(Super)diffusive asymtotics for perturbed Lorentz or Lorentz-like processes

Domokos Szász Budapest University of Technology joint w. Péter Nándori and Tamás Varjú

"Ergodic Theory and Dynamical Systems" is 30

Warwick, September 9, 2010

From laudatio for Dolgopyat

From Chernov's laudatio for Dolgopyat's 2009 Brin prize:

Physical systems are often inconvenient and unsuitable for direct application of conventional theories:

- dynamics may have ugly singularities, ...,
- natural invariant measures may be infinite, etc.
- etc.

FH Lorentz Process

 ∞ H Lorentz

A Lorentz orbit Finite horizon, 'locally perturbed periodic'

Notions and notations: Lorentz Process

- $\hat{Q} = \mathbb{R}^d \setminus \bigcup_{i=1}^{\infty} O_i$ is the configuration space of the Lorentz flow (the billiard table), where the closed sets O_i are pairwise disjoint, strictly convex with C^3 -smooth boundaries
- $\Omega = Q \times S_+$ is its phase space for the billiard ball map (where $Q = \partial \hat{Q}$ and S_+ is the hemisphere of outgoing unit velocities)
- $T : \Omega \to \Omega$ its discrete time billiard map (the so-called Poincaré section map)
- μ the *T*-invariant (infinite) Liouville-measure on Ω

Notions and notations: Lorentz Process

- Q̂ = ℝ^d \ ∪_{i=1}[∞]O_i is the configuration space of the Lorentz flow (the billiard table), where the closed sets O_i are pairwise disjoint, strictly convex with C³-smooth boundaries
- $\Omega = Q \times S_+$ is its phase space for the billiard ball map (where $Q = \partial \hat{Q}$ and S_+ is the hemisphere of outgoing unit velocities)
- $T: \Omega \to \Omega$ its discrete time billiard map (the so-called Poincaré section map)
- μ the *T*-invariant (infinite) Liouville-measure on Ω

Notions and notations: Lorentz Process

- Q̂ = ℝ^d \ ∪_{i=1}[∞]O_i is the configuration space of the Lorentz flow (the billiard table), where the closed sets O_i are pairwise disjoint, strictly convex with C³-smooth boundaries
- $\Omega = Q \times S_+$ is its phase space for the billiard ball map (where $Q = \partial \hat{Q}$ and S_+ is the hemisphere of outgoing unit velocities)
- $T : \Omega \to \Omega$ its discrete time billiard map (the so-called Poincaré section map)
- μ the *T*-invariant (infinite) Liouville-measure on Ω

Notions and notations: Lorentz Process

- $\hat{Q} = \mathbb{R}^d \setminus \bigcup_{i=1}^{\infty} O_i$ is the configuration space of the Lorentz flow (the billiard table), where the closed sets O_i are pairwise disjoint, strictly convex with C^3 -smooth boundaries
- $\Omega = Q \times S_+$ is its phase space for the billiard ball map (where $Q = \partial \hat{Q}$ and S_+ is the hemisphere of outgoing unit velocities)
- $T : \Omega \to \Omega$ its discrete time billiard map (the so-called Poincaré section map)
- μ the *T*-invariant (infinite) Liouville-measure on Ω

Notions and notations: Periodic Lorentz \rightarrow Sinai Billiard

If the scatterer configuration $\{O_i\}_i$ is \mathbb{Z}^d -periodic, then the corresponding dynamical system will be denoted by $(\Omega_{per} = Q_{per} \times S_+, T_{per}, \mu_{per})$. Then it makes sense to factorize it by \mathbb{Z}^d to obtain a Sinai billiard $(\Omega_0 = Q_0 \times S_+, T_0, \mu_0)$. The natural projection $\Omega \to 0$ (and analogously for Ω_{ever} and for Ω_0) will be denoted by π_e .

Finite horizon (FH) versus infinite horizon (∞ H)

Notions and notations: Periodic Lorentz \rightarrow Sinai Billiard

If the scatterer configuration $\{O_i\}_i$ is \mathbb{Z}^d -**periodic**, then the corresponding dynamical system will be denoted by $(\Omega_{per} = Q_{per} \times S_+, T_{per}, \mu_{per})$. Then it makes sense to **factorize** it by \mathbb{Z}^d to obtain a **Sinai** billiard $(\Omega_0 = Q_0 \times S_+, T_0, \mu_0)$. The natural projection $\Omega \to Q$ (and analogously for Ω_{per} and for Ω_0) will be denoted by π_q .

