

Solving large-scale inverse electromagnetic scattering problems: A parallel AD-based approach

Andrea Walther Institut für Mathematik Universität Paderborn

Outline

Motivation: The Rosetta-Project

The Direct Problem: A FDTD-Discretization of Maxwell's equations

The Inverse Problem: An AD-based Solution Approach

Conclusion and Outlook

Current cooperation with F. Hoffeins, U. Markwardt, W. Nagel (ZIH, TU Dresden) D. Plettemeier (Electrical Engineering , TU Dresden)

at Uni Paderborn: Maria Brune

Identification of Material Parameters

The Consert-Mission

In 2004: Launch of spacecraft Rosetta In 2014: Arrival at the comet 67P/Churyumov-Gerasimenko

On board: Lander Philae with 10 instruments, one is CONSERT

Goal: Determine internal structure (permittivity!) of the comet

The Consert-Mission

In 2004: Launch of spacecraft Rosetta In 2014: Arrival at the comet 67P/Churyumov-Gerasimenko

On board: Lander Philae with 10 instruments, one is CONSERT

Goal: Determine internal structure (permittivity!) of the comet

For that:

- Send electromagnetic waves through the comet nucleus
- Measure the outcome using the orbiter Rosetta

The Consert-Mission

In 2004: Launch of spacecraft Rosetta In 2014: Arrival at the comet 67P/Churyumov-Gerasimenko

On board: Lander Philae with 10 instruments, one is CONSERT

Goal: Determine internal structure (permittivity!) of the comet

For that:

- Send electromagnetic waves through the comet nucleus
- Measure the outcome using the orbiter Rosetta

One challenge: Size of the comet is estimated by $2 \times 2 \times 2 km$ resulting in a desired resolution of at least 700³ grid cells

Maxwell Equations for Electromagnetic Field

$$\frac{\partial B}{\partial t} = -\nabla \times E \qquad \qquad \frac{\partial D}{\partial t} = \nabla \times H - \tilde{J}$$
$$\nabla \cdot B = 0 \qquad \qquad \nabla \cdot D = \rho$$

B and D = magnetic respectively electric flux density, *H* and *E* = magnetic and electric field strength,

Maxwell Equations for Electromagnetic Field

$$\frac{\partial B}{\partial t} = -\nabla \times E \qquad \qquad \frac{\partial D}{\partial t} = \nabla \times H - \tilde{J}$$
$$\nabla \cdot B = 0 \qquad \qquad \nabla \cdot D = \rho$$

B and D = magnetic respectively electric flux density, *H* and *E* = magnetic and electric field strength,

Can be substituted by

$$-\mu \frac{\partial H}{\partial t} = \nabla \times E \qquad \qquad \varepsilon \frac{\partial E}{\partial t} = \nabla \times H - \sigma E + J$$

Maxwell Equations for Electromagnetic Field

$$\frac{\partial B}{\partial t} = -\nabla \times E \qquad \qquad \frac{\partial D}{\partial t} = \nabla \times H - \tilde{J}$$
$$\nabla \cdot B = 0 \qquad \qquad \nabla \cdot D = \rho$$

B and D = magnetic respectively electric flux density, *H* and *E* = magnetic and electric field strength,

Can be substituted by

$$-\mu \frac{\partial H}{\partial t} = \nabla \times E \qquad \qquad \varepsilon \frac{\partial E}{\partial t} = \nabla \times H - \sigma E + J$$

Goal: Want to estimate ε from measurements at the boundary

Formulation as time-dependent problem?

 Radon transform based reconstruction methods (Benna, Barriot, Kofman '02) requires statistical a priori information

Formulation as time-dependent problem?

 Radon transform based reconstruction methods (Benna, Barriot, Kofman '02) requires statistical a priori information

 \Rightarrow keep time-dependence!!

Formulation as time-dependent problem?

 Radon transform based reconstruction methods (Benna, Barriot, Kofman '02) requires statistical a priori information

 \Rightarrow keep time-dependence!!

Then:

Maxwell's equations do have a unique solution for one source and observations at a closed surface that comprises the reconstruction domain (Kirsch 1998)

Formulation as time-dependent problem?

 Radon transform based reconstruction methods (Benna, Barriot, Kofman '02) requires statistical a priori information

 \Rightarrow keep time-dependence!!

