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Summary

I will quickly describe progress obtained in the last few
years on the projections and convolutions of dynamically
defined measures.
The new results I want to emphasize are work (in progress)
joint with/done by J.Erick López Velázquez and C.“Gugu”
Moreira.
I will try to explain why a variant of the Projection Theorem
is a key in this new development.
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The projection theorem

Notation. G(n, k) denotes the Grassmanian of k -planes in Rn.
We identify V ∈ G(n, k) with the orthogonal projection onto V ,
and also with any linear map π : Rn → Rk with kernel V⊥.

Fantastic Theorem (Marstrand/Kaufman/Mattila)

Let E be a Borel set on Rn, and let 1 ≤ k < n. Then:
If dimH(E) > k, then π(E) has positive Lebesgue measure
for almost every π ∈ G(n, k).
If dimH(E) ≤ k, then π(E) has Hausdorff dimension
dimH(E) for almost every π ∈ G(n, k).
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Remarks on the Projection Theorem

Remarks
One always has dimH(π(E)) ≤ min(dimH(E), k). We call
projections for which inequality occurs exceptional.
The proofs are very non-constructive; they give no hint of
how to find the exceptional set (which may be large in
terms of topology and dimension).
The dependence π → dimH(π(E)) is in general ugly.
Note the parameter space G(n, k) has dimension k(n − k).
An analogous result holds for measures (for various
notions of dimensions, such as correlation, Hausdorff
dimension and exact dimension).
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Projections of special sets and measures?

Question
For sets and measures with an arithmetic and/or dynamic
origin, can one identify the precise set of exceptions in the
Projection Theorem?

For example, if A,B are two dynamically defined sets, one
is often interested in the dimension of the arithmetic sum
A + B. This is one specific projection from the product, so
a generic result is useless (well, not quite as we shall see).
Furstenberg posed a number of conjectures of the
following type: “For objects of dynamical origin, there are
no exceptions to the projection theorem other than the
evident ones”.
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Projection Theorems for sub-families of projections?

Question
Can one obtain projection theorems for incomplete families
{πt}t∈I of projections?

In general, the answer is no, in the sense that not every
incomplete family of projections will work.
If one considers a restricted family of projections, perhaps
a projection theorem will hold not for all sets but for a
suitable class of sets.
As far I as I know, this problem has received little attention.
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The punchline

Punchline
Sometimes, answering the second question is key to answering
the first.

For example, using a variant of Marstrand’s Projection Theorem
for a (small) class of linear projections, we are able to prove the
following:

Theorem (J.E.López Velázquez, C. “Gugu” Moreira, P.S. 2012)

For a ∈ (0,1) let Ca be the middle-(1− 2a) Cantor set. If
log(a1), . . . , log(an),1 are rationally independent and
π : Rn → Rk is a “transverse” linear map,

dimH(π(Ca1 × · · · × Can)) = min

(
n∑

i=1

dimH(Cai ), k

)
.
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Historical summary

Cases in which it was proved that all projections preserve
dimension (other than trivial exceptions):

Gugu Moreira (199?, unpublished): products of regular
Cantor sets, one of them nonlinear (R2 → R)
Y. Peres - P.S (2009, ETDS): products of self-similar sets
(Rn → R), planar self-similar sets with rotations (R2 → R).
F. Nazarov, Y. Peres, P.S. (2011, Israel J.): products of
measures on central Cantor sets (Rn → R).
A. Ferguson, T. Jordan, P.S. (2010, Fundamenta M.):
self-affine carpets (R2 → R).
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I had to include one picture in this talk
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A general framework, main application

Together with M. Hochman, we developed a unified framework
that allows to recover, unify and substantially extend most of
the previous results. Our main motivation was to resolve a
conjecture of Furstenberg in full:

Theorem (M. Hochman and P.S., accepted in Ann. of math)

Let A,B ⊂ [0,1] be closed sets, invariant under
x → 2x mod (1) and x → 3x mod 1 respectively. Then

dimH(A + B) = min(dimH(A) + dimH(B),1).

In fact the analogous result for measures also holds.
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A general framework, main idea

Although the main result of our paper is very technical, the
main idea is the following:

Main Idea
If µ is a measure on Rn which displays a local form of statistical
self-similarity then the map π → dim(πµ) is essentially lower
semicontinuous.
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Disclaimers

We do not prove such a thing for any measure. What we
really prove is that dim(πµ) is bounded below by a lower
semicontinuous function that reflects the projection
behavior of measures one sees when “zooming in” towards
typical points of µ.
Semicontinuity turned out to be less important than initially
thought (one can obtain most of the results without going
through it).
Nevertheless, it is very convenient as a first approximation
to assume semicontinuity.
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Dynamics on fractals

Two important papers by Mike Hochman (they don’t directly
prove any new projection results, but develop useful and
powerful techniques):

Dynamics on fractals measures.
Geometric rigidity of ×m invariant measures.
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An illustration: sums Ca + Cb

Let d = min(dimH(Ca) + dimH(Cb),1).
The general semicontinuity framework “implies that”
t → dimH(Ca + tCb) is lower semicontinuous.
Fix ε > 0 and let us look at the set

Bε = {t : dimH(Ca + tCb) > d − ε}.

