## Non- $L^1$ functions with rotation sets of Hausdorff dimension one

Zoltán Buczolich

Eötvös University, Budapest

www.cs.elte.hu/~buczo

I worked for a long time with Henstock-Kurzweil integrals and, as a Ph. D. student, got interested in ergodic averages of non- $L^1$  functions.

P. Major :  $\exists f : X \to \mathbb{R}$ , and  $S, T : X \to X$  two ergodic transformations on a probability space  $(X, \mu)$  such that

 $\lim_{n \to \infty} \frac{1}{n+1} \sum_{k=0}^{n} f(S^k x) = 0, \ \mu \text{ a.e. and } \lim_{n \to \infty} \frac{1}{n+1} \sum_{k=0}^{n} f(T^k x) = a \neq 0, \ \mu \text{ a.e.}$ 

By Birkhoff's Ergodic Theorem the above f cannot belong to  $L^1(X,\mu)$ .

My thesis advisor M. Laczkovich raised the question whether the two transformations S and T can be irrational rotations of the unit circle,  $\mathbb{T}$ .

In Major's construction the two transformations were conjugate a different approach was needed.

Z.B.: if  $S,T: X \to X$  are two  $\mu$ -ergodic transformations which generate a free  $\mathbb{Z}^2$  action on the finite non-atomic Lebesgue measure space  $(X, S, \mu)$  then for any  $c_1, c_2 \in \mathbb{R}$  there exists a  $\mu$ -measurable function  $f: X \to \mathbb{R}$  such that  $M_N^S f(x) = \frac{1}{N+1} \sum_{j=0}^N f(S^j x) \to c_1$ , and  $M_N^T f(x) = \frac{1}{N+1} \sum_{j=0}^N f(T^j x) \to c_2$ ,  $\mu$  almost every x as  $N \to \infty$ .

Two different irrational rotations generate a free  $\mathbb{Z}^2$  action on  $\mathbb{T} \Rightarrow$  answer to Laczkovich's question.

|A| denotes the Lebesgue measure of the measurable set  $A \subset \mathbb{R}$ , or on this page  $A \subset \mathbb{R}^2$ .

Recent results by Ya. Sinai and C. Ulcigrai.

Trigonometric sums

 $\overline{N}$ 

$$\sum_{k=0}^{N-1} \frac{1}{1 - e^{2\pi i (k\alpha + x)}}, \qquad (x, \alpha) \in (0, 1) \times (0, 1) \text{ are considered.}$$

 $(0,1) \times (0,1)$  is endowed with the uniform probability distribution. It is proved that such trigonometric sums have a non-trivial joint limiting distribution in xand  $\alpha$  as N tends to  $\infty$ , that is:

**T**.: For any 
$$\Omega \subset \mathbb{C} \exists \lim_{N \to \infty} |\{(\alpha, x) : \frac{1}{N} \sum_{k=0}^{N-1} \frac{1}{1 - e^{2\pi i (k\alpha + x)}} \in \Omega\}| = \mathcal{P}(\Omega)$$

with a suitable  $\mathcal{P}$  probability measure on  $\mathbb{C}$ .

This result also applies to Birkhoff sums of a function with a singularity of type 1/x over a rotation, that is:

**T**.: For any 
$$a < b \exists \lim_{N \to \infty} |\{(\alpha, x) : a \le \frac{1}{N} \sum_{k=0}^{N-1} f(x + n\alpha) \le b\}| = \mathcal{P}([a, b])$$

with a suitable  $\mathcal{P}$  probability measure on  $\mathbb{R}$ .

Trying two answer Laczkovich's question first I proved the following theorem: **T**.: Let  $f : \mathbb{R} \to \mathbb{R}$  be a given measurable function, periodic by 1.

For an 
$$\alpha \in \mathbb{R}$$
 put  $M_n^{\alpha} f(x) = \frac{1}{n+1} \sum_{k=0}^n f(x+k\alpha).$ 

Let  $\Gamma_f$  denote the set of those  $\alpha$ 's in (0,1) for which  $M_n^{\alpha}f(x)$  converges for almost every  $x \in \mathbb{R}$ .

