Preconditioned iterative linear solvers for PDE-constrained Optimization problems

Andy Wathen Oxford University

joint work with Tyrone Rees, Martin Stoll, Sue Thorne and John Pearson

Let $A \in \mathbb{R}^{n \times n}$ be symmetric and positive definite

$$\min_x \frac{1}{2} x^T A x - x^T b$$

equivalent to solving

$$Ax = b$$

Constrained Optimization and Saddle-point problems:

$$\min_x \frac{1}{2} x^T A x - x^T b$$

subject to Bx = c

Constrained Optimization and Saddle-point problems:

$$\min_x \frac{1}{2} x^T A x - x^T b$$

subject to $Bx = c$

Lagrangian: $\mathcal{L}(x,\lambda) = \frac{1}{2}x^T A x - x^T b + (Bx - c)^T \lambda$ λ : Lagrange multipliers.

 $\begin{array}{lll} \min_x & \Rightarrow & Ax + B^T \lambda & = b \ \max_\lambda & \Rightarrow & Bx & = c \end{array}$

$$\Rightarrow \underbrace{\left[\begin{array}{cc} A & B^T \\ B & 0 \end{array}\right]}_{\mathcal{A}} \underbrace{\left[\begin{array}{c} x \\ \lambda \end{array}\right]}_{y} = \underbrace{\left[\begin{array}{c} b \\ c \end{array}\right]}_{f}$$

(Benzi, Golub & Liesen (2005))

Classic problem of this type: the Stokes problem 'Minimise energy subject to conserving mass' \Rightarrow

$$-\nabla^{2}\vec{y} + \nabla p = \vec{u}$$

subject to
$$\nabla \cdot \vec{y} = 0$$

 \vec{y} : velocity, p: pressure, \vec{u} : body forces

Classic problem of this type: the Stokes problem 'Minimise energy subject to conserving mass' \Rightarrow

$$-\nabla^{2}\vec{y} + \nabla p = \vec{u}$$

subject to
$$\nabla \cdot \vec{y} = 0$$

 \vec{y} : velocity, p: pressure, \vec{u} : body forces

Mixed finite elements/MAC finite difference approximation:

$$\begin{bmatrix} \underline{K} & B^T \\ B & 0 \end{bmatrix} \begin{bmatrix} y \\ p \end{bmatrix} = \begin{bmatrix} u \\ g \end{bmatrix}, \quad \underline{K} = \begin{bmatrix} K & 0 \\ 0 & K \end{bmatrix} \text{ in } \mathbb{R}^2$$

K: discrete Laplacian

$$\mathcal{A} = \left[egin{array}{cc} K & B^T \ B & 0 \end{array}
ight]$$

is large, sparse, symmetric and indefinite \rightarrow iterative solver Leading contender: Krylov subspace method

- require 1 matrix × vector multiplication at each iteration
- convergence depends only on eigenvalues

e.g. for symmetric positive definite problems, Conjugate Gradient method *(Hestenes & Stiefel (1952))*:

$$\frac{\|x - x_k\|_A}{\|x - x_0\|_A} \le \min_{p \in \Pi_k, p(0) = 1} \max_{\lambda \in \sigma(A)} |p(\lambda)|$$

but for symmetric (including indefinite) matrices, MINRES

$$\frac{\|r_k\|}{\|r_0\|} \leq \min_{p \in \Pi_k, p(0)=1} \max_{\lambda \in \sigma(\mathcal{A})} |p(\lambda)|$$

For fast convergence:

$\begin{array}{ll} \mathsf{MINRES} & (\textit{Paige \& Saunders (1975)}): \\ & \displaystyle \frac{\|r_k\|}{\|r_0\|} \leq \min_{p \in \Pi_k, p(0) = 1} & \displaystyle \max_{\lambda \in \sigma(\mathcal{A})} & |p(\lambda)| \end{array}$

 $r_k = f - \mathcal{A} y_k$

For fast convergence:

- few distinct eigenvalues
- cluster eigenvalues

MINRES (Paige & Saunders (1975)):

. .

