A dimension conservation principle

Anthony Manning ${ }^{1}$ Balázs Bárány ${ }^{2}$ Károly Simon ${ }^{2}$

${ }^{1}$ Mathematics Institute
University of Warwick
Coventry, CV4 7AL, UK
www.warwick.ac.uk/~marcq
${ }^{2}$ Department of Stochastics
Institute of Mathematics
Technical University of Budapest
www.math.bme.hu/~simonk

April 21, 2011

Outline

Introduction
Orthogonal projections ν^{θ} of the natural measure ν of the Sierpinski Carpet Intersection of the Sierpinski carpet with a straight line Rational slopes
the rational case with detail

The dimension of ν-typical slices

Outline

Introduction
Orthogonal projections ν^{θ} of the natural measure ν of the Sierpinski Carpet Intersection of the Sierpinski carpet with a straight line Rational slopes
the rational case with detail

The dimension of ν-typical slices

The Sierpinski carpet F is the attractor of the IFS

$$
\mathcal{G}:=\left\{g_{i}(x, y)=\frac{1}{3}(x, y)+\frac{1}{3} \mathbf{t}_{i}\right\}_{i=1}^{8},
$$

where we order the vectors
$(u, v) \in\{0,1,2\} \times\{0,1,2\} \backslash\{(1,1)\}$ in lexicographic order and write \mathbf{t}_{i} for the i-th vector, $i=1, \ldots, 8$.

Figure: We call ν the equally distributed "natural" measure on the carpet F

Figure: The θ projection to I_{θ} and the projected measure ν^{θ} supported by I_{θ}

Figure: The θ projection to I_{θ} and the projected measure ν^{θ} supported by I_{θ}

Figure: The θ projection to I_{θ} and the projected measure ν^{θ} supported by I_{θ}

Figure: The θ projection to I_{θ} and the projected measure ν^{θ} supported by I_{θ}

Figure: The θ projection to I_{θ} and the projected measure ν^{θ} supported by I_{θ}

Let $\Sigma_{8}:=\{1, \ldots, 8\}^{\mathbb{N}}$ Let $\Pi: \Sigma_{8} \rightarrow F$,

$$
\Pi(\mathbf{i}):=\lim _{n \rightarrow \infty} g_{i_{1} \ldots i_{n}}(0) \text { and }
$$

$$
\nu:=\Pi_{*} \mu_{8}
$$

the natural measure on F, where $\mu_{8}:=\left\{\frac{1}{8}, \ldots, \frac{1}{8}\right\}^{\mathbb{N}}$ is the Bernoulli measure on Σ_{8} given by.

$$
\nu^{\theta}:=\operatorname{proj}_{*}^{\theta}(\nu)
$$

Clearly, ν^{θ} is the invariant measure for the IFS

$$
\phi^{\theta}:=\left\{\varphi_{i}^{\theta}(t)=\frac{1}{3} \cdot t+\frac{1}{3} \cdot \operatorname{proj}^{\theta}\left(t_{i}\right)\right\}_{i=1}^{8}
$$

with equal weights. That is:

Let $\Sigma_{8}:=\{1, \ldots, 8\}^{\mathbb{N}}$ Let $\Pi: \Sigma_{8} \rightarrow F$,
$\Pi(\mathbf{i}):=\lim _{n \rightarrow \infty} g_{i_{1} \ldots i_{n}}(0)$ and

the natural measure on F, where $\mu_{8}:=\left\{\frac{1}{8}, \ldots, \frac{1}{8}\right\}^{\mathbb{N}}$ is the Bernoulli measure on Σ_{8} given by.

Clearly, ν^{θ} is the invariant measure for the IFS

Let $\Sigma_{8}:=\{1, \ldots, 8\}^{\mathbb{N}}$ Let $\Pi: \Sigma_{8} \rightarrow F$,
$\Pi(\mathbf{i}):=\lim _{n \rightarrow \infty} g_{i_{1} \ldots i_{n}}(0)$ and

$$
\nu:=\Pi_{*} \mu_{8}
$$

the natural measure on F, where

Clearly, ν^{θ} is the invariant measure for the IFS with equal weights. That is:

Let $\Sigma_{8}:=\{1, \ldots, 8\}^{\mathbb{N}}$ Let $\Pi: \Sigma_{8} \rightarrow F$,

$$
\Pi(\mathbf{i}):=\lim _{n \rightarrow \infty} g_{i_{1} \ldots i_{n}}(0) \text { and }
$$

$$
\nu:=\Pi_{*} \mu_{8}
$$

the natural measure on F, where $\mu_{8}:=\left\{\frac{1}{8}, \ldots, \frac{1}{8}\right\}^{\mathbb{N}}$ is the Bernoulli measure on Σ_{8} given by.

Clearly, ν^{θ} is the invariant measure for the IFS

Let $\Sigma_{8}:=\{1, \ldots, 8\}^{\mathbb{N}}$ Let $\Pi: \Sigma_{8} \rightarrow F$,

$$
\Pi(\mathbf{i}):=\lim _{n \rightarrow \infty} g_{i_{1} \ldots i_{n}}(0) \text { and }
$$

$$
\nu:=\Pi_{*} \mu_{8}
$$

the natural measure on F, where
$\mu_{8}:=\left\{\frac{1}{8}, \ldots, \frac{1}{8}\right\}^{\mathbb{N}}$ is the Bernoulli measure on Σ_{8} given by.

$$
\nu^{\theta}:=\operatorname{proj}_{*}^{\theta}(\nu) .
$$

Clearly, ν^{θ} is the invariant measure for the IFS

Let $\Sigma_{8}:=\{1, \ldots, 8\}^{\mathbb{N}}$ Let $\Pi: \Sigma_{8} \rightarrow F$,

$$
\Pi(\mathbf{i}):=\lim _{n \rightarrow \infty} g_{i_{1} \ldots i_{n}}(0) \text { and }
$$

$$
\nu:=\Pi_{*} \mu_{8}
$$

the natural measure on F, where $\mu_{8}:=\left\{\frac{1}{8}, \ldots, \frac{1}{8}\right\}^{\mathbb{N}}$ is the Bernoulli measure on Σ_{8} given by.

