The dimension of projections and convolutions, and a variant of Marstrand's Projection Theorem

Pablo Shmerkin

Centre for Interdisciplinary Computational And Dynamical Analysis and School of Mathematics University of Manchester, UK

Warwick, 21 April 2011

Summary

- I will quickly describe progress obtained in the last few years on the projections and convolutions of dynamically defined measures.

The new results I want to emphasize are work (in progress) joint with/done by J.Erick López Velázquez and C."Gugu" Moreira.

I will try to explain why a variant of the Projection Theorem is a key in this new development.

Summary

- I will quickly describe progress obtained in the last few years on the projections and convolutions of dynamically defined measures.
- The new results I want to emphasize are work (in progress) joint with/done by J.Erick López Velázquez and C."Gugu" Moreira.

Summary

- I will quickly describe progress obtained in the last few years on the projections and convolutions of dynamically defined measures.
- The new results I want to emphasize are work (in progress) joint with/done by J.Erick López Velázquez and C."Gugu" Moreira.
- I will try to explain why a variant of the Projection Theorem is a key in this new development.

The projection theorem

Notation. $G(n, k)$ denotes the Grassmanian of k-planes in \mathbb{R}^{n}. We identify $V \in G(n, k)$ with the orthogonal projection onto V, and also with any linear map $\pi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ with kernel V^{\perp}.

The projection theorem

Notation. $G(n, k)$ denotes the Grassmanian of k-planes in \mathbb{R}^{n}. We identify $V \in G(n, k)$ with the orthogonal projection onto V, and also with any linear map $\pi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ with kernel V^{\perp}.

Fantastic Theorem (Marstrand/Kaufman/Mattila)
Let E be a Borel set on \mathbb{R}^{n}, and let $1 \leq k<n$. Then:

The projection theorem

Notation. $G(n, k)$ denotes the Grassmanian of k-planes in \mathbb{R}^{n}. We identify $V \in G(n, k)$ with the orthogonal projection onto V, and also with any linear map $\pi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ with kernel V^{\perp}.

Fantastic Theorem (Marstrand/Kaufman/Mattila)

Let E be a Borel set on \mathbb{R}^{n}, and let $1 \leq k<n$. Then:

- If $\operatorname{dim}_{H}(E)>k$, then $\pi(E)$ has positive Lebesgue measure for almost every $\pi \in G(n, k)$.

\square

The projection theorem

Notation. $G(n, k)$ denotes the Grassmanian of k-planes in \mathbb{R}^{n}. We identify $V \in G(n, k)$ with the orthogonal projection onto V, and also with any linear map $\pi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ with kernel V^{\perp}.

Fantastic Theorem (Marstrand/Kaufman/Mattila)

Let E be a Borel set on \mathbb{R}^{n}, and let $1 \leq k<n$. Then:

- If $\operatorname{dim}_{H}(E)>k$, then $\pi(E)$ has positive Lebesgue measure for almost every $\pi \in G(n, k)$.
- If $\operatorname{dim}_{H}(E) \leq k$, then $\pi(E)$ has Hausdorff dimension $\operatorname{dim}_{H}(E)$ for almost every $\pi \in G(n, k)$.

Remarks on the Projection Theorem

Remarks

- One always has $\operatorname{dim}_{H}(\pi(E)) \leq \min \left(\operatorname{dim}_{H}(E), k\right)$. We call projections for which inequality occurs exceptional.
- The proofs are very non-constructive; they give no hint of how to find the exceptional set (which may be large in terms of topology and dimension).
- The dependence $\pi \rightarrow \operatorname{dim}_{H}(\pi(E))$ is in general ugly.
- Note the parameter space $G(n, k)$ has dimension $k(n-k)$.
- An analogous result holds for measures (for various notions of dimensions, such as correlation, Hausdorff dimension and exact dimension).

Remarks on the Projection Theorem

Remarks

- One always has $\operatorname{dim}_{H}(\pi(E)) \leq \min \left(\operatorname{dim}_{H}(E), k\right)$. We call projections for which inequality occurs exceptional.
- The proofs are very non-constructive; they give no hint of how to find the exceptional set (which may be large in terms of topology and dimension).
- The dependence $\pi \rightarrow \operatorname{dim}_{H}(\pi(E))$ is in general ugly.
- Note the parameter space $G(n, k)$ has dimension $k(n-k)$.
- An analogous result holds for measures (for various notions of dimensions, such as correlation, Hausdorff dimension and exact dimension).

Remarks on the Projection Theorem

Remarks

- One always has $\operatorname{dim}_{H}(\pi(E)) \leq \min \left(\operatorname{dim}_{H}(E), k\right)$. We call projections for which inequality occurs exceptional.
- The proofs are very non-constructive; they give no hint of how to find the exceptional set (which may be large in terms of topology and dimension).

Remarks on the Projection Theorem

Remarks

- One always has $\operatorname{dim}_{H}(\pi(E)) \leq \min \left(\operatorname{dim}_{H}(E), k\right)$. We call projections for which inequality occurs exceptional.
- The proofs are very non-constructive; they give no hint of how to find the exceptional set (which may be large in terms of topology and dimension).
- The dependence $\pi \rightarrow \operatorname{dim}_{H}(\pi(E))$ is in general ugly.
- Note the parameter space $G(n, k)$ has dimension $k(n-k)$

An analogous result holds for measures (for various
notions of dimensions, such as correlation, Hausdorff dimension and exact dimension).