Then from  $|\Gamma_f| > 0$  it follows that f is integrable on [0,1].  $|\Gamma_f| > 0 \Rightarrow f \in L^1$  and for all  $\alpha \in [0,1] \setminus \mathbb{Q}$  the limit of  $M_n^{\alpha} f(x)$  equals  $\int_0^1 f$  by the Birkhoff Ergodic thm.

**T**.: For any sequence of independent irrationals  $\{\alpha_j\}_{j=1}^{\infty}$  there exists  $f : \mathbb{R} \to \mathbb{R}$ , periodic by 1 such that  $f \notin L^1[0, 1]$  and  $M_n^{\alpha_j} f(x) \to 0$  for almost every  $x \in [0, 1]$ .  $\Rightarrow \Gamma_f \setminus \mathbb{Q}$  can be dense for non-integrable functions.

R. Svetic: there exists a non-integrable  $f : \mathbb{T} \to \mathbb{R}$  such that  $\Gamma_f$  is *c*-dense in  $\mathbb{T}$ . (A set  $S \subset \mathbb{T}$  is *c*-dense if the cardinality of  $S \cap I$  equals continuum for every nonempty open interval  $I \subset \mathbb{T}$ .)

Question: Can  $\Gamma_f$  be of Hausdorff dimension one for non- $L^1$  functions?

**T**.: There exist a measurable  $f : \mathbb{R} \to \mathbb{R}$  periodic by one and a set  $A \subset [0, 1) \setminus \mathbb{Q}$  such that the Hausdorff dimension of A is one, for all  $\alpha \in A$ 

$$\lim_{K \to \infty} \frac{1}{K} \sum_{k=1}^{K} f(x+k\alpha) = 0 \quad \text{for almost every } x \in [0,1) \text{ and } \int_{[0,1)} |f| = +\infty.$$

Outline of the proof: First we define the sequences  $d_j$  and  $l_j$  converging to 0 and  $K_j = 10j$  converging to  $\infty$ .

Then we define a subset A of the irrationals in (0, 1).

Suppose  $\alpha \in A$  and its continued fraction development

is 
$$[a_{\alpha,1}, a_{\alpha,2}, ...] = \frac{1}{a_{\alpha,1} + \frac{1}{a_{\alpha,2} + \frac{1}{...}}}$$
, and  $p_{\alpha,n}/q_{\alpha,n}$  is its *n*'th convergent.

We define a sequence  $n(j, \alpha) < n(j + 1, \alpha)$ .

The  $a_{\alpha,n(j,\alpha)}$  continued fraction partial denominators of  $\alpha$  will be chosen in a very specific way so that  $1/q_{\alpha,n(j,\alpha)}$  will be very close to  $l_j$ .

If *n* is within a block determined by  $n(j-1,\alpha)$  and  $n(j,\alpha)$ , that is  $n(j-1,\alpha) < n < n(j,\alpha)$  then we only assume that  $a_{\alpha,n}$  is bounded by  $K_j$ . The Hausdorff dimension of *A* equals one. The function f is defined as the sum of the functions  $f_j$ .

The functions  $f_j$  vanish outside a set  $B_j$  of length  $h_j$ .

The set  $B_j$  is subdivided into an even number of intervals of length  $l_j$ and  $f_j$  equals  $\pm 1/h_j$  alternately on these subintervals.

This will provide us sufficient cancellation for the ergodic sums with respect to  $\alpha \in A$  rotations.

On the other hand, we have  $\int |f_j| = 1$ .

We show that the measure of those x's for which

$$\sup_{K>0} \left| \frac{1}{K} \sum_{k=1}^{K} f_j(x+k\alpha) \right| \ge 1/j^2 \text{ is not greater than } 1/j^2.$$

This weak maximal type inequality will imply the main result.

Question: Suppose 0 < t < 1 and  $f(x) = \frac{1}{x |\log |x||^t}$ , when  $|x| \le 1/2$ , f(0) = 0, and f is periodic by one. What can be said about the Hausdorff dimension of the rotation set  $\Gamma_f$ ?

