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Motivation: The Rosetta-Project

Identification of Material Parameters
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Motivation: The Rosetta-Project

The Consert-Mission
In 2004: Launch of spacecraft Rosetta
In 2014: Arrival at the comet 67P/Churyumov-Gerasimenko

On board: Lander Philae with 10 instruments, one is CONSERT

Goal: Determine internal structure (permittivity!) of the comet

For that:
I Send electromagnetic waves through the comet nucleus
I Measure the outcome using the orbiter Rosetta

One challenge:
Size of the comet is estimated by 2× 2× 2 km
resulting in a desired resolution of at least 7003 grid cells
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FDTD-Discretization of Maxwell’s equations

Maxwell Equations for Electromagnetic Field

∂B
∂t

= −∇× E
∂D
∂t

= ∇× H − J̃

∇ · B = 0 ∇ · D = ρ

B and D = magnetic respectively electric flux density,
H and E = magnetic and electric field strength,

Can be substituted by

−µ∂H
∂t

= ∇× E ε
∂E
∂t

= ∇× H − σE + J

Goal: Want to estimate ε from measurements at the boundary
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FDTD-Discretization of Maxwell’s equations

Theoretical Aspects

Formulation as time-dependent problem?

I Radon transform based reconstruction methods
(Benna, Barriot, Kofman ’02)
requires statistical a priori information

⇒ keep time-dependence!!

I Then:
Maxwell’s equations do have a unique solution for one source
and observations at a closed surface that comprises the
reconstruction domain (Kirsch 1998)

Discretization?
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FDTD-Discretization of Maxwell’s equations

Discretization: FDTD
The Finite Differences in Time Domain method

I proposed by Yee in 1966
I discretization of the curl equations by centered finite in space
I discretization of the curl equations by leapfrog scheme in time
I widely-used for simulations
I E and H components are staggered in time and space

x y

z

Ex
Ey

Ez Hx

Hy

Hz
(i , j , k)

Layout of a Yee-cell
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FDTD-Discretization of Maxwell’s equations

The Staggered Computation

t = ∆t

t = 0.5∆t

t = 0

EE

H

E

x = 0

E

H

E

x = ∆x

E

H

E

x = 2∆x

E

H

E

x = 3∆x

Leapfrog scheme in 1D
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FDTD-Discretization of Maxwell’s equations

and the Formulas in 3D

Hx |
n+ 1

2

i,j+ 1
2 ,k+ 1

2
= Hx |

n− 1
2

i,j+ 1
2 ,k+ 1

2

+
∆t
µ

(
Ey |ni,j+ 1

2 ,k+1 − Ey |ni,j+ 1
2 ,k

∆z
−

Ez |ni,j+1,k+ 1
2
− Ez |ni,j,k+ 1

2

∆y

)
Hy and Hz similar.

Ex |ni+ 1
2 ,j,k

=
1− σ∆t

2ε

1 + σ∆t
2ε

Ex |n−1
i+ 1

2 ,j,k
−

∆t
ε

1 + σ∆t
2ε

(
Jsourcex |

n− 1
2

i+ 1
2 ,j,k

)

+
∆t
ε

1 + σ∆t
2ε

 Hz |
n− 1

2

i+ 1
2 ,j+

1
2 ,k
− Hz |

n− 1
2

i+ 1
2 ,j−

1
2 ,k

∆y
−

Hy |
n− 1

2

i+ 1
2 ,j,k+ 1

2
− Hy |

n− 1
2

i+ 1
2 ,j,k−

1
2

∆z


Ey and Ez similar, material parameter ε enters nonlinearily!!
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FDTD-Discretization of Maxwell’s equations

Handling of Boundary

No boundary in spacebut simulation performed on bounded domain.

Therefore: Waves have to be damped at the boundary

We use perfectly matched layers (PML) in a variant proposed by
Gedney in 1996 consisting of uniaxial absorbing material.
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FDTD-Discretization of Maxwell’s equations

Computational Domain in 2D
Due to size of the problem: Parallelization is indispensable!

· · ·

· · ·

· · ·

· · ·

· · ·

··
·

··
·

··
·

··
·

··
·

PML

inner FDTD cells

(a) 2D domain decomposition
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FDTD-Discretization of Maxwell’s equations

Runtime: Function Evaluation
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An AD-based Solution Approach

The Inverse Problem

J(ε) =
∑

(i,j,k)∈M

N∑
n=0

1
2
(
‖u(ε)|ni,j,k − uobs|ni,j,k‖2)+ β‖ε‖2

∗

with

M . . . set of indices of observed cells
N . . . number of observed time steps

u(ε) . . . simulated state

uobs . . . observed state
β . . .Regularization parameter

All solution approaches need derivatives.

