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I worked for a long time with Henstock-Kurzweil integrals and, as a Ph. D.

student, got interested in ergodic averages of non-L1 functions.

P. Major : ∃ f : X → R, and S, T : X → X two ergodic transformations on a

probability space (X, µ) such that

lim
n→∞

1

n + 1

n
∑

k=0

f(Skx) = 0, µ a.e. and lim
n→∞

1

n + 1

n
∑

k=0

f(T kx) = a 6= 0, µ a.e.

By Birkhoff’s Ergodic Theorem the above f cannot belong to L1(X, µ).

My thesis advisor M. Laczkovich raised the question whether the two transfor-

mations S and T can be irrational rotations of the unit circle, T.

In Major’s construction the two transformations were conjugate a different ap-

proach was needed.

Z.B.: if S, T : X → X are two µ-ergodic transformations which generate a free

Z2 action on the finite non-atomic Lebesgue measure space (X,S, µ) then for

any c1, c2 ∈ R there exists a µ-measurable function f : X → R such that

MS
Nf(x) =

1

N + 1

N
∑

j=0

f(Sjx) → c1, and MT
Nf(x) =

1

N + 1

N
∑

j=0

f(T jx) → c2,

µ almost every x as N → ∞.

Two different irrational rotations generate a free Z2 action on T ⇒ answer to

Laczkovich’s question.
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|A| denotes the Lebesgue measure of the measurable set A ⊂ R, or on this

page A ⊂ R2.

Recent results by Ya. Sinai and C. Ulcigrai.

Trigonometric sums

1

N

N−1
∑

k=0

1

1 − e2πi(kα+x)
, (x, α) ∈ (0,1) × (0,1) are considered.

(0,1)× (0,1) is endowed with the uniform probability distribution. It is proved

that such trigonometric sums have a non-trivial joint limiting distribution in x

and α as N tends to ∞, that is:

T.: For any Ω ⊂ C ∃ lim
N→∞

|{(α, x) :
1

N

N−1
∑

k=0

1

1 − e2πi(kα+x)
∈ Ω}| = P(Ω)

with a suitable P probability measure on C.

This result also applies to Birkhoff sums of a function with a singularity of

type 1/x over a rotation, that is:

T.: For any a < b ∃ lim
N→∞

|{(α, x) : a ≤
1

N

N−1
∑

k=0

f(x + nα) ≤ b}| = P([a, b])

with a suitable P probability measure on R.
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Trying two answer Laczkovich’s question first I proved the following theorem:

T.: Let f : R → R be a given measurable function, periodic by 1.

For an α ∈ R put Mα
n f(x) =

1

n + 1

n
∑

k=0

f(x + kα).

Let Γf denote the set of those α’s in (0,1) for which Mα
n f(x) converges for

almost every x ∈ R.

Then from |Γf | > 0 it follows that f is integrable on [0,1].

|Γf | > 0 ⇒ f ∈ L1 and for all α ∈ [0,1] \ Q the limit of Mα
n f(x) equals

∫ 1
0 f by

the Birkhoff Ergodic thm.

T.: For any sequence of independent irrationals {αj}
∞
j=1 there exists f : R → R,

periodic by 1 such that f 6∈ L1[0,1] and M
αj
n f(x) → 0 for almost every x ∈ [0,1].

⇒ Γf \ Q can be dense for non-integrable functions.

R. Svetic: there exists a non-integrable f : T → R such that Γf is c-dense in T.

(A set S ⊂ T is c-dense if the cardinality of S ∩ I equals continuum for every

nonempty open interval I ⊂ T.)

Question: Can Γf be of Hausdorff dimension one for non-L1 functions?
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T.: There exist a measurable f : R → R periodic by one and a set A ⊂ [0,1)\Q

such that the Hausdorff dimension of A is one, for all α ∈ A

lim
K→∞

1

K

K
∑

k=1

f(x + kα) = 0 for almost every x ∈ [0,1) and

∫

[0,1)
|f | = +∞.

Outline of the proof: First we define the sequences dj and lj converging to 0

and Kj = 10j converging to ∞.

Then we define a subset A of the irrationals in (0,1).

Suppose α ∈ A and its continued fraction development

is [aα,1, aα,2, ...] =
1

aα,1 + 1
aα,2+

1
...

, and pα,n/qα,n is its n’th convergent.

We define a sequence n(j, α) < n(j + 1, α).

The aα,n(j,α) continued fraction partial denominators of α will be chosen in a

very specific way so that 1/qα,n(j,α) will be very close to lj.

If n is within a block determined by n(j −1, α) and n(j, α), that is n(j −1, α) <

n < n(j, α) then we only assume that aα,n is bounded by Kj.

The Hausdorff dimension of A equals one.
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The function f is defined as the sum of the functions fj.

