On "complexity" of probability preserving transformations.

Jon. Aaronson (TAU)

Ergodic Theory and Dynamical Systems 30th anniversary of the journal
U. of Warwick

September 2010

0 . Entropy and complexity

For (X, \mathcal{B}, m, T) a probability preserving transformation, $P \subset \mathcal{B}$ a finite partition, the entropy of the process (T, P) is

- $h(T, P):=\lim _{n \rightarrow \infty} \frac{1}{n} H\left(P_{n}\right)$
where $P_{n}:=\bigvee_{j=0}^{n-1} T^{-j} P$ \& $H(Q):=-\sum_{A \in Q} m(A) \log m(A)$. The entropy of the probability preserving transformation T is
- $h(T):=\sup _{P \text { finite }} h(T, P)$.
© (Kolmogorov-Sinai) If P generates \mathcal{B} under T, then $h(T)=h(T, P)$.
- Would like a "complexity sequence" a_{n} so that $a_{n}=e^{n h(T)(1+o(1))}$ when $0<h(T)<\infty$ and which also measures "complexity" when $h(T)=0$.
NB When $0<h(T)<\infty, a_{n}:=H\left(P_{n}\right)$ for P any finite, generator works, but not when $h(T)=0$.

1. Hamming balls and complexity

For (X, \mathcal{B}, m, T) a probability preserving transformation, $P \subset \mathcal{B}$ a countable partition, $n \geq 1$ define the $P-n$ Hamming pseudo metric on X :

$$
d_{n}^{(P)}(x, y):=\frac{1}{n} \#\left\{0 \leq k \leq n-1: P\left(T^{k} x\right) \neq P\left(T^{k} y\right)\right\}
$$

where $z \in P(z) \in P$; and the $P-n$ Hamming balls

$$
B(n, P, z, \epsilon):=\left\{x \in X: d_{n}^{(P)}(x, z) \leq \epsilon\right\} \in \sigma\left(P_{n}\right) .
$$

For $P \in \mathfrak{P}$, the complexity of T with respect to P is the collection $\{K(P, n, \epsilon)\}_{n \geq 1, ~}$ $>0 \subset \mathbb{N}$ defined by $K(P, n, \epsilon):=\min \left\{\# F: F \subset X, m\left(\bigcup_{z \in F} B(n, P, z, \epsilon)\right)>1-\epsilon\right\}$.
Call a_{n} a complexity sequence for T if

$$
\frac{\log K(P, n, \epsilon)}{a_{n}} \underset{n \rightarrow \infty, \epsilon \rightarrow 0}{\longrightarrow} 1 \quad \forall \text { generators } P
$$

2. Complexity basics

『1 (monotonicity) $K(P, n, \epsilon) \uparrow$ as $P, n \uparrow \& \epsilon \downarrow$.
T2 (stability) For $k \geq 1, \epsilon>0$ and large $n \geq 1$:

$$
K\left(P_{k}, n, 2 \epsilon\right) \leq K\left(P, n, \frac{\epsilon}{k}\right) \leq K\left(P_{k}, n, \frac{\epsilon}{2}\right) .
$$

ब3 (continuity) Let
$P=\left\{P_{n}\right\}_{n \geq 1}, Q=\left\{Q_{n}\right\}_{n \geq 1} \in \mathfrak{P}:=\{$ ordered partitions $\}$ with $\sum_{n \geq 1} m\left(P_{n} \Delta Q_{n}\right)<\delta$, then $\exists N$ such that $\forall n \geq N, \epsilon>0$

$$
K(Q, n, \epsilon) \leq K(P, n, 2 \epsilon+2 \delta)
$$

T4 (compactness) For any $P \in \mathfrak{P}, d_{k}>0, n_{k} \rightarrow \infty, \exists k_{\ell} \rightarrow \infty$ and $Y \in[0, \infty]$ such that

$$
\frac{K\left(P, n_{k_{\ell}}, \epsilon\right)}{d_{k_{\ell}}} \underset{\ell \rightarrow \infty, \epsilon \rightarrow 0}{\longrightarrow} Y
$$

3. Complexity sequences when $0<h(T)<\infty$.

Let (X, \mathcal{B}, m, T) be a probability preserving transformation with $0<h(T)<\infty$, then $h(T) n$ is a complexity sequence for T.