. .

$$rac{\|r_k\|}{\|r_0\|} \leq \min_{p\in \Pi_k, p(0)=1} \max_{\lambda\in \sigma(\mathcal{A})} |p(\lambda)|$$

 $r_k = f - \mathcal{A} y_k$

1.5 For fast convergence: • few distinct eigenvalues cluster eigenvalues 0.5 0 -0.5 -1 -0.5 0.5 1.5 0 1 2 2.5 3 3.5 4

4.5

MINRES (Paige & Saunders (1975)): $\|r_k\|$

$$rac{\|m{r}_k\|}{\|m{r}_0\|} \leq \min_{p\in \Pi_k, p(0)=1} \max_{m{\lambda}\in \sigma(\mathcal{A})} |p(m{\lambda})|$$

 $r_k = f - \mathcal{A} y_k$

How to achieve such properties?

How to achieve such properties?

Preconditioning: $Au = f \longrightarrow \mathcal{P}^{-1}Au = \mathcal{P}^{-1}f$

How to achieve such properties?

Preconditioning: $\mathcal{A}u = f \longrightarrow \mathcal{P}^{-1}\mathcal{A}u = \mathcal{P}^{-1}f$

Block diagonal/triangular preconditioners

Block diagonal/triangular preconditioners:

based on observation (Murphy, Golub & W (2000), Korzak(1999))

$$\left[egin{array}{cc} A & B^T \ B & 0 \end{array}
ight]$$

preconditioned by

• $\begin{bmatrix} A & 0 \\ 0 & S \end{bmatrix}$ has 3 distinct eigenvalues $(1, \frac{1}{2} \pm \frac{\sqrt{5}}{2})$ • $\begin{bmatrix} A & B^T \\ 0 & S \end{bmatrix}$ has 2 distinct eigenvalues

where $S = BA^{-1}B^T$ (Schur Complement)

- \Rightarrow MINRES /GMRES terminates in 3 / 2 iterations
- \Rightarrow want approximations $\widehat{A}, \ \widehat{S} \Rightarrow 3$ / 2 clusters
- \Rightarrow fast convergence

For Stokes problem:

- $A = \underline{K}$ is discrete Laplacians: use $\widehat{A} =$ multigrid cycles
 - geometric mutigrid: relaxed Jacobi smoothing, standard grid transfers
 - algebraic multigrid: HSL routine HSL_MI20 (Boyle, Mihajlovic & Scott (2007))

\widehat{S} for Stokes problem:

Babuska-Brezzi stability \Rightarrow Schur Complement spectrally equivalent to the finite element identity matrix, the mass matrix, M ie. the Gram matrix of the finite element basis functions $\{\phi_j, j = 1, ..., n\}$ in $L_2(\Omega), \Omega \subset \mathbb{R}^d$:

$$BA^{-1}B^T \approx \nabla \cdot (\nabla^2)^{-1} \nabla \approx Id \to M$$

Specifically $\exists \gamma > 0, \Gamma \leq \sqrt{d}$ such that

$$\gamma \leq \frac{x^T B A^{-1} B^T x}{x^T M x} \leq \Gamma$$

where
$$M=\{m_{i,j}\}, \hspace{0.3cm} m_{i,j}=\int_{\Omega}\phi_i\phi_j$$

(Bank, Welfert & Yserentant (1990), Silvester & W (1994))

Mass matrix is effectively preconditioned by its diagonal D=diag(M) (W (1987))

eg. for Q1 (bilinear) elements in 2-dimensions (rectangles) eigenvalues of $D^{-1}M$ all in [1/4, 9/4]

eg. for Q1 (trilinear) finite elements in 3-dimensions (bricks) eigenvalues of $D^{-1}M$ all in [1/8, 27/8]

independently of mesh size h (ie. independently of discrete problem dimension)

Could use $\widehat{S} = D$ but better a few iterations of a diagonally preconditioned iteration for M:

- diagonally scaled Conjugate Gradients: leads to a nonlinear preconditioner
- diagonally scaled Chebyshev (semi-)iteration: is linear and we have precise eigenvalue inclusion intervals

(Golub & Varga (1961), W & Rees (2008))

For Stokes problem:

$$P=\left[egin{array}{cc} \widehat{A} & 0 \ 0 & \widehat{S} \end{array}
ight]=\left[egin{array}{cc} A_{AMG} & 0 \ 0 & T_{20}(D^{-1}M) \end{array}
ight]$$

