subject to:

$$\partial_t \rho + \nabla \cdot (\rho v) = 0$$

 $\rho(0, \cdot) = \rho_0$
 $\rho(T, \cdot) = \rho_T$

Burger, Franek, Schönlieb (DAMTP)

Regularized Optimal Transport

・ 同 ト ・ ヨ ト ・ ヨ ト

Benamou-Brenier Ansatz

$$\inf_{\rho,v,u} \frac{1}{2} \int_0^1 \int_{\Omega} \rho(t,x) |v(t,x)|^2 dx dt + \alpha E(u)$$

subject to

$$\partial_t \rho + \nabla \cdot (\rho v) = 0, \quad \rho(t=0) = \rho_\nu, \quad \rho(t=1) = u$$

Lagrangian-function

$$\begin{split} L(u,\rho,v,\lambda) &= \frac{1}{2} \int_0^1 \int_\Omega \rho |v|^2 dx dt + \alpha E(u) \\ &+ \int_0^1 \int_\Omega \rho (-\partial_t \lambda + v \cdot \nabla \lambda) dx dt \\ &+ \int_\Omega \lambda(t=0) (\rho(0,\cdot) - \rho_\nu) dx + \int_\Omega \lambda(t=1) (\rho(1,\cdot) - u) dx \end{split}$$

Burger, Franek, Schönlieb (DAMTP)

Warwick - 27/05/2011 24 / 38

★ ∃ → < ∃</p>

< A >

Optimality conditions

$$L_{\rho} = \frac{1}{2}v^{2} - \partial_{t}\lambda - \nabla\lambda v = 0, \qquad \text{adjoint equation}$$
$$L_{v} = \rho v - \rho \nabla\lambda = 0, \qquad L_{\lambda} = \partial_{t}\rho + \nabla \cdot (\rho v) = 0, \qquad \text{continuity equation}$$
$$L_{u} = \alpha E'(u) - \lambda(t = 1) \ge 0,$$

Uniqueness

Let *E* be differentiable and strictly convex and $\alpha > 0$. Then the velocity $v = \nabla \lambda$ is unique on the support of $\mu = \rho \mathcal{L}^d$.

Idea of the proof: Similar to the proof of uniqueness for mean-field games,[Lasry, Lions]

Burger, Franek, Schönlieb (DAMTP)

Regularized Optimal Transport

Warwick - 27/05/2011 25 / 38

・ロト ・同ト ・ヨト ・ヨト

Gradient descent scheme (GD)

Disadvantage: positivity constraint on u is not automatically guaranteed, i.e., instead of $\lambda + E'(u) \ni 0$ we rather have $\lambda + E'(u) + \eta \in 0$, where η is a Lagrange multiplier for the positivity constraint! Works for log-entropy though.

Burger, Franek, Schönlieb (DAMTP)

Regularized Optimal Transport

Dual ascent scheme (DA)

Using $v = \nabla \lambda$

- 1 Initial: $\lambda(t=0) = \lambda_0$
- Solve the adjoint equation forward in time $\frac{1}{2} |\nabla \lambda^{k+1}|^2 + \partial_t \lambda^{k+1} = 0$
- Solve the optimization problem

$$u^{k+1} = \mathrm{argmin}_u \alpha E(u) + \int_\Omega u \lambda^{k+1}(t=1), \quad \text{ and } \ \rho^{k+1}(t=1) = u^{k+1}$$

 Solve the continuity equation backwards in time ∂_tρ^{k+1} + ∇ · (ρ^{k+1}∇λ^{k+1}) = 0 ⇒ ρ^{k+1}(t = 0)

 Update λ₀^{k+1} = λ₀^k + τ(ρ^{k+1}(t = 0) - ρ_ν).

Disadvantage: only works for strictly convex E.

Burger, Franek, Schönlieb (DAMTP)

Regularized Optimal Transport

-

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

2D results

Burger, Franek, Schönlieb (DAMTP)

Regularized Optimal Transport

Warwick - 27/05/2011 28 / 38

TV-Regularisation $E(u) = \int |\nabla u|$

Augmented Lagrangian Ansatz [Glowinski, Le Tallec 89; Frick 08; Goldstein, Osher 10]

$$\min_{u,\rho,v,z} \frac{1}{2} \int_0^1 \int_\Omega \rho \left| v \right|^2 dx dt + \alpha \int_\Omega \left| z \right| dx,$$

subject to

$$\partial_t \rho + \nabla \cdot (\rho v) = 0, \ z = \nabla u,$$

$$\rho(t = 0) = \rho_\nu, \ \rho(t = 1) = u.$$

 \Rightarrow saddle point problem

$$\min_{\rho, v, u, z} \max_{\xi, \lambda} L(\rho, v, u, z, \lambda) = [\dots] + \alpha \int_{\Omega} |z| \, dx$$
$$+ \int_{\Omega} (z - \nabla u) \xi \, dx + \frac{\gamma}{2} \int_{\Omega} |z - \nabla u|^2 \, dx$$

