Non- L^{1} functions with rotation sets of Hausdorff dimension one

Zoltán Buczolich

Eötvös University, Budapest
www.cs.elte.hu/~buczo

I worked for a long time with Henstock-Kurzweil integrals and, as a Ph. D. student, got interested in ergodic averages of non- L^{1} functions.
P. Major : $\exists f: X \rightarrow \mathbb{R}$, and $S, T: X \rightarrow X$ two ergodic transformations on a probability space (X, μ) such that
$\lim _{n \rightarrow \infty} \frac{1}{n+1} \sum_{k=0}^{n} f\left(S^{k} x\right)=0, \mu$ a.e. and $\lim _{n \rightarrow \infty} \frac{1}{n+1} \sum_{k=0}^{n} f\left(T^{k} x\right)=a \neq 0$, μ a.e.
By Birkhoff's Ergodic Theorem the above f cannot belong to $L^{1}(X, \mu)$.
My thesis advisor M. Laczkovich raised the question whether the two transformations S and T can be irrational rotations of the unit circle, \mathbb{T}.
In Major's construction the two transformations were conjugate a different approach was needed.
Z.B.: if $S, T: X \rightarrow X$ are two μ-ergodic transformations which generate a free \mathbb{Z}^{2} action on the finite non-atomic Lebesgue measure space (X, \mathcal{S}, μ) then for any $c_{1}, c_{2} \in \mathbb{R}$ there exists a μ-measurable function $f: X \rightarrow \mathbb{R}$ such that $M_{N}^{S} f(x)=\frac{1}{N+1} \sum_{j=0}^{N} f\left(S^{j} x\right) \rightarrow c_{1}$, and $M_{N}^{T} f(x)=\frac{1}{N+1} \sum_{j=0}^{N} f\left(T^{j} x\right) \rightarrow c_{2}$, μ almost every x as $N \rightarrow \infty$.
Two different irrational rotations generate a free \mathbb{Z}^{2} action on $\mathbb{T} \Rightarrow$ answer to Laczkovich's question.
$|A|$ denotes the Lebesgue measure of the measurable set $A \subset \mathbb{R}$, or on this page $A \subset \mathbb{R}^{2}$.
Recent results by Ya. Sinai and C. Ulcigrai.
Trigonometric sums

$$
\frac{1}{N} \sum_{k=0}^{N-1} \frac{1}{1-e^{2 \pi i(k \alpha+x)}}, \quad(x, \alpha) \in(0,1) \times(0,1) \text { are considered. }
$$

$(0,1) \times(0,1)$ is endowed with the uniform probability distribution. It is proved that such trigonometric sums have a non-trivial joint limiting distribution in x and α as N tends to ∞, that is:
T.: For any $\Omega \subset \mathbb{C} \exists \lim _{N \rightarrow \infty}\left|\left\{(\alpha, x): \frac{1}{N} \sum_{k=0}^{N-1} \frac{1}{1-e^{2 \pi i(k \alpha+x)}} \in \Omega\right\}\right|=\mathcal{P}(\Omega)$
with a suitable \mathcal{P} probability measure on \mathbb{C}.
This result also applies to Birkhoff sums of a function with a singularity of type $1 / x$ over a rotation, that is:
T.: For any $a<b \exists \lim _{N \rightarrow \infty}\left|\left\{(\alpha, x): a \leq \frac{1}{N} \sum_{k=0}^{N-1} f(x+n \alpha) \leq b\right\}\right|=\mathcal{P}([a, b])$ with a suitable \mathcal{P} probability measure on \mathbb{R}.

Trying two answer Laczkovich's question first I proved the following theorem:
T.: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a given measurable function, periodic by 1 .