Finite horizon (FH) versus infinite horizon (∞ H)

Notions and notations: Periodic Lorentz \rightarrow Sinai Billiard

If the scatterer configuration $\{O_i\}_i$ is \mathbb{Z}^d -periodic, then the corresponding dynamical system will be denoted by $(\Omega_{per} = Q_{per} \times S_+, T_{per}, \mu_{per})$. Then it makes sense to **factorize** it by \mathbb{Z}^d to obtain a **Sinai** billiard $(\Omega_0 = Q_0 \times S_+, T_0, \mu_0)$. The natural projection $\Omega \to Q$ (and analogously for Ω_{per} and for Ω_0) will be denoted by π_q .

Finite horizon (FH) versus infinite horizon (∞H)

Why are local perturbations interesting?

Local perturbations

- Lorentz, 1905: described the transport of conduction electrons in metals (still in the pre-quantum era). Natural to consider models with local impurities;
- Non-periodic models
 - M. Lenci, '96-
 - Sz., '08: Penrose-Lorentz process [finite but unbounded horizon!]
- It is not a skew-product any more.

Why are local perturbations interesting?

Local perturbations

- Lorentz, 1905: described the transport of conduction electrons in metals (still in the pre-quantum era). Natural to consider models with local impurities;
- Non-periodic models
 - M. Lenci, '96-
 - Sz., '08: Penrose-Lorentz process [finite but unbounded horizon!]
- It is not a skew-product any more.

Why are local perturbations interesting?

Local perturbations

- Lorentz, 1905: described the transport of conduction electrons in metals (still in the pre-quantum era). Natural to consider models with local impurities;
- Non-periodic models
 - M. Lenci, '96-
 - Sz., '08: Penrose-Lorentz process [finite but unbounded horizon!]
- It is not a skew-product any more.

Why is ∞H interesting?

∞H

 \bullet Hard ball systems in the nonconfined regime have ∞H

- Crystals
- Non-trivial asymptotic behavior and new kinetic equ. (Bourgain, Caglioti, Golse, Wennberg, ...; '98-, Marklof-Strömbergsson, '08-)
- For d ≥ 3 it is HARD to construct FH Sinai-billiard with smooth boundaries!

Why is ∞H interesting?

∞H

- \bullet Hard ball systems in the nonconfined regime have ∞H
- Crystals
- Non-trivial asymptotic behavior and new kinetic equ. (Bourgain, Caglioti, Golse, Wennberg, ...; '98-, Marklof-Strömbergsson, '08-)
- For d ≥ 3 it is HARD to construct FH Sinai-billiard with smooth boundaries!

Why is ∞H interesting?

∞H

- \bullet Hard ball systems in the nonconfined regime have ∞H
- Crystals
- Non-trivial asymptotic behavior and new kinetic equ. (Bourgain, Caglioti, Golse, Wennberg, ...; '98-, Marklof-Strömbergsson, '08-)
- For d ≥ 3 it is HARD to construct FH Sinai-billiard with smooth boundaries!

Why is ∞H interesting?

∞H

- \bullet Hard ball systems in the nonconfined regime have ∞H
- Crystals
- Non-trivial asymptotic behavior and new kinetic equ. (Bourgain, Caglioti, Golse, Wennberg, ...; '98-, Marklof-Strömbergsson, '08-)
- For d ≥ 3 it is HARD to construct FH Sinai-billiard with smooth boundaries!

Stochastic properties: Correlation decay

Let $f, g \quad M(=\Omega_0, \text{ billiard phase space}) \to \mathbb{R}^d$ be piecewise Hölder.

