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I worked for a long time with Henstock-Kurzweil integrals and, as a Ph. D.
student, got interested in ergodic averages of non-L1 functions.
P. Major : 3 f: X — R, and 5,7 : X — X two ergodic transformations on a

probability space (X, ) such that

nmLZf(Ska;)—o 1 a.e. and Ilm%Zf(Tk:c)—a#O L a.e.

n—oo n, _|_ n—oo

k=0 n k=0
By Birkhoff’s Ergodic Theorem the above f cannot belong to L1 (X, u).

My thesis advisor M. Laczkovich raised the question whether the two transfor-
mations S and T can be irrational rotations of the unit circle, T.

In Major’s construction the two transformations were conjugate a different ap-
proach was needed.

Z.B.. if 5T :X — X are two u-ergodic transformations which generate a free
Z?2 action on the finite non-atomic Lebesgue measure space (X, S, i) then for
any ci,co € R there exists a pu-measurable function f : X — R such that

1 1 O -
Myf(e) = 5= g Z f(872) = e1, and My f(2) = P 2 [(Te) = ez,

@ almost every x as N — 0.
Two different irrational rotations generate a free Z2 action on T = answer to
LLaczkovich’s question.




|A| denotes the Lebesgue measure of the measurable set A C R, or on this
page A C RZ.

Recent results by Ya. Sinai and C. Ulcigrai.

Trigonometric sums

~ kz_:o T mithata)’ (z,a) € (0,1) x (0,1) are considered.

(0,1) x (0,1) is endowed with the uniform probability distribution. It is proved
that such trigonometric sums have a non-trivial joint limiting distribution in x

and o« as N tends to oo, that is:

Al 1
T.. Forany QcC 3 ]\;inoo {(a, z) : N kz_:o T mithat)
with a suitable P probability measure on C.
This result also applies to Birkhoff sums of a function with a singularity of

type 1/x over a rotation, that is:

€ Q} =P(Q)

1 N-1
T.. Foranya<b3 lim {(wz):ia<—= ) f(z+na)<b} = P(a,b])
N —oo Nk:O
with a suitable P probability measure on R.



Trying two answer Laczkovich's question first I proved the following theorem:
T.. Let f:R— R be a given measurable function, periodic by 1.

For an a € R put M f(z) = —— Z f(x 4+ ka).

Let "y denote the set of those a’s in (0,1) for which My f(x) converges for
almost every x € R.

Then from [I"¢| > 0 it follows that f is integrable on [0, 1].

¢l >0 = feL!and for all a € [0,1]\ Q the limit of Mgf(z) equals [5 f by
the Birkhoff Ergodic thm.

T.: For any sequence of independent irrationals {ozj} ° . there exists f : R — R,

periodic by 1 such that f ¢ L'[0,1] and M,’ f(z) — O for almost every x € [0, 1].
= I‘f\Q can be dense for non-integrable functions.

R. Svetic: there exists a non-integrable f : T — R such that I'¢ is c-dense in T.
(A set S C T is c-dense if the cardinality of SN I equals continuum for every
nonempty open interval I C T.)

Question: Can I‘f be of Hausdorff dimension one for non-L1 functions?



T.:. There exist a measurable f : R — R periodic by one and a set A C [0,1)\Q
such that the Hausdorff dimension of A is one, for all oo € A

1 K
lim — x+ ka) =0 for almost every x € [0,1) and / = +o0.
K%ooKk;f( + ka) yz€[0,1) [071>|f| +
Outline of the proof: First we define the sequences d; and L converging to O
and K; = 105 converging to oo.

Then we define a subset A of the irrationals in (0,1).

Suppose a« € A and its continued fraction development

is [an.1,00,2, -] = 7 and pan/gan IS its n'th convergent.

We define a sequence n(j,a) < n(j + 1,a).

The a, o) continued fraction partial denominators of a will be chosen in a
very specific way so that 1/q, ,,¢; ) Will be very close to [;.