Here: Q2-Q1 mixed finite element (Taylor-Hood), $\widehat{A} = A_{AMG}$: 1 AMG V-cycle

h	Iterations	CPU time (s)
2 ⁻² (187)	19	0.015
2^{-3} (659)	24	0.073
2^{-4} (2,467)	26	0.082
2^{-5} (9,539)	28	0.21
2^{-6} (37,507)	29	3.80
2 ⁻⁷ (148,739)	29	15.5

Results from Rene Schneider (Leeds/Chemnitz): P_2-P_1 on 1 processor of a cluster of Sun Fire 6800 with UltraSPARC II Cu 900MHz processors

	CPU t	ime
iterations	for solution	for setup
23	2.3e-2	1.5e-1
25	6.4e-1	5.0e-2
25	2.0	1.5e-1
25	1.2e+1	5.9e-1
22	6.9e+1	2.5
24	3.5e+2	1.0e+1
23	1.5e+3	4.2e+1
24	6.7e+3	1.7e+2
24	2.7e+4	6.8e+2
	iterations 23 25 25 25 22 24 24 23 24 24 24	CPU titerationsfor solution232.3e-2256.4e-1252.0251.2e+1226.9e+1243.5e+2231.5e+3246.7e+3242.7e+4

PDE-constrained Optimization

General problem:

Given $\Omega \subset \mathbb{R}^2$ or \mathbb{R}^3 , $\widehat{y} \in L_2(\Omega)$ as some desired state then for some (regularisation) parameter β

$$\min_{\mathbf{y},\mathbf{u}} \ \frac{1}{2} \|\mathbf{y} - \widehat{\mathbf{y}}\|_{L_{2}(\Omega)}^{2} + \frac{\beta}{2} \|\mathbf{u}\|_{L_{2}(\Omega)}^{2}$$

subject to

$$\mathcal{L} y = u$$
 in Ω , $y = \widehat{y}$ on $\partial \Omega$

where \mathcal{L} represents a partial differential operator

can also include:

bounds on the control (via a primal-dual active set strategy):

$$\underline{\mathbf{u}} \leq \mathbf{u} \leq \overline{\mathbf{u}}$$

(*Hintermueller, Ito & Kunisch (2002)*)

bounds on the state (via Moreau-Yoshida regularization):

$$\underline{\mathbf{y}} \leq \mathbf{y} \leq \overline{\mathbf{y}}$$

(*Herzog & Sachs (2009*))

also boundary control...

Simple sample problem: desirable \hat{y} , controlable body force u

$$\min_{\mathbf{y},\mathbf{u}} \frac{1}{2} \|\mathbf{y} - \hat{\mathbf{y}}\|_{L_{2}(\Omega)}^{2} + \frac{\beta}{2} \|\mathbf{u}\|_{L_{2}(\Omega)}^{2}$$

subject to

$$-\nabla^2 y = u$$
 in Ω , $y = \hat{y}$ on $\partial \Omega$

$$\begin{split} \min_{\mathbf{y},\mathbf{u}} \frac{1}{2} \|\mathbf{y} - \hat{\mathbf{y}}\|^2 + \frac{\beta}{2} \|\mathbf{u}\|^2 \\ \text{subject to} \quad -\nabla^2 \mathbf{y} = \mathbf{u} \quad \text{in } \Omega, \quad \mathbf{y} = \hat{\mathbf{y}} \quad \text{on } \partial\Omega \\ \text{Discretisation: finite elements} \\ \mathbf{y}_h &= \sum y_j \phi_j, \ y = (y_1, y_2, \dots, y_n)^T \\ \mathbf{u}_h &= \sum u_j \phi_j, \ u = (u_1, u_2, \dots, u_n)^T \end{split}$$

$$\min_{y,u} \; rac{1}{2} y^T M y + y^T b + rac{eta}{2} u^T M u$$

subject to $Ky = Mu + d$

$$M=\{m_{i,j}\}, m_{i,j}=\int_\Omega \phi_i \phi_j$$
 — mass matrix $K=\{k_{i,j}\}, k_{i,j}=\int_\Omega
abla \phi_i \cdot
abla \phi_j$ — stiffness matrix as before