Definition

With a given a_n: n ≥ 1 (M, T, μ) has {a_n}_n-correlation decay if ∃C = C(f, g) such that ∀f, g Hölder and ∀n ≥ 1

$$\left|\int_{M}f(g\circ T^{n})d\mu-\int_{M}fd\mu\int_{M}gd\mu\right|\leq Ca_{n}$$

The correlation decay is exponential (EDC) if ∃C₂ > 0 such that ∀n ≥ 1

$$a_n \leq \exp\left(-C_2 n\right).$$

• The correlation decay is stretched exponential (SEDC) if $\exists \alpha \in (0, 1), C_2 > 0$ such that $\forall n \ge 1$

$$a_n \leq C_1 \exp\left(-C_2 n^{\alpha}\right).$$

Diffusively scaled variant

Definition

Assume $\{q_n \in \mathbb{R}^d | n \ge 0\}$ is a random trajectory. Then its diffusively scaled variant $\in C[0,1]$ (or $\in C[0,\infty]$) is defined as follows: for $N \in \mathbb{Z}_+$ denote $W_N(\frac{j}{N}) = \frac{q_j}{\sqrt{N}}$ ($0 \le j \le N$ or $j \in \mathbb{Z}_+$) and define otherwise $W_N(t)(t \in [0,1] \text{ or } \mathbb{R}_+)$ as its piecewise linear, continuous extension.

E. g. $\kappa(x) = \pi_q(Tx) - \pi_q(x) : M \to \mathbb{R}^d$, the free flight vector of a Lorentz process. From now on $q_n = q_n(x) = \sum_{k=0}^{n-1} \kappa(T^k x)$, n = 0, 1, 2, ... is the Lorentz trajectory.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへぐ

Diffusively scaled variant

Definition

Assume $\{q_n \in \mathbb{R}^d | n \ge 0\}$ is a random trajectory. Then its diffusively scaled variant $\in C[0,1]$ (or $\in C[0,\infty]$) is defined as follows: for $N \in \mathbb{Z}_+$ denote $W_N(\frac{j}{N}) = \frac{q_j}{\sqrt{N}}$ ($0 \le j \le N$ or $j \in \mathbb{Z}_+$) and define otherwise $W_N(t)(t \in [0,1] \text{ or } \mathbb{R}_+)$ as its piecewise linear, continuous extension.

E. g. $\kappa(x) = \pi_q(Tx) - \pi_q(x) : M \to \mathbb{R}^d$, the free flight vector of a Lorentz process. From now on $q_n = q_n(x) = \sum_{k=0}^{n-1} \kappa(T^k x)$, n = 0, 1, 2, ... is the

Lorentz trajectory.

Stochastic properties: CLT & LCLT

Definition

• CLT and Weak Invariance Principle

 $W_N(t) \Rightarrow W_{\mathcal{D}^2}(t),$

the Wiener process with a non-degenerate covariance matrix $\mathcal{D}^2 = \mu_0(\kappa_0 \otimes \kappa_0) + 2 \sum_{j=1}^{\infty} \mu_0(\kappa_0 \otimes \kappa_n).$

• Local CLT Let x be distributed on Ω_0 according to μ_0 . Let the distribution of $[q_n(x)]$ be denoted by Υ_n . There is a constant **c** such that

$$\lim_{n\to\infty}n\Upsilon_n\to\mathbf{c}^{-1}I$$

where *I* is the counting measure on the integer lattice \mathbb{Z}^2 and \rightarrow stands for vague convergence. In fact, $\mathbf{c}^{-1} = \frac{1}{2\pi\sqrt{\det D^2}}$.

Stochastic properties: CLT & LCLT

Definition

• CLT and Weak Invariance Principle

 $W_N(t) \Rightarrow W_{\mathcal{D}^2}(t),$

the Wiener process with a non-degenerate covariance matrix $\mathcal{D}^2 = \mu_0(\kappa_0 \otimes \kappa_0) + 2 \sum_{j=1}^{\infty} \mu_0(\kappa_0 \otimes \kappa_n).$

• Local CLT Let x be distributed on Ω_0 according to μ_0 . Let the distribution of $[q_n(x)]$ be denoted by Υ_n . There is a constant **c** such that

$$\lim_{n\to\infty}n\Upsilon_n\to\mathbf{c}^{-1}I$$

where I is the counting measure on the integer lattice \mathbb{Z}^2 and \rightarrow stands for vague convergence. In fact, $\mathbf{c}^{-1} = \frac{1}{2\pi\sqrt{\det \mathcal{D}^2}}.$

FH Lorentz Process

 ∞ H Lorentz 0000

2D, Periodic case: Some Results

		SEDC	EDC	CLT	LCLT
B-S, '81	M-partitions	Х		Х	
B-Ch-S, '91	M-sieves	Х		Х	
Y, '98	M-towers		Х	Х	
Sz-V, '04 (EThDS)					Х
Ch-D, '09	standard pairs	Х	Х	Х	?!