For an $\alpha \in \mathbb{R}$ put $M_{n}^{\alpha} f(x)=\frac{1}{n+1} \sum_{k=0}^{n} f(x+k \alpha)$.
Let Γ_{f} denote the set of those α 's in $(0,1)$ for which $M_{n}^{\alpha} f(x)$ converges for almost every $x \in \mathbb{R}$.
Then from $\left|\Gamma_{f}\right|>0$ it follows that f is integrable on $[0,1]$.
$\left|\Gamma_{f}\right|>0 \Rightarrow f \in L^{1}$ and for all $\alpha \in[0,1] \backslash \mathbb{Q}$ the limit of $M_{n}^{\alpha} f(x)$ equals $\int_{0}^{1} f$ by the Birkhoff Ergodic thm.
T.: For any sequence of independent irrationals $\left\{\alpha_{j}\right\}_{j=1}^{\infty}$ there exists $f: \mathbb{R} \rightarrow \mathbb{R}$, periodic by 1 such that $f \notin L^{1}[0,1]$ and $M_{n}^{\alpha_{j}} f(x) \rightarrow 0$ for almost every $x \in[0,1]$. $\Rightarrow \Gamma_{f} \backslash \mathbb{Q}$ can be dense for non-integrable functions.
R. Svetic: there exists a non-integrable $f: \mathbb{T} \rightarrow \mathbb{R}$ such that Γ_{f} is c-dense in \mathbb{T}. (A set $S \subset \mathbb{T}$ is c-dense if the cardinality of $S \cap I$ equals continuum for every nonempty open interval $I \subset \mathbb{T}$.)
Question: Can Γ_{f} be of Hausdorff dimension one for non- L^{1} functions?
T.: There exist a measurable $f: \mathbb{R} \rightarrow \mathbb{R}$ periodic by one and a set $A \subset[0,1) \backslash \mathbb{Q}$ such that the Hausdorff dimension of A is one, for all $\alpha \in A$

$$
\lim _{K \rightarrow \infty} \frac{1}{K} \sum_{k=1}^{K} f(x+k \alpha)=0 \text { for almost every } x \in[0,1) \text { and } \int_{[0,1)}|f|=+\infty .
$$

Outline of the proof: First we define the sequences d_{j} and l_{j} converging to 0 and $K_{j}=10 j$ converging to ∞.
Then we define a subset A of the irrationals in (0,1).
Suppose $\alpha \in A$ and its continued fraction development is $\left[a_{\alpha, 1}, a_{\alpha, 2}, \ldots\right]=\frac{1}{a_{\alpha, 1}+\frac{1}{a_{\alpha, 2}+\frac{1}{2}}}$, and $p_{\alpha, n} / q_{\alpha, n}$ is its n 'th convergent.
We define a sequence $n(j, \alpha)<n(j+1, \alpha)$.
The $a_{\alpha, n(j, \alpha)}$ continued fraction partial denominators of α will be chosen in a very specific way so that $1 / q_{\alpha, n(j, \alpha)}$ will be very close to l_{j}.
If n is within a block determined by $n(j-1, \alpha)$ and $n(j, \alpha)$, that is $n(j-1, \alpha)<$ $n<n(j, \alpha)$ then we only assume that $a_{\alpha, n}$ is bounded by K_{j}.
The Hausdorff dimension of A equals one.

The function f is defined as the sum of the functions f_{j}. The functions f_{j} vanish outside a set B_{j} of length h_{j}.
The set B_{j} is subdivided into an even number of intervals of length l_{j} and f_{j} equals $\pm 1 / h_{j}$ alternately on these subintervals.
This will provide us sufficient cancellation for the ergodic sums with respect to $\alpha \in A$ rotations.
On the other hand, we have $\int\left|f_{j}\right|=1$.
We show that the measure of those x 's for which

$$
\sup _{K>0}\left|\frac{1}{K} \sum_{k=1}^{K} f_{j}(x+k \alpha)\right| \geq 1 / j^{2} \text { is not greater than } 1 / j^{2} .
$$

This weak maximal type inequality will imply the main result.