Burger, Franek, Schönlieb (DAMTP)

Regularized Optimal Transport

29/38

< ロ > < 同 > < 回 > < 回 > < 回 > <

Initialization:
$$\lambda_0, v^0, \xi^0, z^0$$
.
Solve forward in time $\partial_t \lambda^{k+1} = -\frac{1}{2} |\nabla \lambda^{k+1}|^2$
Compute $\rho^{k+1}(t=1) = u^{k+1}$ as
$$u^{k+1} = \Delta^{-1} \left(\frac{1}{\gamma} \lambda^{k+1}(t=1) + \frac{1}{\gamma} \nabla \cdot \xi^k + \nabla \cdot z^k \right).$$
Solve backwards in time $\partial_t \rho^{k+1} + \nabla \cdot (\rho^{k+1} \nabla \lambda^{k+1}) = 0.$
Update $\lambda_0^{k+1} = \lambda_0^k + \tau_1(\rho^{k+1}(t=0) - \rho_\nu)$
Shrinkage
$$z^{k+1} = \begin{cases} \left(1 - \frac{\alpha}{\gamma | (\nabla u - \frac{\xi}{\gamma})(x, y) |} \right) ((\nabla u - \frac{\xi}{\gamma})(x, y)), & | (\nabla u - \frac{\xi}{\gamma})(x, y) | > 1, \\ | (\nabla u - \frac{\xi}{\gamma})(x, y) | \le 1. \end{cases}$$
 $\xi^{k+1} = \xi^k + \tau_2(z^{k+1} - \nabla u^{k+1})$

Burger, Franek, Schönlieb (DAMTP)

Warwick - 27/05/2011 30 / 38

Numerical results

Burger, Franek, Schönlieb (DAMTP)

Regularized Optimal Transport

Warwick - 27/05/2011 31 / 38

э

< ロ > < 回 > < 回 > < 回 > < 回 >

Anisotropic TV

 $E(u) = \int |\nabla u| = \int |\nabla_x u| + |\nabla_y u|$

Burger, Franek, Schönlieb (DAMTP)

Regularized Optimal Transport

Isotropic TV

$$E(u) = \int |\nabla u| = \int \sqrt{(\nabla_x u)^2 + (\nabla_y u)^2}$$

Burger, Franek, Schönlieb (DAMTP)

Regularized Optimal Transport

э

Burger, Franek, Schönlieb (DAMTP)

Regularized Optimal Transport

Warwick - 27/05/2011 34 / 38

< 回 > < 回 > < 回 >

Applications

Density estimation with Dirichlet-Wasserstein

(a) Initial data

(b) Dirichlet regularisation

MRI density smoothing with TV-Wasserstein

Thanks to Martin Uecker from the MPI for biophysical chemistry in Göttingen for providing us with the MRI data.

Burger, Franek, Schönlieb (DAMTP)

Regularized Optimal Transport

Warwick - 27/05/2011 36 / 38

| 4 同 🕨 🖌 🖉 🕨 🖌 🗐

Applications

Image decomposition with TV-Wasserstein

Burger, Franek, Schönlieb (DAMTP)

Regularized Optimal Transport

Warwick - 27/05/2011 37 / 38

Conclusion

- Regularized optimal transport: Minimize Wasserstein distance plus regularizing functional (e.g., for denisity estimation)
- Existence & uniqueness results
- Numerical scheme based on Benamou-Brenier
- Density estimation and smoothing for real-world problems.

・ 同 ト ・ ヨ ト ・ ヨ ト

Conclusion

- Regularized optimal transport: Minimize Wasserstein distance plus regularizing functional (e.g., for denisity estimation)
- Existence & uniqueness results
- Numerical scheme based on Benamou-Brenier
- Density estimation and smoothing for real-world problems.

Thank you for your attention!

Email: cbs31@cam.ac.uk

Reference: M. Burger, M. Franek, C.-B. Schönlieb, *Density estimation and smoothing based on regularised optimal transport*, submitted 2011.

Burger, Franek, Schönlieb (DAMTP)

Regularized Optimal Transport

Warwick - 27/05/2011 38 / 38

-