$$
\nu^{\theta}:=\operatorname{proj}_{*}^{\theta}(\nu) .
$$

Clearly, ν^{θ} is the invariant measure for the IFS

$$
\phi^{\theta}:=\left\{\varphi_{i}^{\theta}(t)=\frac{1}{3} \cdot t+\frac{1}{3} \cdot \operatorname{proj}^{\theta}\left(\mathbf{t}_{i}\right)\right\}_{i=1}^{8}
$$

with equal weights. That is:

Let $\Sigma_{8}:=\{1, \ldots, 8\}^{\mathbb{N}}$ Let $\Pi: \Sigma_{8} \rightarrow F$,

$$
\Pi(\mathbf{i}):=\lim _{n \rightarrow \infty} g_{i_{1} \ldots i_{n}}(0) \text { and }
$$

$$
\nu:=\Pi_{*} \mu_{8}
$$

the natural measure on F, where $\mu_{8}:=\left\{\frac{1}{8}, \ldots, \frac{1}{8}\right\}^{\mathbb{N}}$ is the Bernoulli measure on Σ_{8} given by.

$$
\nu^{\theta}:=\operatorname{proj}_{*}^{\theta}(\nu) .
$$

Clearly, ν^{θ} is the invariant measure for the IFS

$$
\phi^{\theta}:=\left\{\varphi_{i}^{\theta}(t)=\frac{1}{3} \cdot t+\frac{1}{3} \cdot \operatorname{proj}^{\theta}\left(\mathbf{t}_{i}\right)\right\}_{i=1}^{8}
$$

with equal weights. That is:

$$
\nu^{\theta}(B)=\sum_{k=1}^{8} \frac{1}{\nu^{\theta}}\left(\left(\varphi_{k}^{\theta}\right)^{-1}(B)\right) .
$$

It follows from a theorem due to DJ Feng (2003) that for ν^{θ}-almost all $a \in I_{\theta}=$ we have:

$$
\begin{equation*}
d\left(\nu^{\theta}, a\right):=\lim _{r \rightarrow 0} \frac{\log \nu^{\theta}[a-r, a+r]}{\log r}=\operatorname{dim}_{\mathrm{H}} \nu^{\theta} . \tag{1}
\end{equation*}
$$

$$
\nu^{\theta}(B)=\sum_{k=1}^{8} \frac{1}{8} \nu^{\theta}\left(\left(\varphi_{k}^{\theta}\right)^{-1}(B)\right)
$$

It follows from a theorem due to DJ Feng (2003) that for ν^{θ}-almost all $a \in I_{\theta}=$ we have:

$$
d\left(\nu^{\theta}, a\right):=\lim _{r \rightarrow 0} \frac{\log \nu^{\theta}[a-r, a+r]}{\log r}=\operatorname{dim}_{\mathrm{H}} \nu^{\theta} .
$$

Let $E_{\theta, a}:=\{(x, y) \in F: y-x \tan \theta=a\}$ be the intersection of the Sierpinski Carpet F with the line of slope θ through $(0, a)$.

Figure: The intersection of the Sierpinski carpet with the line $y=\frac{2}{5} x+a$ for some $a \in[0,1]$.

Let $E_{\theta, a}:=\{(x, y) \in F: y-x \tan \theta=a\}$ be the intersection of the Sierpinski Carpet F with the line of slope θ through $(0, a)$. We shall study the dimension of $E_{\theta, a}, a \in[0,1]$. We pay special attention to the case when $\tan \theta \in \mathbb{Q}$

Let $E_{\theta, a}:=\{(x, y) \in F: y-x \tan \theta=a\}$ be the intersection of the Sierpinski Carpet F with the line of slope θ through $(0, a)$. We shall study the dimension of $E_{\theta, a}, a \in[0,1]$. We pay special attention to the case when $\tan \theta \in \mathbb{Q}$

Figure: The intersection of the Sierpinski carpet with the line $y=\frac{2}{5} x+a$ for some $a \in[0,1]$.

Recall: F : Sierpinski carpet,

$E_{\theta, a}:=\{(x, y) \in F: y-x \tan \theta=a\}$
Theorem (Marstrand)
For all θ, for $\mathcal{L e b}_{1}$ almost all a we have

$$
\begin{equation*}
\operatorname{dim}_{H}\left(E_{\theta, a}\right) \leq \operatorname{dim}_{H} F-1 . \tag{2}
\end{equation*}
$$

Theorem (Marstrand)
$\mathcal{L e b}_{2}\left\{(\theta, a): \operatorname{dim}_{H}\left(E_{\theta, a}\right)=\operatorname{dim}_{H}(F)-1\right\}>0$.
Aciually, for $\mathcal{C e b}_{2}$ a.a. (0, a) if $E_{0, a} \neq \emptyset$ then $\operatorname{dim}_{H}\left(E_{\theta, \mathrm{a}}\right)=s-1$.

Recall: F : Sierpinski carpet,

$E_{\theta, a}:=\{(x, y) \in F: y-x \tan \theta=a\}$
Theorem (Marstrand)
For all θ, for $\mathcal{L e b}_{1}$ almost all a we have

$$
\begin{equation*}
\operatorname{dim}_{H}\left(E_{\theta, a}\right) \leq \operatorname{dim}_{H} F-1 \tag{2}
\end{equation*}
$$

Theorem (Marstrand)
$\mathcal{L} \operatorname{eb}_{2}\left\{(\theta, a): \operatorname{dim}_{H}\left(E_{\theta, a}\right)=\operatorname{dim}_{H}(F)-1\right\}>0$.
Actually, for $\mathcal{L e b}_{2}$ a.a. (θ, a) if $E_{\theta, a} \neq \emptyset$ then $\operatorname{dim}_{H}\left(E_{\theta, a}\right)=s-1$.

Recall: F : Sierpinski carpet,

$E_{\theta, a}:=\{(x, y) \in F: y-x \tan \theta=a\}$
Theorem (Marstrand)
For all θ, for $\mathcal{L e b}_{1}$ almost all a we have

$$
\begin{equation*}
\operatorname{dim}_{H}\left(E_{\theta, a}\right) \leq \operatorname{dim}_{H} F-1 \tag{2}
\end{equation*}
$$

Theorem (Marstrand)
$\mathcal{L} \operatorname{eb}_{2}\left\{(\theta, a): \operatorname{dim}_{H}\left(E_{\theta, a}\right)=\operatorname{dim}_{H}(F)-1\right\}>0$.
Actually, for $\mathcal{L e b}_{2}$ a.a. (θ, a) if $E_{\theta, a} \neq \emptyset$ then $\operatorname{dim}_{H}\left(E_{\theta, a}\right)=s-1$.