Question: Suppose $0<t<1$ and $f(x)=\frac{1}{\left.x|\log | x\right|^{t}}$, when $|x| \leq 1 / 2, f(0)=0$, and f is periodic by one. What can be said about the Hausdorff dimension of the rotation set Γ_{f} ?
In case it is still zero for all $t \in(0,1)$ one could continue by asking the same question for functions defined as above, but for which we have $f(x)=$ $\frac{1}{x \log |x||\log | \log |x||\mid t}$, when $|x| \leq 1 / 2$.

Suppose $\alpha \in[0,1)$ irrational, then its
 continued fraction development:

$$
\alpha=\left[a_{\alpha, 1}, a_{\alpha, 2}, \ldots\right]=\frac{1}{a_{\alpha, 1}+\frac{1}{a_{\alpha, 2}+\frac{1}{\ldots}}}
$$

with $a_{\alpha, n} \in \mathbb{N}$.
The Gauss map is given by
$G(\alpha)=\left\{\frac{1}{\alpha}\right\}$, and
$a_{\alpha, n}=\left\lfloor\left(G^{n-1}(\alpha)\right)^{-1}\right\rfloor$.
Set $\alpha_{n}=\left[a_{\alpha, n+1}, a_{\alpha, n+2}, \ldots\right]=G^{n}(\alpha)$.
The convergents of α are
$p_{\alpha, n} / q_{\alpha, n}=\left[a_{\alpha, 1}, a_{\alpha, 2}, \ldots, a_{\alpha, n}\right]$.
The numbers $p_{\alpha, n}$ and $q_{\alpha, n}$ can be defined by the following recursion:

$$
p_{\alpha,-1}=q_{\alpha, 0}=1, q_{\alpha,-1}=p_{\alpha, 0}=0
$$

$$
p_{\alpha, n}=a_{\alpha, n} p_{\alpha, n-1}+p_{\alpha, n-2}, q_{\alpha, n}=a_{\alpha, n} q_{\alpha, n-1}+q_{\alpha, n-2},(n \in \mathbb{N})
$$

$$
\begin{aligned}
& \lambda_{\alpha}^{(n-1)} \stackrel{\text { def }}{=}\left|q_{\alpha, n-1} \alpha-p_{\alpha, n-1}\right|=\frac{1}{q_{\alpha, n}+q_{\alpha, n-1} \alpha_{n}} . \text { To be more pre } \\
& \lambda_{\alpha}^{(n-1)}=(-1)^{n-1}\left(q_{\alpha, n-1} \alpha-p_{\alpha, n-1}\right)=\frac{1}{q_{\alpha, n}+q_{\alpha, n-1} G^{n}(\alpha)} .
\end{aligned}
$$

Property 1.: The points $k \alpha, k=0, \ldots, q_{\alpha, n}-1$ on the unit circle $\mathbb{T}=\mathbb{R} / \mathbb{Z}$ are "almost equally spaced".

Denote by $\mathcal{P}(n)$ the partition obtained by considering the points $k \alpha, k=0, \ldots, q_{\alpha, n}-1$. If $\mathcal{I} \subset \mathbb{T}$ is an arbitrary interval of length $\lambda_{\alpha}^{(n-2)}$ then there can be at most one $\mathcal{P}(n)$ partition subinterval $\mathcal{I}^{\prime} \subset \mathcal{I}$ whose length is different from $\lambda_{\alpha}^{(n-1)}$. Moreover, the length of \mathcal{I}^{\prime} is larger than $\lambda_{\alpha}^{(n-1)}$ but less than $2 \cdot \lambda_{\alpha}^{(n-1)}$.