so, Lagrangian:

$$rac{1}{2}y^TMy+y^Tb+rac{eta}{2}u^TMu+\lambda^T(Ky-Mu-d)$$

stationarity \Rightarrow Saddle point system

$$\left[egin{array}{ccc} M & 0 & K^T \ 0 & eta M & -M \ K & -M & 0 \end{array}
ight] \left[egin{array}{c} y \ u \ \lambda \end{array}
ight] = \left[egin{array}{c} -b \ 0 \ d \ d \end{array}
ight]$$

Note
$$B = \begin{bmatrix} K & -M \end{bmatrix}$$
 and $A = \begin{bmatrix} M & 0 \\ 0 & \beta M \end{bmatrix}$

in usual saddle point form

$$\left[egin{array}{cc} A & B^T \ B & 0 \end{array}
ight]$$

With bound constraints Lagrangian:

$$egin{aligned} \min_{y,u,\lambda} & rac{1}{2}y^TMy &+ y^Tb + rac{eta}{2}u^TMu + \lambda^T(Ky - Mu - d) \ &+ & \mu^T(\underline{u} - u) + \overline{\mu}^T(u - \overline{u}) \end{aligned}$$

with $\mu, \overline{\mu} \geq 0$ and the complimentarity conditions

$$\underline{\mu}^T(\underline{u}-u)=0=\overline{\mu}^T(u-\overline{u})$$

Recall $B = \begin{bmatrix} K & -M \end{bmatrix}$ and $A = \begin{bmatrix} M & 0 \\ 0 & \beta M \end{bmatrix}$ so \widehat{S} ? $S = BA^{-1}B^{T}$ (Schur Complement) $= \begin{bmatrix} K & -M \end{bmatrix} \begin{bmatrix} M^{-1} & 0 \\ 0 & \frac{1}{\beta}M^{-1} \end{bmatrix} \begin{bmatrix} K^{T} \\ -M \end{bmatrix}$ $= \frac{1}{\beta}M + KM^{-1}K^{T} = \frac{1}{\beta}M + S_{1}$

Recall
$$B = \begin{bmatrix} K & -M \end{bmatrix}$$
 and $A = \begin{bmatrix} M & 0 \\ 0 & \beta M \end{bmatrix}$
so \widehat{S} ? $S = BA^{-1}B^{T}$ (Schur Complement)
 $= \begin{bmatrix} K & -M \end{bmatrix} \begin{bmatrix} M^{-1} & 0 \\ 0 & \frac{1}{\beta}M^{-1} \end{bmatrix} \begin{bmatrix} K^{T} \\ -M \end{bmatrix}$
 $= \frac{1}{\beta}M + KM^{-1}K^{T} = \frac{1}{\beta}M + S_{1}$
 $= -\frac{2}{\sqrt{\beta}}K + \left(K + \frac{1}{\sqrt{\beta}}M\right)M^{-1}\left(K + \frac{1}{\sqrt{\beta}}M\right)^{T} = -\frac{2}{\sqrt{\beta}}K + S_{2}$

Eigenvalues:

$$\lambda(S_1^{-1}S) \in \left[1 + ch^4/eta, 1 + C/eta
ight], \quad \lambda(S_2^{-1}S) \in [1/2, 1]$$

So choose $\widehat{S} = S_1$ for all except small β or $\widehat{S} = S_2$ for all β

(Pearson & W (2010), Schoberl & Zulehner (2007))

Hence (with $\widehat{S} = S_1$) preconditioner for

$$\mathcal{A} = \left[egin{array}{cccc} M & 0 & K^T \ 0 & eta M & -M \ K & -M & 0 \end{array}
ight] ext{ is } \mathcal{P} = \left[egin{array}{cccc} M & 0 & 0 \ 0 & eta M & 0 \ 0 & 0 & KM^{-1}K^T \end{array}
ight]$$