Remarks on the Projection Theorem

Remarks

- One always has $\operatorname{dim}_{H}(\pi(E)) \leq \min \left(\operatorname{dim}_{H}(E), k\right)$. We call projections for which inequality occurs exceptional.
- The proofs are very non-constructive; they give no hint of how to find the exceptional set (which may be large in terms of topology and dimension).
- The dependence $\pi \rightarrow \operatorname{dim}_{H}(\pi(E))$ is in general ugly.
- Note the parameter space $G(n, k)$ has dimension $k(n-k)$.

An analogous result holds for measures (for various notions of dimensions, such as correlation, Hausdorff dimension and exact dimension).

Remarks on the Projection Theorem

Remarks

- One always has $\operatorname{dim}_{H}(\pi(E)) \leq \min \left(\operatorname{dim}_{H}(E), k\right)$. We call projections for which inequality occurs exceptional.
- The proofs are very non-constructive; they give no hint of how to find the exceptional set (which may be large in terms of topology and dimension).
- The dependence $\pi \rightarrow \operatorname{dim}_{H}(\pi(E))$ is in general ugly.
- Note the parameter space $G(n, k)$ has dimension $k(n-k)$.
- An analogous result holds for measures (for various notions of dimensions, such as correlation, Hausdorff dimension and exact dimension).

Projections of special sets and measures?

Question

For sets and measures with an arithmetic and/or dynamic origin, can one identify the precise set of exceptions in the Projection Theorem?

> For example, if A, B are two dynamically defined sets, one is often interested in the dimension of the arithmetic sum $A+B$. This is one specific proiection from the product, so
> a generic result is useless

Projections of special sets and measures?

Question

For sets and measures with an arithmetic and/or dynamic origin, can one identify the precise set of exceptions in the Projection Theorem?

- For example, if A, B are two dynamically defined sets, one is often interested in the dimension of the arithmetic sum $A+B$. This is one specific projection from the product, so a generic result is useless

Projections of special sets and measures?

Question

For sets and measures with an arithmetic and/or dynamic origin, can one identify the precise set of exceptions in the Projection Theorem?

- For example, if A, B are two dynamically defined sets, one is often interested in the dimension of the arithmetic sum $A+B$. This is one specific projection from the product, so a generic result is useless

Projections of special sets and measures?

Question

For sets and measures with an arithmetic and/or dynamic origin, can one identify the precise set of exceptions in the Projection Theorem?

- For example, if A, B are two dynamically defined sets, one is often interested in the dimension of the arithmetic sum $A+B$. This is one specific projection from the product, so a generic result is useless (well, not quite as we shall see).

Projections of special sets and measures?

Question

For sets and measures with an arithmetic and/or dynamic origin, can one identify the precise set of exceptions in the Projection Theorem?

- For example, if A, B are two dynamically defined sets, one is often interested in the dimension of the arithmetic sum $A+B$. This is one specific projection from the product, so a generic result is useless (well, not quite as we shall see).
- Furstenberg posed a number of conjectures of the following type: "For objects of dynamical origin, there are no exceptions to the projection theorem other than the evident ones".

Projection Theorems for sub-families of projections?

Question

Can one obtain projection theorems for incomplete families $\left\{\pi_{t}\right\}_{t \in I}$ of projections?

- In general, the answer is no, in the sense that not every incomplete family of projections will work.
- If one considers a restricted family of projections, perhaps a projection theorem will hold not for all sets but for a suitable class of sets.
- As far I as I know, this problem has received little attention.

Projection Theorems for sub-families of projections?

Question

Can one obtain projection theorems for incomplete families $\left\{\pi_{t}\right\}_{t \in I}$ of projections?

- In general, the answer is no, in the sense that not every incomplete family of projections will work.
- If one considers a restricted family of projections, perhaps
a projection theorem will hold not for all sets but for a suitable class of sets.

Projection Theorems for sub-families of projections?

Question

Can one obtain projection theorems for incomplete families $\left\{\pi_{t}\right\}_{t \in I}$ of projections?

- In general, the answer is no, in the sense that not every incomplete family of projections will work.
- If one considers a restricted family of projections, perhaps a projection theorem will hold not for all sets but for a suitable class of sets.

Projection Theorems for sub-families of projections?

Question

Can one obtain projection theorems for incomplete families $\left\{\pi_{t}\right\}_{t \in I}$ of projections?

- In general, the answer is no, in the sense that not every incomplete family of projections will work.
- If one considers a restricted family of projections, perhaps a projection theorem will hold not for all sets but for a suitable class of sets.
- As far I as I know, this problem has received little attention.

The punchline

For example, using a variant of Marstrand's Projection Theorem for a (small) class of linear projections, we are able to prove the following:

The punchline

Punchline
Sometimes, answering the second question is key to answering the first.

For example, using a variant of Marstrand's Projection Theorem for a (small) class of linear projections, we are able to prove the following:

The punchline

Punchline
Sometimes, answering the second question is key to answering the first.

For example, using a variant of Marstrand's Projection Theorem for a (small) class of linear projections, we are able to prove the following:

The punchline

Punchline

Sometimes, answering the second question is key to answering the first.

