Entropy and periodic points of principal algebraic actions

Klaus Schmidt

Vienna
Warwick, September 2010

Principal Actions

Let Γ be a countably infinite discrete group. An algebraic Γ-action is a homomorphism $\alpha: \gamma \mapsto \alpha^{\gamma}$ from Γ to the $\operatorname{group} \operatorname{Aut}(X)$ of continuous automorphisms of a compact abelian group X.
Example 1: Let $X=\mathbb{T}^{\Gamma}$ with $\mathbb{T}=\mathbb{R} / \mathbb{Z}$, and let λ be the left shift-action on X, defined by $\left(\lambda^{\gamma} x\right)_{\theta}=x_{\gamma^{-1} \theta}$ for every $x=\left(x_{\theta}\right)_{\theta \in \Gamma} \in X$.
Example 2: Let again $X=\mathbb{T}^{\Gamma}$. The right shift-action $\gamma \mapsto \rho^{\gamma}$ of Γ on X is given by $\left(\rho^{\gamma} x\right)_{\theta}=x_{\theta \gamma}$. The actions λ and ρ commute.
Let $f=\sum_{\gamma \in \Gamma} f_{\gamma} \gamma \in \mathbb{Z}[\Gamma]$, where the f_{γ} lie in \mathbb{Z} and $\sum_{\gamma \in \Gamma}\left|f_{\gamma}\right|<\infty$. Define a group homomorphism $\rho^{f}: X \longrightarrow X$ by $\rho^{f}=\sum_{\gamma \in \Gamma} f_{\gamma} \rho^{\gamma}$. Then ρ^{f} commutes with λ.
Let $X_{f}=\operatorname{ker}\left(\rho^{f}\right)$ and $\alpha_{f}=\lambda \mid X_{f}$. This is the principal Γ-action defined by f. To avoid trivialities we always assume that f is not a unit in $\mathbb{Z}[\Gamma]$.
Problem: For fixed Γ, describe the dynamical properties of α_{f} in terms of the polynomial f.

Principal Actions Of \mathbb{Z}

For $\Gamma=\mathbb{Z}$, every $f=\sum_{n \in \mathbb{Z}} f_{n} n \in \mathbb{Z}[\mathbb{Z}]$ can be viewed as the Laurent polynomial $\sum_{n \in \mathbb{Z}} f_{n} u^{n}$. After multiplication by a power of u (which doesn't change X_{f}) we may assume that $f=\sum_{k=0}^{n} f_{k} u^{k}$ with nonzero f_{0} and f_{n}. If $f_{n}=\left|f_{0}\right|=1, \alpha_{f}$ is (conjugate to) the toral automorphism given by the companion matrix

$$
A_{f}=\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & & 0 \\
\vdots & & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
-f_{0} & -f_{1} & -f_{2} & \cdots & -f_{n-1}
\end{array}\right)
$$

In general, α_{f} is (conjugate to) an automorphism of an n-dimensional solenoid (e.g., $f=3-2 u$ corresponds to 'multiplication by $3 / 2$ ' on the circle).
Dynamical properties like ergodicity or expansiveness are determined by the roots of f, and the entropy of α_{f} is given by $h\left(\alpha_{f}\right)=\log \left|f_{n}\right|+\sum_{\{c: f(c)=0\}} \log ^{+}|c|$.

Principal Actions Of \mathbb{Z}^{d}

For $\Gamma=\mathbb{Z}^{d}$ we write $f \in \mathbb{Z}[\Gamma]$ as a Laurent polynomial in d variables: $f=\sum_{\mathbf{n} \in \mathbb{Z}^{d}} f_{\mathbf{n}} \mathbf{n}=\sum_{\mathbf{n} \in \mathbb{Z}^{d}} f_{\mathbf{n}} u^{\mathbf{n}}$. Assume for simplicity that f is irreducible.

