Entropy and periodic points of principal algebraic actions

Klaus Schmidt

Vienna

Warwick, September 2010

Principal Actions

Let Γ be a countably infinite discrete group. An *algebraic* Γ -*action* is a homomorphism $\alpha: \gamma \mapsto \alpha^{\gamma}$ from Γ to the group Aut(X) of continuous automorphisms of a compact abelian group X.

Example 1: Let $X = \mathbb{T}^{\Gamma}$ with $\mathbb{T} = \mathbb{R}/\mathbb{Z}$, and let λ be the left shift-action on X, defined by $(\lambda^{\gamma} x)_{\theta} = x_{\gamma^{-1}\theta}$ for every $x = (x_{\theta})_{\theta \in \Gamma} \in X$.

Example 2: Let again $X = \mathbb{T}^{\Gamma}$. The *right shift-action* $\gamma \mapsto \rho^{\gamma}$ of Γ on X is given by $(\rho^{\gamma} x)_{\theta} = x_{\theta\gamma}$. The actions λ and ρ commute.

Let $f = \sum_{\gamma \in \Gamma} f_{\gamma} \gamma \in \mathbb{Z}[\Gamma]$, where the f_{γ} lie in \mathbb{Z} and $\sum_{\gamma \in \Gamma} |f_{\gamma}| < \infty$. Define a group homomorphism $\rho^{f} \colon X \longrightarrow X$ by $\rho^{f} = \sum_{\gamma \in \Gamma} f_{\gamma} \rho^{\gamma}$. Then ρ^{f} commutes with λ .

Let $X_f = \ker(\rho^f)$ and $\alpha_f = \lambda|_{X_f}$. This is the principal Γ -action defined by f. To avoid trivialities we always assume that f is not a unit in $\mathbb{Z}[\Gamma]$. **Problem**: For fixed Γ , describe the dynamical properties of α_f in terms of the polynomial f.

Principal Actions Of $\mathbb Z$

For $\Gamma = \mathbb{Z}$, every $f = \sum_{n \in \mathbb{Z}} f_n n \in \mathbb{Z}[\mathbb{Z}]$ can be viewed as the Laurent polynomial $\sum_{n \in \mathbb{Z}} f_n u^n$. After multiplication by a power of u (which doesn't change X_f) we may assume that $f = \sum_{k=0}^n f_k u^k$ with nonzero f_0 and f_n . If $f_n = |f_0| = 1$, α_f is (conjugate to) the toral automorphism given by the companion matrix

$$A_{f} = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -f_{0} & -f_{1} & -f_{2} & \cdots & -f_{n-1} \end{pmatrix}$$

In general, α_f is (conjugate to) an automorphism of an *n*-dimensional solenoid (e.g., f = 3 - 2u corresponds to 'multiplication by 3/2' on the circle).

Dynamical properties like ergodicity or expansiveness are determined by the roots of f, and the entropy of α_f is given by $h(\alpha_f) = \log |f_n| + \sum_{\{c:f(c)=0\}} \log^+ |c|.$

Principal Actions Of \mathbb{Z}^d

For $\Gamma = \mathbb{Z}^d$ we write $f \in \mathbb{Z}[\Gamma]$ as a Laurent polynomial in d variables:

- $f = \sum_{\mathbf{n} \in \mathbb{Z}^d} f_{\mathbf{n}} \mathbf{n} = \sum_{\mathbf{n} \in \mathbb{Z}^d} f_{\mathbf{n}} u^{\mathbf{n}}$. Assume for simplicity that f is irreducible.
 - If $d \ge 2$ then α_f is ergodic.
 - α_f is mixing if and only if f is not of the form u^mc(n), where c(·) is cyclotomic.
 - The entropy $h(\alpha_f)$ is given by the *logarithmic Mahler measure* of f: $m(f) = \int_0^1 \cdots \int_0^1 \log |f(e^{2\pi i t_1}, \dots, e^{2\pi i t_d})| dt_1 \cdots dt_d$ (Lind-S-Ward).
 - $h(\alpha_f) > 0 \Leftrightarrow \alpha_f$ is mixing $\Leftrightarrow \alpha_f$ is Bernoulli (Ward, Rudolph-S).
 - α_f is expansive if and only if V_C(f) = {c ∈ (C \ {0})^d : f(c) = 0} contains no points whose coordinates all have absolute value 1.
 - $h(\alpha_f) = \limsup_{\Delta \searrow \{0\}} \frac{1}{|\mathbb{Z}^d/\Delta|} \log |\operatorname{Fix}_{\Delta}(X_f)/\operatorname{Fix}_{\Delta}^{\circ}(X_f)|$, where the limit is taken over all sequences of finite-index subgroups $(\Delta_n)_{n\ge 1}$ in \mathbb{Z}^d with $\langle \Delta_n \rangle = \min\{\|\mathbf{n}\| : \mathbf{0} \neq \mathbf{n} \in \Delta_n\} = \infty$, and where $\operatorname{Fix}_{\Delta}(X_f) = \{x \in X_f : \alpha_f^{\mathbf{n}} x = x \text{ for every } \mathbf{n} \in \Delta_n\}.$
 - If α_f is nonexpansive it is not known if $\limsup_{\Delta\searrow\{0\}}$ can be replaced by $\lim_{\Delta\searrow\{0\}}$.

Expansive Principal Actions

Let Γ be countably infinite and discrete, $f \in \mathbb{Z}[\Gamma]$, and let α_f be the corresponding principal Γ -action on X_f .

Theorem (Hayes; S): If Γ is amenable and not virtually cyclic, and if f is not a right zero-divisor in $\mathbb{Z}[\Gamma]$, then α_f is ergodic.

