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Introduction FH Lorentz Process ∞H Lorentz

From laudatio for Dolgopyat

From Chernov’s laudatio for Dolgopyat’s 2009 Brin prize:

Physical systems are often inconvenient and unsuitable for direct
application of conventional theories:

dynamics may have ugly singularities, . . . ,

natural invariant measures may be infinite, etc.

etc.
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A Lorentz orbit
Finite horizon, ’locally perturbed periodic’



Introduction FH Lorentz Process ∞H Lorentz

Notions and notations: Lorentz Process

Lorentz process - billiard dynamics (uniform motion + specular
reflection) (Ω,T , µ)

Q̂ = R
d \ ∪∞

i=1Oi is the configuration space of the Lorentz
flow (the billiard table), where the closed sets Oi are pairwise
disjoint, strictly convex with C3−smooth boundaries

Ω = Q × S+ is its phase space for the billiard ball map (where
Q = ∂Q̂ and S+ is the hemisphere of outgoing unit velocities)

T : Ω → Ω its discrete time billiard map (the so-called
Poincaré section map)

µ the T -invariant (infinite) Liouville-measure on Ω
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Notions and notations:
Periodic Lorentz → Sinai Billiard

If the scatterer configuration {Oi}i is Z
d -periodic, then the

corresponding dynamical system will be denoted by
(Ωper = Qper × S+,Tper , µper ).
Then it makes sense to factorize it by Z

d to obtain a Sinai
billiard (Ω0 = Q0 × S+,T0, µ0). The natural projection Ω → Q
(and analogously for Ωper and for Ω0) will be denoted by πq.

Finite horizon (FH) versus infinite horizon (∞H)
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Why are local perturbations interesting?

Local perturbations

Lorentz, 1905: described the transport of conduction electrons
in metals (still in the pre-quantum era). Natural to consider
models with local impurities;

Non-periodic models

M. Lenci, ’96-
Sz., ’08: Penrose-Lorentz process [finite but unbounded
horizon!]

It is not a skew-product any more.
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Why is ∞H interesting?

∞H

Hard ball systems in the nonconfined regime have ∞H

Crystals

Non-trivial asymptotic behavior and new kinetic equ.
(Bourgain, Caglioti, Golse, Wennberg, ...; ’98-,
Marklof-Strömbergsson, ’08-)

For d ≥ 3 it is HARD to construct FH Sinai-billiard with
smooth boundaries!
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Stochastic properties: Correlation decay

Let f , g M(= Ω0, billiard phase space) → R
d be piecewise Hölder.

Definition

With a given an : n ≥ 1 (M,T , µ) has {an}n-correlation decay
if ∃C = C (f , g) such that ∀f , g Hölder and ∀n ≥ 1

∣

∣

∣

∣

∫

M

f (g ◦ T n)dµ −
∫

M

fdµ

∫

M

gdµ

∣

∣

∣

∣

≤ Can

The correlation decay is exponential (EDC) if ∃C2 > 0 such
that ∀n ≥ 1

an ≤ exp (−C2n).

The correlation decay is stretched exponential (SEDC) if
∃α ∈ (0, 1),C2 > 0 such that ∀n ≥ 1

an ≤ C1exp (−C2n
α).
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Diffusively scaled variant

Definition

Assume {qn ∈ R
d |n ≥ 0} is a random trajectory. Then its

diffusively scaled variant ∈ C [0, 1] (or ∈ C [0,∞]) is defined as
follows: for N ∈ Z+ denote
WN( j

N
) =

qj√
N

(0 ≤ j ≤ N or j ∈ Z+) and define otherwise

WN(t)(t ∈ [0, 1] or R+) as its piecewise linear, continuous
extension.

E. g. κ(x) = πq(Tx) − πq(x) : M → R
d , the free flight vector of a

Lorentz process.
From now on qn = qn(x) =

∑n−1
k=0 κ(T kx), n = 0, 1, 2, . . . is the

Lorentz trajectory.
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Stochastic properties: CLT & LCLT

Definition

CLT and Weak Invariance Principle

WN(t) ⇒ WD2(t),

the Wiener process with a non-degenerate covariance matrix
D2 = µ0(κ0 ⊗ κ0) + 2

∑∞
j=1 µ0(κ0 ⊗ κn).