For example, using a variant of Marstrand's Projection Theorem for a (small) class of linear projections, we are able to prove the following:

Theorem (J.E.López Velázquez, C. "Gugu" Moreira, P.S. 2012)

For $a \in(0,1)$ let C_{a} be the middle- $(1-2 a)$ Cantor set. If $\log \left(a_{1}\right), \ldots, \log \left(a_{n}\right), 1$ are rationally independent and $\pi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ is a "transverse" linear map,

$$
\operatorname{dim}_{H}\left(\pi\left(C_{a_{1}} \times \cdots \times C_{a_{n}}\right)\right)=\min \left(\sum_{i=1}^{n} \operatorname{dim}_{H}\left(C_{a_{i}}\right), k\right)
$$

Historical summary

Cases in which it was proved that all projections preserve dimension (other than trivial exceptions):

- Gugu Moreira (199?, unpublished): products of regular Cantor sets, one of them nonlinear $\left(\mathbb{R}^{2} \rightarrow \mathbb{R}\right)$

\square
- F. Nazarov, Y. Peres, P.S. (2011, Israel J.): products of measures on central Cantor sets $\left(\mathbb{R}^{n} \rightarrow \mathbb{R}\right)$. - A. Ferguson, T. Jordan, P.S. (2010, Fundamenta M.): $\left(\mathbb{R}^{2} \rightarrow \mathbb{R}\right.$).

Historical summary

Cases in which it was proved that all projections preserve dimension (other than trivial exceptions):

- Gugu Moreira (199?, unpublished): products of regular Cantor sets, one of them nonlinear ($\mathbb{R}^{2} \rightarrow \mathbb{R}$)
- Y. Peres - P.S (2009, ETDS): products of self-similar sets $\left(\mathbb{R}^{n} \rightarrow \mathbb{R}\right)$, planar self-similar sets with rotations $\left(\mathbb{R}^{2} \rightarrow \mathbb{R}\right)$.
 measures on central Cantor sets $\left(\mathbb{R}^{n} \rightarrow \mathbb{R}\right)$. - A. Ferguson, T. Jordan, P.S. (2010, Fundamenta M.):

Historical summary

Cases in which it was proved that all projections preserve dimension (other than trivial exceptions):

- Gugu Moreira (199?, unpublished): products of regular Cantor sets, one of them nonlinear ($\mathbb{R}^{2} \rightarrow \mathbb{R}$)
- Y. Peres - P.S (2009, ETDS): products of self-similar sets $\left(\mathbb{R}^{n} \rightarrow \mathbb{R}\right)$, planar self-similar sets with rotations $\left(\mathbb{R}^{2} \rightarrow \mathbb{R}\right)$.
- F. Nazarov, Y. Peres, P.S. (2011, Israel J.): products of measures on central Cantor sets ($\mathbb{R}^{n} \rightarrow \mathbb{R}$).

Historical summary

Cases in which it was proved that all projections preserve dimension (other than trivial exceptions):

- Gugu Moreira (199?, unpublished): products of regular Cantor sets, one of them nonlinear ($\mathbb{R}^{2} \rightarrow \mathbb{R}$)
- Y. Peres - P.S (2009, ETDS): products of self-similar sets $\left(\mathbb{R}^{n} \rightarrow \mathbb{R}\right)$, planar self-similar sets with rotations $\left(\mathbb{R}^{2} \rightarrow \mathbb{R}\right)$.
- F. Nazarov, Y. Peres, P.S. (2011, Israel J.): products of measures on central Cantor sets ($\mathbb{R}^{n} \rightarrow \mathbb{R}$).
- A. Ferguson, T. Jordan, P.S. (2010, Fundamenta M.): self-affine carpets $\left(\mathbb{R}^{2} \rightarrow \mathbb{R}\right)$.

I had to include one picture in this talk

::	: :	: :	: :ニ
	: :	: : :	:=
: :i	: $:$: $: 1$;:=
::	: :	\#:	: :

:: : :	:: :	:: : =
:: : :	:: :	:: : =
:it it :	i: i:	: : $=$
: $:$: $: 1:$: : $:$	'

:: : : :	:: :	:: : =
:: :\% :=	:: :	:: :
:: : :	:: :	::
: $:$: $:$:	: : $:$: :

:: : :	:! :	: :
:: : :	:: :	:: : ニ
:: : : :	:: :	:: : =
:: : :	:: :	:: : =

::i :i:	:i:
::: :: :=	: : :
::: :: :=	: : :
::: :: :=	: : :

:i: i:	ii i:	: : =
:: : : :	:: :	: : =
:: : : :	:: :	: : =
:: : :	:: :	:: :

A general framework, main application

Together with M. Hochman, we developed a unified framework that allows to recover, unify and substantially extend most of the previous results. Our main motivation was to resolve a conjecture of Furstenberg in full:

A general framework, main application

Together with M. Hochman, we developed a unified framework that allows to recover, unify and substantially extend most of the previous results. Our main motivation was to resolve a conjecture of Furstenberg in full:

Theorem (M. Hochman and P.S., accepted in Ann. of math)

Let $A, B \subset[0,1]$ be closed sets, invariant under $x \rightarrow 2 x \bmod$ (1) and $x \rightarrow 3 x \bmod 1$ respectively. Then

$$
\operatorname{dim}_{H}(A+B)=\min \left(\operatorname{dim}_{H}(A)+\operatorname{dim}_{H}(B), 1\right) .
$$

In fact the analogous result for measures also holds.

A general framework, main idea

Although the main result of our paper is very technical, the main idea is the following:

Main Idea

If μ is a measure on \mathbb{R}^{n} which displays a local form of statistical self-similarity then the map $\pi \rightarrow \operatorname{dim}(\pi \mu)$ is essentially lower semicontinuous.