SEDC - Stretched Exponential Decay of Correlations

- EDC Exponential Decay of Correlations
- CLT Central Limit Theorem
- LCLT Local CLT

Locally perturbed FH Lorentz

• Sinai's problem, '81: locally perturbed FH Lorentz

- Sz-Telcs, '82: locally perturbed SSRW for d = 2 has the same diffusive limit as the unperturbed one
 Idea: local time ρ(n) (= #visits to origin until time n) is
 O(log n) thus the √n scaling eates perturbation up
 Method:
 - there are ~ ρ(n) = O(log n) time intervals spent at perturbation
 - couple the intervals spent outside perturbations to SSRW

Locally perturbed FH Lorentz

- Sinai's problem, '81: locally perturbed FH Lorentz
- Sz-Telcs, '82: locally perturbed SSRW for d = 2 has the same diffusive limit as the unperturbed one
 Idea: local time ρ(n) (= #visits to origin until time n) is
 O(log n) thus the √n scaling eates perturbation up
 Method:
 - there are ~ ρ(n) = O(log n) time intervals spent at perturbation
 - couple the intervals spent outside perturbations to SSRW

Locally perturbed FH Lorentz

- Sinai's problem, '81: locally perturbed FH Lorentz
- Sz-Telcs, '82: locally perturbed SSRW for d = 2 has the same diffusive limit as the unperturbed one
 Idea: local time ρ(n) (= #visits to origin until time n) is
 O(log n) thus the √n scaling eates perturbation up
 Method:
 - there are ~ ρ(n) = O(log n) time intervals spent at perturbation
 - couple the intervals spent outside perturbations to SSRW

Sac

イロト イポト イヨト イヨト

Locally perturbed FH Lorentz 1.

Theorem

Dolgopyat-Sz-Varjú, 09: locally perturbed FH Lorentz has the same diffusive limit as the unperturbed one

Preparatory work:

Theorem

Dolgopyat-Sz-Varjú, 08: recurrence properties of FH Lorentz (extensions of Thm's of Erdős-Taylor and Darling-Kac (on local times, first hitting times, etc.) from SSRW to FH Lorentz)

Locally perturbed FH Lorentz 1.

Theorem

Dolgopyat-Sz-Varjú, 09: locally perturbed FH Lorentz has the same diffusive limit as the unperturbed one

Preparatory work:

Theorem

Dolgopyat-Sz-Varjú, 08: recurrence properties of FH Lorentz (extensions of Thm's of Erdős-Taylor and Darling-Kac (on local times, first hitting times, etc.) from SSRW to FH Lorentz)

Locally perturbed FH Lorentz 2.

Tools:

- Sz-Varjú, 04: local CLT for periodic FH Lorentz
- Chernov-Dolgopyat, 05-09:
 - standard pairs
 - growth lemma
 - Young-coupling

Methods:

- reduction to 1-D RW's
- Stroock-Varadhan's martingale method

Locally perturbed FH Lorentz 2.

Tools:

- Sz-Varjú, 04: local CLT for periodic FH Lorentz
- Chernov-Dolgopyat, 05-09:
 - standard pairs
 - growth lemma
 - Young-coupling

Methods:

- reduction to 1-D RW's
- Stroock-Varadhan's martingale method

Standard pair

- A connected smooth curve γ ⊂ Ω₀ is called an *unstable curve* if at every point x ∈ γ the tangent space T_xγ belongs to the unstable cone C^u_x.
- A standard pair is a pair ℓ = (γ, ρ) where γ is a homogeneous unstable curve and ρ is a homogeneous density on γ (homogeneous meaning good estimates!).

Standard pair

- A connected smooth curve γ ⊂ Ω₀ is called an *unstable curve* if at every point x ∈ γ the tangent space T_xγ belongs to the unstable cone C^u_x.
- A standard pair is a pair ℓ = (γ, ρ) where γ is a homogeneous unstable curve and ρ is a homogeneous density on γ (homogeneous meaning good estimates!).