This follows from
Theorem(Blume, Ferenczi, Katok, Thouvenot) For a finite $P \in \mathfrak{P}$,

$$
\frac{1}{n} \log K(P, n, \epsilon)_{n \rightarrow \infty, \epsilon \rightarrow 0}^{\longrightarrow} h(T, P) .
$$

4. Proof of (\star)

$$
\begin{gathered}
\text { Set } \Phi_{n, \epsilon}:=\min \left\{|F|: F \subset P_{n}, m\left(\bigcup_{a \in F} a\right)>1-\epsilon,\right. \\
\mathcal{Q}(P, n, \epsilon):=\max \left\{\#\left\{c \in P_{n}: d_{n}(a, c) \leq \epsilon\right\}: \quad a \in P_{n}\right\}
\end{gathered}
$$

where d_{n} is Hamming distance on P_{n} then

$$
\frac{\Phi_{n, \epsilon}^{\mathcal{Q}(P, n, \epsilon)}}{} \leq K^{(T)}(P, n, \epsilon) \leq \Phi_{n, \epsilon}
$$

By SMB $\frac{1}{n} \log _{2} \Phi_{n, \epsilon} \underset{n \rightarrow \infty, \epsilon \rightarrow 0}{\longrightarrow} h(T, P)$.

$$
\text { and } \frac{1}{n} \log \mathcal{Q}(P, n, \epsilon) \leq \frac{1}{n} \log \left(|P|^{\epsilon n}\binom{n}{\epsilon n}\right) \underset{n \rightarrow \infty, \epsilon \rightarrow 0}{\longrightarrow} 0 . \not \square
$$

5. Examples

T1 Finite complexity theorem (Ferenczi '97) T has finite complexity in the sense that

$$
\frac{K(P, n, \epsilon)}{a(n)} \underset{n \rightarrow \infty, \epsilon \rightarrow 0}{\longrightarrow} 0 \forall P \in \mathfrak{P}, a(n) \rightarrow \infty
$$

iff T has discrete spectrum. cf Kushnirenko '66, Ratner '71
\therefore no complexity sequence for nontrivial discrete spectrum \because
$K(P, n, \epsilon) \underset{n \rightarrow \infty, \epsilon \rightarrow 0}{\longrightarrow} \infty$ for generating P.
【2 Complexity of Chacon transformation(Ferenczi '97) If
$P \in \mathfrak{P}$ is a generator, then $\frac{K(P, n, \epsilon)}{2 n} \underset{n \rightarrow \infty, \epsilon \rightarrow 0}{\longrightarrow} 1$.

- 3 Positive entropy dimension (Ferenczi-Park '07)
$\forall \alpha \in(0,1), \exists$ an ergodic, probability preserving transformation with $K(P, n, \epsilon)=\exp \left[n^{\alpha(1+o(1))}\right]$ as $n \rightarrow \infty, \epsilon \rightarrow 0$.

6. Relative Complexity

For $\mathcal{C} \subset \mathcal{B}$ a factor and $P \in \mathfrak{P}$, the relative complexity of T with respect to P given \mathcal{C} is the collection
$\left\{K_{\mathcal{C}}(P, n, \epsilon)\right\}_{n \geq 1, \epsilon>0}$ of \mathcal{C}-measurable random variables defined by
$K_{\mathcal{C}}(P, n, \epsilon)(x):=\min \left\{\# F: F \subset X, m\left(\bigcup_{z \in F} B(n, P, z, \epsilon) \| \mathcal{C}\right)(x)>1-\epsilon\right\}$
where $m(\cdot \| \mathcal{C})$ denotes conditional measure with respect to \mathcal{C}. As before,

$$
\frac{1}{n} \log K_{\mathcal{C}}(P, n, \epsilon) \underset{n \rightarrow \infty, \epsilon \rightarrow 0}{\stackrel{m}{\longrightarrow}} h(T, P \| \mathcal{C})
$$

where \xrightarrow{m} denotes convergence in measure and $h(T, P \| \mathcal{C})$ denotes the relative entropy of the process (P, T) with respect to \mathcal{C}.