- If $d \geq 2$ then α_{f} is ergodic.
- α_{f} is mixing if and only if f is not of the form $u^{\mathbf{m}} c(\mathbf{n})$, where $c(\cdot)$ is cyclotomic.
- The entropy $h\left(\alpha_{f}\right)$ is given by the logarithmic Mahler measure of f : $\mathrm{m}(f)=\int_{0}^{1} \cdots \int_{0}^{1} \log \left|f\left(e^{2 \pi i t_{1}}, \ldots, e^{2 \pi i t_{d}}\right)\right| d t_{1} \cdots d t_{d}$ (Lind-S-Ward).
- $h\left(\alpha_{f}\right)>0 \Leftrightarrow \alpha_{f}$ is mixing $\Leftrightarrow \alpha_{f}$ is Bernoulli (Ward, Rudolph-S).
- α_{f} is expansive if and only if $V_{\mathbb{C}}(f)=\left\{\mathbf{c} \in(\mathbb{C} \backslash\{0\})^{d}: f(\mathbf{c})=0\right\}$ contains no points whose coordinates all have absolute value 1 .
- $h\left(\alpha_{f}\right)=\lim \sup _{\Delta \searrow\{0\}} \frac{1}{\left|\mathbb{Z}^{d} / \Delta\right|} \log \left|\operatorname{Fix}_{\Delta}\left(X_{f}\right) / \operatorname{Fix}_{\Delta}^{\circ}\left(X_{f}\right)\right|$, where the limit is taken over all sequences of finite-index subgroups $\left(\Delta_{n}\right)_{n \geq 1}$ in \mathbb{Z}^{d} with $\left\langle\Delta_{n}\right\rangle=\min \left\{\|\mathbf{n}\|: \mathbf{0} \neq \mathbf{n} \in \Delta_{n}\right\}=\infty$, and where $\operatorname{Fix}_{\Delta}\left(X_{f}\right)=\left\{x \in X_{f}: \alpha_{f}^{\mathbf{n}} x=x\right.$ for every $\left.\mathbf{n} \in \Delta_{n}\right\}$.
- If α_{f} is nonexpansive it is not known if $\lim _{\sup _{\Delta}}^{\searrow}\{0\}$ can be replaced by $\lim _{\Delta \searrow\{0\}}$.

Expansive Principal Actions

Let Γ be countably infinite and discrete, $f \in \mathbb{Z}[\Gamma]$, and let α_{f} be the corresponding principal Γ-action on X_{f}.
Theorem (Hayes; S): If Γ is amenable and not virtually cyclic, and if f is not a right zero-divisor in $\mathbb{Z}[\Gamma]$, then α_{f} is ergodic.
Theorem (Deninger-S): α_{f} is expansive $\Leftrightarrow f$ is invertible in $\ell^{1}(\Gamma)$.
Problem: Find conditions on f which imply invertibility in $\ell^{1}(\Gamma)$.
Easy answer: If f has a dominant term, i.e., $\left|f_{\gamma}\right|>\sum_{\gamma^{\prime} \in \Gamma \backslash\{\gamma\}}\left|f_{\gamma^{\prime}}\right|$ for some $\gamma \in \Gamma$, then α_{f} is expansive. Can one do better?
Remark: If α_{f} is expansive then the ideal $\mathbb{Z}[\Gamma] f$ contains an element with a dominant term.

Expansiveness is a good thing to have. Here are some useful consequences: Theorem: If α_{f} is expansive and f is not a right zero-divisor in $\mathbb{Z}[\Gamma]$, then α_{f} is mixing.
Theorem: If Γ is amenable and α_{f} is expansive, then $h\left(\alpha_{f}\right)>0$.
Problem: Is α_{f} Bernoulli under these hypotheses?

Expansive Principal Actions Of Residually Finite Groups

Assume that Γ is residually finite (i.e., that there exists a decreasing sequence $\left(\Delta_{n}\right)_{n \geq 1}$ of finite-index subgroups with $\cap_{n} \Delta_{n}=\{1\}$).
Theorem (Deninger-S): If Γ is amenable and α_{f} is expansive, then

$$
h\left(\alpha_{f}\right)=\lim _{\Delta \backslash\{1\}} \frac{1}{|\Gamma / \Delta|} \log \left|\operatorname{Fix}_{\Delta}\left(X_{f}\right)\right|=\log \operatorname{det}_{\mathcal{N} \Gamma}\left(\rho_{f}\right),
$$

where the last term is the Fuglede-Kadison determinant of f, acting by right convolution on $\ell^{2}(\Gamma)$, and viewed as an element of the (left-equivariant) group von Neumann algebra $\mathcal{N} \Gamma$.
Hanfeng Li recently observed that this result only depends on the invertibility of ρ_{f} in $\mathcal{N} \Gamma$ (and not on that of f in $\ell^{1}(\Gamma)$).
Even more recently, this result was extended to the non-amenable case. Theorem (Bowen): If Γ is non-amenable and α_{f} is expansive, then