Eigenvalues ν of $\mathcal{P}^{-1}\mathcal{A}$

 $egin{aligned} &
u &= 1, \ & rac{1}{2}\left(1+\sqrt{5+rac{2lpha_1h^4}{eta}}
ight) \leq &
u &\leq rac{1}{2}\left(1+\sqrt{5+rac{2lpha_2}{eta}}
ight) \ & ext{or} & rac{1}{2}\left(1-\sqrt{5+rac{2lpha_2}{eta}}
ight) \leq &
u &\leq rac{1}{2}\left(1-\sqrt{5+rac{2lpha_1h^4}{eta}}
ight), \end{aligned}$

where α_1 , α_2 are positive constants independent of *h*.

$$\mathcal{P} = \left[egin{array}{cccc} M & 0 & 0 \ 0 & eta M & 0 \ 0 & 0 & KM^{-1}K^T \end{array}
ight], \hspace{0.2cm} eta = 10^{-2}$$

But

$$\mathcal{P} = \left[egin{array}{cccc} M & 0 & 0 \ 0 & eta M & 0 \ 0 & 0 & KM^{-1}K^T \end{array}
ight]$$

still expensive to use in practice so employ approximations $\widehat{M} \simeq M$ and $\widehat{K} \simeq K$

giving

$$\mathcal{P} = \left[egin{array}{ccc} \widehat{M} & 0 & 0 \ 0 & eta \widehat{M} & 0 \ 0 & 0 & \widehat{K}M^{-1}\widehat{K^T} \end{array}
ight] = \left[egin{array}{ccc} \widehat{A} & 0 \ 0 & \widehat{S} \end{array}
ight]$$

Important subtlety:

 $\widehat{K} \simeq K$

does not imply that

$$\widehat{K}M^{-1}\widehat{K^T}\simeq KM^{-1}K^T$$

or indeed that

$\widehat{K}\widehat{K^T}\simeq KK^T$

without further conditions which are satisfied in this case (Braess & Peisker (1986))

$$\mathcal{P} = \left[egin{array}{ccc} \widehat{M} & 0 & 0 \ 0 & eta \widehat{M} & 0 \ 0 & 0 & \widehat{K}M^{-1}\widehat{K^T} \end{array}
ight] = \left[egin{array}{ccc} \widehat{A} & 0 \ 0 & \widehat{S} \end{array}
ight]$$

so \widehat{M} ?: $T_{20}(D^{-1}M)$ as before

For $\mathcal{L} = -\nabla^2$, *K* is a discrete Laplacian: use multigrid cycles as before

In our examples:

 \widehat{K} is the action of 2 V-cycles

 \widehat{M} is the action of 20 Chebyshev semi-iterative steps

Example problem: $\Omega = [0, 1]^d, d = 2, 3$

$$\min_{\mathbf{y},\mathbf{u}} \frac{1}{2} \|\mathbf{y} - \widehat{\mathbf{y}}\|_{L_{2}(\Omega)}^{2} + \frac{\beta}{2} \|\mathbf{u}\|_{L_{2}(\Omega)}^{2}$$

subject to

$$-
abla^2 \mathbf{y} = \mathbf{u}$$
 in Ω , $\mathbf{y} = \widehat{\mathbf{y}}$ on $\partial \Omega$

Q1 (bilinear) finite elements, $\beta = 10^{-2}$

 $\widehat{\mathbf{y}}$:

CPU times (MINRES iterations) in 2D, tol 10^{-6}

h	3n	backslash	MINRES	MINRES
			(\mathcal{P}_{AMG})	(\mathcal{P}_{MG})
2^{-2}	27	0.0003	0.02 (7)	0.13 (7)
2^{-3}	147	0.002	0.03 (9)	0.16 (9)
2^{-4}	675	0.01	0.05 (9)	0.21 (9)
2^{-5}	2883	0.08	0.14 (9)	0.41 (9)
2^{-6}	11907	0.46	0.61 (9)	1.29 (9)
2^{-7}	48387	3.10	2.61 (9)	5.09 (9)
2^{-8}	195075	15.5	15.0 (11)	23.6 (9)
2^{-9}	783363		75.6 (11)	136 (9)