7. Relative complexity basics

【1. Distributional compactness

- $\forall P \in \mathfrak{P}, d_{k}>0, n_{k} \rightarrow \infty, \exists k_{\ell} \rightarrow \infty$ and a random variable Y on $[0, \infty]$ such that

$$
\begin{equation*}
\frac{\log K_{\mathcal{C}}\left(P, n_{k_{\ell}}, \epsilon\right)}{d_{k_{\ell}}} \underset{\ell \rightarrow \infty, \epsilon \rightarrow 0}{\stackrel{\mathcal{D}}{\longrightarrow}} Y \tag{a}
\end{equation*}
$$

where $\xrightarrow{\mathfrak{d}}$ denotes convergence in distribution.

- 2 2. Generator theorem
- If \exists a countable T-generator P satisfying

$$
\frac{\log K_{\mathcal{C}}\left(P, n_{k}, \epsilon\right)}{d_{k}} \underset{k \rightarrow \infty, \epsilon \rightarrow 0}{\stackrel{\mathcal{D}}{\longrightarrow}} Y
$$

where Y is a random variable on $[0, \infty]$, then

$$
\begin{gather*}
\frac{\log K_{\mathcal{C}}\left(Q, n_{k}, \epsilon\right)}{d_{k}} \underset{k \rightarrow \infty, \epsilon \rightarrow 0}{\stackrel{\mathcal{O}}{\infty}} Y \forall T \text {-generators } Q \in \mathfrak{P} \tag{■}\\
\text { Abbreviation: (ص) } \Longleftrightarrow \frac{1}{d_{k}} \log K_{\mathcal{C}}^{(T)}\left(n_{k}\right) \approx Y .
\end{gather*}
$$

8. Relative entropy dimension

Let (X, \mathcal{B}, m, T) be a ppt, let $\mathcal{C} \subset \mathcal{B}$ be a factor and let $\mathcal{K}=\left\{n_{k}\right\}_{k}, n_{k} \rightarrow \infty$.

- Upper relative entropy dimension of T with respect to \mathcal{C} along \mathcal{K} is

$$
\overline{\mathrm{E}-\operatorname{dim}}_{\mathcal{K}}(T, \mathcal{C}):=\inf \left\{t \geq 0: \underset{\log ^{\log \left(P, n_{k}, \epsilon\right)}}{n_{k}^{k}} \underset{k \rightarrow \infty, \epsilon \rightarrow 0}{\stackrel{m}{\longrightarrow}} 0 \forall P \in \mathfrak{P}\right\} .
$$

- Lower relative entropy dimension of T with respect to \mathcal{C} along \mathcal{K} is
$\underline{\mathrm{E}-\operatorname{dim} \mathcal{K}}(T, \mathcal{C}):=\sup \left\{t \geq 0: \exists P \in \mathfrak{P}, \frac{\log K\left(P, n_{k}, \epsilon\right)}{n_{k}^{t}} \underset{k \rightarrow \infty, \epsilon \rightarrow 0}{m} \infty\right\}$.

ब If \exists a countable T-generator P satisfying
$\frac{1}{d_{k}} \log K_{\mathcal{C}}\left(P, n_{k}, \epsilon\right) \underset{k \rightarrow \infty, \epsilon \rightarrow 0}{\mathcal{O}} Y$, where Y is a rv on $(0, \infty)$, then
9. Relative isomorphism

Let $f_{i}=\left(x_{i}, B_{i}, m_{i}, T_{i}\right)(i=1,2)$ be ppts with Factors $b_{i} \subseteq B_{i}$. The pets $\mathscr{F}_{1}, \mathcal{F}_{2}$ are relatively isomorphic over b_{1}, b_{2} if \exists a isomorphism $\pi: x_{1} \rightarrow f_{2}$ with $\pi b_{1}=b_{2}$.
Corollary In this case,

$$
\frac{1}{d_{k}} k_{b_{1}}^{\left(T_{1}\right)}\left(n_{k}\right) \approx y \Leftrightarrow \frac{1}{d_{k}} k_{b_{2}}^{\left(T_{2}\right)}\left(n_{k}\right) \approx y .
$$

10. Definition of RWRS

Ingredients:

- (•••, $\left.\xi_{-1}, \xi_{0}, \xi_{1}, \cdots \cdots\right)$ üdrVs on \mathbb{Z},
- $S_{n}=\sum_{k=0}^{n-1} \xi_{k}$, the random walk,
- $\Omega:=\mathbb{Z}^{\mathbb{Z}}, \mu:=$ Idist $\xi, \quad R=$ leftstaft on Ω
- (Y, b, ν, S) ppt aka the scenery prouss RWRS is the ppt (X, ξ, m, T) where $X:=\Omega \times Y \quad m:=\mu \times \nu, \quad T(x, y):=\left(R_{x}, S^{x_{\varepsilon}} y\right)$

11. Relative entropy of RWRS over its base

【Suppose the RWRS T has scenery S, and that the random walk is aperiodic and recurrent, then $h(T \|$ base $)=0$.
Proof Fix a finite scenery partition β and let $P(x, y):=\alpha(x) \times \beta(y)$ where $\alpha(x):=\left[x_{0}\right]$, then

$$
P_{0}^{n-1}(T)(x, y)=\alpha_{0}^{n-1}(R)(x) \times \beta_{V_{n}(x)}(y)
$$

where $V_{n}(x):=\left\{s_{k}(x):=x_{1}+x_{2}+\cdots+x_{k}\right\}_{k=0}^{n-1}$.
By Spitzer's theorem, $E\left(\# V_{n}\right)=o(n)$, so
$h((T, P) \|$ base $) \leftarrow \frac{1}{n} I\left(P_{0}^{n-1}(T) \|\right.$ base $)(x) \leq \frac{1}{n} H(\beta) \# V_{n}(x) \longrightarrow 0$.

12. α-stability and random walks

Let $0<\alpha<2$. The random variable Y_{α} has standard symmetric α-stable $(\mathrm{S} \alpha \mathrm{S})$ distribution if $E\left(e^{i t Y_{\alpha}}\right)=e^{-\frac{\mid t \alpha^{\alpha}}{\alpha}}$.
For $1<\alpha \leq 2, E\left(\left|Y_{\alpha}\right|\right)<\infty \& E\left(Y_{\alpha}\right)=0$.

- The $S \alpha S$ process is a random variable B_{α} on $D([0,1]):=\{$ CADLAG functions $\}$ with independent, $\mathrm{S} \alpha \mathrm{S}$ increments.
- B_{2} is aka Brownian motion.
- The \mathbb{Z}-valued random walk is called:
- aperiodic if $E\left(e^{i t \xi}\right)=1 \quad \Longleftrightarrow \quad t \in 2 \pi \mathbb{Z}$;
$-\alpha$-stable if $\exists a(n)$ such that $\frac{1}{a(n)} S_{n} \xrightarrow[n \rightarrow \infty]{0} Y_{\alpha}$.
The $a(n)$ are aka the normalizing constants of the random walk and are regularly varying with index $\frac{1}{\alpha}$.

13. Asymptotic complexity of aperiodic, α-stable RWRS

Theorem 2 Suppose that $(Z, \mathcal{B}(Z), m, T)$ RWRS with α-stable, aperiodic jumps ($\alpha>1$), ergodic scenery $(Y, \mathcal{C}, \nu, S), \quad 0<h(S)<\infty$, then

$$
\begin{gather*}
\frac{1}{a(n)} \log K_{\mathcal{B}(\Omega) \times Y}^{(T)}(n) \approx \operatorname{Leb}\left(B_{\alpha}([0,1])\right) \cdot h \tag{1}\\
\mathrm{E}-\operatorname{dim}_{\mathbb{N}}(T, \mathcal{B}(\Omega) \times Y)=\frac{1}{\alpha} . \tag{2}
\end{gather*}
$$

Corollary Suppose RWRSs $\left(Z_{i}, \mathcal{B}_{i}, m_{i}, T_{i}\right)(i=1,2)$ are relatively isomorphic over their bases.
If $\left(Z_{1}, \mathcal{B}_{1}, m_{1}, T_{1}\right)$ has α-stable jumps, pos. finite scenery entropy, then so does $\left(Z_{2}, \mathcal{B}_{2}, m_{2}, T_{2}\right)$ and

$$
a_{\xi^{(2)}}(n) h\left(S^{(2)}\right) \underset{n \rightarrow \infty}{\sim} a_{\xi^{(1)}}(n) h\left(S^{(1)}\right)
$$

14. Proof of theorem 2

Define $P \in \mathfrak{P}(Z, \mathcal{B}, m)$ by $P(x, y):=\alpha(x) \times \beta(y)$ where $\alpha(x):=\left[x_{0}\right], \beta \in \mathfrak{P}(Y, \mathcal{C}, \mu)$ finite, S-generator.

