
Invariant Forms, Pressure and Rigidity for Anosov
Flows

Patrick Foulon (Université de Strasbourg) Forms, Pressure and Rigidity for Anosov Flows 2010 1 / 29



Anosov Flows

An Anosov flow on a manifold M is a smooth flow ϕt with
I an invariant decomposition TM = X⊕ Eu ⊕ Es (where X = ϕ̇ 6= 0 is the

generator of the flow and Eu and Es are called the unstable and stable
subbundles) and

I a Riemannian metric on M such that Dϕt
�Es and Dϕ−t

�Eu are contractions
whenever t > 0.

The canonical 1-form A of an Anosov flow ϕt is defined by A(X) = 1 and
Eu, Es ⊂ ker A.
A canonical time-change is defined using a closed 1-form α by replacing the
generator X of the flow by the vector field X/(1 + α(X)), provided α is
such that the denominator is positive.
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Local Charts

Lemma
There exist local coordinates adapted to the invariant laminations, coordinate
systems Ψ : M× (−ε, ε)2n+1 → M such that ΨpΨ(p, ·) satisfies

Ψp is a Ck-diffeomorphism onto a neighborhood of p for every p ∈ M.

Ψp depends continuously/Hölder-continuously/Zygmund-continuously
on p if the strong stable and unstable laminations do.
Ψp preserves volume for each p ∈ M ; if ϕt is transversely symplectic then
Ψp sends the standard symplectic structure to the one on transversals in
M.
Ψp(0) = p.

Ψp((−ε, ε)n × {0} × {0}) = Wu
loc(p) ∩Ψp((−ε, ε)2n+1).

Ψ−1
p (ϕδ(Ψp(u, t, s))) = (u, t + δ, s) for |δ| < ε.

Ψp({0} × {0} × (−ε, ε)n) = Ws
loc(p) ∩Ψp((−ε, ε)2n+1).
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Longitudinal KAM cocycle
F - Hasselblatt Israel J. Math. (2003)

Geometric description

Theorem
Let M be a 3-manifold, k ≥ 2, ϕ : R×M→ M a Ck volume-preserving Anosov flow.
Then Eu ⊕ Es is Zygmund-regular, and there is an obstruction to higher regularity
that can be described geometrically as the curvature of the image of a transversal
under a return map. This obstruction defines the cohomology class of a cocycle (the
longitudinal KAM-cocycle), and the following are equivalent :

I Eu ⊕ Es is “little Zygmund”.
The longitudinal KAM-cocycle is a coboundary.
Eu ⊕ Es is Lipschitz-continuous.
Eu ⊕ Es ∈ Ck−1.
ϕ is a suspension or contact flow.

I I I I No stronger rigidity should be expected because Eu ⊕ Es is smooth for all
suspensions and contact flows.
Paternain,Dairbekov-Paternain for applications of this to magnetic flows.
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Longitudinal KAM cocycle, higher dimensions
Fang - Foulon- Hasselblatt JMD 2010

Let ϕ be a C∞ flow on a closed manifold M. Denote by X the generating
vector field of ϕ. The flow ϕ is said to be transversely symplectic if there
exists a C∞ closed 2-form ω on M such that Kerω = RX. The closed
2-form ω is said to be the transverse symplectic form of ϕ. It is easy to see
that ω is ϕ-invariant.

Geodesic flows
Contact Anosov flows
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Longitudinal KAM cocycle, higher dimensions

Magnetic flows are important examples of transversely symplectic flows
and are constructed as follows :

Let (N, g) be a closed C∞ Riemannian manifold and Ω a C∞ closed
2-form of N. Let α denote the C∞ 1-form on TN obtained by pulling back
the Liouville 1-form of T∗N via the Riemannian metric. For λ ∈ R, the
twisted symplectic structure ωλ is defined as

ωλ = dα− λπ∗Ω,

where π : TN → N
denotes the canonical projection. Let H : TN → R be the Hamiltonian
function defined as

H(v) =
1
2

g(v, v)

for any v ∈ TN. The energy level H−1(
1
2
) is the unit sphere bundle SN.

Let ϕλ be the restriction to SN of the Hamiltonian flow of H with respect
to ωλ.
ϕλ is a transversely symplectic flow with respect to ωλ |SN, which is said
to be the magnetic flow of the pair (g, λΩ).
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Longitudinal KAM cocycle, higher dimensions

An Anosov flow is said to be uniformly quasiconformal if

Ki(x, t) :=
‖dϕt
�Ei
‖

‖dϕt
�Ei
‖∗ (1)

is bounded on {u, s} ×M×R, where ‖A‖∗ := min
‖v‖=1

‖Av‖ is the conorm of

a linear map A.
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Longitudinal KAM cocycle, higher dimensions

Theorem (Fang)
Let M be a compact Riemannian manifold and ϕ : R×M→ M a transversely
symplectic Anosov flow with dim Eu ≥ 2 and dim Es ≥ 2. Then ϕ is quasiconformal
if and only if ϕ is up to finite covers C∞ orbit equivalent either to the suspension of a
symplectic hyperbolic automorphism of a torus, or to the geodesic flow of a closed
hyperbolic manifold.