Disclaimers

- We do not prove such a thing for any measure. What we really prove is that $\operatorname{dim}(\pi \mu)$ is bounded below by a lower semicontinuous function that reflects the projection behavior of measures one sees when "zooming in" towards typical points of μ.
Semicontinuity turned out to be less important than initially thought (one can obtain most of the results without going through it).

Nevertheless, it is very convenient as a first approximation
to assume semicontinuity.

Disclaimers

- We do not prove such a thing for any measure. What we really prove is that $\operatorname{dim}(\pi \mu)$ is bounded below by a lower semicontinuous function that reflects the projection behavior of measures one sees when "zooming in" towards typical points of μ.
- Semicontinuity turned out to be less important than initially thought (one can obtain most of the results without going through it).

Nevertheless, it is very convenient as a first approximation

to assume semicontinuity.

Disclaimers

- We do not prove such a thing for any measure. What we really prove is that $\operatorname{dim}(\pi \mu)$ is bounded below by a lower semicontinuous function that reflects the projection behavior of measures one sees when "zooming in" towards typical points of μ.
- Semicontinuity turned out to be less important than initially thought (one can obtain most of the results without going through it).
- Nevertheless, it is very convenient as a first approximation to assume semicontinuity.

Dynamics on fractals

Two important papers by Mike Hochman (they don't directly prove any new projection results, but develop useful and powerful techniques):

- Dynamics on fractals measures.
- Geometric rigidity of $\times m$ invariant measures.

Dynamics on fractals

Two important papers by Mike Hochman (they don't directly prove any new projection results, but develop useful and powerful techniques):

- Dynamics on fractals measures.
- Geometric rigidity of $\times m$ invariant measures.

An illustration: sums $C_{a}+C_{b}$

- Let $d=\min \left(\operatorname{dim}_{H}\left(C_{a}\right)+\operatorname{dim}_{H}\left(C_{b}\right), 1\right)$.
- The general semicontinuity framework "implies that" $t \rightarrow \operatorname{dim}_{H}\left(C_{a}+t C_{b}\right)$ is lower semicontinuous.
- Fix $\varepsilon>0$ and let us look at the set

$$
B_{\varepsilon}=\left\{t: \operatorname{dim}_{H}\left(C_{a}+t C_{b}\right)>d-\varepsilon\right\} .
$$

- By semicontinuity and the Projection Theorem (black box), B_{ε} has nonempty interior.
- By self-similarity of C_{a} and C_{b}, B_{ε} is invariant under
- If $\log b / \log a \notin \mathbb{Q}$, we conclude that B

An illustration: sums $C_{a}+C_{b}$

- Let $d=\min \left(\operatorname{dim}_{H}\left(C_{a}\right)+\operatorname{dim}_{H}\left(C_{b}\right), 1\right)$.
- The general semicontinuity framework "implies that" $t \rightarrow \operatorname{dim}_{H}\left(C_{a}+t C_{b}\right)$ is lower semicontinuous.
- Fix $\varepsilon>0$ and let us look at the set

- By semicontinuity and the Projection Theorem (black box), B_{ε} has nonempty interior.
- By self-similarity of C_{a} and C_{b}, B_{a}
- If $\log b / \log a \notin \mathbb{Q}$, we conclude that B

An illustration: sums $C_{a}+C_{b}$

- Let $d=\min \left(\operatorname{dim}_{H}\left(C_{a}\right)+\operatorname{dim}_{H}\left(C_{b}\right), 1\right)$.
- The general semicontinuity framework "implies that" $t \rightarrow \operatorname{dim}_{H}\left(C_{a}+t C_{b}\right)$ is lower semicontinuous.
- Fix $\varepsilon>0$ and let us look at the set

$$
B_{\varepsilon}=\left\{t: \operatorname{dim}_{H}\left(C_{a}+t C_{b}\right)>d-\varepsilon\right\}
$$

- By semicontinuity and the Projection Theorem (black box),
B_{ε} has nonempty interior.
- By self-similarity of C_{a} and C_{b},
- If $\log b / \log a \notin \mathbb{Q}$, we conclude that

An illustration: sums $C_{a}+C_{b}$

- Let $d=\min \left(\operatorname{dim}_{H}\left(C_{a}\right)+\operatorname{dim}_{H}\left(C_{b}\right), 1\right)$.
- The general semicontinuity framework "implies that" $t \rightarrow \operatorname{dim}_{H}\left(C_{a}+t C_{b}\right)$ is lower semicontinuous.
- Fix $\varepsilon>0$ and let us look at the set

$$
B_{\varepsilon}=\left\{t: \operatorname{dim}_{H}\left(C_{a}+t C_{b}\right)>d-\varepsilon\right\} .
$$

- By semicontinuity and the Projection Theorem (black box), B_{ε} has nonempty interior.
- By self-similarity of C_{a} and C_{b},
- If $\log b / \log a \notin \mathbb{Q}$, we conclude that

An illustration: sums $C_{a}+C_{b}$

- Let $d=\min \left(\operatorname{dim}_{H}\left(C_{a}\right)+\operatorname{dim}_{H}\left(C_{b}\right), 1\right)$.
- The general semicontinuity framework "implies that" $t \rightarrow \operatorname{dim}_{H}\left(C_{a}+t C_{b}\right)$ is lower semicontinuous.
- Fix $\varepsilon>0$ and let us look at the set

$$
B_{\varepsilon}=\left\{t: \operatorname{dim}_{H}\left(C_{a}+t C_{b}\right)>d-\varepsilon\right\} .
$$