Recall $\Pi_{n}(x):=\left\{a \in P_{0}^{n-1}(T): m(a \| \mathcal{B}(\Omega) \times Y)(x)>0\right\} ;$
$\Phi_{n, \epsilon}(x):=\min \left\{\# F: F \subset \Pi_{n}(x): m\left(\bigcup_{a \in F} a \| \mathcal{B}(\Omega) \times Y\right)(x)>1-\epsilon\right\} ;$
$\mathcal{Q}(P, n, \epsilon)(x):=\max \left\{\#\left\{c \in \Pi_{n}(x): d_{n}^{(P)}(a, c) \leq \epsilon\right\}: \quad a \in \Pi_{n}(x)\right\}$ where $d_{n}^{(P)}$ is (n, P)-Hamming distance on $P_{0}^{n-1}(T)$ then \cdots

15. Proof strategy

$$
\frac{\Phi_{n, \epsilon}(x)}{\mathcal{Q}(P, n, \epsilon)(x)} \leq K_{\mathcal{B}(\Omega) \times Y}^{(\mathcal{T})}(P, n, \epsilon)(x) \leq \Phi_{n, \epsilon}(x) .
$$

We prove

$$
\begin{equation*}
\frac{1}{a(n)} \log _{2} \Phi_{n, \epsilon} \xrightarrow[n \rightarrow \infty, \epsilon \rightarrow 0]{\mathfrak{O}} \operatorname{Leb}\left(B_{\alpha}([0,1])\right) h(S) \tag{1}
\end{equation*}
$$

and

$$
\frac{1}{a(n)} \log _{2} \mathcal{Q}(P, n, \epsilon) \underset{n \rightarrow \infty, \epsilon \rightarrow 0}{\stackrel{m}{\longrightarrow}} 0
$$

16. Proof sketch of

This uses SMB along F \varnothing lner sets and the functional CLT, for α-stable, random walk $S_{n}=\sum_{k=1}^{n} \xi_{k}$:
$B_{\xi, n} \xrightarrow{\mathfrak{J}} B_{\alpha}$ in $D([0,1])$ where $B_{\xi, n}(t):=\frac{1}{a_{\xi}(n)} S_{[n t]}$ and $a_{\xi}(n)$ are the normalizing constants.

$$
\therefore \frac{1}{a(n)} V_{n} \xrightarrow{\mathfrak{O}} \overline{B_{\alpha}([0,1])} \text { in } \mathcal{H}:=\{\text { compact sets in } \mathbb{R}\} .
$$

Now a.s. $B_{\alpha}([0,1])$ is Riemann integrable so can approx. V_{n} by sets of form $(a(n) F) \cap \mathbb{Z}$ with F finite union of intervals which latter are Følner sets. \therefore

$$
\frac{1}{a(n)} I\left(P_{0}^{n-1}(T) \| \mathcal{B}(\Omega) \times Y\right)(x, y)=\frac{1}{a(n)} I\left(\beta_{V_{n}(x)}\right)(y) \xrightarrow{\mathfrak{O}} \operatorname{Leb}\left(B_{\alpha}([0,1])\right)
$$

whence 9 .

17. Proof of $\wedge \stackrel{\wedge}{\Delta}$ needs local time

For $1<\alpha \leq 2$, local time at $x \in \mathbb{R}$ of $\mathrm{S} \alpha \mathrm{S}$ process B_{α} defined by

$$
\mathfrak{t}_{\alpha}(t, x):=\lim _{\epsilon \rightarrow 0+} \frac{1}{2 \epsilon} \int_{0}^{t} 1_{[x-\epsilon, x+\epsilon]}\left(B_{\alpha}(s)\right) d s
$$

- Boyland: a.s., $\mathfrak{t}_{\alpha} \in C_{0}([0,1] \times \mathbb{R})$.
- Eisenbaum-Kaspi: a.s. $\mathfrak{t}_{\alpha}(1, x)>0$ for Leb-a.e. $x \in B_{\alpha}([0,1])$.