Then:

Maxwell's equations do have a unique solution for one source and observations at a closed surface that comprises the reconstruction domain (Kirsch 1998)

Discretization?

Discretization: FDTD

The Finite Differences in Time Domain method

- proposed by Yee in 1966
- discretization of the curl equations by centered finite in space
- discretization of the curl equations by leapfrog scheme in time
- widely-used for simulations
- *E* and *H* components are staggered in time and space

Discretization: FDTD

The Finite Differences in Time Domain method

- proposed by Yee in 1966
- discretization of the curl equations by centered finite in space
- discretization of the curl equations by leapfrog scheme in time
- widely-used for simulations
- E and H components are staggered in time and space

The Staggered Computation

Leapfrog scheme in 1D

and the Formulas in 3D

$$\begin{aligned} H_{x}|_{i,j+\frac{1}{2},k+\frac{1}{2}}^{n+\frac{1}{2}} &= H_{x}|_{i,j+\frac{1}{2},k+\frac{1}{2}}^{n-\frac{1}{2}} \\ &+ \frac{\Delta t}{\mu} \left(\frac{\mathcal{E}_{y}|_{i,j+\frac{1}{2},k+1}^{n} - \mathcal{E}_{y}|_{i,j+\frac{1}{2},k}^{n}}{\Delta z} - \frac{\mathcal{E}_{z}|_{i,j+1,k+\frac{1}{2}}^{n} - \mathcal{E}_{z}|_{i,j,k+\frac{1}{2}}^{n}}{\Delta y} \right) \end{aligned}$$

 H_y and H_z similar.

and the Formulas in 3D

$$\begin{aligned} H_{x}|_{i,j+\frac{1}{2},k+\frac{1}{2}}^{n+\frac{1}{2}} &= H_{x}|_{i,j+\frac{1}{2},k+\frac{1}{2}}^{n-\frac{1}{2}} \\ &+ \frac{\Delta t}{\mu} \left(\frac{\mathcal{E}_{y}|_{i,j+\frac{1}{2},k+1}^{n} - \mathcal{E}_{y}|_{i,j+\frac{1}{2},k}^{n}}{\Delta z} - \frac{\mathcal{E}_{z}|_{i,j+1,k+\frac{1}{2}}^{n} - \mathcal{E}_{z}|_{i,j,k+\frac{1}{2}}^{n}}{\Delta y} \right) \end{aligned}$$

 H_y and H_z similar.

$$E_{X}|_{i+\frac{1}{2},j,k}^{n} = \frac{1 - \frac{\sigma\Delta t}{2\varepsilon}}{1 + \frac{\sigma\Delta t}{2\varepsilon}} E_{X}|_{i+\frac{1}{2},j,k}^{n-1} - \frac{\frac{\Delta t}{\varepsilon}}{1 + \frac{\sigma\Delta t}{2\varepsilon}} \left(J_{source_{X}}|_{i+\frac{1}{2},j,k}^{n-\frac{1}{2}} \right) \\ + \frac{\frac{\Delta t}{\varepsilon}}{1 + \frac{\sigma\Delta t}{2\varepsilon}} \left(\frac{H_{Z}|_{i+\frac{1}{2},j+\frac{1}{2},k}^{n-\frac{1}{2}} - H_{Z}|_{i+\frac{1}{2},j-\frac{1}{2},k}^{n-\frac{1}{2}}}{\Delta y} - \frac{H_{Y}|_{i+\frac{1}{2},j,k+\frac{1}{2}}^{n-\frac{1}{2}} - H_{Y}|_{i+\frac{1}{2},j,k-\frac{1}{2}}^{n-\frac{1}{2}}}{\Delta z} \right)$$

 E_y and E_z similar,

and the Formulas in 3D

$$\begin{aligned} H_{x}|_{i,j+\frac{1}{2},k+\frac{1}{2}}^{n+\frac{1}{2}} &= H_{x}|_{i,j+\frac{1}{2},k+\frac{1}{2}}^{n-\frac{1}{2}} \\ &+ \frac{\Delta t}{\mu} \left(\frac{\mathcal{E}_{y}|_{i,j+\frac{1}{2},k+1}^{n} - \mathcal{E}_{y}|_{i,j+\frac{1}{2},k}^{n}}{\Delta z} - \frac{\mathcal{E}_{z}|_{i,j+1,k+\frac{1}{2}}^{n} - \mathcal{E}_{z}|_{i,j,k+\frac{1}{2}}^{n}}{\Delta y} \right) \end{aligned}$$