The functions fj vanish outside a set Bj of length hj.

The set Bj is subdivided into an even number of intervals of length lj
and fj equals ±1/hj alternately on these subintervals.

This will provide us sufficient cancellation for the ergodic sums with respect

to α ∈ A rotations.

On the other hand, we have
∫

|fj| = 1.

We show that the measure of those x’s for which

sup
K>0

∣

∣

∣

∣

∣

∣

1

K

K
∑

k=1

fj(x + kα)

∣

∣

∣

∣

∣

∣

≥ 1/j2 is not greater than 1/j2.

This weak maximal type inequality will imply the main result.

Question: Suppose 0 < t < 1 and f(x) = 1
x| log |x||t

, when |x| ≤ 1/2, f(0) = 0,

and f is periodic by one. What can be said about the Hausdorff dimension of

the rotation set Γf?

In case it is still zero for all t ∈ (0,1) one could continue by asking the

same question for functions defined as above, but for which we have f(x) =
1

x log |x|| log | log |x|||t
, when |x| ≤ 1/2.
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Suppose α ∈ [0,1) irrational, then its

continued fraction development:

α = [aα,1, aα,2, ...] =
1

aα,1 + 1
aα,2+

1
...

,

with aα,n ∈ N.

The Gauss map is given by

G(α) = {1
α}, and

aα,n = b(Gn−1(α))−1c.

Set αn = [aα,n+1, aα,n+2, ...] = Gn(α).

The convergents of α are

pα,n/qα,n = [aα,1, aα,2, ..., aα,n].

The numbers pα,n and qα,n can be defined by the following recursion:

pα,−1 = qα,0 = 1, qα,−1 = pα,0 = 0,

pα,n = aα,npα,n−1 + pα,n−2, qα,n = aα,nqα,n−1 + qα,n−2, (n ∈ N).
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λ
(n−1)
α

def
= |qα,n−1α − pα,n−1| =

1
qα,n+qα,n−1αn

. To be more precise,

λ
(n−1)
α = (−1)n−1(qα,n−1α − pα,n−1) =

1

qα,n + qα,n−1Gn(α)
.

λ
(n)
α

λ
(n−1)
α

= [aα,n+1, aα,n+2, ...],

and
1

aα,n+1+1 ≤ λ
(n)
α

λ
(n−1)
α

≤ 1
aα,n+1

.

The intervals of length λ
(n)
α show up

alternating on the sides of 0 modulo

1, to the right for even and to the left

(close to 1 on the figure) for odd n’s.

8



Property 1.: The points kα, k = 0, ..., qα,n − 1 on the unit circle T = R/Z are

“almost equally spaced”.

Denote by P(n) the partition ob-

tained by considering the points

kα, k = 0, ..., qα,n − 1. If I ⊂ T

is an arbitrary interval of length

λ
(n−2)
α then there can be at most

one P(n) partition subinterval

I′ ⊂ I whose length is differ-

ent from λ
(n−1)
α . Moreover, the

length of I′ is larger than λ
(n−1)
α

but less than 2 · λ
(n−1)
α .
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Property 2.: If we add the point qα,nα to the

partition points

kα, k = 0, ..., qα,n − 1 then one

short interval of length λ
(n)
α shows

up adjacent to 0 modulo 1.

Denote now by I an interval be-

longing to the partition P(n).

If 0 ≤ k, k′ < qα,n+1, kα ∈ I

and k′α ∈ I then k − k′ is an

integer multiple of qα,n, that is,

k − k′ = tqα,n for an integer t. If k′ = k + qα,n < qα,n+1, kα, k′α ∈ I, then

the distance of kα and k′α equals λ
(n)
α . Moreover, if k′′ = k + 2qα,n < qα,n+1,

k′′α ∈ I holds as well then {k′′α}−{k′α} and {k′α}−{kα} are of the same sign.
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Set d0 = 1, l0 = 1/100 and Kj = 10j for j ∈ N.

Suppose we have defined dj−1 and lj−1.

Choose 0 < dj < lj−1/3 < dj−1/100 such that

1

3 · (32 · 104 · K3
j j6)2

=
1

3 · (32 · 107j9)2
>

(

1 −
4

10j

)log2(8K2
j /d2

j )

and for j ≥ 2 we also have
(

1 −
4

10(j − 1)

)−3 log2(8K2
j−1/d2

j−1)

<

(

1 −
4

10j

)− log2(8K2
j /d2

j )

.

Set lj =
dj

16 · 104 · K3
j j6

.

Set n(0, α) = 0 and suppose j ≥ 1.