In case it is still zero for all  $t \in (0,1)$  one could continue by asking the same question for functions defined as above, but for which we have  $f(x) = \frac{1}{x \log |x| |\log |\log |x| ||^{t}}$ , when  $|x| \leq 1/2$ .



Suppose  $\alpha \in [0, 1)$  irrational, then its continued fraction development:

$$\alpha = [a_{\alpha,1}, a_{\alpha,2}, \dots] = \frac{1}{a_{\alpha,1} + \frac{1}{a_{\alpha,2} + \frac{1}{\dots}}},$$

with  $a_{\alpha,n} \in \mathbb{N}$ . The Gauss map is given by  $G(\alpha) = \{\frac{1}{\alpha}\}, \text{ and}$   $-a_{\alpha,n} = \lfloor (G^{n-1}(\alpha))^{-1} \rfloor.$ Set  $\alpha_n = [a_{\alpha,n+1}, a_{\alpha,n+2}, ...] = G^n(\alpha).$ The convergents of  $\alpha$  are

$$p_{\alpha,n}/q_{\alpha,n} = [a_{\alpha,1}, a_{\alpha,2}, \dots, a_{\alpha,n}].$$

The numbers  $p_{\alpha,n}$  and  $q_{\alpha,n}$  can be defined by the following recursion:

$$p_{\alpha,-1} = q_{\alpha,0} = 1, \ q_{\alpha,-1} = p_{\alpha,0} = 0,$$

$$p_{\alpha,n} = a_{\alpha,n}p_{\alpha,n-1} + p_{\alpha,n-2}, \ q_{\alpha,n} = a_{\alpha,n}q_{\alpha,n-1} + q_{\alpha,n-2}, (n \in \mathbb{N}).$$

$$\lambda_{\alpha}^{(n-1)} \stackrel{\text{def}}{=} |q_{\alpha,n-1}\alpha - p_{\alpha,n-1}| = \frac{1}{q_{\alpha,n} + q_{\alpha,n-1}\alpha_n}.$$
 To be more precise,  
$$\lambda_{\alpha}^{(n-1)} = (-1)^{n-1}(q_{\alpha,n-1}\alpha - p_{\alpha,n-1}) = \frac{1}{q_{\alpha,n} + q_{\alpha,n-1}G^n(\alpha)}.$$



Property 1.: The points  $k\alpha$ ,  $k = 0, ..., q_{\alpha,n} - 1$  on the unit circle  $\mathbb{T} = \mathbb{R}/\mathbb{Z}$  are "almost equally spaced".



Denote by  $\mathcal{P}(n)$  the partition obtained by considering the points  $k\alpha$ ,  $k = 0, ..., q_{\alpha,n} - 1$ . If  $\mathcal{I} \subset \mathbb{T}$  is an arbitrary interval of length  $\lambda_{\alpha}^{(n-2)}$  then there can be at most one  $\mathcal{P}(n)$  partition subinterval  $\mathcal{I}' \subset \mathcal{I}$  whose length is different from  $\lambda_{\alpha}^{(n-1)}$ . Moreover, the length of  $\mathcal{I}'$  is larger than  $\lambda_{\alpha}^{(n-1)}$  but less than  $2 \cdot \lambda_{\alpha}^{(n-1)}$ .



Property 2.:

If we add the point  $q_{\alpha,n}\alpha$  to the partition points  $k\alpha$ ,  $k = 0, ..., q_{\alpha,n} - 1$  then one short interval of length  $\lambda_{\alpha}^{(n)}$  shows up adjacent to 0 modulo 1. Denote now by  $\mathcal{I}$  an interval belonging to the partition  $\mathcal{P}(n)$ . If  $0 \leq k, k' < q_{\alpha,n+1}, k\alpha \in \mathcal{I}$  and  $k'\alpha \in \mathcal{I}$  then k - k' is an integer multiple of  $q_{\alpha,n}$ , that is,