Property 2.:

If we add the point $q_{\alpha, n} \alpha$ to the partition points
$k \alpha, k=0, \ldots, q_{\alpha, n}-1$ then one short interval of length $\lambda_{\alpha}^{(n)}$ shows up adjacent to 0 modulo 1.
Denote now by \mathcal{I} an interval belonging to the partition $\mathcal{P}(n)$.
If $0 \leq k, k^{\prime}<q_{\alpha, n+1}, k \alpha \in \mathcal{I}$ and $k^{\prime} \alpha \in \mathcal{I}$ then $k-k^{\prime}$ is an integer multiple of $q_{\alpha, n}$, that is, $k-k^{\prime}=t q_{\alpha, n}$ for an integer t. If $k^{\prime}=k+q_{\alpha, n}<q_{\alpha, n+1}, k \alpha, k^{\prime} \alpha \in \mathcal{I}$, then the distance of $k \alpha$ and $k^{\prime} \alpha$ equals $\lambda_{\alpha}^{(n)}$. Moreover, if $k^{\prime \prime}=k+2 q_{\alpha, n}<q_{\alpha, n+1}$, $k^{\prime \prime} \alpha \in \mathcal{I}$ holds as well then $\left\{k^{\prime \prime} \alpha\right\}-\left\{k^{\prime} \alpha\right\}$ and $\left\{k^{\prime} \alpha\right\}-\{k \alpha\}$ are of the same sign.

Set $d_{0}=1, l_{0}=1 / 100$ and $K_{j}=10 j$ for $j \in \mathbb{N}$.
Suppose we have defined d_{j-1} and l_{j-1}.
Choose $0<d_{j}<l_{j-1} / 3<d_{j-1} / 100$ such that

$$
\frac{1}{3 \cdot\left(32 \cdot 10^{4} \cdot K_{j}^{3} j^{6}\right)^{2}}=\frac{1}{3 \cdot\left(32 \cdot 10^{7} j^{9}\right)^{2}}>\left(1-\frac{4}{10 j}\right)^{\log _{2}\left(8 K_{j}^{2} / d_{j}^{2}\right)}
$$

and for $j \geq 2$ we also have

$$
\left(1-\frac{4}{10(j-1)}\right)^{-3 \log _{2}\left(8 K_{j-1}^{2} / d_{j-1}^{2}\right)}<\left(1-\frac{4}{10 j}\right)^{-\log _{2}\left(8 K_{j}^{2} / d_{j}^{2}\right)}
$$

Set $l_{j}=\frac{d_{j}}{16 \cdot 10^{4} \cdot K_{j}^{3} j^{6}}$.
Set $n(0, \alpha)=0$ and suppose $j \geq 1$.
For any $\alpha \in[0,1) \backslash \mathbb{Q}$ choose $n(j, \alpha)$ so that
$\frac{1}{q_{\alpha, n(j, \alpha)-2}}>d_{j}$, but $\frac{1}{q_{\alpha, n(j, \alpha)-1}} \leq d_{j}$.

By $\alpha_{n(j, \alpha)-1}, \alpha_{n(j, \alpha)-2} \in(0,1)$ we have

$$
\begin{aligned}
\lambda_{\alpha}^{(n(j, \alpha)-2)} & =\frac{1}{q_{\alpha, n(j, \alpha)-1}+q_{\alpha, n(j, \alpha)-2^{\alpha_{n(j, \alpha)-1}}}<\frac{1}{q_{\alpha, n(j, \alpha)-1}} \leq d_{j} \text { and }} \\
2 \lambda_{\alpha}^{(n(j, \alpha)-3)} & =\frac{2}{q_{\alpha, n(j, \alpha)-2}+q_{\alpha, n(j, \alpha)-3^{\alpha} \alpha_{n(j, \alpha)-2}}}>\frac{2}{2 q_{\alpha, n(j, \alpha)-2}}>d_{j} .
\end{aligned}
$$

The choice of d_{j} implies that $n(j-1, \alpha) \leq n(j, \alpha)$.
We denote by A the set of those $\alpha=\left[a_{\alpha, 1}, a_{\alpha, 2}, \ldots\right] \in[0,1) \backslash \mathbb{Q}$ for which $a_{\alpha, n} \leq K_{j}$ holds for $n(j-1, \alpha)<n<n(j, \alpha)$, and

$$
\frac{1}{q_{\alpha, n(j, \alpha)}}<l_{j} \leq \frac{1}{q_{\alpha, n(j, \alpha)}-q_{\alpha, n(j, \alpha)-1}}
$$

The above property can be rephrased as

$$
\frac{1}{a_{\alpha, n(j, \alpha)} \cdot q_{\alpha, n(j, \alpha)-1}+q_{\alpha, n(j, \alpha)-2}}<l_{j} \leq \frac{1}{\left(a_{\alpha, n(j, \alpha)}-1\right) q_{\alpha, n(j, \alpha)-1}+q_{\alpha, n(j, \alpha)-2}}
$$

Proposition.: $\operatorname{dim}_{\mathrm{H}} A=1$.