Recall: F : Sierpinski carpet,

$E_{\theta, a}:=\{(x, y) \in F: y-x \tan \theta=a\}$
Theorem (Marstrand)
For all θ, for $\mathcal{L e b}_{1}$ almost all a we have

$$
\begin{equation*}
\operatorname{dim}_{H}\left(E_{\theta, a}\right) \leq \operatorname{dim}_{H} F-1 . \tag{2}
\end{equation*}
$$

Theorem (Marstrand)
$\mathcal{L e b}_{2}\left\{(\theta, a): \operatorname{dim}_{\mathrm{H}}\left(E_{\theta, a}\right)=\operatorname{dim}_{\mathrm{H}}(F)-1\right\}>0$.
Actually, for $\mathcal{L e b}_{2}$ a.a. $\left(\theta\right.$, a) if $E_{\theta, a} \neq \emptyset$ then $\operatorname{dim}_{H}\left(E_{\theta, a}\right)=s-1$.

Theorem (Liu, Xi and Zhao (2007)) If $\tan (\theta) \in \mathbb{Q}$ then,

recall : F : Sierpinski carpet, $E_{\theta, a}:=\{(x, y) \in F: y-x \tan \theta=a\}$

Theorem (Liu, Xi and Zhao (2007)) If $\tan (\theta) \in \mathbb{Q}$ then,
(a) for Lebesgue almost a, $\operatorname{dim}_{\mathrm{H}}\left(E_{\theta, \mathrm{a}}\right)=\operatorname{dim}_{\mathrm{B}}\left(E_{\theta, \mathrm{a}}\right)$
(b) The dimension of $E_{\theta, \text { a }}$ is the same
constant for almost all $a \in[0,1]$.
recall : F : Sierpinski carpet, $E_{\theta, a}:=\{(x, y) \in F: y-x \tan \theta=a\}$

Theorem (Liu, Xi and Zhao (2007)) If $\tan (\theta) \in \mathbb{Q}$ then,
(a) for Lebesgue almost a, $\operatorname{dim}_{\mathrm{H}}\left(E_{\theta, \mathrm{a}}\right)=\operatorname{dim}_{\mathrm{B}}\left(E_{\theta, \mathrm{a}}\right)$
(b) The dimension of $E_{\theta, a}$ is the same constant for almost all $a \in[0,1]$.
recall : F : Sierpinski carpet, $E_{\theta, a}:=\{(x, y) \in F: y-x \tan \theta=a\}$

Motivation

Conjecture (Liu, Xi and Zhao (2007)) For all θ such that $\tan \theta \in \mathbb{Q}$, for almost all a we have $\operatorname{dim}_{H}\left(E_{\theta, a}\right)<\operatorname{dim}_{H} F-1$.

For $\tan \theta \in\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}\right\}$, this Conjecture was verified by Liu, Xi and Zhao.
recall : F : Sierpinski carpet, $E_{\theta, a}:=\{(x, y) \in F: y-x \tan \theta=a\}$

Motivation

Conjecture (Liu, Xi and Zhao (2007)) For all θ such that $\tan \theta \in \mathbb{Q}$, for almost all a we have $\operatorname{dim}_{H}\left(E_{\theta, a}\right)<\operatorname{dim}_{H} F-1$.

For $\tan \theta \in\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}\right\}$, this Conjecture was verified by Liu, Xi and Zhao.
recall : F : Sierpinski carpet, $E_{\theta, a}:=\{(x, y) \in F: y-x \tan \theta=a\}$

Motivation

Conjecture (Liu, Xi and Zhao (2007)) For all θ such that $\tan \theta \in \mathbb{Q}$, for almost all a we have $\operatorname{dim}_{H}\left(E_{\theta, a}\right)<\operatorname{dim}_{H} F-1$.

For $\tan \theta \in\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}\right\}$, this Conjecture was verified by Liu, Xi and Zhao.
recall : F : Sierpinski carpet, $E_{\theta, a}:=\{(x, y) \in F: y-x \tan \theta=a\}$

With Anthony Manning we proved that the conjecture above holds:

Theorem (Manning, S. (2009)) For all $\tan \theta \in \mathbb{Q}$, for almost all $a \in[0,1]$ we have $\operatorname{dim}_{H}\left(E_{\theta, a}\right)<\operatorname{dim}_{H} F-1$.

With Anthony Manning we proved that the conjecture above holds:

Theorem (Manning, S. (2009)) For all $\tan \theta \in \mathbb{Q}$, for almost all $a \in[0,1]$ we have $\operatorname{dim}_{H}\left(E_{\theta, a}\right)<\operatorname{dim}_{H} F-1$.

With Anthony Manning we proved that the conjecture above holds:

Theorem (Manning, S. (2009))
For all $\tan \theta \in \mathbb{Q}$, for almost all $a \in[0,1]$ we have $\operatorname{dim}_{H}\left(E_{\theta, a}\right)<\operatorname{dim}_{H} F-1$.
recall : F : Sierpinski carpet, $E_{\theta, a}:=\{(x, y) \in F: y-x \tan \theta=a\}$

Theorem (Dimension conservation, Manning, S.)
$\forall \theta \in[0, \pi / 2)$ and $a \in l^{\beta}$ if either of the two limits

$$
\begin{gathered}
\operatorname{dim}_{\mathrm{B}}\left(E_{\theta, a}\right)=\lim _{n \rightarrow \infty} \frac{\log N_{\theta, \mathrm{a}}(n)}{\log 3^{n}}, \\
d\left(\nu^{\theta}, a\right)=\lim _{\delta \rightarrow 0} \frac{\log \left(\nu^{\theta}[a-\delta, a+\delta]\right)}{\log \delta}
\end{gathered}
$$

exists then the other limit also exists, and, in

$$
\operatorname{dim}_{\mathrm{B}}\left(E_{\theta, a}\right)+d\left(\nu^{\theta}, a\right)=s
$$

recall : F : Sierpinski carpet, $E_{\theta, a}:=\{(x, y) \in F: y-x \tan \theta=a\}$