 $k - k' = tq_{\alpha,n}$  for an integer t. If  $k' = k + q_{\alpha,n} < q_{\alpha,n+1}$ ,  $k\alpha, k'\alpha \in \mathcal{I}$ , then the distance of  $k\alpha$  and  $k'\alpha$  equals  $\lambda_{\alpha}^{(n)}$ . Moreover, if  $k'' = k + 2q_{\alpha,n} < q_{\alpha,n+1}$ ,  $k''\alpha \in \mathcal{I}$  holds as well then  $\{k''\alpha\} - \{k'\alpha\}$  and  $\{k'\alpha\} - \{k\alpha\}$  are of the same sign. Set  $d_0 = 1$ ,  $l_0 = 1/100$  and  $K_j = 10j$  for  $j \in \mathbb{N}$ . Suppose we have defined  $d_{j-1}$  and  $l_{j-1}$ . Choose  $0 < d_j < l_{j-1}/3 < d_{j-1}/100$  such that

$$\frac{1}{3 \cdot (32 \cdot 10^4 \cdot K_j^3 j^6)^2} = \frac{1}{3 \cdot (32 \cdot 10^7 j^9)^2} > \left(1 - \frac{4}{10j}\right)^{\log_2(8K_j^2/d_j^2)}$$

and for  $j \ge 2$  we also have

$$\left(1 - \frac{4}{10(j-1)}\right)^{-3\log_2(8K_{j-1}^2/d_{j-1}^2)} < \left(1 - \frac{4}{10j}\right)^{-\log_2(8K_j^2/d_j^2)}.$$

Set 
$$l_j = \frac{d_j}{16 \cdot 10^4 \cdot K_j^3 j^6}$$
.

Set  $n(0, \alpha) = 0$  and suppose  $j \ge 1$ . For any  $\alpha \in [0, 1) \setminus \mathbb{Q}$  choose  $n(j, \alpha)$  so that

$$\frac{1}{q_{\alpha,n(j,\alpha)-2}} > d_j, \text{ but } \frac{1}{q_{\alpha,n(j,\alpha)-1}} \le d_j.$$

By 
$$\alpha_{n(j,\alpha)-1}, \alpha_{n(j,\alpha)-2} \in (0,1)$$
 we have  

$$\lambda_{\alpha}^{(n(j,\alpha)-2)} = \frac{1}{q_{\alpha,n(j,\alpha)-1} + q_{\alpha,n(j,\alpha)-2}\alpha_{n(j,\alpha)-1}} < \frac{1}{q_{\alpha,n(j,\alpha)-1}} \le d_j \text{ and}$$

$$2\lambda_{\alpha}^{(n(j,\alpha)-3)} = \frac{2}{q_{\alpha,n(j,\alpha)-2} + q_{\alpha,n(j,\alpha)-3}\alpha_{n(j,\alpha)-2}} > \frac{2}{2q_{\alpha,n(j,\alpha)-2}} > d_j.$$
The choice of  $d_j$  implies that  $n(j-1,\alpha) \le n(j,\alpha)$ .

We denote by 
$$A$$
 the set of those  $\alpha = [a_{\alpha,1}, a_{\alpha,2}, ...] \in [0,1) \setminus \mathbb{Q}$  for which  $a_{\alpha,n} \leq K_j$  holds for  $n(j-1,\alpha) < n < n(j,\alpha)$ , and  $\frac{1}{q_{\alpha,n(j,\alpha)}} < l_j \leq \frac{1}{q_{\alpha,n(j,\alpha)} - q_{\alpha,n(j,\alpha)-1}}$ .  
The above property can be rephrased as  $\frac{1}{a_{\alpha,n(j,\alpha)} \cdot q_{\alpha,n(j,\alpha)-1} + q_{\alpha,n(j,\alpha)-2}} < l_j \leq \frac{1}{(a_{\alpha,n(j,\alpha)} - 1)q_{\alpha,n(j,\alpha)-1} + q_{\alpha,n(j,\alpha)-2}}$ .