- By semicontinuity and the Projection Theorem (black box), B_{ε} has nonempty interior.
- By self-similarity of C_{a} and C_{b}, B_{ε} is invariant under multiplication by b and by $1 / a$.
- If $\log b / \log a \notin \mathbb{Q}$, we conclude that

An illustration: sums $C_{a}+C_{b}$

- Let $d=\min \left(\operatorname{dim}_{H}\left(C_{a}\right)+\operatorname{dim}_{H}\left(C_{b}\right), 1\right)$.
- The general semicontinuity framework "implies that" $t \rightarrow \operatorname{dim}_{H}\left(C_{a}+t C_{b}\right)$ is lower semicontinuous.
- Fix $\varepsilon>0$ and let us look at the set

$$
B_{\varepsilon}=\left\{t: \operatorname{dim}_{H}\left(C_{a}+t C_{b}\right)>d-\varepsilon\right\} .
$$

- By semicontinuity and the Projection Theorem (black box), B_{ε} has nonempty interior.
- By self-similarity of C_{a} and C_{b}, B_{ε} is invariant under multiplication by b and by $1 / a$.
- If $\log b / \log a \notin \mathbb{Q}$, we conclude that $B_{\varepsilon}=\mathbb{R} \backslash\{0\}$.

Projections of $C_{a_{1}} \times \cdots \times C_{a_{n}}$

- Write $E=C_{a_{1}} \times \cdots \times C_{a_{n}}, d=\min \left(\operatorname{dim}_{H}(E), k\right)$. Let us try to understand why the previous argument does not work for projections onto $\mathbb{R}^{k}, k \geq 2$.
- We can define, as before,

$$
B_{\varepsilon}=\left\{\pi \in G(n, k): \operatorname{dim}_{H}(\pi(E))<d-\varepsilon\right\} .
$$

Just as before, we know B_{ε} has nonempty interior.

- Self-similarity (and irrationality) tells us that B
- Unfortunately, the action of the diagonal group on $G(n, k)$ is not minimal!!! (e.g. for dimension reasons).

Projections of $C_{a_{1}}$

- Write $E=C_{a_{1}} \times \cdots \times C_{a_{n}}, d=\min \left(\operatorname{dim}_{H}(E), k\right)$. Let us try to understand why the previous argument does not work for projections onto $\mathbb{R}^{k}, k \geq 2$.
- We can define, as before,

$$
B_{\varepsilon}=\left\{\pi \in G(n, k): \operatorname{dim}_{H}(\pi(E))<d-\varepsilon\right\} .
$$

Just as before, we know B_{ε} has nonempty interior.

- Unfortunately, the action of the diagonal group on $G(n, k)$ is not minimal!!! (e.g. for dimension reasons)

Projections of $C_{a_{1}} \times \cdots \times C_{a_{n}}$

- Write $E=C_{a_{1}} \times \cdots \times C_{a_{n}}, d=\min \left(\operatorname{dim}_{H}(E), k\right)$. Let us try to understand why the previous argument does not work for projections onto $\mathbb{R}^{k}, k \geq 2$.
- We can define, as before,

$$
B_{\varepsilon}=\left\{\pi \in G(n, k): \operatorname{dim}_{H}(\pi(E))<d-\varepsilon\right\} .
$$

Just as before, we know B_{ε} has nonempty interior.

- Self-similarity (and irrationality) tells us that B_{ε} is invariant under postcomposition with a dense set of diagonal matrices.
- Unfortunately, the action of the diagonal group on $G(n, k)$ is not minimal!!! (e.g. for dimension reasons).

Projections of $C_{a_{1}} \times \cdots \times C_{a_{n}}$

- Write $E=C_{a_{1}} \times \cdots \times C_{a_{n}}, d=\min \left(\operatorname{dim}_{H}(E), k\right)$. Let us try to understand why the previous argument does not work for projections onto $\mathbb{R}^{k}, k \geq 2$.
- We can define, as before,

$$
B_{\varepsilon}=\left\{\pi \in G(n, k): \operatorname{dim}_{H}(\pi(E))<d-\varepsilon\right\} .
$$

Just as before, we know B_{ε} has nonempty interior.

- Self-similarity (and irrationality) tells us that B_{ε} is invariant under postcomposition with a dense set of diagonal matrices.
- Unfortunately, the action of the diagonal group on $G(n, k)$ is not minimal!!! (e.g. for dimension reasons). So we cannot cover all of $G(n, k)$ in this way.

How to fix the argument

Main Idea

If we knew that the Projection Theorem holds for the family of linear maps $\{\pi \circ D: D$ is a diagonal matrix $\}$, where $\pi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ is a fixed projection, then the argument would be fixed, as the action of the diagonal group is, by definition, transitive in this family, and semicontinuity still holds.

If it only was so simple

Remark

It is easy to see one cannot expect such a result for all maps π. For example, let $A_{1}, A_{2}, B_{1}, B_{2}$ be sets of equal Hausdorff and box dimension (so that the dimension of products is the sum of the dimensions).

If it only was so simple

Remark

It is easy to see one cannot expect such a result for all maps π. For example, let $A_{1}, A_{2}, B_{1}, B_{2}$ be sets of equal Hausdorff and box dimension (so that the dimension of products is the sum of the dimensions).

