Dimensions of certain self-similar measures

Nikita Sidorov

The University of Manchester

April 20, 2011

Bernoulli convolutions

Let $\lambda \in(0,1 / 2)$ and let ν_{λ} be the Bernoulli convolution associated with λ.

Bernoulli convolutions

Let $\lambda \in(0,1 / 2)$ and let ν_{λ} be the Bernoulli convolution associated with λ.

We will concentrate on the case when $\lambda \in(1 / 2,1)$ and λ^{-1} is a Pisot number, i.e., an algebraic integer >1 whose other Galois conjugates are <1 in modulus.

Bernoulli convolutions

Let $\lambda \in(0,1 / 2)$ and let ν_{λ} be the Bernoulli convolution associated with λ.

We will concentrate on the case when $\lambda \in(1 / 2,1)$ and λ^{-1} is a Pisot number, i.e., an algebraic integer >1 whose other Galois conjugates are <1 in modulus.
Theorem (Erdős 1939, Garsia 1963, Przytycki-Urbański 1989, Lalley 1998, ...)

Bernoulli convolutions

Let $\lambda \in(0,1 / 2)$ and let ν_{λ} be the Bernoulli convolution associated with λ.

We will concentrate on the case when $\lambda \in(1 / 2,1)$ and λ^{-1} is a Pisot number, i.e., an algebraic integer >1 whose other Galois conjugates are <1 in modulus.
Theorem (Erdős 1939, Garsia 1963, Przytycki-Urbański 1989, Lalley 1998, ...)

- The measure ν_{λ} is singular and exact-dimensional;

Bernoulli convolutions

Let $\lambda \in(0,1 / 2)$ and let ν_{λ} be the Bernoulli convolution associated with λ.

We will concentrate on the case when $\lambda \in(1 / 2,1)$ and λ^{-1} is a Pisot number, i.e., an algebraic integer >1 whose other Galois conjugates are <1 in modulus.
Theorem (Erdős 1939, Garsia 1963, Przytycki-Urbański 1989, Lalley 1998, ...)

- The measure ν_{λ} is singular and exact-dimensional;
- $\operatorname{dim}\left(\nu_{\lambda}\right)=H_{\lambda}<1$;

Bernoulli convolutions

Let $\lambda \in(0,1 / 2)$ and let ν_{λ} be the Bernoulli convolution associated with λ.

We will concentrate on the case when $\lambda \in(1 / 2,1)$ and λ^{-1} is a Pisot number, i.e., an algebraic integer >1 whose other Galois conjugates are <1 in modulus.

Theorem (Erdős 1939, Garsia 1963, Przytycki-Urbański 1989, Lalley 1998, ...)

- The measure ν_{λ} is singular and exact-dimensional;
- $\operatorname{dim}\left(\nu_{\lambda}\right)=H_{\lambda}<1$;

That is,

$$
\lim _{h \rightarrow 0} \frac{\log \nu_{\lambda}(x-h, x+h)}{\log h} \equiv H_{\lambda} \quad \text { for } \nu_{\lambda} \text {-a.e. } x .
$$

Question. What is the numerical value of H_{λ} for a given Pisot λ^{-1} ?

Question. What is the numerical value of H_{λ} for a given Pisot λ^{-1} ?
Theorem (Alexander-Zagier, 1991)
For $\lambda=\frac{\sqrt{5}-1}{2}$ we have

$$
H_{\lambda}=0.995713 \ldots
$$

Question. What is the numerical value of H_{λ} for a given Pisot λ^{-1} ?
Theorem (Alexander-Zagier, 1991)
For $\lambda=\frac{\sqrt{5}-1}{2}$ we have

$$
H_{\lambda}=0.995713 \ldots
$$

Similar techniques apply to the multinacci λ, i.e., the roots of $x^{m}+x^{m-1}+\cdots+x=1$.

Question. What is the numerical value of H_{λ} for a given Pisot λ^{-1} ?
Theorem (Alexander-Zagier, 1991)
For $\lambda=\frac{\sqrt{5}-1}{2}$ we have

$$
H_{\lambda}=0.995713 \ldots
$$

Similar techniques apply to the multinacci λ, i.e., the roots of $x^{m}+x^{m-1}+\cdots+x=1$.