Local CLT Let x be distributed on Ω0 according to µ0. Let
the distribution of [qn(x)] be denoted by Υn. There is a
constant c such that

lim
n→∞

nΥn → c−1l

where l is the counting measure on the integer lattice Z
2 and

→ stands for vague convergence.
In fact, c−1 = 1

2π
√

detD2
.
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2D, Periodic case: Some Results

SEDC EDC CLT LCLT

B-S, ’81 M-partitions X X

B-Ch-S, ’91 M-sieves X X

Y, ’98 M-towers X X

Sz-V, ’04 (EThDS) X

Ch-D, ’09 standard pairs X X X ?!

SEDC - Stretched Exponential Decay of Correlations
EDC - Exponential Decay of Correlations
CLT - Central Limit Theorem
LCLT - Local CLT
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Locally perturbed FH Lorentz

Sinai’s problem, ’81: locally perturbed FH Lorentz

Sz-Telcs, ’82: locally perturbed SSRW for d = 2 has the same
diffusive limit as the unperturbed one

Idea: local time ρ(n) (= #visits to origin until time n) is
O(log n) thus the

√
n scaling eates perturbation up

Method:

there are ∼ ρ(n) = O(log n) time intervals spent at
perturbation
couple the intervals spent outside perturbations to SSRW
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Locally perturbed FH Lorentz 1.

Theorem

Dolgopyat-Sz-Varjú, 09: locally perturbed FH Lorentz has the
same diffusive limit as the unperturbed one

Preparatory work:

Theorem

Dolgopyat-Sz-Varjú, 08: recurrence properties of FH Lorentz
(extensions of Thm’s of Erdős-Taylor and Darling-Kac (on local
times, first hitting times, etc.) from SSRW to FH Lorentz )
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Locally perturbed FH Lorentz 2.

Tools:

Sz-Varjú, 04: local CLT for periodic FH Lorentz

Chernov-Dolgopyat, 05-09:

standard pairs
growth lemma
Young-coupling

Methods:

reduction to 1-D RW’s

Stroock-Varadhan’s martingale method
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Standard pair

A connected smooth curve γ ⊂ Ω0 is called an unstable curve
if at every point x ∈ γ the tangent space Txγ belongs to the
unstable cone Cu

x .

A standard pair is a pair ℓ = (γ, ρ) where γ is a homogeneous
unstable curve and ρ is a homogeneous density on γ
(homogeneous meaning good estimates!).
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Growth lemma: preliminary remarks

Sinai’s philosophy: Expansion prevails partitioning

Viviane’s formulation: Hyperbolicity dominates complexity

NB: P Bálint- IP Tóth, ’08: for multidimensional FH S-billiards
fulfilment of complexity condition implies exponential correlation
decay
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Growth lemma, Ch-D, a form of Markov-property
Sinai billiard

Theorem

If ℓ = (γ, ρ) is a standard pair, then

Eℓ(A ◦ T n
0 ) =

∑

α

cαnEℓαn
(A)

where cαn > 0,
∑

α cαn = 1 and ℓαn = (γαn, ραn) are standard
pairs where γαn = γn(xα) for some xα ∈ γ and ραn is the
pushforward of ρ up to a multiplicative factor.

If n ≥ β3| log length(ℓ)|, then

∑

length(ℓαn)<ε

cαn ≤ β4ε.
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Coupling lemma
Lorentz process

Assume that |m1|, |m2| → ∞ and if ℓ1, ℓ2 are standard pairs
satisfying

[ℓj ] = mj , length(ℓj) > |mj |−100, j = 1, 2 (1)

and

1

2
<

|m1|
|m2|

< 2. (2)

Lemma

Given ζ > 0 and ε > 0 there exists R such that for any two
standard pairs ℓ1 = (γ1, ρ1), ℓ2 = (γ2, ρ2) satisfying the previous
assumptions and |mj | > R the following holds.
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Coupling lemma
Lorentz process, continued