Set $h_{j}=\frac{d_{j}}{100 \cdot K_{j} j^{2}}$ and $B_{j}=\left[\frac{1}{j}-2 h_{j}, \frac{1}{j}-h_{j}\right) \subset[0,1)$.
B_{j} are disjoint for $j=1,2, \ldots$ and $\frac{h_{j}}{l_{j}}=\frac{16 \cdot 10^{4} \cdot K_{j}^{3} j^{6}}{10^{2} K_{j} j^{2}}=16 \cdot 10^{2} K_{j}^{2} j^{4}$
is an even integer.
Set $f_{j}(x)=0$ if $x \in[0,1) \backslash B_{j}$.
For $t=1,2, \ldots,\left(h_{j} / l_{j}\right)$ set $f_{j}(x)=\frac{(-1)^{t}}{h_{j}}$ if $x \in\left[\frac{1}{j}-2 h_{j}+(t-1) l_{j}, \frac{1}{j}-2 h_{j}+t l_{j}\right)$.
extend the def. of f_{j} to \mathbb{R} by making it periodic by one.
Clearly, $\left|f_{j}(x)\right|=1 / h_{j}$ for $x \in B_{j}, \int_{[0,1)}\left|f_{j}\right|=1$ and $\int_{[0,1)} f_{j}=0$.

Set $M^{*}\left(f_{j}, x, \alpha\right)=\sup _{K>0}\left|\frac{1}{K} \sum_{k=1}^{K} f_{j}(x+k \alpha)\right|$.
Denote by $X^{*}\left(f_{j}, \alpha\right)$ the set of those $x \in[0,1)$ for which

$$
M^{*}\left(f_{j}, x, \alpha\right) \geq \epsilon_{j} \stackrel{\text { def }}{ } \frac{1}{j^{2}} .
$$

The next proposition establishes a weak maximal type inequality:
Proposition.: If $\alpha \in A$ then $\left|X^{*}\left(f_{j}, \alpha\right)\right| \leq \frac{1}{j^{2}}$.
This prop. \Rightarrow that for $f=\sum_{j=1}^{\infty} f_{j}$ for any $\alpha \in A$ we have

$$
\lim _{K \rightarrow \infty}\left|\frac{1}{K} \sum_{k=1}^{K} f(x+k \alpha)\right|=\limsup _{K \rightarrow \infty}\left|\frac{1}{K} \sum_{k=1}^{K} \sum_{j=1}^{\infty} f_{j}(x+k \alpha)\right|=0 .
$$

The Hausdorff dimension estimate of A
Suppose that μ is a finite Borel measure, a mass distribution on \mathbb{R}, the lower local dimension of μ at $\alpha \in \mathbb{R}$ equals

$$
\operatorname{dim}_{\text {loc }} \mu(\alpha)=\liminf _{r \rightarrow 0+} \frac{\log _{2} \mu(B(\alpha, r))}{\log _{2} r}
$$

(It does not matter which base we use for the logarithm since changing the base multiplies the numerator and the denominator by the same constant.)

Proposition.: Let $A \subset \mathbb{R}^{n}$ be a Borel set and let μ be a finite Borel measure. If $\underline{\operatorname{dim}}_{\text {loc }} \mu(\alpha) \geq s$ for all $\alpha \in A$ and $\mu(A)>0$ then $\operatorname{dim}_{\mathrm{H}} A \geq s$.