 H_y and H_z similar.

$$\begin{split} E_{x}|_{i+\frac{1}{2},j,k}^{n} &= \frac{1 - \frac{\sigma \Delta t}{2\varepsilon}}{1 + \frac{\sigma \Delta t}{2\varepsilon}} E_{x}|_{i+\frac{1}{2},j,k}^{n-1} - \frac{\frac{\Delta t}{\varepsilon}}{1 + \frac{\sigma \Delta t}{2\varepsilon}} \left(J_{source_{x}}|_{i+\frac{1}{2},j,k}^{n-\frac{1}{2}} \right) \\ &+ \frac{\Delta t}{\frac{\varepsilon}{\varepsilon}} \left(\frac{H_{z}|_{i+\frac{1}{2},j+\frac{1}{2},k}^{n-\frac{1}{2}} - H_{z}|_{i+\frac{1}{2},j-\frac{1}{2},k}^{n-\frac{1}{2}}}{\Delta y} - \frac{H_{y}|_{i+\frac{1}{2},j,k+\frac{1}{2}}^{n-\frac{1}{2}} - H_{y}|_{i+\frac{1}{2},j,k-\frac{1}{2}}^{n-\frac{1}{2}}}{\Delta z} \right) \end{split}$$

 E_y and E_z similar,

material parameter ε enters nonlinearily!!

No boundary in space

No boundary in space but simulation performed on bounded domain.

No boundary in space but simulation performed on bounded domain.

Therefore: Waves have to be damped at the boundary

No boundary in space but simulation performed on bounded domain.

Therefore: Waves have to be damped at the boundary

We use perfectly matched layers (PML) in a variant proposed by Gedney in 1996 consisting of uniaxial absorbing material.

Computational Domain in 2D

Due to size of the problem: Parallelization is indispensable!

(a) 2D domain decomposition

Computational Domain in 2D

Due to size of the problem: Parallelization is indispensable!

Runtime: Function Evaluation

Andrea Walther

Solving large-scale inverse problems

The Inverse Problem

$$J(\varepsilon) = \sum_{(i,j,k)\in\mathcal{M}}\sum_{n=0}^{N}\frac{1}{2}\left(\|u(\varepsilon)\|_{i,j,k}^{n} - u^{obs}\|_{i,j,k}^{n}\|^{2}\right) + \beta\|\varepsilon\|_{*}^{2}$$

with

 \mathcal{M} ... set of indices of observed cells N... number of observed time steps $u(\varepsilon)$... simulated state u^{obs} ... observed state

 $\beta \dots$ Regularization parameter

The Inverse Problem

$$J(\varepsilon) = \sum_{(i,j,k)\in\mathcal{M}}\sum_{n=0}^{N}\frac{1}{2}\left(\|u(\varepsilon)\|_{i,j,k}^{n} - u^{obs}\|_{i,j,k}^{n}\|^{2}\right) + \beta\|\varepsilon\|_{*}^{2}$$

with

 \mathcal{M} ... set of indices of observed cells N... number of observed time steps $u(\varepsilon)$... simulated state u^{obs} ... observed state β ... Regularization parameter

All solution approaches need derivatives.

The Inverse Problem

$$J(\varepsilon) = \sum_{(i,j,k)\in\mathcal{M}}\sum_{n=0}^{N}\frac{1}{2}\left(\|u(\varepsilon)\|_{i,j,k}^{n} - u^{obs}\|_{i,j,k}^{n}\|^{2}\right) + \beta\|\varepsilon\|_{*}^{2}$$

with

 \mathcal{M} ... set of indices of observed cells N... number of observed time steps $u(\varepsilon)$... simulated state u^{obs} ... observed state β ... Regularization parameter

All solution approaches need derivatives.

Consistent derivatives for discrete version? (Abenius '04) provided by **algorithmic differentiation (AD)**.