Lemma

Let n̄ = |m1|2(1+ζ). There exist positive constants c̄ and c̄βj ,
probability measures ν̄1 and ν̄2 supported on f n̄γ1 and f n̄γ2

respectively, and families of standard pairs {ℓ̄βj}β; j = 1, 2
satisfying

Eℓj
(A ◦ f n̄) = c̄ ν̄j(A) +

∑

β

c̄βjEℓ̄βj
(A) j = 1, 2 (3)

with c̄ ≥ 1 − ε.
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Coupling lemma
Lorentz process, continued

Theorem

Moreover there exists a measure preserving map

π̄ : (γ1 × [0, 1], f −n̄ν̄1 × λ) → (γ2 × [0, 1], f −n̄ν̄2 × λ)

where λ is the Lebesgue measure on [0, 1] such that if
π̄(x1, s1) = (x2, s2) then for any n ≥ n̄

d(f nx1, f
nx2) ≤ Cθn−n̄,

where C , θ are the constants from our preliminary lemma.
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Martingale approach
à la Stroock-Varadhan

Brownian motion is characterized by the fact that

φ(W (t)) − 1

2

∫ t

0

∑

ab=1,2

σabDabφ(W (s))ds (4)

is a martingale for C 2−functions of compact support.

By Stroock-Varadhan it suffices to show that — the limiting
process W̃ (t) of any convergent subsequence of the processes
WN(.) — the process

φ(W̃ (t)) − 1

2

∫ t

0

∑

ab=1,2

σabDabφ(W̃ (s))ds (5)

is a martingale for C 2−functions of compact support.
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Superdiffusive scaling

Reminder: κ(x) = πq(Tx)− πq(x) : M → R
2, the free flight vector

of a Lorentz process.

qn = qn(x) =
∑n−1

k=0 κ(T kx) is the Lorentz trajectory.

Now: for N ∈ Z+ denote

WN

(

j

N

)

=
qj√

N log N
(0 ≤ j ≤ N or j ∈ Z+)

and define otherwise WN(t)(t ∈ [0, 1] or R+) as its piecewise
linear, continuous extension.
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∞H periodic Lorentz

Bleher, ’92:

E|κ(x)|2 = ∞
E|κ(x)κ(T nx)| < ∞ if |n| ≥ 1.
Heuristic arguments for superdiffusive:

√
N log N scaling.

Sz-Varjú, 07:

Rigorous proof for Bleher’s conjecture (method: Young’s
towers & Fourier transform of P-F operator (NB:
Aaronson-Denker)
Moreover: local limit law & Recurrence
Exact form of the limiting covariance

Melbourne, ’08, O(1/t) corr. decay rate for the flow

Chernov-Dolgopyat, ’10: EDC & global LT for κ (method:
Ch-D’s standard pairs & Bernstein’s method of freezing)
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Locally perturbed RW’s

Paulin-Sz, ’10: Local perturbations - under slight conditions - do
not change the appropriate limit if jumps of the RW belong to the
domain of attraction of a stable law of exponent 1 < α ≤ 2.

Here transitions over 0 of type (1, 1) → (−1,−1) do not get
perturbed.

Nándori, ’10: In a periodic RW with tail corresponding to
√

n log n
scaling

# of transitions over 0 until time n = O(n1/6)
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Dynamical tools for ∞H Lorentz

Nándori-Sz-Varjú, ’10:

Growth lemma

Coupling lemma

NB: For Penrose-Lorentz process

Growth lemma also holds

Coupling lemma would require local limit law (for RW on
Penrose lattice CLT is proved by Telcs, ’10)

Moreover, by using the martingale method of D-Sz-V, ’09

Nándori-Sz-Varjú, ’10:: third proof for global LT for ∞H periodic
Lorentz (1st: Sz-V, ’07, 2nd, Ch-D, ’10).
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Nándori-Sz-Varjú, ’10:: third proof for global LT for ∞H periodic
Lorentz (1st: Sz-V, ’07, 2nd, Ch-D, ’10).



Introduction FH Lorentz Process ∞H Lorentz

Dynamical tools for ∞H Lorentz

Nándori-Sz-Varjú, ’10:
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