Dimensions of certain self-similar measures

Nikita Sidorov

The University of Manchester

April 20, 2011

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Let $\lambda \in (0, 1/2)$ and let ν_{λ} be the Bernoulli convolution associated with λ .

Let $\lambda \in (0, 1/2)$ and let ν_{λ} be the Bernoulli convolution associated with λ .

We will concentrate on the case when $\lambda \in (1/2, 1)$ and λ^{-1} is a Pisot number, i.e., an algebraic integer > 1 whose other Galois conjugates are < 1 in modulus.

Let $\lambda \in (0, 1/2)$ and let ν_{λ} be the Bernoulli convolution associated with λ .

We will concentrate on the case when $\lambda \in (1/2, 1)$ and λ^{-1} is a Pisot number, i.e., an algebraic integer > 1 whose other Galois conjugates are < 1 in modulus.

Theorem (Erdős 1939, Garsia 1963, Przytycki-Urbański 1989, Lalley 1998, ...)

Let $\lambda \in (0, 1/2)$ and let ν_{λ} be the Bernoulli convolution associated with λ .

We will concentrate on the case when $\lambda \in (1/2, 1)$ and λ^{-1} is a Pisot number, i.e., an algebraic integer > 1 whose other Galois conjugates are < 1 in modulus.

Theorem (Erdős 1939, Garsia 1963, Przytycki-Urbański 1989, Lalley 1998, ...)

• The measure ν_{λ} is singular and exact-dimensional;

Let $\lambda \in (0, 1/2)$ and let ν_{λ} be the Bernoulli convolution associated with λ .

We will concentrate on the case when $\lambda \in (1/2, 1)$ and λ^{-1} is a Pisot number, i.e., an algebraic integer > 1 whose other Galois conjugates are < 1 in modulus.

Theorem (Erdős 1939, Garsia 1963, Przytycki-Urbański 1989, Lalley 1998, ...)

- The measure ν_{λ} is singular and exact-dimensional;
- dim $(\nu_{\lambda}) = H_{\lambda} < 1;$

Let $\lambda \in (0, 1/2)$ and let ν_{λ} be the Bernoulli convolution associated with λ .

We will concentrate on the case when $\lambda \in (1/2, 1)$ and λ^{-1} is a Pisot number, i.e., an algebraic integer > 1 whose other Galois conjugates are < 1 in modulus.

Theorem (Erdős 1939, Garsia 1963, Przytycki-Urbański 1989, Lalley 1998, ...)

- The measure ν_{λ} is singular and exact-dimensional;
- dim $(\nu_{\lambda}) = H_{\lambda} < 1;$

That is,

$$\lim_{h\to 0} \frac{\log \nu_{\lambda}(x-h,x+h)}{\log h} \equiv H_{\lambda} \quad \text{for } \nu_{\lambda}\text{-a.e. } x.$$

Question. What is the numerical value of H_{λ} for a given Pisot λ^{-1} ?

Question. What is the numerical value of H_{λ} for a given Pisot λ^{-1} ? Theorem (Alexander-Zagier, 1991) For $\lambda = \frac{\sqrt{5}-1}{2}$ we have

 $H_{\lambda} = 0.995713...$

Question. What is the numerical value of H_{λ} for a given Pisot λ^{-1} ? Theorem (Alexander-Zagier, 1991) For $\lambda = \frac{\sqrt{5}-1}{2}$ we have

 $H_{\lambda} = 0.995713...$

Similar techniques apply to the multinacci λ , i.e., the roots of $x^m + x^{m-1} + \cdots + x = 1$.

Question. What is the numerical value of H_{λ} for a given Pisot λ^{-1} ? Theorem (Alexander-Zagier, 1991) For $\lambda = \frac{\sqrt{5}-1}{2}$ we have

 $H_{\lambda} = 0.995713...$

Similar techniques apply to the multinacci λ , i.e., the roots of $x^m + x^{m-1} + \cdots + x = 1$.