$$
h\left(\left(\Delta_{n}\right)_{n \geq 1}, \alpha_{f}\right)=\lim _{n \rightarrow \infty} \frac{1}{\left|\Gamma / \Delta_{n}\right|} \log \left|\mathrm{Fix}_{\Delta_{n}}\left(X_{f}\right)\right|=\log \operatorname{det}_{\mathcal{N} \Gamma}\left(\rho_{f}\right),
$$

where $h\left(\left(\Delta_{n}\right)_{n \geq 1}, \alpha_{f}\right)$ is the sofic entropy of α_{f} w.r.t. the sequence $\Delta_{n} \searrow\{1\}$.

Nonexpansive Principal Actions

The current state of things:

If Γ is amenable and residually finite and α_{f} is nonexpansive, then

$$
\begin{aligned}
h\left(\alpha_{f}\right) & \geq \limsup _{\Delta \searrow\{1\}} \frac{1}{|\Gamma / \Delta|} \log \left|\operatorname{Fix}_{\Delta}\left(X_{f}\right) / \operatorname{Fix}_{\Delta}^{\circ}\left(X_{f}\right)\right| \\
& =\limsup _{\Delta \searrow\{1\}} \frac{1}{|\Gamma / \Delta|} \log \left|\operatorname{det}^{*}\left(\left.\rho_{f}\right|_{\ell^{2}(\Gamma / \Delta)}\right)\right| \leq \log \operatorname{det}_{\mathcal{N \Gamma}}^{*}\left(\rho_{f}\right)
\end{aligned}
$$

Here $\operatorname{det}_{\mathcal{N} \Gamma}^{*}$ is the modified Fuglede-Kadison determinant for not necessarily invertible elements of $\mathcal{N} \Gamma$ introduced by Lück: consider $\rho^{f^{* f}}$ as an element of $\mathcal{N} \Gamma$, and write $\rho^{f^{*} f}=\int \lambda d E(\lambda)$ for its spectral representation. Then $\log \operatorname{det}_{\mathcal{N} \Gamma}^{*}\left(\rho_{f}\right):=\int_{0^{+}}^{\infty} \log \lambda d F(\lambda)$, where $F(\lambda)=\operatorname{trace}(P(\lambda))$.

Conjecture: If $f^{*} f$ is not a zero divisor in $\mathbb{Z}[\Gamma]$, then the first inequality is an equality.
Problem: If $f^{*} f$ is not a zero divisor in $\mathbb{Z}[\Gamma]$, can the second inequality be replaced by an equality, and can 'lim sup' be replaced by 'lim'?

An Explicit Formula

Let $\Gamma \subset S L(3, \mathbb{Z})$ be the discrete Heisenberg group, generated by the matrices

$$
x=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right), \quad y=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad z=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

with the commutation relations

$$
x z=z x, \quad y z=z y, \quad y^{\prime} x^{k}=x^{k} y^{\prime} z^{k \prime}=z^{k l}, \quad k, l \in \mathbb{Z}
$$

Every f in $\mathbb{Z}[\Gamma]$ can be written in the form

$$
f=\quad \sum f_{\left(m_{1}, m_{2}, m_{3}\right)} x^{m_{1}} y^{m_{2}} z^{m_{3}}
$$

with $f_{\left(m_{1}, m_{2}, m_{3}\right)} \in \mathbb{Z} . \quad\left(m_{1}, m_{2}, m_{3}\right) \in \mathbb{Z}^{3}$
Theorem (Lind-S): Let $f=h_{0}(y, z)+x h_{1}(y, z)$ for some nonzero $h_{0}, h_{1} \in \mathbb{Z}\left[y^{ \pm 1}, z^{ \pm 1}\right]$ such that α_{f} is expansive. Then
where

$$
h\left(\alpha_{f}\right)=\int_{0}^{1} \max \left\{\mathrm{~m}\left(h_{0}\left(\cdot, e^{2 \pi i t}\right)\right), \mathrm{m}\left(h_{1}\left(\cdot, e^{2 \pi i t}\right)\right)\right\} d t
$$

$$
\mathrm{m}(h)=\int_{0}^{1} \log \left|h\left(e^{2 \pi i s}\right)\right| d s
$$

is the logarithmic Mahler measure of a Laurent polynomial $h \in \mathbb{C}\left[u^{ \pm 1}\right]$.