18. Local time of α-stable rw:

$$
N_{n, k}:=\#\left\{1 \leq j \leq n: S_{j}=k\right\} .
$$

Interpolated local time of rw:
$N_{n} \in C_{0}(\mathbb{R})$ defined by $N_{n}(t):=(\lceil t\rceil-t) N_{n,\lfloor t\rfloor}+(t-\lfloor t\rfloor) N_{n,\lceil t\rceil}$.
() Functional CLT for local time ([Borodin]):

$$
\left(B_{n}, \mathfrak{t}_{n}\right) \xrightarrow[n \rightarrow \infty]{0}\left(B_{\alpha}(\cdot), \mathfrak{t}_{\alpha}(1, \cdot)\right) \text { in } D([0,1]) \times C_{0}(\mathbb{R})
$$

where $B_{n}(t):=\frac{1}{a(n)} S_{n} \& \mathfrak{t}_{n}(x):=\frac{a(n)}{n} N_{n}(a(n) x)$.
() Corollary: For $E \subset \mathbb{R}$ a finite union of closed, bounded intervals,

$$
Y_{E, n}:=\frac{a_{\xi}(n)}{n} \min _{k \in a_{\xi}(n) E} N_{n, k}=\min _{x \in E} N_{n}(x) \underset{n \rightarrow \infty}{\underset{\rightarrow}{0}} \min _{x \in E} \mathfrak{t}_{\alpha}(1, x)=: \mathfrak{m}_{E} .
$$

19. Vague idea of proof of

Fix $\epsilon>0$.
$\llbracket 1$ For a large set of $x \in \Omega, \exists E, F \subset \mathbb{R}$, finite unions of intervals with Leb $(F \backslash E)<\epsilon$ such that $a(n) E \cap \mathbb{Z} \subset V_{n}(x) \subset a(n) F \cap \mathbb{Z}$ and $Y_{E, n}(x)>0$.
T2 For such x and large $n, a \in \Pi_{n}(x)$ is of form

$$
a=\left(x_{0}^{n-1}, w\right):=\left[x_{0}^{n-1}\right] \times \bigvee_{j \in V_{n}(x)} S^{-j} w_{j} \quad\left(w_{j} \in \beta\right)
$$

【3 For such $n, x, \quad a=\left(x_{0}^{n-1}, w\right), a^{\prime}=\left(x_{0}^{n-1}, w^{\prime}\right) \in \Pi_{n}(x)$, $\#\left\{j \in V_{n}(x): w_{j} \neq w_{j}^{\prime}\right\} \leq a(n)\left(\epsilon+\frac{d_{n}^{(P)}\left(a, a^{\prime}\right)}{Y_{E, n}(x)}\right)$.

- i.e., for $a=\left(x_{0}^{n-1}, w\right), \mathcal{E}>0$,
$\rho_{n, x}-\operatorname{diam}\left(B(n, P, a, \mathcal{E}) \cap \Pi_{n}(x)\right) \leq \Delta$ where
$\rho_{n, x}\left(\left(x_{0}^{n-1}, w\right),\left(x_{0}^{n-1}, w^{\prime}\right)\right):=\frac{1}{a(n)} \#\left\{j \in V_{n}(x): w_{j} \neq w_{j}^{\prime}\right\} \& \Delta=$ $\epsilon+\frac{2 \mathcal{E}}{Y_{E, n}(x)}$. As in the proof of \star,
T4 $\frac{1}{a(n)} \log \mathcal{Q}(P, n, \delta)(x) \leq \frac{1}{a(n)} \log \left(|P|^{\Delta a(n)}\binom{|a(n) F|}{\Delta a(n)}\right) \rightsquigarrow 0 . \not \square$

20. Problems

-1 Theorem 2 does not apply to 1-dimensional RWRS whose jump random variables are 1-stable or to 2-dimensional random walks whose jump random variables are centered and in the domain of attraction of standard normal distribution on \mathbb{R}^{2}.

- Is it true that in both cases $\mathrm{E}-\operatorname{dim}_{\mathcal{K}}(T, \mathcal{C})=1$?
- 22 What about RWRS's with the random walk non-lattice?

『3 What about "smooth RWRS's"?

Thank you for listening.