There are many papers related to computing Hausdorff dimension of sets obtained by restrictions on the continued fraction partial denominators $a_{\alpha, n}$ of the numbers $\alpha=\left[a_{\alpha, 1}, a_{\alpha, 2}, \ldots\right]$ belonging to these sets. In the estimate of the Hausdorff dimension of our set A our bounds K_{j} on the $a_{\alpha, n}$ vary, and sometimes, for the $a_{\alpha, n(j, \alpha)}$'s there are very serious restrictions on the partial denominators. This is why we had to use a direct computation of the dimension, based on the estimate of the lower local dimension of a mass distribution on A.

The fundamental interval $I(n, \alpha)$ denotes the closed interval with endpoints $\frac{p_{\alpha, n}}{q_{\alpha, n}}=\left[a_{\alpha, 1}, \ldots, a_{\alpha, n}\right]$ and
$\frac{p_{\alpha, n}+p_{\alpha, n-1}}{q_{\alpha, n}+q_{\alpha, n-1}}=\left[a_{\alpha, 1}, \ldots, a_{\alpha, n}+1\right]$.
We also put $I(0, \alpha)=[0,1]$.

$$
|I(n, \alpha)|=\frac{1}{q_{\alpha, n}\left(q_{\alpha, n}+q_{\alpha, n-1}\right)}
$$

The n 'th iterate of the Gauss map, $G^{n}(\alpha)$ maps $I(n, \alpha)$ onto $[0,1)$.
Suppose $\alpha_{0}=\left[a_{\alpha_{0}, 1}, a_{\alpha_{0}, 2}, \ldots\right]$, then G^{n} maps in a strict monotone way $I\left(n, \alpha_{0}\right)$ onto [0, 1). Denote by $F_{n, \alpha_{0}}$ the inverse of G^{n} restricted to $I\left(n, \alpha_{0}\right)$.
Then $(-1)^{n-1}\left(q_{\alpha_{0}, n-1} F_{n, \alpha_{0}}(\alpha)-p_{\alpha_{0}, n-1}\right)=\frac{1}{q_{\alpha_{0}, n}+q_{\alpha_{0}, n-1} \alpha}$
$\Rightarrow F_{n, \alpha_{0}}^{\prime}(\alpha)=\frac{(-1)^{n}}{\left(q_{\alpha_{0}, n}+q_{\alpha_{0}, n-1} \alpha\right)^{2}}$,
$\Rightarrow F_{n, \alpha_{0}}$, and $\left.G^{n}\right|_{I\left(n, \alpha_{0}\right)}$ both satisfy a bounded distortion property:
$\forall n \in \mathbb{N} \frac{F_{n, \alpha_{0}}^{\prime}(\alpha)}{F_{n, \alpha_{0}}^{\prime}(\beta)} \leq 4, \forall \alpha, \beta \in[0,1]$ and $\frac{\left(G^{n}\right)^{\prime}(\alpha)}{\left(G^{n}\right)^{\prime}(\beta)} \leq 4, \forall \alpha, \beta \in \operatorname{int}\left(I\left(n, \alpha_{0}\right)\right)$.

To define μ as a mass distribution it is sufficient to define it on the fundamental intervals of the form $I(n, \alpha), n \in \mathbb{N}, \alpha \in[0,1) \backslash \mathbb{Q}$.
For any α we put $\mu(I(0, \alpha))=\mu([0,1])=1$.
If $\alpha_{0} \in[0,1) \backslash \mathbb{Q}, \operatorname{int}\left(I\left(n, \alpha_{0}\right)\right) \cap A=\emptyset$ then we set $\mu\left(I\left(n, \alpha_{0}\right)\right)=0$.
Suppose $\alpha_{0} \in A, \alpha_{0}=\left[a_{\alpha_{0}, 1}, a_{\alpha_{0}, 2}, \ldots\right]$. We need to define $\mu\left(I\left(n, \alpha_{0}\right)\right)$ for all $n \in \mathbb{N}$.
Suppose that $\mu\left(I\left(n-1, \alpha_{0}\right)\right)$ is defined and $\Gamma\left(n-1, \alpha_{0}\right) \stackrel{\text { def } \mu\left(I\left(n-1, \alpha_{0}\right)\right)}{\left|I\left(n-1, \alpha_{0}\right)\right|}$. We want to define $\mu\left(I\left(n, \alpha_{0}\right)\right)$.