By semicontinuity and the Projection Theorem (black box),
Bε has nonempty interior.
By self-similarity of Ca and Cb, Bε is invariant under
multiplication by b and by 1/a.
If log b/ log a /∈ Q, we conclude that Bε = R \ {0}.
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Projections of Ca1 × · · · × Can

Write E = Ca1 × · · · × Can , d = min(dimH(E), k). Let us try
to understand why the previous argument does not work
for projections onto Rk , k ≥ 2.
We can define, as before,

Bε = {π ∈ G(n, k) : dimH(π(E)) < d − ε}.

Just as before, we know Bε has nonempty interior.
Self-similarity (and irrationality) tells us that Bε is invariant
under postcomposition with a dense set of diagonal
matrices.
Unfortunately, the action of the diagonal group on G(n, k)
is not minimal!!! (e.g. for dimension reasons). So we
cannot cover all of G(n, k) in this way.
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is not minimal!!! (e.g. for dimension reasons). So we
cannot cover all of G(n, k) in this way.
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How to fix the argument

Main Idea
If we knew that the Projection Theorem holds for the family of
linear maps {π ◦ D : D is a diagonal matrix }, where
π : Rn → Rk is a fixed projection, then the argument would be
fixed, as the action of the diagonal group is, by definition,
transitive in this family, and semicontinuity still holds.
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If it only was so simple

Remark
It is easy to see one cannot expect such a result for all maps π.
For example, let A1,A2,B1,B2 be sets of equal Hausdorff and
box dimension (so that the dimension of products is the sum of
the dimensions).

Suppose dimH(A1) = dimH(A2) = 0.6 so
dimH(t1A1 × t2A2) = 1.2 > 1, and dimH(B1) = dimH(B2) = 0.2.
Let π(x1, x2, x3, x4) = (x1 + x2, x3 + x4).

We have dimH(E) = 1.6, but for any diagonal map D on Rn,
dimH(πE) ≤ 1 + 2× 0.2 = 1.4.

So the “expected” dimension of πD(E) depends on the
geometry of π and may be smaller than min(dimH(E), k).
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The modified Projection Theorem

Theorem (Erick L.V. and Gugu M. 2012)

Let π : Rn → Rk be a linear map. Let A1, . . . ,An ⊂ Rn be
compact sets such that

dimH(A1 × · · · × An) =
n∑

i=1

dimH(Ai).

Denote by {e1, . . . ,en} the canonical basis of Rn, and define

m = min
I⊂{1,...,n}

(∑
i∈I

dimH(Ai) + dim(π(< ei : i ∈ Ic >))

)
.

Then
dimH(π(t1A1 × · · · × tnAn)) = min(k ,m)

for a.e. t1, . . . , tn.
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Remarks

There is an open dense set of “transversal” maps π for
which m = dimH(⊗iAi).
The standard way to prove results of this kind is to use
transversality. However transversality does not hold for this
family of projections (exercise).
The main difficulty arises in the case where the map is not
transversal. This involves combinatorial/convexity ideas.
There is a more general version for block-diagonal maps.
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Projections of products

Theorem (J.E.López Velázquez, C.G. Moreira, P.S. 2011)

Let p1, . . . ,pn be integers with {log p1, . . . , log pn,1} rationally
independent.
Let Ai ⊂ [0,1] be invariant under x → pi x mod 1. Then for any
π : Rn → Rk ,

dim(π(A1 × · · · × An) = min(k ,m).

Remarks
This is a stronger version than previously available of the
fact that “expansions in different bases do not resonate
geometrically”. For example, if ddim(⊗iAi)e = k > 1, then
the “right” dimension to project is k.
A similar result holds for measures.
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Sumsets in higher dimensions

Theorem (J.E.López Velázquez, C.G. Moreira, P.S. 2011)

Let A,B be self-similar sets on Rk . Let F , G be the semigroups
generated by the maps in each of the corresponding IFS’s.
Suppose

{FG−1 : F ∈ F ,G ∈ G} is dense in R×On.

Then dimH(A + B) = min(dimH(A) + dimH(B), k).

Remarks
Again the same result holds for convolutions of self-similar
measures.
This requires the block-diagonal form of the modified
projection theorem.
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A nonlinear example

Theorem (J.E.López Velázquez, C.G. Moreira, P.S. 2011)
Let J1, J2 be hyperbolic Julia sets, at least one of them not
linear and not contained in a finite union of real-analytic curves.
Then

dimH(J1 + J2) = min(dimH(J1) + dimH(J2),2).

Remarks
Once again, the proof works for measures (for example
conformal measures).
The proof uses ideas of Bedford, Fisher and Urbański on
the scenery flow for Julia sets.
The same statement is automatically true for Julia sets
whose dimension equals hyperbolic dimension (but we
don’t know if this is still true for measures).
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Some questions

is the modified projection theorem valid for all sets rather
than just product sets? (for transversal projections, I have
a more general condition, but I don’t know if it is universal).
Can one obtain projection theorems for other classes of
projections? In particular, consider the case of a
“sufficiently rich” subgroup G ⊂ O(n), and consider the set
of projections {π ◦ g : g ∈ G} for a fixed π : Rn → Rk . Does
the projection theorem hold, at least for a natural class of
sets/measures invariant under the action of G?
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Danke, Dziȩkujȩ, Gracias, Grazie, Kiitos, Köszönöm, Merci,
Spasibo, Tack, Thanks, Xie xie.


	Introduction
	Projections of dynamically defined fractals
	A modified Projection Theorem
	Results and questions