For any α ∈ [0,1) \ Q choose n(j, α) so that

1

qα,n(j,α)−2

> dj, but
1

qα,n(j,α)−1

≤ dj.
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By αn(j,α)−1, αn(j,α)−2 ∈ (0,1) we have

λ
(n(j,α)−2)
α =

1

qα,n(j,α)−1 + qα,n(j,α)−2αn(j,α)−1

<
1

qα,n(j,α)−1

≤ dj and

2λ
(n(j,α)−3)
α =

2

qα,n(j,α)−2 + qα,n(j,α)−3αn(j,α)−2

>
2

2qα,n(j,α)−2

> dj.

The choice of dj implies that n(j − 1, α) ≤ n(j, α).

We denote by A the set of those α = [aα,1, aα,2, ...] ∈ [0,1) \ Q for which

aα,n ≤ Kj holds for n(j − 1, α) < n < n(j, α), and

1

qα,n(j,α)

< lj ≤
1

qα,n(j,α) − qα,n(j,α)−1

.

The above property can be rephrased as
1

aα,n(j,α) · qα,n(j,α)−1 + qα,n(j,α)−2

< lj ≤
1

(aα,n(j,α) − 1)qα,n(j,α)−1 + qα,n(j,α)−2

.

Proposition.: dimHA = 1.
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Set hj =
dj

100 · Kjj2
and Bj = [

1

j
− 2hj,

1

j
− hj) ⊂ [0,1).

Bj are disjoint for j = 1,2, ... and
hj

lj
=

16 · 104 · K3
j j6

102Kjj2
= 16 · 102K2

j j4

is an even integer.

Set fj(x) = 0 if x ∈ [0,1) \ Bj.

For t = 1,2, ..., (hj/lj) set fj(x) =
(−1)t

hj
if x ∈ [

1

j
− 2hj + (t − 1)lj,

1

j
− 2hj + tlj).

extend the def. of fj to R by making it periodic by one.

Clearly, |fj(x)| = 1/hj for x ∈ Bj,

∫

[0,1)
|fj| = 1 and

∫

[0,1)
fj = 0.
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Set M∗(fj, x, α) = sup
K>0

∣

∣

∣

∣

∣

∣

1

K

K
∑

k=1

fj(x + kα)

∣

∣

∣

∣

∣

∣

.

Denote by X∗(fj, α) the set of those x ∈ [0,1) for which

M∗(fj, x, α) ≥ εj
def
=

1

j2
.

The next proposition establishes a weak maximal type inequality:

Proposition.: If α ∈ A then |X∗(fj, α)| ≤
1

j2
.

This prop. ⇒ that for f =
∑∞

j=1 fj for any α ∈ A we have

lim
K→∞

∣

∣

∣

∣

∣

∣

1

K

K
∑

k=1

f(x + kα)

∣

∣

∣

∣

∣

∣

= limsup
K→∞

∣

∣

∣

∣

∣

∣

1

K

K
∑

k=1

∞
∑

j=1

fj(x + kα)

∣

∣

∣

∣

∣

∣

= 0.
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The Hausdorff dimension estimate of A

Suppose that µ is a finite Borel measure, a mass distribution on R,

the lower local dimension of µ at α ∈ R equals

dimloc µ(α) = lim inf
r→0+

log2 µ(B(α, r))

log2 r
.

(It does not matter which base we use for the logarithm since changing the

base multiplies the numerator and the denominator by the same constant.)

Proposition.: Let A ⊂ Rn be a Borel set and let µ be a finite Borel measure.

If dimloc µ(α) ≥ s for all α ∈ A and µ(A) > 0 then dimHA ≥ s.

There are many papers related to computing Hausdorff dimension of sets ob-

tained by restrictions on the continued fraction partial denominators aα,n of

the numbers α = [aα,1, aα,2, ...] belonging to these sets. In the estimate of

the Hausdorff dimension of our set A our bounds Kj on the aα,n vary, and

sometimes, for the aα,n(j,α)’s there are very serious restrictions on the partial

denominators. This is why we had to use a direct computation of the dimen-

sion, based on the estimate of the lower local dimension of a mass distribution

on A.
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The fundamental interval I(n, α) de-

notes the closed interval with endpoints
pα,n
qα,n

= [aα,1, ..., aα,n] and

pα,n+pα,n−1
qα,n+qα,n−1

= [aα,1, ..., aα,n + 1].

We also put I(0, α) = [0,1].

|I(n, α)| =
1

qα,n(qα,n + qα,n−1)
.

The n’th iterate of the Gauss map,

Gn(α) maps I(n, α) onto [0,1).

Suppose α0 = [aα0,1, aα0,2, ...], then Gn maps in a strict monotone way I(n, α0)

onto [0,1). Denote by Fn,α0 the inverse of Gn restricted to I(n, α0).