Theorem (Deninger-S): α_f is expansive $\Leftrightarrow f$ is invertible in $\ell^1(\Gamma)$.

Problem: Find conditions on *f* which imply invertibility in $\ell^1(\Gamma)$.

Easy answer: If f has a dominant term, i.e., $|f_{\gamma}| > \sum_{\gamma' \in \Gamma \setminus \{\gamma\}} |f_{\gamma'}|$ for some $\gamma \in \Gamma$, then α_f is expansive. Can one do better?

Remark: If α_f is expansive then the ideal $\mathbb{Z}[\Gamma]f$ contains an element with a dominant term.

Expansiveness is a good thing to have. Here are some useful consequences: **Theorem**: If α_f is expansive and f is not a right zero-divisor in $\mathbb{Z}[\Gamma]$, then α_f is mixing.

Theorem: If Γ is amenable and α_f is expansive, then $h(\alpha_f) > 0$.

Problem: Is α_f Bernoulli under these hypotheses?

Expansive Principal Actions Of Residually Finite Groups

Assume that Γ is residually finite (i.e., that there exists a decreasing sequence $(\Delta_n)_{n\geq 1}$ of finite-index subgroups with $\bigcap_n \Delta_n = \{1\}$). **Theorem** (Deninger-S): If Γ is amenable and α_f is expansive, then

 $h(\alpha_f) = \lim_{\Delta \searrow \{1\}} \frac{1}{|\Gamma/\Delta|} \log |\operatorname{Fix}_{\Delta}(X_f)| = \log \operatorname{det}_{\mathcal{N}\Gamma}(\rho_f),$

where the last term is the *Fuglede-Kadison determinant* of f, acting by right convolution on $\ell^2(\Gamma)$, and viewed as an element of the (left-equivariant) group von Neumann algebra $\mathcal{N}\Gamma$.

Hanfeng Li recently observed that this result only depends on the invertibility of ρ_f in $\mathcal{N}\Gamma$ (and not on that of f in $\ell^1(\Gamma)$).

Even more recently, this result was extended to the non-amenable case. **Theorem** (Bowen): If Γ is non-amenable and α_f is expansive, then

$$h((\Delta_n)_{n\geq 1}, \alpha_f) = \lim_{n\to\infty} \frac{1}{|\Gamma/\Delta_n|} \log |\operatorname{Fix}_{\Delta_n}(X_f)| = \log \operatorname{det}_{\mathcal{N}\Gamma}(\rho_f),$$

where $h((\Delta_n)_{n\geq 1}, \alpha_f)$ is the *sofic entropy* of α_f w.r.t. the sequence $\Delta_n \searrow \{1\}$.

The current state of things:

If Γ is amenable and residually finite and α_f is nonexpansive, then

$$egin{aligned} &h(lpha_f) \geq \limsup_{\Delta\searrow\{1\}} rac{1}{|\Gamma/\Delta|} \log |\operatorname{Fix}_\Delta(X_f)/\operatorname{Fix}_\Delta^\circ(X_f)| \ &= \limsup_{\Delta\searrow\{1\}} rac{1}{|\Gamma/\Delta|} \log |\operatorname{det}^*(
ho_f|_{\ell^2(\Gamma/\Delta)})| \leq \log \operatorname{det}^*_{\mathcal{N}\Gamma}(
ho_f). \end{aligned}$$

Here det^{*}_{NΓ} is the modified Fuglede-Kadison determinant for not necessarily invertible elements of $N\Gamma$ introduced by Lück: consider $\rho^{f^{*f}}$ as an element of $N\Gamma$, and write $\rho^{f^{*f}} = \int \lambda \, dE(\lambda)$ for its spectral representation. Then log det^{*}_{NΓ}(ρ_f) := $\int_{0^+}^{\infty} \log \lambda \, dF(\lambda)$, where $F(\lambda) = \text{trace}(P(\lambda))$.

Conjecture: If f^*f is not a zero divisor in $\mathbb{Z}[\Gamma]$, then the first inequality is an equality.

Problem: If f^*f is not a zero divisor in $\mathbb{Z}[\Gamma]$, can the second inequality be replaced by an equality, and can 'lim sup' be replaced by 'lim'?

An Explicit Formula

Let $\Gamma \subset SL(3, \mathbb{Z})$ be the discrete Heisenberg group, generated by the matrices $x = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix}$, $y = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}$, $z = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$

$$x = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \quad y = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad z = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

with the commutation relations

$$xz = zx, yz = zy, y'x^k = x^k y'z^{kl} = z^{kl}, k, l \in \mathbb{Z}.$$

Every f in $\mathbb{Z}[\Gamma]$ can be written in the form

$$f = \sum_{(m_1, m_2, m_3) \in \mathbb{Z}^3} f_{(m_1, m_2, m_3)} x^{m_1} y^{m_2} z^{m_3}$$

with $f_{(m_1,m_2,m_3)} \in \mathbb{Z}$.

Theorem (Lind-S): Let $f = h_0(y, z) + xh_1(y, z)$ for some nonzero $h_0, h_1 \in \mathbb{Z}[y^{\pm 1}, z^{\pm 1}]$ such that α_f is expansive. Then

$$h(\alpha_f) = \int_0^1 \max \{ \mathsf{m}(h_0(\cdot, e^{2\pi i t})), \mathsf{m}(h_1(\cdot, e^{2\pi i t})) \} dt,$$
$$\mathsf{m}(h) = \int_0^1 \log |h(e^{2\pi i s})| ds$$

where

is the logarithmic Mahler measure of a Laurent polynomial $h \in \mathbb{C}[u^{\pm 1}]$.