 $\bar{\mathbf{x}} \equiv \bar{\mathbf{y}}^{\top} F'(\mathbf{x}) = \nabla_{\mathbf{x}} \langle \bar{\mathbf{y}}^{\top} F(\mathbf{x}) \rangle \equiv \bar{F}(\mathbf{x}, \bar{\mathbf{y}})$

Algorithmic Differentiation (AD)

- Differentiation of "computer programs" within machine precision
- Evaluation of derivatives with working accuracy
- ► Forward mode: OPS(F'(x)x) ≤ cOPS(F), c ∈ [2,5/2] Reverse mode: OPS($\bar{y}^\top F'(x)$) ≤ cOPS(F), c ∈ [3,4] MEM($\bar{y}^\top F'(x)$) ~ OPS(F), Combination: OPS($\bar{y}^\top F''(x)\dot{x}$) ≤ cOPS(F), c ∈ [7,10]
- Tools: ADOL-C, CppAD, Tapenade, ...
- www.autodiff.org, (Griewank, Walther 08)

Algorithmic Differentiation (AD)

- Differentiation of "computer programs" within machine precision
- Evaluation of derivatives with working accuracy
- ► Forward mode: OPS(F'(x)x) ≤ cOPS(F), c ∈ [2,5/2] Reverse mode: OPS(ȳ^T F'(x)) ≤ cOPS(F), c ∈ [3,4] MEM(ȳ^T F'(x)) ~ OPS(F), Combination: OPS(ȳ^T F''(x)x) ≤ cOPS(F), c ∈ [7,10]
- Tools: ADOL-C, CppAD, Tapenade, ...
- www.autodiff.org, (Griewank, Walther 08)

Remarks:

- Cost for gradient calculation independent of # variables
- Memory requirement may cause problem! \Rightarrow Checkpointing

Store-Everything Approach

Example: 12 time steps

Store-Everything Approach

Example: 12 time steps

MEM = O(I), TIME = 2I, might cause problems, even if it fits in memory

Binomial Checkpointing

Example: 12 time steps, 4 checkpoints, reusage of all checkpoints!

Binomial Checkpointing

Example: 12 time steps, 4 checkpoints, reusage of all checkpoints!

Checkpointing Theory

Goal: Minimal number of recomputations for *c* checkpoints

Available results:

- / known, constant step costs (Griewank '92), (Griewank, Walther '00), (Kowarz, Walther '07)
- / known, variable step costs (Walther '00), (Hinze, Sternberg '05)
- I unknown, constant step costs (Hinze, Walther, Sternberg '06), (Stumm, Walther '10), (Moin, Wang '10)
- / known, variable access cost (Stumm, Walther '09)

Checkpointing Theory

Goal: Minimal number of recomputations for *c* checkpoints

Available results:

- / known, constant step costs (Griewank '92), (Griewank, Walther '00), (Kowarz, Walther '07)
- / known, variable step costs (Walther '00), (Hinze, Sternberg '05)
- I unknown, constant step costs (Hinze, Walther, Sternberg '06), (Stumm, Walther '10), (Moin, Wang '10)
- / known, variable access cost (Stumm, Walther '09)

Also applicable for continuous adjoints! Implemented in software driver revolve

Software Components for Inverse Problem

- own simulation code in C++ using MPI
- ADOL-C for the computation of adjoints for one time step
- revolve for checkpointing of time loop
- coupling with L-BFGS
- coupling with lpopt (goal: also optimizer in parallel)

Scaling of Gradient Computation

Runtime Gradient I

Andrea Walther

Solving large-scale inverse problems

Runtime Quotient I

Andrea Walther

Solving large-scale inverse problems

Runtime Quotient II

An AD-based Solution Approach

Test Problem

Test Problem

Test Problem

reference and final point after 60 iterations for 729000 unknowns

Test Problem

First Tests of Regularizations

So far: Treated as PDE constrained optimization problem

Now: Add appropriate regularisation

Implemented: $\|.\|_* = \|.\|_2$ and $\|.\|_* = \|.\|_{TV}$

	iter	function value	β
no reg	70	7.5084540e-03	0.0
L ₂	70	3.9867834e-03	2.0
TV	70	3.9868059e-03	8.0

Conclusions

- Simulation in parallel for $3D \Rightarrow$ large-scale discretizations
- Gradient in parallel for $3D \Rightarrow$ large-scale discretizations
- Coupling with L-BFGS and recently with Ipopt
- First tests with respect to regularisations
- Next steps:
 - infinite dimensional setting ?
 - appropriate regularization techniques ?
 - globalization strategies ?