**Proposition**.:  $\dim_{H} A = 1$ .



Set 
$$h_j = \frac{d_j}{100 \cdot K_j j^2}$$
 and  $B_j = [\frac{1}{j} - 2h_j, \frac{1}{j} - h_j) \subset [0, 1).$   
 $B_j$  are disjoint for  $j = 1, 2, ...$  and  $\frac{h_j}{l_j} = \frac{16 \cdot 10^4 \cdot K_j^3 j^6}{10^2 K_j j^2} = 16 \cdot 10^2 K_j^2 j^4$ 

is an even integer.

Set 
$$f_j(x) = 0$$
 if  $x \in [0,1) \setminus B_j$ .  
For  $t = 1, 2, ..., (h_j/l_j)$  set  $f_j(x) = \frac{(-1)^t}{h_j}$  if  $x \in [\frac{1}{j} - 2h_j + (t-1)l_j, \frac{1}{j} - 2h_j + tl_j)$ .  
extend the def. of  $f_j$  to  $\mathbb{R}$  by making it periodic by one.  
Clearly,  $|f_j(x)| = 1/h_j$  for  $x \in B_j$ ,  $\int_{[0,1)} |f_j| = 1$  and  $\int_{[0,1)} f_j = 0$ .

Set 
$$M^*(f_j, x, \alpha) = \sup_{K>0} \left| \frac{1}{K} \sum_{k=1}^K f_j(x+k\alpha) \right|.$$

Denote by  $X^*(f_j, \alpha)$  the set of those  $x \in [0, 1)$  for which  $M^*(f_j, x, \alpha) \ge \epsilon_j \stackrel{\text{def}}{=} \frac{1}{j^2}.$ 

The next proposition establishes a weak maximal type inequality: **Proposition**.: If  $\alpha \in A$  then  $|X^*(f_j, \alpha)| \leq \frac{1}{j^2}$ . This prop.  $\Rightarrow$  that for  $f = \sum_{j=1}^{\infty} f_j$  for any  $\alpha \in A$  we have

$$\lim_{K \to \infty} \left| \frac{1}{K} \sum_{k=1}^{K} f(x+k\alpha) \right| = \limsup_{K \to \infty} \left| \frac{1}{K} \sum_{k=1}^{K} \sum_{j=1}^{\infty} f_j(x+k\alpha) \right| = 0.$$

## The Hausdorff dimension estimate of $\boldsymbol{A}$

Suppose that  $\mu$  is a finite Borel measure, a mass distribution on  $\mathbb{R}$ , the lower local dimension of  $\mu$  at  $\alpha \in \mathbb{R}$  equals

$$\underline{\dim}_{\mathsf{loc}}\,\mu(\alpha) = \liminf_{r \to 0+} \frac{\log_2 \mu(B(\alpha, r))}{\log_2 r}.$$

(It does not matter which base we use for the logarithm since changing the base multiplies the numerator and the denominator by the same constant.)

**Proposition**.: Let  $A \subset \mathbb{R}^n$  be a Borel set and let  $\mu$  be a finite Borel measure. If  $\underline{\dim}_{\mathsf{loc}} \mu(\alpha) \ge s$  for all  $\alpha \in A$  and  $\mu(A) > 0$  then  $\dim_{\mathsf{H}} A \ge s$ .

There are many papers related to computing Hausdorff dimension of sets obtained by restrictions on the continued fraction partial denominators  $a_{\alpha,n}$  of the numbers  $\alpha = [a_{\alpha,1}, a_{\alpha,2}, ...]$  belonging to these sets. In the estimate of the Hausdorff dimension of our set A our bounds  $K_j$  on the  $a_{\alpha,n}$  vary, and sometimes, for the  $a_{\alpha,n(j,\alpha)}$ 's there are very serious restrictions on the partial denominators. This is why we had to use a direct computation of the dimension, based on the estimate of the lower local dimension of a mass distribution on A.