Growth lemma: preliminary remarks

Sinai's philosophy: Expansion prevails partitioning

Viviane's formulation: Hyperbolicity dominates complexity

NB: P Bálint- IP Tóth, '08: for multidimensional FH S-billiards fulfilment of complexity condition implies exponential correlation decay

Growth lemma: preliminary remarks

Sinai's philosophy: Expansion prevails partitioning

Viviane's formulation: Hyperbolicity dominates complexity

NB: P Bálint- IP Tóth, '08: for multidimensional FH S-billiards fulfilment of complexity condition implies exponential correlation decay

Growth lemma: preliminary remarks

Sinai's philosophy: Expansion prevails partitioning

Viviane's formulation: Hyperbolicity dominates complexity

NB: P Bálint- IP Tóth, '08: for multidimensional FH S-billiards fulfilment of complexity condition implies exponential correlation decay

FH Lorentz Process

 ∞ H Lorentz 0000

Growth lemma, Ch-D, a form of Markov-property Sinai billiard

Theorem

• If $\ell = (\gamma, \rho)$ is a standard pair, then

$$\mathbb{E}_{\ell}(A \circ T_0^n) = \sum_{\alpha} c_{\alpha n} \mathbb{E}_{\ell_{\alpha n}}(A)$$

where $c_{\alpha n} > 0$, $\sum_{\alpha} c_{\alpha n} = 1$ and $\ell_{\alpha n} = (\gamma_{\alpha n}, \rho_{\alpha n})$ are standard pairs where $\gamma_{\alpha n} = \gamma_n(x_{\alpha})$ for some $x_{\alpha} \in \gamma$ and $\rho_{\alpha n}$ is the pushforward of ρ up to a multiplicative factor.

• If $n \ge \beta_3 |\log \operatorname{length}(\ell)|$, then

$$\sum_{ ext{length}(\ell_{lpha n})$$

FH Lorentz Process

 ∞ H Lorentz 0000

Growth lemma, Ch-D, a form of Markov-property Sinai billiard

Theorem

• If $\ell = (\gamma, \rho)$ is a standard pair, then

$$\mathbb{E}_{\ell}(A \circ T_0^n) = \sum_{\alpha} c_{\alpha n} \mathbb{E}_{\ell_{\alpha n}}(A)$$

where $c_{\alpha n} > 0$, $\sum_{\alpha} c_{\alpha n} = 1$ and $\ell_{\alpha n} = (\gamma_{\alpha n}, \rho_{\alpha n})$ are standard pairs where $\gamma_{\alpha n} = \gamma_n(x_{\alpha})$ for some $x_{\alpha} \in \gamma$ and $\rho_{\alpha n}$ is the pushforward of ρ up to a multiplicative factor.

• If $n \geq \beta_3 |\log \operatorname{length}(\ell)|$, then

$$\sum_{\operatorname{ength}(\ell_{\alpha n})<\varepsilon} c_{\alpha n} \leq \beta_4 \varepsilon.$$

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ ̄豆 _ 釣んで

Coupling lemma

Assume that $|m_1|, |m_2| \to \infty$ and if ℓ_1, ℓ_2 are standard pairs satisfying

$$[\ell_j] = m_j, \quad \text{length}(\ell_j) > |m_j|^{-100}, \quad j = 1, 2$$
 (1)

and

$$\frac{1}{2} < \frac{|m_1|}{|m_2|} < 2. \tag{2}$$

Lemma

Given $\zeta > 0$ and $\varepsilon > 0$ there exists R such that for any two standard pairs $\ell_1 = (\gamma_1, \rho_1), \ell_2 = (\gamma_2, \rho_2)$ satisfying the previous assumptions and $|m_j| > R$ the following holds.

Coupling lemma Lorentz process, continued

Lemma

Let $\bar{n} = |m_1|^{2(1+\zeta)}$. There exist positive constants \bar{c} and $\bar{c}_{\beta j}$, probability measures $\bar{\nu}_1$ and $\bar{\nu}_2$ supported on $f^{\bar{n}}\gamma_1$ and $f^{\bar{n}}\gamma_2$ respectively, and families of standard pairs $\{\bar{\ell}_{\beta j}\}_{\beta}; j = 1, 2$ satisfying

$$\mathbb{E}_{\ell_j}(A \circ f^{\bar{n}}) = \bar{c}\bar{\nu}_j(A) + \sum_{\beta} \bar{c}_{\beta j} \mathbb{E}_{\bar{\ell}_{\beta j}}(A) \qquad j = 1,2 \quad (3)$$

with $\bar{c} \geq 1 - \varepsilon$.