Theorem (Fang)

Let ϕ be a C∞ volume-preserving quasiconformal Anosov flow. If Es ⊕ Eu ∈ C1 and
dim Eu ≥ 3 and dim Es ≥ 2 (or dim Es ≥ 3 and dim Eu ≥ 2), then ϕ is up to finite
covers and a constant change of time scale C∞ flow equivalent either to the
suspension of a hyperbolic automorphism of a torus, or to a canonical time change of
the geodesic flow of a closed hyperbolic manifold.
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Longitudinal KAM cocycle, higher dimensions

Theorem (Fang - F - Hasselblatt 2010)
Let M be a compact Riemannian manifold of dimension at least 5, k ≥ 2,
ϕ : R×M→ M a uniformly quasiconformal transversely symplectic Ck Anosov
flow.
Then Eu ⊕ Es is Zygmund-regular and there is an obstruction to higher regularity
that defines the cohomology class of a cocycle we call the longitudinal KAM-cocycle.
This obstruction can be described geometrically as the curvature of the image of a
transversal under a return map, and the following are equivalent :

1 Eu ⊕ Es is “little Zygmund”
2 The longitudinal KAM-cocycle is a coboundary.
3 Eu ⊕ Es is Lipschitz-continuous.

4 ϕ is up to finite covers, constant rescaling and a canonical time-change Ck-conjugate to
the suspension of a symplectic Anosov automorphism of a torus or the geodesic flow of a
real hyperbolic manifold.
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Invariant Forms

To show that 3 implies 4 we study the canonical 1-form of the time-change
of a geodesic flow or of the suspension of an
infranilmanifoldautomorphism, and because we only have
Lipschitz-continuity at our disposal, we need to explore how
smooth-rigidity results can be pushed to the lowest conceivable
regularity. This requires two main results
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Invariant Forms

Theorem (F - Hasselblatt 2010)
Let M be a compact locally symmetric space with negative sectional curvature and
suppose A is a Lipschitz continuous 1-form such that dA is invariant under the
geodesic flow. Then A is C∞, and indeed dA is a constant multiple of the exterior
derivative of the canonical 1-form for the geodesic flow.

Note that the Lipschitz assumption ensures that dA is defined almost
everywhere and essentially bounded (V. M. Goldshtein, V. I. Kuzminov, I.
A. Shvedov : Differential forms on a Lipschitz manifold, (1982)). This is all we
use. For comparison, we state an earlier result of Hamenstädt :

Theorem (Hamenstadt)
If the Anosov splitting of the geodesic flow of a compact negatively curved manifold is
C1 and A is a C1 1-form such that dA is invariant, then dA is proportional to the
canonical 1-form of the geodesic flow.
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Invariant Forms

Corollary
Let M be a compact locally symmetric space with negative sectional curvature and
consider a time-change whose canonical 1-form is Lipschitz-continuous. Then the
canonical form of the time-change is C∞, and the time-change is a canonical
time-change.

Theorem (F - Hasselblatt 2010)
Let ψ be a hyperbolic automorphism of a torus or a infranilmanifold Γ\M. Then any
essentially bounded invariant 2-form is almost everywhere equal to an M-invariant
(hence smooth) closed 2-form.
If, in addition, the form is exact, then it vanishes almost everywhere.
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Invariant Forms

We point out that in this proof we use that the automorphism is mixing
(rather than just ergodic). The need for this is an interesting side light on
how parabolic effects enter into our considerations.

Corollary
Let ψ be a hyperbolic automorphism of a torus or a infranilmanifold Γ\M and
consider a time-change of the suspension whose canonical 1-form is
Lipschitz-continuous. Then the canonical form of the time-change is C∞, and the
time-change is a canonical time-change.

Theorem
Let (N, g) be a n-dimensional closed negatively curved Riemannian manifold and Ω
a C∞ closed 2-form of N. For small λ ∈ R, let ϕλ be the magnetic Anosov flow of the
pair (g, λΩ). Suppose that n > 3 and ϕλ is uniformly quasiconformal. Then g has
constant negative curvature and λΩ = 0. In particular, the longitudinal
KAM-cocycle of ϕλ is a coboundary.
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Finsler manifolds of negative curvature

Smooth Finsler metrics

Let (M, F) be a C∞ closed Finsler manifold of negative flag curvature.
Let ϕ be its geodesic flow defined on the homogeneous bundle HM.
The lift of this Finsler structure to the universal covering space defines a
possibly non-symmetric distance d̃ on M̃.