Theorem (Hare-S, 2010)

- 1. We have $H_{\lambda} > 0.81$ for all Pisot $\lambda \in (1/2, 1)$.
- 2. For $\lambda^{-1} < 1.7$ we have $H_{\lambda} > 0.87$.
- 3. For the small Pisot numbers $\beta = \lambda^{-1}$ we have the following individual lower bounds:

Garsia's entropy: a lower bound

Minimal polynomial of β	β	Depth	Lower Bnd for H_{λ}
$x^3 - x - 1$	1.3247	17	.88219
$x^4 - x^3 - 1$	1.3803	16	.87618
$x^5 - x^4 - x^3 + x^2 - 1$	1.4433	15	.89257
$x^3 - x^2 - 1$	1.4656	15	.88755
$x^{6} - x^{5} - x^{4} + x^{2} - 1$	1.5016	14	.90307
$x^5 - x^3 - x^2 - x - 1$	1.5342	15	.89315
$x^7 - x^6 - x^5 + x^2 - 1$	1.5452	13	.90132
$x^{6} - 2x^{5} + x^{4} - x^{2} + x - 1$	1.5618	15	.90719
$x^5 - x^4 - x^2 - 1$	1.5701	15	.88883
$x^8 - x^7 - x^6 + x^2 - 1$	1.5737	14	.90326
$x^7 - x^5 - x^4 - x^3 - x^2 - x - 1$	1.5900	15	.89908
$x^9 - x^8 - x^7 + x^2 - 1$	1.5912	14	.90023

Table: Lower bounds for Garsia's entropy for all Pisot numbers < 1.6

Question. Are multinacci parameters local maxima for the function $\lambda \mapsto H_{\lambda}$?

Another way of looking at Bernoulli convolutions is via IFS: consider two maps

$$g_0(x) = \lambda x, \ g_1(x) = \lambda x + 1$$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

taken with equal probabilities.

Another way of looking at Bernoulli convolutions is via IFS: consider two maps

$$g_0(x) = \lambda x, \ g_1(x) = \lambda x + 1$$

taken with equal probabilities. Then ν_λ is the invariant measure for this probabilistic IFS.

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Another way of looking at Bernoulli convolutions is via IFS: consider two maps

$$g_0(x) = \lambda x, \ g_1(x) = \lambda x + 1$$

taken with equal probabilities. Then ν_{λ} is the invariant measure for this probabilistic IFS.

Now take any three non-collinear points $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3 \in \mathbb{R}^2$ and put

$$f_j(\mathbf{x}) = \lambda \mathbf{x} + (1 - \lambda) \mathbf{a}_j, \quad j = 1, 2, 3.$$

Another way of looking at Bernoulli convolutions is via IFS: consider two maps

$$g_0(x) = \lambda x, \ g_1(x) = \lambda x + 1$$

taken with equal probabilities. Then ν_{λ} is the invariant measure for this probabilistic IFS.

Now take any three non-collinear points $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3 \in \mathbb{R}^2$ and put

$$f_j(\mathbf{x}) = \lambda \mathbf{x} + (1 - \lambda) \mathbf{a}_j, \quad j = 1, 2, 3.$$

Let S_{λ} denote the attractor for this IFS.

The most famous case is $\lambda = 1/2$:

The Sierpiński Gasket

The fat Sierpiński Gasket for $\lambda = 0.59$ (zero Lebesgue measure?)

<ロ> (日) (日) (日) (日) (日)

The fat Sierpiński Gasket for $\lambda = 0.65$ (has a nonempty interior)

<ロト <回ト < 回ト < 回ト < 三ト - 三

Suppose λ^{-1} is Pisot and μ_{λ} is the invariant measure for the IFS (the projection of (1/3, 1/3, 1/3)).

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Suppose λ^{-1} is Pisot and μ_{λ} is the invariant measure for the IFS (the projection of (1/3, 1/3, 1/3)).

Question. Is it true that

 $\dim(\mu_{\lambda}) < \dim_{H} S_{\lambda}?$

Suppose λ^{-1} is Pisot and μ_{λ} is the invariant measure for the IFS (the projection of (1/3, 1/3, 1/3)).

Question. Is it true that

 $\dim(\mu_{\lambda}) < \dim_{H} S_{\lambda}?$

Note that if $\lambda = 1/2$, then μ_{λ} is the normalized Hausdorff measure (for $s = \log 3/\log 2$), whence these are equal.