If it only was so simple

Remark

It is easy to see one cannot expect such a result for all maps π. For example, let $A_{1}, A_{2}, B_{1}, B_{2}$ be sets of equal Hausdorff and box dimension (so that the dimension of products is the sum of the dimensions).

Suppose $\operatorname{dim}_{H}\left(A_{1}\right)=\operatorname{dim}_{H}\left(A_{2}\right)=0.6$ so $\operatorname{dim}_{H}\left(t_{1} A_{1} \times t_{2} A_{2}\right)=1.2>1$, and $\operatorname{dim}_{H}\left(B_{1}\right)=\operatorname{dim}_{H}\left(B_{2}\right)=0.2$.
Let $\pi\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}+x_{2}, x_{3}+x_{4}\right)$.

So the "expected" dimension of $\pi D(E)$ depends on the geometry of π and may be smaller than $\min \left(\operatorname{dim}_{H}(E), k\right)$.

If it only was so simple

Remark

It is easy to see one cannot expect such a result for all maps π. For example, let $A_{1}, A_{2}, B_{1}, B_{2}$ be sets of equal Hausdorff and box dimension (so that the dimension of products is the sum of the dimensions).

Suppose $\operatorname{dim}_{H}\left(A_{1}\right)=\operatorname{dim}_{H}\left(A_{2}\right)=0.6$ so $\operatorname{dim}_{H}\left(t_{1} A_{1} \times t_{2} A_{2}\right)=1.2>1$, and $\operatorname{dim}_{H}\left(B_{1}\right)=\operatorname{dim}_{H}\left(B_{2}\right)=0.2$.
Let $\pi\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}+x_{2}, x_{3}+x_{4}\right)$.
We have $\operatorname{dim}_{H}(E)=1.6$, but for any diagonal map D on \mathbb{R}^{n}, $\operatorname{dim}_{H}(\pi E) \leq 1+2 \times 0.2=1.4$.

So the "expected" dimension of $\pi D(E)$ depends on the geometry of π and may be smaller than $\min \left(\operatorname{dim}_{H}(E), k\right)$.

If it only was so simple

Remark

It is easy to see one cannot expect such a result for all maps π. For example, let $A_{1}, A_{2}, B_{1}, B_{2}$ be sets of equal Hausdorff and box dimension (so that the dimension of products is the sum of the dimensions).

Suppose $\operatorname{dim}_{H}\left(A_{1}\right)=\operatorname{dim}_{H}\left(A_{2}\right)=0.6$ so $\operatorname{dim}_{H}\left(t_{1} A_{1} \times t_{2} A_{2}\right)=1.2>1$, and $\operatorname{dim}_{H}\left(B_{1}\right)=\operatorname{dim}_{H}\left(B_{2}\right)=0.2$.
Let $\pi\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}+x_{2}, x_{3}+x_{4}\right)$.
We have $\operatorname{dim}_{H}(E)=1.6$, but for any diagonal map D on \mathbb{R}^{n}, $\operatorname{dim}_{H}(\pi E) \leq 1+2 \times 0.2=1.4$.

So the "expected" dimension of $\pi D(E)$ depends on the geometry of π and may be smaller than $\min \left(\operatorname{dim}_{H}(E), k\right)$.

The modified Projection Theorem

Theorem (Erick L.V. and Gugu M. 2012)

Let $\pi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ be a linear map. Let $A_{1}, \ldots, A_{n} \subset \mathbb{R}^{n}$ be compact sets such that

$$
\operatorname{dim}_{H}\left(A_{1} \times \cdots \times A_{n}\right)=\sum_{i=1}^{n} \operatorname{dim}_{H}\left(A_{i}\right) .
$$

Denote by $\left\{e_{1}, \ldots, e_{n}\right\}$ the canonical basis of \mathbb{R}^{n}, and define

$$
\left.\mathbf{m}=\min _{I \subset\{1, \ldots, n\}}\left(\sum_{i \in I} \operatorname{dim}_{H}\left(A_{i}\right)+\operatorname{dim}\left(\pi\left(<e_{i}: i \in I^{c}\right\rangle\right)\right)\right) .
$$

Then

$$
\operatorname{dim}_{H}\left(\pi\left(t_{1} A_{1} \times \cdots \times t_{n} A_{n}\right)\right)=\min (k, \mathbf{m})
$$

for a.e. t_{1}, \ldots, t_{n}.

Remarks

- There is an open dense set of "transversal" maps π for which $\mathbf{m}=\operatorname{dim}_{H}\left(\otimes_{i} A_{i}\right)$.
- The standard way to prove results of this kind is to use transversality. However transversality does not hold for this family of projections (exercise).
- The main difficulty arises in the case where the map is transversal. This involves combinatorial/convexity ideas.
- There is a more general version for block-diagonal maps.

Remarks

- There is an open dense set of "transversal" maps π for which $\mathbf{m}=\operatorname{dim}_{H}\left(\otimes_{i} A_{i}\right)$.
- The standard way to prove results of this kind is to use transversality. However transversality does not hold for this family of projections (exercise).

> The main difficulty arises in the case where the map is transversal. This involves combinatorial/convexity ideas. There is a more general version for block-diagonal maps.