First suppose that we can find $j \in \mathbb{N}$ such that $n\left(j-1, \alpha_{0}\right)<n<n\left(j, \alpha_{0}\right)$.
Denote by $I_{k}\left(n, \alpha_{0}\right)$ the closed interval with endpoints
$\left[a_{\alpha_{0}, 1}, \ldots, a_{\alpha_{0}, n-1}, k\right]$ and $\left[a_{\alpha_{0}, 1}, \ldots, a_{\alpha_{0}, n-1}, k+1\right]$.
Then $I\left(n, \alpha_{0}\right)=I_{a_{\alpha_{0}, n}}\left(n, \alpha_{0}\right)$ and $\left|I_{k+1}\left(n, \alpha_{0}\right)\right|<\left|I_{k}\left(n, \alpha_{0}\right)\right|$ for all $k \in \mathbb{N}$.

$A \cap I\left(n-1, \alpha_{0}\right) \subset \bigcup_{k=1}^{K_{j}} I_{k}\left(n, \alpha_{0}\right) \stackrel{\text { def }}{=} I^{\prime}\left(n, \alpha_{0}\right)=F_{n-1, \alpha_{0}}\left(\left[\frac{1}{K_{j}}, 1\right]\right)=F_{n-1, \alpha_{0}}\left(\left[\frac{1}{10 j}, 1\right]\right)$.
By the bounded distortion property of $F_{n-1, \alpha_{0}}$ and by its strict monotonicity
$\frac{\left|I\left(n-1, \alpha_{0}\right) \backslash I^{\prime}\left(n, \alpha_{0}\right)\right|}{\left|I\left(n-1, \alpha_{0}\right)\right|}=\frac{\left|F_{n-1, \alpha_{0}}\left(\left[0, \frac{1}{10 j}\right]\right)\right|}{\left|F_{n-1, \alpha_{0}}([0,1])\right|} \leq \frac{4}{10 j}$.
Therefore, $\left|I^{\prime}\left(n, \alpha_{0}\right)\right| \geq\left(1-\frac{4}{10 j}\right)\left|I\left(n-1, \alpha_{0}\right)\right|$.
We put $\mu\left(I\left(n, \alpha_{0}\right)\right) \stackrel{\text { def }}{=} \frac{\left|I\left(n, \alpha_{0}\right)\right|}{\left|I^{\prime}\left(n, \alpha_{0}\right)\right|} \mu\left(I\left(n-1, \alpha_{0}\right)\right)$.

For all $k=1, \ldots, K_{j}$ there exists $\alpha_{1} \in \operatorname{int}\left(I_{k}\left(n, \alpha_{0}\right)\right) \cap A$.

$$
\mu\left(I^{\prime}\left(n, \alpha_{0}\right)\right)=\mu\left(\bigcup_{\alpha \in A \cap I\left(n-1, \alpha_{0}\right)} I(n, \alpha)\right)=\sum_{k=1}^{K_{j}} \mu\left(I_{k}\left(n, \alpha_{0}\right)\right)=
$$

$$
\frac{\sum_{k=1}^{K_{j}}\left|I_{k}\left(n, \alpha_{0}\right)\right|}{\left|I^{\prime}\left(n, \alpha_{0}\right)\right|} \mu\left(I\left(n-1, \alpha_{0}\right)\right)=\mu\left(I\left(n-1, \alpha_{0}\right)\right)
$$

$$
\Rightarrow \Gamma\left(n, \alpha_{0}\right) \stackrel{\text { def }}{=} \frac{\mu\left(I\left(n, \alpha_{0}\right)\right)}{\left|I\left(n, \alpha_{0}\right)\right|}=\frac{\mu\left(I\left(n-1, \alpha_{0}\right)\right)}{\left|I^{\prime}\left(n, \alpha_{0}\right)\right|}=
$$