If n is within a block determined by n(j —1,«) and n(j,a), thatisn(j —1,a) <
n < n(j,a) then we only assume that aq . is bounded by K;.

The Hausdorff dimension of A equals one.



The function f is defined as the sum of the functions f;.

The functions jf; vanish outside a set B; of length h;.

The set B; is subdivided into an even number of intervals of length lj

and f; equals £1/h; alternately on these subintervals.

This will provide us sufficient cancellation for the ergodic sums with respect
to a € A rotations.

On the other hand, we have [|f;| = 1.

We show that the measure of those z's for which

1 K
sup = Z filz + ka)| > 1/j2 is not greater than 1/;52.
k=1

K>0
This weak maximal type inequality will imply the main result.

Question: Suppose 0 <t <1 and f(x) = x“Oé'th, when |x| < 1/2, f(0) = 0,
and f is periodic by one. What can be said about the Hausdorff dimension of
the rotation set I’f?

In case it is still zero for all ¢t € (0,1) one could continue by asking the
same question for functions defined as above, but for which we have f(x) =

1
- when || < 1/2.
x log |z|| log | log |z||| I I— /




Suppose « € [0,1) irrational, then its
continued fraction development:

The Gauss map is given by
G(a) = {*}, and
Qo,n = L(Gn_l(a))_lJ-

| | | i
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Set ap = [aa,n—l-la Aoy,n+25 ] — Gn(a)
The convergents of a are

pa,n/qa,n — [aa,la Ay, 25 -5 aa,n]-
The numbers pa.n and ga.n can be defined by the following recursion:

Poa,—1 — 4,0 — 1, doe,—1 — Pa,0 — 0,

Pa,n — Ga,nPa,n—1 =+ Pan—2, 9a,n — Aa,nqdo,n—1 + do,n—25 (n € N).
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The intervals of length A&”) show up

alternating on the sides of O modulo

1, to the right for even and to the left
(close to 1 on the figure) for odd n's.



Property 1.: The points ka, £ = 0,...,ga,n — 1 On the unit circle T = R/Z are

“almost equally spaced’ .

(0) (1)
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Denote by P(n) the partition ob-
tained by considering the points
ka, k =0,..,qa;n — 1. I CT
is an arbitrary interval of length
)\((Xn—2) then there can be at most
one P(n) partition subinterval
7' c T whose length is differ-
ent from A&”_l). Moreover, the
length of Z’ is larger than )\&n_l)
but less than 2 - A&n_l).



Property 2.: If we add the point gona to the
A© 1 1 AW partition points

' | | ka, k = 0,...,qa,;n — 1 then one
short interval of length A&”) shows
P — — up adjacent to O modulo 1.
Denote now by Z an interval be-
e longing to the partition P(n).
e HHJ\w) If 0 < kK < gupt1, ka € T

— and k'a € T then k — k' is an
integer multiple of ga.n, that is,

k — k' = tqan for an integer t. If ¥ = k4 qan < Qoe.n+1 ka,k'a € Z, then
the distance of ka and k'a equals A&”). Moreover, if k" =k 4+ 2qan < Qon+1
k"o € T holds as well then {k"a} — {k'a} and {K'a} — {ka} are of the same sign.
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Set dg =1, lg =1/100 and K; = 105 for j € N.
Suppose we have defined d;_q and [;_1.
Choose 0 < d; <l;_1/3 <dj_1/100 such that
1 1 4 \'092(8K7/d3)
3.(32-104. Kj3j6)2 - 3-(32-10749)2 > (1 a E)
and for 5 > 2 we also have

2

(1 4 >3|092(8K31/d§1) ( 4 )- 092(8K*/d?)
_ < .

10j

Set n(0,«a) = 0 and suppose j > 1.
For any a € [0,1) \ Q choose n(j,a) so that

1 1
> dj, but < d]
qa,n(j,a)—Q qa,n(j,a)—l

11



By A (j.0)—1) On(f,a)—2 c (O, 1) we have

U 1
Agzn(]’a) 2) = = < < d; and
qO{,’I’L(j,Oé)—l —I_ qaan(jaa)_zan(jaa)_l qaan(jaa)_l
) — 2 2
24D - - ;.

dan(jo)—2 T dan(je)-3%%3Ga)-2  2an(je) -2
The choice of d; implies that n(j — 1,a) < n(j, a).