Theorem (Dimension conservation, Manning, S.)
$\forall \theta \in[0, \pi / 2)$ and $a \in l^{\beta}$ if either of the two limits

$$
\begin{gathered}
\operatorname{dim}_{\mathrm{B}}\left(E_{\theta, a}\right)=\lim _{n \rightarrow \infty} \frac{\log N_{\theta, \mathrm{a}}(n)}{\log 3^{n}}, \\
d\left(\nu^{\theta}, a\right)=\lim _{\delta \rightarrow 0} \frac{\log \left(\nu^{\theta}[a-\delta, a+\delta]\right)}{\log \delta}
\end{gathered}
$$

exists then the other limit also exists, and, in

$$
\operatorname{dim}_{\mathrm{B}}\left(E_{\theta, a}\right)+d\left(\nu^{\theta}, a\right)=s
$$

recall : F : Sierpinski carpet, $E_{\theta, a}:=\{(x, y) \in F: y-x \tan \theta=a\}$

Theorem (Dimension conservation, Manning, S.)
$\forall \theta \in[0, \pi / 2)$ and $a \in l^{\beta}$ if either of the two limits

$$
\begin{gathered}
\operatorname{dim}_{\mathrm{B}}\left(E_{\theta, a}\right)=\lim _{n \rightarrow \infty} \frac{\log N_{\theta, \mathrm{a}}(n)}{\log 3^{n}}, \\
d\left(\nu^{\theta}, \boldsymbol{a}\right)=\lim _{\delta \rightarrow 0} \frac{\log \left(\nu^{\theta}[\boldsymbol{a}-\delta, \boldsymbol{a}+\delta]\right)}{\log \delta}
\end{gathered}
$$

exists then the other limit also exists,

recall : F : Sierpinski carpet, $E_{\theta, a}:=\{(x, y) \in F: y-x \tan \theta=a\}$

Theorem (Dimension conservation,
Manning, S.)
$\forall \theta \in[0, \pi / 2)$ and $a \in I^{\theta}$ if either of the two limits

$$
\begin{gathered}
\operatorname{dim}_{\mathrm{B}}\left(E_{\theta, a}\right)=\lim _{n \rightarrow \infty} \frac{\log N_{\theta, a}(n)}{\log 3^{n}}, \\
d\left(\nu^{\theta}, a\right)=\lim _{\delta \rightarrow 0} \frac{\log \left(\nu^{\theta}[a-\delta, a+\delta]\right)}{\log \delta}
\end{gathered}
$$

exists then the other limit also exists, and, in this case,

$$
\begin{equation*}
\operatorname{dim}_{\mathrm{B}}\left(E_{\theta, a}\right)+d\left(\nu^{\theta}, a\right)=s . \tag{3}
\end{equation*}
$$

recall : F : Sierpinski carpet, $E_{\theta, a}:=\{(x, y) \in F: y-x \tan \theta=a\}$

Theorem
$\forall \theta \in[0, \pi / 2)$ and for ν^{θ}-almost all $a \in I^{\theta}$ we
have

The assertion includes that the box dimension

exists.

recall : F : Sierpinski carpet, $E_{\theta, a}:=\{(x, y) \in F: y-x \tan \theta=a\}$

Theorem
$\forall \theta \in[0, \pi / 2)$ and for ν^{θ}-almost all $a \in I^{\theta}$ we
have

The assertion includes that the box dimension

exists.

recall : F : Sierpinski carpet, $E_{\theta, a}:=\{(x, y) \in F: y-x \tan \theta=a\}$

Theorem
$\forall \theta \in[0, \pi / 2)$ and for ν^{θ}-almost all $a \in I^{\theta}$ we have

$$
\operatorname{dim}_{\mathrm{B}}\left(E_{\theta, \mathrm{a}}\right)=s-\operatorname{dim}_{\mathrm{H}}\left(\nu^{\theta}\right) \geq s-1
$$

The assertion includes that the box dimension exists.
recall : F : Sierpinski carpet, $E_{\theta, a}:=\{(x, y) \in F: y-x \tan \theta=a\}$

$\tan \theta \in \mathbb{Q}$

Theorem If $\tan \theta \in \mathbb{Q}$ then, for Lebesgue almost all $a \in I^{\theta}$, we have
$d^{\theta}(\mathcal{L e b}):=\operatorname{dim}_{\mathrm{B}}\left(E_{\theta, \mathrm{a}}\right)=\operatorname{dim}_{\mathrm{H}}\left(E_{\theta, \mathrm{a}}\right)<\frac{\log 8}{\log 3}-1$. If $\tan \theta \in \mathbb{Q}$ then, for Lebesgue almost all $a \in I^{\theta}$, we have

$\tan \theta \in \mathbb{Q}$

Theorem If $\tan \theta \in \mathbb{Q}$ then, for Lebesgue almost all $a \in I^{\theta}$, we have
$d^{\theta}(\mathcal{L}$ eb $):=\operatorname{dim}_{\mathrm{B}}\left(E_{\theta, a}\right)=\operatorname{dim}_{\mathrm{H}}\left(E_{\theta, a}\right)<\frac{\log 8}{\log 3}-1$.
Corollary If $\tan \theta \in \mathbb{Q}$ then, for Lebesgue almost all $a \in I^{\theta}$, we have

$$
d\left(\nu^{\theta}, a\right)=\frac{\log 8}{\log 3}-d^{\theta}(\mathcal{L e b})>1 .
$$

Proposition

If $\tan \theta \in \mathbb{Q}$ then there is a constant $d^{\theta}\left(\nu^{\theta}\right)$ such that for ν^{θ}-almost all $a \in I^{\theta}$ we have

$$
\begin{equation*}
\operatorname{dim}_{\mathrm{H}}\left(E_{\theta, \mathrm{a}}\right)=\operatorname{dim}_{\mathrm{B}}\left(E_{\theta, \mathrm{a}}\right)=\overline{\operatorname{dim}}_{\mathrm{B}}\left(E_{\theta, \mathrm{a}}\right) \geq s-1 . \tag{4}
\end{equation*}
$$

The left hand side is ν^{θ}-almost everywhere constant.