CPU times (MINRES iterations) in 3D, tol 10^{-6}

h	3n	backslash	MINRES	MINRES
			(\mathcal{P}_{AMG})	(\mathcal{P}_{MG})
2^{-2}	81	0.001	0.02 (7)	0.14 (8)
2^{-3}	1029	0.013	0.13 (9)	0.26 (8)
2^{-4}	10125	25.1	1.89 (8)	1.69 (8)
2^{-5}	89373		22.1 (8)	15.9 (8)
2^{-6}	750141			230 (10)

CPU times (MINRES iterations) in 3D, tol 10^{-6}

h	3n	backslash	MINRES	MINRES
			(\mathcal{P}_{AMG})	(\mathcal{P}_{MG})
2^{-2}	81	0.001	0.02 (7)	0.14 (8)
2^{-3}	1029	0.013	0.13 (9)	0.26 (8)
2^{-4}	10125	25.1	1.89 (8)	1.69 (8)
2^{-5}	89373		22.1 (8)	15.9 (8)
2^{-6}	750141			230 (10)

	Approximation $S = S_1$			Approximation $S = S_2$				
	$oldsymbol{eta}$			$oldsymbol{eta}$				
h	10^{-1}	10^{-3}	10^{-5}	10^{-7}	10^{-1}	10^{-3}	10^{-5}	10^{-7}
2^{-2}	8	12	26	28	10	14	_	_
2^{-3}	8	12	42	130	10	16	14	—
2^{-4}	8	12	48	272	12	17	15	13
2^{-5}	10	14	49	341	12	18	16	16

With bound constraints: an active set strategy (or projected gradient) \Rightarrow an outer nonlinear loop

MINRES solution: Number of AMG V-cycles for Laplacian in 2D, tol 10^{-6}

h	3n	PDE	Unconstrained	Bound-constrained
		solve	Control prob	Control prob
2^{-2}	27	4	40	68(2)
2^{-3}	147	4	40	104(3)
2^{-4}	675	4	40	160(4)
2^{-5}	2883	6	40	160(4)
2^{-6}	11907	6	44	180(4)
2^{-7}	48387	6	48	240(5)
2^{-8}	195075	6	48	280(5)
2^{-9}	783363	6	56	320(5)

energy: unconstrained $\searrow 1.483 \times 10^{-3}$ bound constrained $\searrow 1.732 \times 10^{-3}$

State:

Control:

State constraints

State:

Control:

Stokes Control

$$\min_{\mathbf{y},\mathbf{p},\mathbf{u}} \frac{1}{2} \|\vec{\mathbf{y}} - \hat{\mathbf{y}}\|_{L^{2}(\Omega)}^{2} + \frac{1}{2} \|\mathbf{p} - \hat{\mathbf{p}}\|_{L^{2}(\Omega)}^{2} + \frac{\beta}{2} \|\mathbf{u}\|_{L^{2}(\Omega)}^{2}$$

subject to
$$-\nabla^2 \vec{y} + \nabla p = u$$

 $\nabla \cdot \vec{y} = 0$

 \vec{y} : velocity, p: pressure.

Mixed finite elements for (forward) Stokes problem:

$$\begin{bmatrix} \underline{K} & B^T \\ \overline{B} & 0 \end{bmatrix} \begin{bmatrix} y \\ p \end{bmatrix} = \begin{bmatrix} u \\ g \end{bmatrix}, \ \underline{K} = \begin{bmatrix} K & 0 \\ 0 & K \end{bmatrix} \text{ in } \mathbb{R}^2$$

Cost functional

$$rac{1}{2}y^TM_yy-y^Tb+rac{1}{2}p^TM_pp-p^Td+rac{eta}{2}u^TM_uu$$

combined with constraint via the Lagrangian \Rightarrow

٠

Schur Complement:

$$\left[\begin{array}{cc} \frac{K}{B} & B^T \\ \overline{B} & 0 \end{array}\right] \left[\begin{array}{cc} M_y^{-1} & 0 \\ 0 & M_p^{-1} \end{array}\right] \left[\begin{array}{cc} \frac{K}{B} & B^T \\ \overline{B} & 0 \end{array}\right] + \frac{1}{\beta} M_u$$

and again ignore 2nd term for moderate β (or use S_2 ?)