We study the large scale metric geometry of d̃
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Finsler manifolds of negative curvature
Preliminaries

Let π : HM = TM0/R+ → M be the homogeneous bundle
Recall that the generator X of the geodesic flow is a Reeb field of a contact
form A on HM

I dA(X, .) = 0
I A(X) = 1
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Dynamic invariants of Finsler geodesic flows

Theorem
Let (M, F) be a closed C∞ Finsler manifold of negative flag curvature. Then its
geodesic flow ϕ : HM→ HM is Anosov. In addition the stable and unstable
distributions of ϕ are both transverse to V(HM).

It is well-known that contact Anosov flows are topologically transitive .
There exists on HM a unique continuous ϕ-invariant 1-form λϕ such that

λϕ(X) = 1 and λϕ(Ess) = λϕ(Esu) = 0,

which is said to be the canonical 1-form of ϕ.
A = λϕ
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Entropy

For any ϕ-invariant probability measure µ we denote by hµ(ϕ) the metric
entropy of ϕ with respect to µ.
We define the topological entropy of ϕ, htop(ϕ) by

htop(ϕ) = sup{hµ(ϕ) : µ is a ϕ−invariant probability}.

I There is a unique ergodic fully supported probability measure for which the
supremum is attained. This measure is called the Bowen-Margulis measure for
ϕ and is denoted by µBM.

I If ϕ is in addition volume-preserving, we denote by ν the unique ϕ-invariant
Lebesgue probability measure.

I htop(ϕ) > hvol(ϕ).
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Pressure

More generally, let G be a Hölder continuous function on N. We define
the topological pressure of ϕ with respect to G by

P(ϕ, G) = sup{hµ(ϕ) +
∫

N
Gdµ : µ is a ϕ−invariant probability}.

By the well-known variational principle (see [HK]) there exists again a
unique ergodic fully supported ϕ-invariant probability measure for
which the supremum in the definition of P(ϕ, G) is attained. This
measure is called the Gibbs measure of ϕ with respect to G. Clearly,
P(ϕ, 0) = htop(ϕ) and the Gibbs measure of ϕ with respect to the
function zero is just the Bowen-Margulis measure.
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Pressure

Two continuous functions G1 and G2 are said to be ϕ-cohomologous if
G1 −G2 = U′ for some U which is continuously differentiable with
respect to ϕ. If G1 and G2 are both Hölder continuous then they have the
same Gibbs measure if and only if G1 −G2 is ϕ-cohomologous to a
constant, c say. In this case we have P(ϕ, G1) = P(ϕ, G2) + c.
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Cohomological pressure and cohomological Gibbs
number

Let ϕ : N → N be a topologically transitive C∞ Anosov flow generated by
X. We denote by H1(N, R) the first de Rham cohomology group of N. Let
us recall firstly the Schwartzman’s definition of a winding cycle. If µ is a
ϕ-invariant probability measure then the µ-winding cycle is a map
Φµ : H1(N, R)→ R defined by

Φµ(α) =
∫

N
α(X)dµ,

where α is a closed C∞ 1-form. Since µ is a ϕ-invariant, it is easy to see
that Φµ is a well-defined map.
We define Λ : H1(N, R)→ R by Λ(α) = P(ϕ, α(X)), i.e. the topological
pressure of ϕ with respect to the function α(X). Immediately from the
definition we obtain the relationship

Λ(α) = sup{hµ(ϕ) + Φµ(α) : µ is ϕ−invariant}

and hence that if df is an exact form then Λ(α) = Λ(α + df ). Thus Λ is
well-defined.
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Cohomological pressure and cohomological Gibbs
number
Definition
Following [Sharp], we define the cohomological pressure of ϕ, P(ϕ) by
P(ϕ) = inf{Λ(α) : [α] ∈ H1(N, R)}.

Theorem
([Sharp], Theorem 1) Let ϕ : N → N be a topologically transitive C∞ Anosov flow.
Then the following two statements are equivalent :
(i) There exists a fully supported ϕ-invariant probability measure µ such that
Φµ ≡ 0 ;
(ii) The function Λ : H1(N, R)→ R is bounded below (i.e. P(ϕ) > −∞) and there
exists a unique cohomological class [α] ∈ H1(N, R) for which the infimum is
attained.
If any (and hence both) of the above statements are true then we have

P(ϕ) = sup{hµ(ϕ) : µ is ϕ− invariant with Φµ ≡ 0}

and Φµα ≡ 0, where µα denotes the Gibbs measure of α(X).
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Cohomological pressure and cohomological Gibbs
number
Definition
The cohomology class of α as in (ii) is said to be the Gibbs class of ϕ, and the
Gibbs measure of ϕ with respect to α(X) is said to be the cohomological Gibbs
measure for ϕ. The cohomological Gibbs number of ϕ is defined as

G(ϕ) =
∫

N
α(X)dµBM = ΦµBM([α]).