Theorem (Hare-S, 2010)

1. We have $H_{\lambda}>0.81$ for all Pisot $\lambda \in(1 / 2,1)$.
2. For $\lambda^{-1}<1.7$ we have $H_{\lambda}>0.87$.
3. For the small Pisot numbers $\beta=\lambda^{-1}$ we have the following individual lower bounds:

Garsia's entropy: a lower bound

Minimal polynomial of β	β	Depth	Lower Bnd for H_{λ}
$x^{3}-x-1$	1.3247	17	.88219
$x^{4}-x^{3}-1$	1.3803	16	.87618
$x^{5}-x^{4}-x^{3}+x^{2}-1$	1.4433	15	.89257
$x^{3}-x^{2}-1$	1.4656	15	.88755
$x^{6}-x^{5}-x^{4}+x^{2}-1$	1.5016	14	.90307
$x^{5}-x^{3}-x^{2}-x-1$	1.5342	15	.89315
$x^{7}-x^{6}-x^{5}+x^{2}-1$	1.5452	13	.90132
$x^{6}-2 x^{5}+x^{4}-x^{2}+x-1$	1.5618	15	.90719
$x^{5}-x^{4}-x^{2}-1$	1.5701	15	.88883
$x^{8}-x^{7}-x^{6}+x^{2}-1$	1.5737	14	.90326
$x^{7}-x^{5}-x^{4}-x^{3}-x^{2}-x-1$	1.5900	15	.89908
$x^{9}-x^{8}-x^{7}+x^{2}-1$	1.5912	14	.90023

Table: Lower bounds for Garsia's entropy for all Pisot numbers <1.6

Question. Are multinacci parameters local maxima for the function $\lambda \mapsto H_{\lambda}$?

Two-dimensional model

Another way of looking at Bernoulli convolutions is via IFS: consider two maps

$$
g_{0}(x)=\lambda x, g_{1}(x)=\lambda x+1
$$

taken with equal probabilities.

Two-dimensional model

Another way of looking at Bernoulli convolutions is via IFS: consider two maps

$$
g_{0}(x)=\lambda x, g_{1}(x)=\lambda x+1
$$

taken with equal probabilities. Then ν_{λ} is the invariant measure for this probabilistic IFS.

Two-dimensional model

Another way of looking at Bernoulli convolutions is via IFS: consider two maps

$$
g_{0}(x)=\lambda x, g_{1}(x)=\lambda x+1
$$

taken with equal probabilities. Then ν_{λ} is the invariant measure for this probabilistic IFS.

Now take any three non-collinear points $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3} \in \mathbb{R}^{2}$ and put

$$
f_{j}(\mathbf{x})=\lambda \mathbf{x}+(1-\lambda) \mathbf{a}_{j}, \quad j=1,2,3 .
$$

Two-dimensional model

Another way of looking at Bernoulli convolutions is via IFS:
consider two maps

$$
g_{0}(x)=\lambda x, g_{1}(x)=\lambda x+1
$$

taken with equal probabilities. Then ν_{λ} is the invariant measure for this probabilistic IFS.

Now take any three non-collinear points $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3} \in \mathbb{R}^{2}$ and put

$$
f_{j}(\mathbf{x})=\lambda \mathbf{x}+(1-\lambda) \mathbf{a}_{j}, \quad j=1,2,3 .
$$

Let S_{λ} denote the attractor for this IFS.

The most famous case is $\lambda=1 / 2$:

The Sierpiński Gasket

The fat Sierpiński Gasket for $\lambda=0.59$
(zero Lebesgue measure?)

The Golden Gasket, $\lambda=\frac{\sqrt{5}-1}{2} \approx 0.618$.

The fat Sierpiński Gasket for $\lambda=0.65$
(has a nonempty interior)

Suppose λ^{-1} is Pisot and μ_{λ} is the invariant measure for the IFS (the projection of $(1 / 3,1 / 3,1 / 3)$).

Suppose λ^{-1} is Pisot and μ_{λ} is the invariant measure for the IFS (the projection of $(1 / 3,1 / 3,1 / 3)$).

Question. Is it true that

$$
\operatorname{dim}\left(\mu_{\lambda}\right)<\operatorname{dim}_{H} S_{\lambda} ?
$$

Suppose λ^{-1} is Pisot and μ_{λ} is the invariant measure for the IFS (the projection of $(1 / 3,1 / 3,1 / 3)$).

Question. Is it true that

$$
\operatorname{dim}\left(\mu_{\lambda}\right)<\operatorname{dim}_{H} S_{\lambda} ?
$$

Note that if $\lambda=1 / 2$, then μ_{λ} is the normalized Hausdorff measure (for $s=\log 3 / \log 2$), whence these are equal.