Remarks

- There is an open dense set of "transversal" maps π for which $\mathbf{m}=\operatorname{dim}_{H}\left(\otimes_{i} A_{i}\right)$.
- The standard way to prove results of this kind is to use transversality. However transversality does not hold for this family of projections (exercise).
- The main difficulty arises in the case where the map is not transversal. This involves combinatorial/convexity ideas.
- There is a more general version for block-diagonal maps.

Remarks

- There is an open dense set of "transversal" maps π for which $\mathbf{m}=\operatorname{dim}_{H}\left(\otimes_{i} \boldsymbol{A}_{i}\right)$.
- The standard way to prove results of this kind is to use transversality. However transversality does not hold for this family of projections (exercise).
- The main difficulty arises in the case where the map is not transversal. This involves combinatorial/convexity ideas.
- There is a more general version for block-diagonal maps.

Projections of products

Theorem (J.E.López Velázquez, C.G. Moreira, P.S. 2011)

Let p_{1}, \ldots, p_{n} be integers with $\left\{\log p_{1}, \ldots, \log p_{n}, 1\right\}$ rationally independent.
Let $A_{i} \subset[0,1]$ be invariant under $x \rightarrow p_{i} x$ mod 1. Then for any $\pi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$,

$$
\operatorname{dim}\left(\pi\left(A_{1} \times \cdots \times A_{n}\right)=\min (k, \mathbf{m})\right.
$$

Projections of products

Theorem (J.E.López Velázquez, C.G. Moreira, P.S. 2011)
Let p_{1}, \ldots, p_{n} be integers with $\left\{\log p_{1}, \ldots, \log p_{n}, 1\right\}$ rationally independent.
Let $A_{i} \subset[0,1]$ be invariant under $x \rightarrow p_{i} x$ mod 1. Then for any $\pi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$,

$$
\operatorname{dim}\left(\pi\left(A_{1} \times \cdots \times A_{n}\right)=\min (k, \mathbf{m}) .\right.
$$

Remarks

Projections of products

Theorem (J.E.López Velázquez, C.G. Moreira, P.S. 2011)

Let p_{1}, \ldots, p_{n} be integers with $\left\{\log p_{1}, \ldots, \log p_{n}, 1\right\}$ rationally independent.
Let $A_{i} \subset[0,1]$ be invariant under $x \rightarrow p_{i} x$ mod 1. Then for any $\pi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$,

$$
\operatorname{dim}\left(\pi\left(A_{1} \times \cdots \times A_{n}\right)=\min (k, \mathbf{m})\right.
$$

Remarks

- This is a stronger version than previously available of the fact that "expansions in different bases do not resonate geometrically". For example, if $\left\lceil\operatorname{dim}\left(\otimes_{i} A_{i}\right)\right\rceil=k>1$, then the "right" dimension to project is k.
- A similar result holds for measures.

Projections of products

Theorem (J.E.López Velázquez, C.G. Moreira, P.S. 2011)

Let p_{1}, \ldots, p_{n} be integers with $\left\{\log p_{1}, \ldots, \log p_{n}, 1\right\}$ rationally independent.
Let $A_{i} \subset[0,1]$ be invariant under $x \rightarrow p_{i} x$ mod 1. Then for any $\pi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$,

$$
\operatorname{dim}\left(\pi\left(A_{1} \times \cdots \times A_{n}\right)=\min (k, \mathbf{m})\right.
$$

Remarks

- This is a stronger version than previously available of the fact that "expansions in different bases do not resonate geometrically". For example, if $\left\lceil\operatorname{dim}\left(\otimes_{i} A_{i}\right)\right\rceil=k>1$, then the "right" dimension to project is k.
- A similar result holds for measures.

Sumsets in higher dimensions

Theorem (J.E.López Velázquez, C.G. Moreira, P.S. 2011)

Let A, B be self-similar sets on \mathbb{R}^{k}. Let \mathcal{F}, \mathcal{G} be the semigroups generated by the maps in each of the corresponding IFS's. Suppose

$$
\left\{F G^{-1}: F \in \mathcal{F}, G \in \mathcal{G}\right\} \quad \text { is dense in } \mathbb{R} \times O_{n}
$$

Then $\operatorname{dim}_{H}(A+B)=\min \left(\operatorname{dim}_{H}(A)+\operatorname{dim}_{H}(B), k\right)$.

Sumsets in higher dimensions

Theorem (J.E.López Velázquez, C.G. Moreira, P.S. 2011)
Let A, B be self-similar sets on \mathbb{R}^{k}. Let \mathcal{F}, \mathcal{G} be the semigroups generated by the maps in each of the corresponding IFS's. Suppose

$$
\left\{F G^{-1}: F \in \mathcal{F}, G \in \mathcal{G}\right\} \quad \text { is dense in } \mathbb{R} \times O_{n} .
$$

Then $\operatorname{dim}_{H}(A+B)=\min \left(\operatorname{dim}_{H}(A)+\operatorname{dim}_{H}(B), k\right)$.

Remarks

- Again the same result holds for convolutions of self-similar measures.

This requires the block-diagonal form of the modified projection theorem.

Sumsets in higher dimensions

Theorem (J.E.López Velázquez, C.G. Moreira, P.S. 2011)

Let A, B be self-similar sets on \mathbb{R}^{k}. Let \mathcal{F}, \mathcal{G} be the semigroups generated by the maps in each of the corresponding IFS's. Suppose

$$
\left\{F G^{-1}: F \in \mathcal{F}, G \in \mathcal{G}\right\} \text { is dense in } \mathbb{R} \times O_{n} .
$$

Then $\operatorname{dim}_{H}(A+B)=\min \left(\operatorname{dim}_{H}(A)+\operatorname{dim}_{H}(B), k\right)$.