Remark If (M, F) is reversible, for example in the Riemmanian case, then it is
easy to verify (see [Pa3]) that ΦµBM ≡ 0 . So cohomological pressure and
cohomological Gibbs number are interesting only for non-reversible Finsler
manifolds of negative flag curvature.

Proposition
Let ϕ be a contact C∞ Anosov flow. Then we have

htop(ϕ) > P(ϕ) > hvol(ϕ).

Patrick Foulon (Université de Strasbourg) Forms, Pressure and Rigidity for Anosov Flows 2010 22 / 29



Canonical time changes

Definition
For any C∞ Anosov flow ϕ : N → N generated by X, a canonical time change of

ϕ is the flow generated by
X

1− α(X)
, where α is a closed C∞ 1-form on N such

that 1 > α(X). We denote by ϕα the flow of
X

1− α(X)
.
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Canonical time changes

Proposition
Let ϕ : N → N be a contact C∞ Anosov flow generated by X. Let α be a closed C∞

1-form on N such that 1 > α(X). Then we have P(ϕ) = P(ϕα).

Proposition
Let ϕ be a contact C∞ Anosov flow with ΦµBM ≡ 0. Let α be a closed C∞ 1-form on N
such that 1 > α(X). Then the Gibbs class of ϕα is [−htop(ϕ) · α].
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Canonical time changes

Proposition
Let ϕ be a topologically transitive C∞ Anosov flow and let G be a Hölder continuous
function on N. Let f be any positive C∞ function on N. Then we have

P(ϕ, G) = P(ϕf ,
G
f
− P(ϕ, G) · 1− f

f
).

In addition the Gibbs measure of ϕ with respect to G is equivalent to that of ϕf with

respect to the function
G
f
− P(ϕ, G) · 1− f

f
.
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Anosov splitting regularity of Finsler geodesic flows

Theorem
([Ha], Theorem B) Let ϕ be the geodesic flow of a closed negatively curved
Riemannian manifold. If the Anosov splitting of ϕ is C2, then the topological entropy
of ϕ coincides with its metric entropy.

G. Paternain (see [Pa2]) : Let g be a locally symmetric Riemannian metric on
M and θ be a small closed but non-exact C∞ 1-form on M. Let F =

√
g− θ be

the Randers metric and ϕ be its geodesic flow.

The Anosov splitting of ϕ is C∞ .

ϕ is generated by
X

1− π∗θ(X)
.

the Gibbs class of ϕ is not trivial

htop(ϕ) > P(ϕ) = hvol(ϕ).
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Anosov splitting regularity of Finsler geodesic flows

Theorem
(Fang - Foulon 2009) Let (M, F) be a closed C∞ Finsler manifold of negative flag
curvature and ϕ its geodesic flow. If the Anosov splitting of ϕ is C2, then the
cohomological pressure of ϕ coincides with its metric entropy.
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Ingredients for the proof

Definition
We say that ϕ is dλ-transitive if any continuous exact 2-form is a constant
multiple of dA, where A denotes the potential of the metric F.

Proposition
Let ϕ be a contact C∞ Anosov flow such that Ess and Esu are both orientable. If ϕ is
dλ-transitive and its Anosov splitting is C2, then the cohomological pressure of ϕ
coincides with its metric entropy.

So the key point is to show

Proposition
Let ϕ be the geodesic flow of a closed C∞ Finsler manifold (M, F) of negative flag
curvature. If the Anosov splitting of ϕ is C1, then ϕ is dλ-transitive.
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Action of the fundamental group

Let π1(M) be the fundamental group of M. For any γ ∈ π1(M), γ acts
naturally on M̃ and preserves the lifted Finsler metric F̃. Thus γ acts naturally
and Hölder continuously on the boundaries.

Definition
Let X be a topological space and Φ : X→ X be a homeomorphism. Then Φ is
said to have a north-south dynamic if Φ fixes exactly two points {a, b} ⊆ X and
for any x ∈ X− {a, b}, Φn(x)→ a and Φ−n(x)→ b as n→ +∞.

Proposition

Let γ ∈ π1(M). If γ is not trivial, then the γ-action on ∂sM̃ (respectively on ∂uM̃)
has a north-south dynamic.
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