Consistent derivatives for discrete version? (Abenius ’04)
provided by algorithmic differentiation (AD).
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An AD-based Solution Approach

Forward mode AD = Tangents/Sensitivities

x

F

y

ẏ(t) =
∂

∂t
F (x(t)) = F ′(x(t)) ẋ(t) ≡ Ḟ (x , ẋ)
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Andrea Walther 13 / 28 Solving large-scale inverse problems May 25th, 2011



An AD-based Solution Approach

Forward mode AD = Tangents/Sensitivities

x
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An AD-based Solution Approach

Reverse Mode AD = Discrete Adjoints

x

F

y

x̄ ≡ ȳ>F ′(x) = ∇x 〈 ȳ>F (x) 〉 ≡ F̄ (x , ȳ)
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ȳ >
y

=
c
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An AD-based Solution Approach

Algorithmic Differentiation (AD)

I Differentiation of “computer programs” within machine precision

I Evaluation of derivatives with working accuracy

I Forward mode: OPS(F ′(x)ẋ) ≤ c OPS(F ), c ∈ [2,5/2]
Reverse mode: OPS(ȳ> F ′(x)) ≤ c OPS(F ), c ∈ [3,4]

MEM(ȳ> F ′(x)) ∼ OPS(F ),
Combination: OPS(ȳ> F ′′(x)ẋ) ≤ c OPS(F ), c ∈ [7,10]

I Tools: ADOL-C, CppAD, Tapenade, . . .

I www.autodiff.org, (Griewank, Walther 08)
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I Differentiation of “computer programs” within machine precision

I Evaluation of derivatives with working accuracy

I Forward mode: OPS(F ′(x)ẋ) ≤ c OPS(F ), c ∈ [2,5/2]
Reverse mode: OPS(ȳ> F ′(x)) ≤ c OPS(F ), c ∈ [3,4]

MEM(ȳ> F ′(x)) ∼ OPS(F ),
Combination: OPS(ȳ> F ′′(x)ẋ) ≤ c OPS(F ), c ∈ [7,10]

I Tools: ADOL-C, CppAD, Tapenade, . . .

I www.autodiff.org, (Griewank, Walther 08)

Remarks:
I Cost for gradient calculation independent of # variables
I Memory requirement may cause problem! ⇒ Checkpointing
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An AD-based Solution Approach

Store-Everything Approach
Example: 12 time steps
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An AD-based Solution Approach

Store-Everything Approach
Example: 12 time steps

10 201

10

5

1

l

t

MEM = O(l), TIME = 2l,
might cause problems, even if it fits in memory
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An AD-based Solution Approach

Binomial Checkpointing
Example: 12 time steps, 4 checkpoints, reusage of all checkpoints!
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20 30101
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t

MEM = c, TIME = ?
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An AD-based Solution Approach

Checkpointing Theory
Goal: Minimal number of recomputations for c checkpoints

Available results:
I l known, constant step costs

(Griewank ’92), (Griewank, Walther ’00), (Kowarz, Walther ’07)

I l known, variable step costs
(Walther ’00), (Hinze, Sternberg ’05)

I l unknown, constant step costs
(Hinze, Walther, Sternberg ’06), (Stumm, Walther ’10),
(Moin, Wang ’10)

I l known, variable access cost
(Stumm, Walther ’09)

Also applicable for continuous adjoints!
Implemented in software driver revolve
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An AD-based Solution Approach

Software Components for Inverse Problem

I own simulation code in C++ using MPI

I ADOL-C for the computation of adjoints for one time step

I revolve for checkpointing of time loop

I coupling with L-BFGS

I coupling with Ipopt (goal: also optimizer in parallel)
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An AD-based Solution Approach

Scaling of Gradient Computation

weak scaling: same amount of work per processor

Andrea Walther 20 / 28 Solving large-scale inverse problems May 25th, 2011



An AD-based Solution Approach

Runtime Gradient I

 0

 100

 200

 300

 400

 500

 600

 700

1003 2003 2503 3003 3503 4003

ov
er

al
l r

un
tim

e 
[s

]

# inner grid cells

27 cores
64 cores

125 cores
216 cores
343 cores
512 cores
729 cores

1000 cores

Andrea Walther 21 / 28 Solving large-scale inverse problems May 25th, 2011



An AD-based Solution Approach

Runtime Quotient I
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An AD-based Solution Approach

Runtime Quotient II
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An AD-based Solution Approach

Test Problem
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An AD-based Solution Approach

Test Problem
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An AD-based Solution Approach

Test Problem
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An AD-based Solution Approach

Test Problem
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An AD-based Solution Approach

First Tests of Regularizations

So far: Treated as PDE constrained optimization problem

Now: Add appropriate regularisation

Implemented: ‖.‖∗ = ‖.‖2 and ‖.‖∗ = ‖.‖TV

iter function value β
no reg 70 7.5084540e-03 0.0

L2 70 3.9867834e-03 2.0
TV 70 3.9868059e-03 8.0
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Conclusion and Outlook

Conclusions

I Simulation in parallel for 3D⇒ large-scale discretizations

I Gradient in parallel for 3D⇒ large-scale discretizations

I Coupling with L-BFGS and recently with Ipopt

I First tests with respect to regularisations

I Next steps:
I infinite dimensional setting ?

I appropriate regularization techniques ?

I globalization strategies ?
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