The fundamental interval  $I(n, \alpha)$  denotes the closed interval with endpoints  $\frac{p_{\alpha,n}}{q_{\alpha,n}} = [a_{\alpha,1}, ..., a_{\alpha,n}] \text{ and}$   $\frac{p_{\alpha,n} + p_{\alpha,n-1}}{q_{\alpha,n} + q_{\alpha,n-1}} = [a_{\alpha,1}, ..., a_{\alpha,n} + 1].$ We also put  $I(0, \alpha) = [0, 1].$   $|I(n, \alpha)| = \frac{1}{q_{\alpha,n}(q_{\alpha,n} + q_{\alpha,n-1})}.$ The *n*'th iterate of the Gauss map,  $G^n(\alpha)$  maps  $I(n, \alpha)$  onto [0, 1).

Suppose  $\alpha_0 = [a_{\alpha_0,1}, a_{\alpha_0,2}, ...]$ , then  $G^n$  maps in a strict monotone way  $I(n, \alpha_0)$  onto [0, 1). Denote by  $F_{n,\alpha_0}$  the inverse of  $G^n$  restricted to  $I(n, \alpha_0)$ .

Then 
$$(-1)^{n-1}(q_{\alpha_0,n-1}F_{n,\alpha_0}(\alpha) - p_{\alpha_0,n-1}) = \frac{1}{q_{\alpha_0,n} + q_{\alpha_0,n-1}\alpha}$$

$$\Rightarrow F'_{n,\alpha_0}(\alpha) = \frac{(-1)^n}{(q_{\alpha_0,n} + q_{\alpha_0,n-1}\alpha)^2},$$
  

$$\Rightarrow F_{n,\alpha_0}, \text{ and } G^n|_{I(n,\alpha_0)} \text{ both satisfy a bounded distortion property:}$$
  

$$\forall n \in \mathbb{N} \quad \frac{F'_{n,\alpha_0}(\alpha)}{F'_{n,\alpha_0}(\beta)} \leq 4, \ \forall \alpha, \beta \in [0,1] \text{ and } \frac{(G^n)'(\alpha)}{(G^n)'(\beta)} \leq 4, \ \forall \alpha, \beta \in \text{int}(I(n,\alpha_0)).$$

To define  $\mu$  as a mass distribution it is sufficient to define it on the fundamental intervals of the form  $I(n, \alpha)$ ,  $n \in \mathbb{N}$ ,  $\alpha \in [0, 1) \setminus \mathbb{Q}$ . For any  $\alpha$  we put  $\mu(I(0, \alpha)) = \mu([0, 1]) = 1$ . If  $\alpha_0 \in [0, 1) \setminus \mathbb{Q}$ ,  $\operatorname{int}(I(n, \alpha_0)) \cap A = \emptyset$  then we set  $\mu(I(n, \alpha_0)) = 0$ . Suppose  $\alpha_0 \in A$ ,  $\alpha_0 = [a_{\alpha_0,1}, a_{\alpha_0,2}, ...]$ . We need to define  $\mu(I(n, \alpha_0))$  for all  $n \in \mathbb{N}$ .

Suppose that  $\mu(I(n-1,\alpha_0))$  is defined and  $\Gamma(n-1,\alpha_0) \stackrel{\text{def}}{=} \frac{\mu(I(n-1,\alpha_0))}{|I(n-1,\alpha_0)|}$ . We want to define  $\mu(I(n,\alpha_0))$ .

First suppose that we can find  $j \in \mathbb{N}$  such that  $n(j-1,\alpha_0) < n < n(j,\alpha_0)$ . Denote by  $I_k(n,\alpha_0)$  the closed interval with endpoints  $[a_{\alpha_0,1},...,a_{\alpha_0,n-1},k+1]$ .