We denote by A the set of those a = [ay1,a0.2,...] € [0,1)\ Q for which
aa,n < Kj holds for n(j — 1,a) <n <n(j,a), and

1 1
< lj < .
qa,n(j,a) qOé,?”L(j,Oé) B qa,n(j,a)—l
The above property can be rephrased as
! < lj < ! :
Uon(j,e)  dan(ja)—1 + doe,n(j,0)—2 (aa,n(j,a) — 1)qa,n(j,a)—1 + doen(j,0)—2

Proposition.. dimyA = 1.

12



-----------------------------------

Set h and B; = |[— — 2h;, h;) C [0, 1
100 - K52 I / ) €10, 1)
h. 16-10%. K34°
B are disjoint for j = 1,2,... and - = J- =16 102K2j4
/ L 102K ;52 /

IS an even integer.
Set fi(z) =0if z €[0,1)\ B;.
(-1)!

J
extend the def. of fj to R by making it perlodlc by one.

Clearly, |f;(z)| = 1/h; for € B;, /[O , il =1 and /O L i=0

Fort=1,62,..., (h]/l]) set fj(w) =

|f:r;€[——2h (¢ = 1), = — 2h; + 1)),
J
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1 K
Set M*(f;,z,a) = sup |— filx + ka)| .
J K>0 Kkgzzl J

Denote by X*(f;,a) the set of those x € [0,1) for which

def 1

M*(fj,z,a) > €= 32

The next proposition establishes a weak maximal type inequality:

1
Proposition.: If a € A then |X*(fj,a)| < —
J

This prop. = that for f = ZOO 1 f] for any a € A we have

Z Z f](CIZ+kOé)

kljl

lim
K—o0

E Z f(z + ka)

= limsup |—
k=1 K—
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The Hausdorff dimension estimate of A
Suppose that p is a finite Borel measure, a mass distribution on R,
the lower local dimension of u at a € R equals
dimpe. (@) — lim inf 1992 8(B(@ 1)
r—0+ logo r
(It does not matter which base we use for the logarithm since changing the
base multiplies the numerator and the denominator by the same constant.)

Proposition.: Let A C R"™ be a Borel set and let u be a finite Borel measure.
If dimjgc u(a) > s for all o € A and u(A) > 0 then dimyA > s.

There are many papers related to computing Hausdorff dimension of sets ob-
tained by restrictions on the continued fraction partial denominators aq.n Of
the numbers a = [aqy 1,a4,2,...] belonging to these sets. In the estimate of
the Hausdorff dimension of our set A our bounds K; on the aqn vary, and
sometimes, for the a, ,(;,)'S there are very serious restrictions on the partial
denominators. This is why we had to use a direct computation of the dimen-
sion, based on the estimate of the lower local dimension of a mass distribution
on A.
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The fundamental interval I(n,a) de-
notes the closed interval with endpoints

M — [a,oé,]_, cony CLa)n] aﬂd

da,n

p@,n—l_pa’n_l .
QOc,n‘I'qa,n_l T [a’Oé,17 -y Ay _I_ 1]

We also put 7(0,«a) = [O, 1].
1
|I(n, oz)| QOz,n(CIoa,n + QQa,n—l)'
The n’th iterate of the Gauss map,
G"(a) maps I(n,a) onto [0,1).
Suppose ag = [ang,1, 00,2 ---], then G™ maps in a strict monotone way I(n, ag)
onto [0,1). Denote by Fj oy the inverse of G" restricted to I(n, ag).