Coupling lemma Lorentz process, continued

Theorem

Moreover there exists a measure preserving map

$$ar{\pi}:(\gamma_1 imes [0,1],f^{-ar{n}}ar{
u}_1 imes\lambda) o (\gamma_2 imes [0,1],f^{-ar{n}}ar{
u}_2 imes\lambda)$$

where λ is the Lebesgue measure on [0,1] such that if $\bar{\pi}(x_1, s_1) = (x_2, s_2)$ then for any $n \geq \bar{n}$

$$d(f^n x_1, f^n x_2) \leq C \theta^{n-\bar{n}},$$

where C, θ are the constants from our preliminary lemma.

Martingale approach à la Stroock-Varadhan

Brownian motion is characterized by the fact that

$$\phi(W(t)) - \frac{1}{2} \int_0^t \sum_{ab=1,2} \sigma_{ab} D_{ab} \phi(W(s)) ds \tag{4}$$

is a martingale for C^2 -functions of compact support.

By Stroock-Varadhan it suffices to show that — the limiting process $\tilde{W}(t)$ of any convergent subsequence of the processes $W_N(.)$ — the process

$$\phi(\tilde{W}(t)) - \frac{1}{2} \int_0^t \sum_{ab=1,2} \sigma_{ab} D_{ab} \phi(\tilde{W}(s)) ds$$
(5)

is a martingale for C^2 -functions of compact support.

▲□▶▲圖▶▲≧▶▲≧▶ ≧ の�?

A D > 4 目 > 4 目 > 4 目 > 9 Q Q

Superdiffusive scaling

Reminder: $\kappa(x) = \pi_q(Tx) - \pi_q(x) : M \to \mathbb{R}^2$, the free flight vector of a Lorentz process.

 $q_n = q_n(x) = \sum_{k=0}^{n-1} \kappa(T^k x)$ is the Lorentz trajectory. Now: for $N \in \mathbb{Z}_+$ denote

$$W_N\left(rac{j}{N}
ight) = rac{q_j}{\sqrt{N\log N}} \qquad (0 \le j \le N \ or \ j \in \mathbb{Z}_+)$$

and define otherwise $W_N(t)(t \in [0, 1] \text{ or } \mathbb{R}_+)$ as its piecewise linear, continuous extension.

∞H periodic Lorentz

• Bleher, '92:

- $\mathbb{E}|\kappa(x)|^2 = \infty$
- $\mathbb{E}|\kappa(x)\kappa(T^nx)| < \infty$ if $|n| \ge 1$.
- Heuristic arguments for superdiffusive: $\sqrt{N \log N}$ scaling.

• Sz-Varjú, 07:

- Rigorous proof for Bleher's conjecture (method: Young's towers & Fourier transform of P-F operator (NB: Aaronson-Denker)
- Moreover: local limit law & Recurrence
- Exact form of the limiting covariance
- Melbourne, '08, O(1/t) corr. decay rate for the flow
- Chernov-Dolgopyat, '10: EDC & global LT for κ (method: Ch-D's standard pairs & Bernstein's method of freezing)

∞H periodic Lorentz

- Bleher, '92:
 - $\mathbb{E}|\kappa(x)|^2 = \infty$
 - $\mathbb{E}|\kappa(x)\kappa(T^nx)| < \infty$ if $|n| \ge 1$.
 - Heuristic arguments for superdiffusive: $\sqrt{N \log N}$ scaling.
- Sz-Varjú, 07:
 - Rigorous proof for Bleher's conjecture (method: Young's towers & Fourier transform of P-F operator (NB: Aaronson-Denker)
 - Moreover: local limit law & Recurrence
 - Exact form of the limiting covariance
- Melbourne, '08, O(1/t) corr. decay rate for the flow
- Chernov-Dolgopyat, '10: EDC & global LT for κ (method: Ch-D's standard pairs & Bernstein's method of freezing)