$$
\frac{\mu\left(I\left(n-1, \alpha_{0}\right)\right)}{\left|I\left(n-1, \alpha_{0}\right)\right|} \cdot \frac{\left|I\left(n-1, \alpha_{0}\right)\right|}{\left|I^{\prime}\left(n, \alpha_{0}\right)\right|} \leq \Gamma\left(n-1, \alpha_{0}\right)\left(1-\frac{4}{10 j}\right)^{-1}
$$

Missing cases: $\exists j \in \mathbb{N}$ for which $n=n\left(j, \alpha_{0}\right)$.
Put $\mu\left(I\left(n\left(j, \alpha_{0}\right), \alpha_{0}\right)\right) \stackrel{\text { def }}{=} \mu\left(I\left(n\left(j, \alpha_{0}\right)-1, \alpha_{0}\right)\right)$.
Need estimates:

$$
\begin{aligned}
& \frac{\left|I\left(n\left(j, \alpha_{0}\right), \alpha_{0}\right)\right|}{\left|I\left(n\left(j, \alpha_{0}\right)-1, \alpha_{0}\right)\right|}>\frac{1}{3 a_{\alpha_{0}, n\left(j, \alpha_{0}\right)}^{2}}>\frac{1}{3 \cdot\left(32 \cdot 10^{4} K_{j}^{3} j^{6}\right)^{2}}>\left(1-\frac{4}{10 j}\right)^{\log _{2}\left(8 K_{j}^{2} / d_{j}^{2}\right)} . \\
& \Gamma\left(n\left(j, \alpha_{0}\right), \alpha_{0}\right) \leq \Gamma\left(n\left(j-1, \alpha_{0}\right), \alpha_{0}\right) \frac{\Gamma\left(n\left(j-1, \alpha_{0}\right)+1, \alpha_{0}\right)}{\Gamma\left(n\left(j-1, \alpha_{0}\right), \alpha_{0}\right)} \cdots \\
& \frac{\Gamma\left(n\left(j, \alpha_{0}\right)-1, \alpha_{0}\right)}{\Gamma\left(n\left(j, \alpha_{0}\right)-2, \alpha_{0}\right)} \cdot \frac{\Gamma\left(n\left(j, \alpha_{0}\right), \alpha_{0}\right)}{\Gamma\left(n\left(j, \alpha_{0}\right)-1, \alpha_{0}\right)}<\left(1-\frac{4}{10 j}\right)^{-3 \log _{2}\left(8 K_{j}^{2} / d_{j}^{2}\right)}
\end{aligned}
$$

Suppose $\alpha_{0} \in A$ and $0<r<\left|I\left(n\left(2, \alpha_{0}\right), \alpha_{0}\right)\right|$.
Choose n such that $\left|I\left(n+1, \alpha_{0}\right)\right| \leq r<\left|I\left(n, \alpha_{0}\right)\right|$

Then one can obtain estimates like: $\Gamma\left(n, \alpha_{0}\right)<\left(1-\frac{4}{10(j-1)}\right)^{7 \log _{2} r}$.
$\Rightarrow \frac{\log _{2} \mu\left(B\left(\alpha_{0}, r\right)\right)}{\log _{2} r} \geq \frac{\log _{2}\left(\Gamma\left(n, \alpha_{0}\right)\right)+3 \log _{2}\left(10^{19} j^{18}\right)+\log _{2} r}{\log _{2} r}>1-\frac{6}{j-1}-\frac{3 \log _{2}\left(10^{19} j^{18}\right)}{-\log _{2} r}$.

This implies $\liminf _{r \rightarrow 0+} \frac{\log _{2} \mu\left(B\left(\alpha_{0}, r\right)\right)}{\log _{2} r} \geq 1 . \Rightarrow \operatorname{dim}_{\mathrm{H}} A=1$.