Outline

Introduction

Orthogonal projections ν^{θ} of the natural measure v of the Sierpinski Carpet Intersection of the Sierpinski carpet with a straight line
Rational slopes
the rational case with detail
The dimension of ν-typical slices

Thm [MS]: $\tan \theta \in \mathbb{Q} \Longrightarrow \operatorname{dim}_{\mathrm{H}}\left(E_{\theta, \mathrm{a}}\right)<\operatorname{dim}_{\mathrm{H}} F-1$ for a.a. a.
We define three matrices A_{0}, A_{1}, A_{2} then we consider the Lyapunov exponent of the random matrix product

$$
\gamma:=\lim _{n \rightarrow \infty} \frac{1}{n} \log \left\|A_{i_{1}} \cdots A_{i_{n}}\right\|_{1}
$$

where $A_{i_{k}} \in\left\{A_{0}, A_{1}, A_{2}\right\}$ chosen independently in every step with probabilities $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$. Then we prove that

$$
\gamma<\frac{\log 8}{\log 3}
$$

$M / N=2 / 5$

There are $\mathrm{K}:=2 \mathrm{~N}+\mathrm{M}-1$ level zero shapes Q_{1}, \ldots, Q_{K}. For each "horizontal" (I mean non-vertical) stripes S_{0}, S_{1}, S_{2} we define the $K \times K$ matrix A_{0}, A_{1}, A_{2} respectively as follows:

$A_{\ell}(i, j)=1$ iff the level zero shape i contains a level one shape j in stripe S_{ℓ}.

$A_{\ell}(i, j)=1$ iff the level zero shape i contains a level one shape j in stripe S_{ℓ}.

$A_{\ell}(i, j)=1$ iff the level zero shape i contains a level one shape j in stripe S_{ℓ}.

$A_{\ell}(i, j)=1$ iff the level zero shape i contains a level one shape j in stripe S_{ℓ}.

$$
\begin{aligned}
& A_{0}=\left(\begin{array}{ccccccccccc}
1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\
\cdots & & & & & & & & & & \\
A_{1} & =\left(\begin{array}{cccccccccc}
1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0
\end{array} 0\right. \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
\cdots & & & & & & & &
\end{array}\right) .
\end{aligned}
$$

Why do we need this?

For an $a=\sum_{k=1}^{\infty} a_{k} \cdot 3^{-k}$, with $a_{k} \in\{0,1,2\}$:
Observation: $A_{a_{1} \ldots a_{n}}(i, j)$ is the number of level n non-deleted squares that intersect $E_{\theta, a}$ within Q_{i} in a level n shape j.
the size of the level n squares are $\sqrt{2} \cdot 3^{-n}$ this yields that

Why do we need this?

For an $a=\sum_{k=1}^{\infty} a_{k} \cdot 3^{-k}$, with $a_{k} \in\{0,1,2\}$:
Observation: $A_{a_{1} \ldots a_{n}}(i, j)$ is the number of level n non-deleted squares that intersect $E_{\theta, a}$ within Q_{i} in a level n shape j. So, the number of level n-squares needed to cover $E_{\theta, a}$ is equal to $\left\|A_{a_{1}} \cdots A_{a_{n}}\right\|_{1}$, that is the sum of the elements of the non-negative $K \times K$ matrix $A_{a_{1}} \cdots A_{a_{n}}$. Since the size of the level n squares are $\sqrt{2} \cdot 3^{-n}$ this yields that

To estimate the dimension of $E_{\theta, a}$ we need to understand the exponential growth rate of the norm of $A_{a_{1} \ldots a_{n}}:=A_{a_{1}} \cdots A_{a_{n}}$ which is the Lyapunov exponent of the random matrix product where each term in the matrix product is chosen from $\left\{A_{0}, A_{1}, A_{3}\right\}$ with probability $1 / 3$ independently:

$$
\begin{equation*}
\gamma:=\lim _{n \rightarrow \infty} \frac{1}{n} \log \left\|A_{a_{1} \ldots a_{n}}\right\|_{1}, \text { for a.a. }\left(a_{1}, a_{2}, \ldots\right) \tag{6}
\end{equation*}
$$

The limit exists (sub additive E.T.) and

$$
\begin{equation*}
\gamma=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{a_{1} \ldots a_{n}} \frac{1}{3^{n}} \log \left\|A_{i_{1} \ldots i_{n}}\right\|_{1} . \tag{7}
\end{equation*}
$$

Essentially what we need to prove it is that

$$
\begin{equation*}
\gamma<\log \frac{8}{3} \tag{8}
\end{equation*}
$$

holds. Namely, by $(5) \overline{\operatorname{dim}}_{\mathrm{B}}\left(E_{\theta, a}\right) \leq \frac{\gamma}{\log 3}$ and
hence $\gamma<\log \frac{8}{3}$ is equivalent to

Essentially what we need to prove it is that

$$
\begin{equation*}
\gamma<\log \frac{8}{3} \tag{8}
\end{equation*}
$$

holds. Namely, by (5) $\overline{\operatorname{dim}}_{\mathrm{B}}\left(E_{\theta, a}\right) \leq \frac{\gamma}{\log 3}$ and hence $\gamma<\log \frac{8}{3}$ is equivalent to

Essentially what we need to prove it is that

$$
\begin{equation*}
\gamma<\log \frac{8}{3} \tag{8}
\end{equation*}
$$

holds. Namely, by (5) $\overline{\operatorname{dim}}_{\mathrm{B}}\left(E_{\theta, a}\right) \leq \frac{\gamma}{\log 3}$ and hence $\gamma<\log \frac{8}{3}$ is equivalent to
$\overline{\operatorname{dim}}_{\mathrm{B}}\left(E_{\theta, a}\right) \leq \frac{\gamma}{\log 3}$

$$
<\frac{\log 8 / 3}{\log 3}=\frac{\log 8}{\log 3}-1=\operatorname{dim}_{\mathrm{H}}(F)-1
$$

Clearly, $\gamma \leq \log \frac{8}{3}$ holds. Namely, for

Clearly, $\gamma \leq \log \frac{8}{3}$ holds. Namely, for

$$
A_{s}:=A_{0}+A_{1}+A_{2}:
$$

Clearly, $\gamma \leq \log \frac{8}{3}$ holds. Namely, for

$$
A_{s}:=A_{0}+A_{1}+A_{2}:
$$

$$
\gamma=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i_{1} \ldots i_{n}} \frac{1}{3^{n}} \log \left\|A_{i_{1}, \ldots, i_{n}}\right\|_{1}
$$