Remarks

- Again the same result holds for convolutions of self-similar measures.

This requires the block-diagonal form of the modified projection theorem.

Sumsets in higher dimensions

Theorem (J.E.López Velázquez, C.G. Moreira, P.S. 2011)

Let A, B be self-similar sets on \mathbb{R}^{k}. Let \mathcal{F}, \mathcal{G} be the semigroups generated by the maps in each of the corresponding IFS's. Suppose

$$
\left\{F G^{-1}: F \in \mathcal{F}, G \in \mathcal{G}\right\} \quad \text { is dense in } \mathbb{R} \times O_{n} .
$$

Then $\operatorname{dim}_{H}(A+B)=\min \left(\operatorname{dim}_{H}(A)+\operatorname{dim}_{H}(B), k\right)$.

Remarks

- Again the same result holds for convolutions of self-similar measures.
- This requires the block-diagonal form of the modified projection theorem.

A nonlinear example

Theorem (J.E.López Velázquez, C.G. Moreira, P.S. 2011)

Let J_{1}, J_{2} be hyperbolic Julia sets, at least one of them not linear and not contained in a finite union of real-analytic curves. Then $\operatorname{dim}_{H}\left(J_{1}+J_{2}\right)=\min \left(\operatorname{dim}_{H}\left(J_{1}\right)+\operatorname{dim}_{H}\left(J_{2}\right), 2\right)$.

A nonlinear example

Theorem (J.E.López Velázquez, C.G. Moreira, P.S. 2011)

Let J_{1}, J_{2} be hyperbolic Julia sets, at least one of them not linear and not contained in a finite union of real-analytic curves. Then

$$
\operatorname{dim}_{H}\left(J_{1}+J_{2}\right)=\min \left(\operatorname{dim}_{H}\left(J_{1}\right)+\operatorname{dim}_{H}\left(J_{2}\right), 2\right) .
$$

Remarks

> Once again, the proof works for measures (for example conformal measures)

> The proof uses ideas of Bedford, Fisher and Urbański on the scenery flow for Julia sets.

> The same statement is automatically true for Julia sets whose dimension equals hyperbolic dimension (but we don't know if this is still true for measures)

A nonlinear example

Theorem (J.E.López Velázquez, C.G. Moreira, P.S. 2011)

Let J_{1}, J_{2} be hyperbolic Julia sets, at least one of them not linear and not contained in a finite union of real-analytic curves. Then

$$
\operatorname{dim}_{H}\left(J_{1}+J_{2}\right)=\min \left(\operatorname{dim}_{H}\left(J_{1}\right)+\operatorname{dim}_{H}\left(J_{2}\right), 2\right) .
$$

Remarks

- Once again, the proof works for measures (for example conformal measures).

The proof uses ideas of Bedford, Fisher and Urbański on the scenery flow for Julia sets.
The same statement is automatically true for Julia sets whose dimension equals hyperbolic dimension (but we don't know if this is still true for measures)

A nonlinear example

Theorem (J.E.López Velázquez, C.G. Moreira, P.S. 2011)

Let J_{1}, J_{2} be hyperbolic Julia sets, at least one of them not linear and not contained in a finite union of real-analytic curves. Then

$$
\operatorname{dim}_{H}\left(J_{1}+J_{2}\right)=\min \left(\operatorname{dim}_{H}\left(J_{1}\right)+\operatorname{dim}_{H}\left(J_{2}\right), 2\right) .
$$

Remarks

- Once again, the proof works for measures (for example conformal measures).
- The proof uses ideas of Bedford, Fisher and Urbański on the scenery flow for Julia sets.
The same statement is automatically true for Julia sets whose dimension equals hyperbolic dimension (but we don't know if this is still true for measures)

A nonlinear example

Theorem (J.E.López Velázquez, C.G. Moreira, P.S. 2011)

Let J_{1}, J_{2} be hyperbolic Julia sets, at least one of them not linear and not contained in a finite union of real-analytic curves. Then

$$
\operatorname{dim}_{H}\left(J_{1}+J_{2}\right)=\min \left(\operatorname{dim}_{H}\left(J_{1}\right)+\operatorname{dim}_{H}\left(J_{2}\right), 2\right) .
$$

Remarks

- Once again, the proof works for measures (for example conformal measures).
- The proof uses ideas of Bedford, Fisher and Urbański on the scenery flow for Julia sets.
- The same statement is automatically true for Julia sets whose dimension equals hyperbolic dimension (but we don't know if this is still true for measures).

Some questions

- is the modified projection theorem valid for all sets rather than just product sets? (for transversal projections, I have a more general condition, but I don't know if it is universal).

Some questions

- is the modified projection theorem valid for all sets rather than just product sets? (for transversal projections, I have a more general condition, but I don't know if it is universal).
- Can one obtain projection theorems for other classes of projections? In particular, consider the case of a "sufficiently rich" subgroup $G \subset O(n)$, and consider the set of projections $\{\pi \circ g: g \in G\}$ for a fixed $\pi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$. Does the projection theorem hold, at least for a natural class of sets/measures invariant under the action of G ?

Thanks

Danke, Dziȩkujȩ, Gracias, Grazie, Kiitos, Köszönöm, Merci, Spasibo, Tack, Thanks, Xie xie.