B 1
Then (—1)” 1(qao,n_1Fn,ao(C‘f) - pao,n—l) —
dag,n + dog,n—1%

= F (o) = (=1)"
a0 (an,n + CIozo,n—la)Q’

= Fh,ag, and G”|I(n,ao) both satisfy a bounded distortion property:

Frap(@) <4, VYa,B € [0,1] and EHE) <

EN T B S (B =

4, Va,B € int(I(n, ag)).
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To define 1 as a mass distribution it is sufficient to define it on the fundamental
intervals of the form I(n,a), n€ N, a€[0,1)\ Q.

For any a we put u(I(0,a)) = u([0,1]) = 1.

If g €[0,1)\Q, int({(n,ag)) N A =0 then we set u(I(n,ag)) = 0.

Suppose ag € A, ag = [agy,1,004,2,---]. Ve need to define u(I(n,ag)) for all
n € N,

I(n—1
Suppose that u(I(n — 1,ap)) is defined and '(n — 1,ao)d§ful(l((n | ,Oéo))l).
n— 1,40

We want to define u(I(n,ap)).

First suppose that we can find 5 € N such that n(j — 1,ap) < n < n(j, ag).
Denote by [.(n,aqp) the closed interval with endpoints

[a’ao,la"'aaao,n—l)k] and [a’ao,].)"')aao,n—l)k_l_ 1].

Then I(n,aqp) = Iaao’n(n,ao) and |Ix41(n,ag)| < [Ix(n,ap)| for all k € N.

17



o 1 it ke j;):;r (}, 1 N Then
K
def 1 1
ANI(n—1,a0) C | Ix(n,a0) =1'(n,a0) = F—1,0y([,1]) = Fy_1,00([7=, 1]).
k=1 KJ 10]

By the bounded distortion property of Fn_l,ao and by its strict monotonicity

I(n—1,a0) \ I'(n,a0)| _ 1Fn—1.a0(10, 155])] _ 4
I(n - 1,00)|  |Fp1,60([0,1D] T 105

4
Therefore, |I'(n,ap)| > (1 — F)|I(n —1,a0)|.
J

We put ju(1(n, a0) =001 (n  1,00)).

18
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For all k=1, ..., K; there exists ay € int([(n,ag)) N A.

K;
u(I'(n, ag)) = p( U I(n,a)) = »  u(Ix(n,a9)) =
acANI(n—1,aq) k=1
S [Te(n, ao)|
|I/(n7 OéO)|
qerp(I(n,00)) _ p(I(n—1,a0)) _
[1(n, ag)| [ I"(n, ap)

—1
p(I(n—1,00)) 1I(n—1,a0)| B 4
‘I(n_]')aoo)‘ |I,(’I'L,Oéos)| S r(n 1,0&0) (1 10]) .

u(I(n—1,a9)) = p(l(n —1,a0)).

=4 r(na Oé())
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Missing cases: 3 j € N for which n = n(j, ag).

Put u(I(n(j,a0), 20)) = u(I(n(j, ag) — 1, a0)).

Need estimates:

; >
[ I(n(j,a0) — 1, 0)] 3a2

[1(n(J, 20); @) 1 1 ( 4 >|092(8Kf/dj2)

> > (1 - —
3.(32- 1O4K]3j6)2 10j

Oéo,’l’L(j,Oéo)

r(n(] - 1,0&0) + 1,0&0) o
r(n(] — 1,0(0),0(0)

r(n(j,20) —1,a0)  T(n(j,20); 0) _ (1 _4>3I092(8Kj2/d32.)
F(n(G> c0) = 2,a0) T, ap) — 1, ap) 10;

r(?’b(j, a0)7a0) < r(?’b(j — 1,0(0),010)
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Suppose ag € A and 0 < r < [I(n(2,aq), ag)|-
Choose n such that [I(n+ 1,a9)| <7 < |I(n,ag)]

Then one can obtain estimates like: '(n,aq) < (1

1092 (B, 7)) - 1092(T (7, a0)) + 31092(101%51%) + loga

logo r logo r

lO B
This implies lim inf (292 #(B (@0, 7))
r—0-+ logo r

4 >7|092?°

10(j — 1)

> 1 —

Z 1. = dImHA = 1.

6  3logp(10'9,18)
7—1 —logo r '
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