Clearly, $\gamma \leq \log \frac{8}{3}$ holds. Namely, for

$$
A_{s}:=A_{0}+A_{1}+A_{2}:
$$

$$
\gamma=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i_{1} \ldots i_{n}} \frac{1}{3^{n}} \log \left\|A_{i_{1} \ldots i_{n}}\right\|_{1}
$$

$$
\leq \lim _{n \rightarrow \infty} \frac{1}{n} \log \frac{\sum_{i_{1} \ldots i_{n}}\left\|A_{i_{1} \ldots i_{n}}\right\|_{1}}{3^{n}}
$$

$$
=\lim _{n \rightarrow \infty} \frac{1}{n} \log \frac{\left\|A_{s}{ }^{n}\right\|_{1}}{3^{n}}
$$

$$
=\lim _{n \rightarrow \infty} \frac{1}{n} \log \frac{8^{n}}{3^{n}}=\log \frac{8}{3} .
$$

Clearly, $\gamma \leq \log \frac{8}{3}$ holds. Namely, for

$$
A_{s}:=A_{0}+A_{1}+A_{2}:
$$

$$
\begin{aligned}
\gamma & =\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i_{1} \ldots i_{n}} \frac{1}{3^{n}} \log \| A_{i_{1} \ldots i_{n} \|_{1}} \\
& \leq \lim _{n \rightarrow \infty} \frac{1}{n} \log \frac{\sum_{i_{1} \ldots i_{n}}\left\|A_{i_{1} \ldots i_{n}}\right\|_{1}}{3^{n}} \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} \log \frac{\left\|A_{s}\right\|_{1}}{3^{n}}
\end{aligned}
$$

$$
=\lim _{n \rightarrow \infty} \frac{1}{n} \log \frac{8^{n}}{3^{n}}=\log \frac{8}{3} .
$$

Clearly, $\gamma \leq \log \frac{8}{3}$ holds. Namely, for

$$
A_{s}:=A_{0}+A_{1}+A_{2}:
$$

$$
\begin{aligned}
\gamma & =\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i_{1} \ldots i_{n}} \frac{1}{3^{n}} \log \left\|A_{i_{1} \ldots i_{n}}\right\|_{1} \\
& \leq \lim _{n \rightarrow \infty} \frac{1}{n} \log \frac{\sum_{i_{1} \ldots i_{n}}\left\|A_{i_{1} \ldots i_{n}}\right\|_{1}}{3^{n}} \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} \log \frac{\left\|A_{s}\right\|_{1}}{3^{n}} \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} \log \frac{8^{n}}{3^{n}}=\log \frac{8}{3} .
\end{aligned}
$$

We needed to take higher iterates of the system (to get a system for which can verify that it is contracting on average in the projective distance) to prove the strict inequality.

- $\mathcal{C A}$: the set of $K \times K$ non-negative, column allowable (all columns contain non-zero elements) matrices.
- $\mathcal{C} \mathcal{A}_{p}$: the set of those element of $\mathcal{C \mathcal { A }}$ for which every row vector is either all positive or all zero.
- We prove (and this is an important part of our argument) that $\exists n_{0}$ and $\left(a_{1}^{\prime}, \ldots, a_{n_{0}}^{\prime}\right) \in\{0,1,2\}^{n_{0}}$ s.t. $B_{1}:=A_{a_{1}} \cdots A_{a_{n_{0}}} \in \mathcal{C} \mathcal{A}_{p}$.
Clearly, $A_{i_{1}} \cdots A_{i_{0_{0}}} \in \mathcal{C A}$ holds for all $\left(i_{1}, \ldots i_{n_{0}}\right)$.
- $\mathcal{C A}$: the set of $K \times K$ non-negative, column allowable (all columns contain non-zero elements) matrices.
- $\mathcal{C} \mathcal{A}_{p}$: the set of those element of $\mathcal{C A}$ for which every row vector is either all positive or all zero.
- We prove (and this is an important part of our argument) that $\exists n_{0}$ and

Clearly, $A_{i_{1}}$

- $\mathcal{C A}$: the set of $K \times K$ non-negative, column allowable (all columns contain non-zero elements) matrices.
- $\mathcal{C} \mathcal{A}_{p}$: the set of those element of $\mathcal{C A}$ for which every row vector is either all positive or all zero.
- We prove (and this is an important part of our argument) that $\exists n_{0}$ and $\left(a_{1}^{\prime}, \ldots, a_{n_{0}}^{\prime}\right) \in\{0,1,2\}^{n_{0}}$ s.t.

$$
B_{1}:=A_{a_{1}} \cdots A_{a_{n_{0}}} \in \mathcal{C} \mathcal{A}_{p} .
$$

Clearly, $A_{i} \cdots A_{i_{n_{0}}} \in \mathcal{C A}$ holds for all $\left(i_{1}, \ldots i_{n_{0}}\right)$.

Let $T:=3^{n_{0}}$, we have already defined the matrix B_{1} now we define B_{2}, \ldots, B_{T} :

$$
\left\{B_{1}, \ldots, B_{T}\right\}:=\left\{A_{a_{1} \ldots a_{n_{0}}}\right\}_{a_{1} \ldots a_{n_{0}} \in\{0,1,2\}^{n_{0}}} .
$$

For the vectors with all elements positive $\mathbf{x}=\left(x_{1}, \ldots, x_{K}\right)>\mathbf{0}$ and $\mathbf{y}=\left(y_{1}, \ldots, y_{K}\right)>\mathbf{0}$ we define the pseudo-metric

$$
d(\mathbf{x}, \mathbf{y}):=\log \left[\frac{\max _{i}\left(x_{i} / y_{i}\right)}{\min _{j}\left(x_{j} / y_{j}\right)}\right]
$$

$$
d(\mathbf{x}, \mathbf{y}):=\log \left[\frac{\mathrm{max}_{i}\left(x_{i}, y_{i}\right)}{\mathrm{mi}_{j} x_{j}\left(x_{j} / y_{j}\right.}\right]
$$

d defines a metric on the simplex:
$\Delta:=\left\{\mathbf{x}=\left(x_{1}, \ldots, x_{K}\right) \in \mathbb{R}^{K}: x_{i}>0\right.$ and $\left.\sum_{i=1}^{K} x_{i}=1\right\}$
We call it projective distance. For all $A \in \mathcal{C} \mathcal{A}$ we define

$$
d(\mathbf{x}, \mathbf{y}):=\log \left[\frac{\max _{i}\left(x_{i} y_{i}\right)}{\min _{j}\left(x_{i}\right) y_{j}}\right]
$$

d defines a metric on the simplex:

$$
\Delta:=\left\{\mathbf{x}=\left(x_{1}, \ldots, x_{K}\right) \in \mathbb{R}^{K}: x_{i}>0 \text { and } \sum_{i=1}^{K} x_{i}=1\right\}
$$