Then (−1)n−1(qα0,n−1Fn,α0(α) − pα0,n−1) =
1

qα0,n + qα0,n−1α

⇒ F ′
n,α0

(α) =
(−1)n

(qα0,n + qα0,n−1α)2
,

⇒ Fn,α0, and Gn|I(n,α0)
both satisfy a bounded distortion property:

∀n ∈ N
F ′

n,α0
(α)

F ′
n,α0

(β)
≤ 4, ∀α, β ∈ [0,1] and

(Gn)′(α)

(Gn)′(β)
≤ 4, ∀α, β ∈ int(I(n, α0)).
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To define µ as a mass distribution it is sufficient to define it on the fundamental

intervals of the form I(n, α), n ∈ N, α ∈ [0,1) \ Q.

For any α we put µ(I(0, α)) = µ([0,1]) = 1.

If α0 ∈ [0,1) \ Q, int(I(n, α0)) ∩ A = ∅ then we set µ(I(n, α0)) = 0.

Suppose α0 ∈ A, α0 = [aα0,1, aα0,2, ...]. We need to define µ(I(n, α0)) for all

n ∈ N.

Suppose that µ(I(n − 1, α0)) is defined and Γ(n − 1, α0)
def
=

µ(I(n − 1, α0))

|I(n − 1, α0)|
.

We want to define µ(I(n, α0)).

First suppose that we can find j ∈ N such that n(j − 1, α0) < n < n(j, α0).

Denote by Ik(n, α0) the closed interval with endpoints

[aα0,1, ..., aα0,n−1, k] and [aα0,1, ..., aα0,n−1, k + 1].

Then I(n, α0) = Iaα0,n(n, α0) and |Ik+1(n, α0)| < |Ik(n, α0)| for all k ∈ N.
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Then

A ∩ I(n − 1, α0) ⊂

Kj
⋃

k=1

Ik(n, α0)
def
= I ′(n, α0) = Fn−1,α0

([
1

Kj
,1]) = Fn−1,α0

([
1

10j
,1]).

By the bounded distortion property of Fn−1,α0
and by its strict monotonicity

|I(n − 1, α0) \ I ′(n, α0)|

|I(n − 1, α0)|
=

|Fn−1,α0
([0, 1

10j ])|

|Fn−1,α0
([0,1])|

≤
4

10j
.

Therefore, |I ′(n, α0)| ≥ (1 −
4

10j
)|I(n − 1, α0)|.

We put µ(I(n, α0))
def
=

|I(n, α0)|

|I ′(n, α0)|
µ(I(n − 1, α0)).
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For all k = 1, ..., Kj there exists α1 ∈ int(Ik(n, α0)) ∩ A.

µ(I ′(n, α0)) = µ(
⋃

α∈A∩I(n−1,α0)

I(n, α)) =

Kj
∑

k=1

µ(Ik(n, α0)) =

∑Kj
k=1 |Ik(n, α0)|

|I ′(n, α0)|
µ(I(n − 1, α0)) = µ(I(n − 1, α0)).

⇒ Γ(n, α0)
def
=

µ(I(n, α0))

|I(n, α0)|
=

µ(I(n − 1, α0))

|I ′(n, α0)|
=

µ(I(n−1,α0))
|I(n−1,α0)|

· |I(n−1,α0)|
|I ′(n,α0)|

≤ Γ(n − 1, α0)

(

1 − 4
10j

)−1

.
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Missing cases: ∃ j ∈ N for which n = n(j, α0).

Put µ(I(n(j, α0), α0))
def
= µ(I(n(j, α0) − 1, α0)).

Need estimates:

|I(n(j, α0), α0)|

|I(n(j, α0) − 1, α0)|
>

1

3a2
α0,n(j,α0)

>
1

3 · (32 · 104K3
j j6)2

>

(

1 −
4

10j

)log2(8K2
j /d2

j )

.

Γ(n(j, α0), α0) ≤ Γ(n(j − 1, α0), α0)
Γ(n(j − 1, α0) + 1, α0)

Γ(n(j − 1, α0), α0)
· · ·

Γ(n(j, α0) − 1, α0)

Γ(n(j, α0) − 2, α0)
·

Γ(n(j, α0), α0)

Γ(n(j, α0) − 1, α0)
<

(

1 −
4

10j

)−3 log2(8K2
j /d2

j )
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Suppose α0 ∈ A and 0 < r < |I(n(2, α0), α0)|.

Choose n such that |I(n + 1, α0)| ≤ r < |I(n, α0)|

Then one can obtain estimates like: Γ(n, α0) <

(

1 −
4

10(j − 1)

)7 log2 r

.

⇒
log2 µ(B(α0, r))

log2 r
≥

log2(Γ(n, α0)) + 3 log2(10
19j18) + log2 r

log2 r
> 1 −

6

j − 1
−

3 log2(10
19j18)

− log2 r
.

This implies lim inf
r→0+

log2 µ(B(α0, r))

log2 r
≥ 1. ⇒ dimHA = 1.
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