∞H periodic Lorentz

- Bleher, '92:
 - $\mathbb{E}|\kappa(x)|^2 = \infty$
 - $\mathbb{E}|\kappa(x)\kappa(T^nx)| < \infty$ if $|n| \ge 1$.
 - Heuristic arguments for superdiffusive: $\sqrt{N \log N}$ scaling.
- Sz-Varjú, 07:
 - Rigorous proof for Bleher's conjecture (method: Young's towers & Fourier transform of P-F operator (NB: Aaronson-Denker)
 - Moreover: local limit law & Recurrence
 - Exact form of the limiting covariance
- Melbourne, '08, O(1/t) corr. decay rate for the flow
- Chernov-Dolgopyat, '10: EDC & global LT for κ (method: Ch-D's standard pairs & Bernstein's method of freezing)

∞H periodic Lorentz

- Bleher, '92:
 - $\mathbb{E}|\kappa(x)|^2 = \infty$
 - $\mathbb{E}|\kappa(x)\kappa(T^nx)| < \infty \text{ if } |n| \geq 1.$
 - Heuristic arguments for superdiffusive: $\sqrt{N \log N}$ scaling.
- Sz-Varjú, 07:
 - Rigorous proof for Bleher's conjecture (method: Young's towers & Fourier transform of P-F operator (NB: Aaronson-Denker)
 - Moreover: local limit law & Recurrence
 - Exact form of the limiting covariance
- Melbourne, '08, O(1/t) corr. decay rate for the flow
- Chernov-Dolgopyat, '10: EDC & global LT for κ (method: Ch-D's standard pairs & Bernstein's method of freezing)

Locally perturbed RW's

Paulin-Sz, '10: Local perturbations - under slight conditions - do not change the appropriate limit if jumps of the RW belong to the domain of attraction of a stable law of exponent $1 < \alpha \le 2$.

Here transitions over 0 of type $(1,1) \rightarrow (-1,-1)$ do not get perturbed.

Nándori, '10: In a periodic RW with tail corresponding to $\sqrt{n \log n}$ scaling

of transitions over 0 until time $n = O(n^{1/6})$

・ロト・西ト・田下・田下 しゃく

Locally perturbed RW's

Paulin-Sz, '10: Local perturbations - under slight conditions - do not change the appropriate limit if jumps of the RW belong to the domain of attraction of a stable law of exponent $1 < \alpha \le 2$.

Here transitions over 0 of type $(1,1) \rightarrow (-1,-1)$ do not get perturbed.

Nándori, '10: In a periodic RW with tail corresponding to $\sqrt{n \log n}$ scaling

of transitions over 0 until time $n = O(n^{1/6})$

Dynamical tools for ∞H Lorentz

Nándori-Sz-Varjú, '10:

- Growth lemma
- Coupling lemma

NB: For Penrose-Lorentz process

- Growth lemma also holds
- Coupling lemma would require local limit law (for RW on Penrose lattice CLT is proved by Telcs, '10)

Moreover, by using the martingale method of D-Sz-V, '09

Nándori-Sz-Varjú, '10:: third proof for global LT for ∞ H periodic Lorentz (1st: Sz-V, '07, 2nd, Ch-D, '10).

Dynamical tools for ∞H Lorentz

Nándori-Sz-Varjú, '10:

- Growth lemma
- Coupling lemma
- NB: For Penrose-Lorentz process
 - Growth lemma also holds
 - Coupling lemma would require local limit law (for RW on Penrose lattice CLT is proved by Telcs, '10)

Moreover, by using the martingale method of D-Sz-V, '09

Nándori-Sz-Varjú, '10:: third proof for global LT for ∞ H periodic Lorentz (1st: Sz-V, '07, 2nd, Ch-D, '10).

Dynamical tools for ∞H Lorentz

Nándori-Sz-Varjú, '10:

- Growth lemma
- Coupling lemma
- NB: For Penrose-Lorentz process
 - Growth lemma also holds
 - Coupling lemma would require local limit law (for RW on Penrose lattice CLT is proved by Telcs, '10)

Moreover, by using the martingale method of D-Sz-V, '09

Nándori-Sz-Varjú, '10:: third proof for global LT for ∞ H periodic Lorentz (1st: Sz-V, '07, 2nd, Ch-D, '10).