We call it projective distance. For all $A \in C \mathcal{A}$ we
d defines a metric on the simplex:
$\Delta:=\left\{\mathbf{x}=\left(x_{1}, \ldots, x_{K}\right) \in \mathbb{R}^{K}: x_{i}>0\right.$ and $\left.\sum_{i=1}^{K} x_{i}=1\right\}$
We call it projective distance. For all $A \in \mathcal{C} \mathcal{A}$ we define

$$
\widetilde{A}: \Delta \rightarrow \Delta \quad \tilde{A}(\mathbf{x}):=\frac{\mathbf{x}^{T} \cdot A}{\left\|\mathbf{x}^{T} \cdot A\right\|_{1}}
$$

For $A \in \mathcal{C A}$: the Birkhoff contraction coefficient $\tau_{B}(A)$ is defined as the Lipschitz constant for \widetilde{A} :

For $A \in \mathcal{C A}$: the Birkhoff contraction coefficient $\tau_{B}(A)$ is defined as the Lipschitz constant for \widetilde{A} :

$$
\tau_{B}(A):=\sup _{\mathbf{x}, \mathbf{y} \in \Delta, \mathbf{x} \neq \mathbf{y}} \frac{d\left(\mathbf{x}^{\top} \cdot A, \mathbf{y}^{T} \cdot A\right)}{d(\mathbf{x}, \mathbf{y})}
$$

$$
\widetilde{A}: \Delta \rightarrow \Delta \quad \widetilde{A}(\mathbf{x}):=\frac{\mathbf{x}^{T} \cdot A}{\| \|^{T} \cdot A} \|_{1}
$$

For $A \in \mathcal{C A}$: the Birkhoff contraction coefficient $\tau_{B}(A)$ is defined as the Lipschitz constant for \widetilde{A} :

$$
\tau_{B}(A):=\sup _{\mathbf{x}, \mathbf{y} \in \Delta, \mathbf{x} \neq \mathbf{y}} \frac{d\left(\mathbf{x}^{\top} \cdot A, \mathbf{y}^{T} \cdot A\right)}{d(\mathbf{x}, \mathbf{y})}
$$

Lemma (Well known)

$$
\begin{aligned}
& \text { (a) For } \forall i=1, \ldots, 3^{n_{0}}: \tau\left(B_{i}\right) \leq 1 \text {. } \\
& \text { (b) The map } B_{1} \text { is a strict contraction in } \\
& \text { the projective distance: }
\end{aligned}
$$

$$
\widetilde{A}: \Delta \rightarrow \Delta \quad \widetilde{A}(\mathbf{x}):=\frac{\mathbf{x}^{\top} \cdot A}{\left\|\boldsymbol{x}^{\top} \cdot A\right\|_{1}}
$$

For $A \in \mathcal{C A}$: the Birkhoff contraction coefficient $\tau_{B}(A)$ is defined as the Lipschitz constant for \widetilde{A} :

$$
\tau_{B}(A):=\sup _{\mathbf{x}, \mathbf{y} \in \Delta, \mathbf{x} \neq \mathbf{y}} \frac{d\left(\mathbf{x}^{\top} \cdot A, \mathbf{y}^{T} \cdot A\right)}{d(\mathbf{x}, \mathbf{y})}
$$

Lemma (Well known)
(a) For $\forall i=1, \ldots, 3^{n_{0}}: \tau\left(B_{i}\right) \leq 1$.
(b) The map B_{1} is a strict contraction in
the projective distance:

$\widetilde{A}: \Delta \rightarrow \Delta \quad \widetilde{A}(\mathbf{x}):=\frac{\mathbf{x}^{T} \cdot A}{\left\|\mathbf{x}^{\top} \cdot A\right\|_{1}}$

For $A \in \mathcal{C A}$: the Birkhoff contraction coefficient $\tau_{B}(A)$ is defined as the Lipschitz constant for \widetilde{A} :

$$
\tau_{B}(A):=\sup _{\mathbf{x}, \mathbf{y} \in \Delta, \mathbf{x} \neq \mathbf{y}} \frac{d\left(\mathbf{x}^{T} \cdot A, \mathbf{y}^{T} \cdot A\right)}{d(\mathbf{x}, \mathbf{y})}
$$

Lemma (Well known)
(a) For $\forall i=1, \ldots, 3^{n_{0}}: \tau\left(B_{i}\right) \leq 1$.
(b) The map B_{1} is a strict contraction in the projective distance:

$$
h:=\tau\left(B_{1}\right)<1 .
$$

Corollary of the Lemma:

So, the following IFS acting on the non-compact metric space (Δ, d) is contracting on average:

$$
\left\{\widetilde{B}_{1}, \ldots, \widetilde{B}_{T}\right\}
$$

Corollary of the Lemma:

So, the following IFS acting on the non-compact metric space (Δ, d) is contracting on average:

$$
\left\{\widetilde{B_{1}}, \ldots, \widetilde{B}_{T}\right\}
$$

in the strong sense that the average of the Lipschitz constants is less than one.
recall : Δ : is the simplex:

$$
\Delta:=\left\{\mathbf{x}=\left(x_{1}, \ldots, x_{K}\right) \in \mathbb{R}^{K}: x_{i}>0 \text { and } \sum_{i=1}^{K} x_{i}=1\right\}
$$

$d(\mathbf{x}, \mathbf{y}):=\log \left[\frac{m_{x}\left(x_{i} / y_{i}\right)}{\min _{i}\left(x_{i} y_{i}\right)}\right]$ the projective distance on Δ.
$\tilde{B}: \Delta \rightarrow \Delta \quad \tilde{B}(\mathbf{x}):=\frac{\mathbf{x}^{\top} \cdot B}{\left\|\mathbf{x}^{\top} \cdot B\right\|_{1}}$

Definition

Suggested by a paper of Kravchenko (2006), on the complete metric space (Δ, d) we write $M(\Delta)$ for the set of all probability measures on Δ for which $\mu(\phi)<\infty$ holds for all real valued Lipschitz functions ϕ defined on (Δ, d). After of $\mu, \nu \in M(\Delta)$ by

Kravchenko (2006):

Definition

Suggested by a paper of Kravchenko (2006), on the complete metric space (Δ, d) we write $M(\Delta)$ for the set of all probability measures on Δ for which $\mu(\phi)<\infty$ holds for all real valued Lipschitz functions ϕ defined on (Δ, d). After of $\mu, \nu \in M(\Delta)$ by