Then  $I(n, \alpha_0) = I_{a_{\alpha_0,n}}(n, \alpha_0)$  and  $|I_{k+1}(n, \alpha_0)| < |I_k(n, \alpha_0)|$  for all  $k \in \mathbb{N}$ .

$$A \cap I(n-1,\alpha_0) \subset \bigcup_{k=1}^{K_j} I_k(n,\alpha_0) \stackrel{\text{def}}{=} I'(n,\alpha_0) = F_{n-1,\alpha_0}([\frac{1}{K_j},1]) = F_{n-1,\alpha_0}([\frac{1}{10j},1]).$$
  
By the bounded distortion property of  $F_{n-1,\alpha_0}$  and by its strict monotonicity  
$$\frac{|I(n-1,\alpha_0) \setminus I'(n,\alpha_0)|}{|I(n-1,\alpha_0)|} = \frac{|F_{n-1,\alpha_0}([0,\frac{1}{10j}])|}{|F_{n-1,\alpha_0}([0,1])|} \leq \frac{4}{10j}.$$
  
Therefore,  $|I'(n,\alpha_0)| \geq (1 - \frac{4}{10j})|I(n-1,\alpha_0)|.$   
We put  $\mu(I(n,\alpha_0)) \stackrel{\text{def}}{=} \frac{|I(n,\alpha_0)|}{|I'(n,\alpha_0)|} \mu(I(n-1,\alpha_0)).$ 

For all 
$$k = 1, ..., K_j$$
 there exists  $\alpha_1 \in int(I_k(n, \alpha_0)) \cap A$ .  

$$\mu(I'(n, \alpha_0)) = \mu(\bigcup_{\alpha \in A \cap I(n-1, \alpha_0)} I(n, \alpha)) = \sum_{k=1}^{K_j} \mu(I_k(n, \alpha_0)) = \sum_{k=1}^{K_j} \mu(I_k(n, \alpha_0)) = \sum_{k=1}^{K_j} (I_k(n, \alpha_0)) =$$

$$\begin{split} & \text{Missing cases: } \exists \ j \in \mathbb{N} \text{ for which } n = n(j, \alpha_0). \\ & \text{Put } \mu(I(n(j, \alpha_0), \alpha_0)) \stackrel{\text{def}}{=} \mu(I(n(j, \alpha_0) - 1, \alpha_0)). \\ & \text{Need estimates:} \\ & \frac{|I(n(j, \alpha_0), \alpha_0)|}{|I(n(j, \alpha_0) - 1, \alpha_0)|} > \frac{1}{3a_{\alpha_0, n(j, \alpha_0)}^2} > \frac{1}{3 \cdot (32 \cdot 10^4 K_j^3 j^6)^2} > \left(1 - \frac{4}{10j}\right)^{\log_2(8K_j^2/d_j^2)}. \\ & \Gamma(n(j, \alpha_0), \alpha_0) \leq \Gamma(n(j - 1, \alpha_0), \alpha_0) \frac{\Gamma(n(j - 1, \alpha_0) + 1, \alpha_0)}{\Gamma(n(j - 1, \alpha_0), \alpha_0)} \cdots \\ & \frac{\Gamma(n(j, \alpha_0) - 1, \alpha_0)}{\Gamma(n(j, \alpha_0) - 2, \alpha_0)} \cdot \frac{\Gamma(n(j, \alpha_0), \alpha_0)}{\Gamma(n(j, \alpha_0) - 1, \alpha_0)} < \left(1 - \frac{4}{10j}\right)^{-3\log_2(8K_j^2/d_j^2)}. \end{split}$$

.

Suppose  $\alpha_0 \in A$  and  $0 < r < |I(n(2, \alpha_0), \alpha_0)|$ . Choose *n* such that  $|I(n+1, \alpha_0)| \le r < |I(n, \alpha_0)|$ 

Then one can obtain estimates like: 
$$\Gamma(n, \alpha_0) < \left(1 - \frac{4}{10(j-1)}\right)^{7 \log_2 r}$$
.

$$\Rightarrow \frac{\log_2 \mu(B(\alpha_0, r))}{\log_2 r} \ge \frac{\log_2(\Gamma(n, \alpha_0)) + 3\log_2(10^{19}j^{18}) + \log_2 r}{\log_2 r} > 1 - \frac{6}{j-1} - \frac{3\log_2(10^{19}j^{18})}{-\log_2 r}.$$

This implies 
$$\liminf_{r \to 0+} \frac{\log_2 \mu(B(\alpha_0, r))}{\log_2 r} \ge 1. \Rightarrow \dim_H A = 1.$$