So overall block diagonal preconditioner requires:

$$\widehat{M_y}, \widehat{M_p}, \widehat{M_u}
ightarrow extsf{Chebyshev}$$

and 2 Stokes approximations

Stokes preconditioners:

$$\begin{bmatrix} \widehat{\underline{K}} & B^T \\ \overline{B} & 0 \end{bmatrix} = \begin{bmatrix} \widehat{\underline{K}} & 0 \\ B & \widehat{M_p} \end{bmatrix}$$

and

$$\left[egin{array}{cc} \widehat{K} & B^T \ \overline{B} & 0 \end{array}
ight] = \left[egin{array}{cc} \widehat{K} & B^T \ 0 & \widehat{M_p} \end{array}
ight]$$

on left and right respectively where \underline{K} is multigrid cycles for each discrete scalar Laplacian as before (*Silvester & W (1993), Klawonn (1998), Elman, Silvester & W (2005)*)

Gives symmetric Schur complement approximation

Here: Q2-Q1 mixed finite elements for cavity flow
4 AMG V-cycles to approx each K
20 Chebyshev semi-iterations for each M

h	Iterations	CPU time (s)
2^{-2} (344)	26	0.48
2 ⁻³ (1,512)	31	1.05
2^{-4} (6,344)	33	3.69
2^{-5} (25,992)	33	18.0
2 ⁻⁶ (105,224)	34	84.2
2 ⁻⁷ (423,432)	34	342

recall: 29 MINRES iterations for forward Stokes solve (but only 1 AMG V-cycle) \Rightarrow approx 10 times more work to solve the control problem than a single PDE solve.

Time-dependent problems

$$\frac{1}{2} \int_0^T \int_{\Omega_1} \left(y(\mathbf{x}, t) - \bar{y}(\mathbf{x}, t) \right)^2 dx dt + \frac{\beta}{2} \int_0^T \int_{\Omega_2} \left(u(\mathbf{x}, t) \right)^2 dx dt$$

subject to

$$y_t - \nabla^2 y = u$$
 in $\Omega \times [0, T]$

with boundary conditions y = 0 on $\partial \Omega$ and initial condition $y(x, 0) = y_0(x)$.

Adjoint PDE:

$$-p_t - \nabla^2 p = y - \bar{y}$$

with p = 0 on $\partial \Omega$, $p(x, T) = y(x, T) - \overline{y}(x, T)$.

Backwards Euler in time, Galerkin finite elements in space

Main issue now is that differential operator is <u>K</u> where all time step values $y_1, y_2, \dots y_N$ are involved:

$$\begin{bmatrix} \underline{M} & 0 & -\underline{K}^T \\ 0 & \beta \underline{M} & \underline{M} \\ -\underline{K} & \underline{M} & 0 \end{bmatrix} \begin{bmatrix} \mathbf{y} \\ \mathbf{u} \\ \mathbf{p} \end{bmatrix} = \begin{bmatrix} \underline{M} \mathbf{y} \\ 0 \\ d \end{bmatrix}$$

is an even larger system, but similar ideas go through...

Desired state

State at t = 1 Control at t = 1

References

Rees, T., Dollar, H.S. & Wathen, A.J., 'Optimal solvers for PDE-constrained Optimization', SISC (2010)

Rees, T. & Wathen, A.J., 'Preconditioned iterative solvers for the optimal control of the Stokes equations', Oxford NA Report 10/04.

Stoll, M. & Wathen, A.J., 'All-at once solution of time-dependent PDE-constrained Optimization problems', Oxford NA Report 10/13

Murphy, M.F., Golub, G.H. & Wathen, A.J., 'A note on preconditioning for indefinite linear systems', SISC (2000)

Pearson, J.W. & Wathen, A.J., 'A new approximation of the Schur complement in preconditioners for PDE-constrained Optimization', Oxford NA report 10/14

Wathen, A.J. & Rees, T., 2009, 'Chebyshev semi-iteration in preconditioning', Victor Pereyra special issue of ETNA.

Benzi, M, Golub, G.H. & Liesen, J., 2005, 'Numerical Solution of Saddle Point Problems', Acta Numerica 2005. Warwick, 2011 – p.43/44

Acknowledgements

This work is partially supported by Award No. KUK-C1-013-04 made by King Abdullah University of Science and Technology (KAUST)