Kravchenko (2006):

Definition

Suggested by a paper of Kravchenko (2006), on the complete metric space (Δ, d) we write $M(\Delta)$ for the set of all probability measures on Δ for which $\mu(\phi)<\infty$ holds for all real valued Lipschitz functions ϕ defined on (Δ, d). After Kantorovich, Rubinstein we define the distance of $\mu, \nu \in M(\Delta)$ by

$$
L(\mu, \nu):=\sup \{\mu(\phi)-\nu(\phi) \mid \phi: \Delta \rightarrow \mathbb{R}, \operatorname{Lip}(\phi) \leq 1\}
$$

Definition

Suggested by a paper of Kravchenko (2006), on the complete metric space (Δ, d) we write $M(\Delta)$ for the set of all probability measures on Δ for which $\mu(\phi)<\infty$ holds for all real valued Lipschitz functions ϕ defined on (Δ, d). After Kantorovich, Rubinstein we define the distance of $\mu, \nu \in M(\Delta)$ by

$$
L(\mu, \nu):=\sup \{\mu(\phi)-\nu(\phi) \mid \phi: \Delta \rightarrow \mathbb{R}, \operatorname{Lip}(\phi) \leq 1\} .
$$

Kravchenko (2006):

Definition

Suggested by a paper of Kravchenko (2006), on the complete metric space (Δ, d) we write $M(\Delta)$ for the set of all probability measures on Δ for which $\mu(\phi)<\infty$ holds for all real valued Lipschitz functions ϕ defined on (Δ, d). After Kantorovich, Rubinstein we define the distance of $\mu, \nu \in M(\Delta)$ by
$L(\mu, \nu):=\sup \{\mu(\phi)-\nu(\phi) \mid \phi: \Delta \rightarrow \mathbb{R}, \operatorname{Lip}(\phi) \leq 1\}$.

Kravchenko (2006):
Proposition
The metric space $(M(\Delta), L)$ is complete.

We introduce the operator $\mathcal{F}: M(\Delta) \rightarrow M(\Delta)$

$$
\mathcal{F} \nu(H):=\frac{1}{T} \cdot \sum_{i=1}^{T} \nu\left(\widetilde{B}_{i}^{-1}(H)\right) .
$$

for a Borel set $H \subset \Delta$. Using $\nu \in M(\Delta)$, for

 every Lipschitz function ϕ we haveWe introduce the operator $\mathcal{F}: M(\Delta) \rightarrow M(\Delta)$

$$
\mathcal{F} \nu(H):=\frac{1}{T} \cdot \sum_{i=1}^{T} \nu\left(\widetilde{B}_{i}^{-1}(H)\right) .
$$

for a Borel set $H \subset \Delta$. Using $\nu \in M(\Delta)$, for every Lipschitz function ϕ we have
$\mathcal{F} \nu(\phi)=\frac{1}{T} \cdot \sum_{i=1}^{T} \nu\left(\phi \circ \widetilde{B}_{i}\right)$.

Lemma

(a) \mathcal{F} is a contraction on the metric space $(M(\Delta), L)$.
 (b) There is a unique fixed point $\nu \in M(\Delta)$ of \mathcal{F} and for all $\mu \in M(\Delta)$ we have $L\left(\nu, \mathcal{F}^{n} \mu\right) \rightarrow 0$.

recall : $L(\mu, \nu):=\sup \{\mu(\phi)-\nu(\phi) \mid \phi: \Delta \rightarrow \mathbb{R}, \operatorname{Lip}(\phi) \leq 1\}$,
$\mathcal{F} \nu(H):=\frac{1}{T} \cdot \sum_{i=1}^{T} \nu\left(\widetilde{B}_{i}^{-1}(H)\right)$.

Lemma

(a) \mathcal{F} is a contraction on the metric space $(M(\Delta), L)$.
(b) There is a unique fixed point $\nu \in M(\Delta)$ of \mathcal{F} and for all $\mu \in M(\Delta)$ we have $L\left(\nu, \mathcal{F}^{n} \mu\right) \rightarrow 0$.
recall : $L(\mu, \nu):=\sup \{\mu(\phi)-\nu(\phi) \mid \phi: \Delta \rightarrow \mathbb{R}, \operatorname{Lip}(\phi) \leq 1\}$,

$$
\mathcal{F} \nu(H):=\frac{1}{T} \cdot \sum_{i=1}^{T} \nu\left(\widetilde{B}_{i}^{-1}(H)\right) .
$$

Lemma

(a) \mathcal{F} is a contraction on the metric space $(M(\Delta), L)$.
(b) There is a unique fixed point $\nu \in M(\Delta)$ of \mathcal{F} and for all $\mu \in M(\Delta)$ we have $L\left(\nu, \mathcal{F}^{n} \mu\right) \rightarrow 0$.

$$
\text { recall : } L(\mu, \nu):=\sup \{\mu(\phi)-\nu(\phi) \mid \phi: \Delta \rightarrow \mathbb{R}, \operatorname{Lip}(\phi) \leq 1\},
$$

$$
\mathcal{F} \nu(H):=\frac{1}{T} \cdot \sum_{i=1}^{T} \nu\left(\widetilde{B}_{i}^{-1}(H)\right) .
$$

From now on we always write $\nu \in M(\Delta)$ for the unique fixed point of the operator \mathcal{F} on $M(\Delta)$. That is

$$
\begin{equation*}
\nu(\phi)=\frac{1}{T^{n}} \cdot \sum_{i_{1} \ldots i_{n}} \nu\left(\phi \circ \widetilde{B}_{i_{1} \ldots i_{n}}\right) . \tag{9}
\end{equation*}
$$

holds for all Lipschitz functions ϕ and $n \geq 1$.
point of our argument that we would like to give an integral representation of the Lyapunov exponent γ_{B} as an integral of a function φ to be introduced below against the measure ν.

From now on we always write $\nu \in M(\Delta)$ for the unique fixed point of the operator \mathcal{F} on $M(\Delta)$. That is

$$
\begin{equation*}
\nu(\phi)=\frac{1}{T^{n}} \cdot \sum_{i_{1} \ldots i_{n}} \nu\left(\phi \circ \widetilde{B}_{i_{1} \ldots i_{n}}\right) . \tag{9}
\end{equation*}
$$

holds for all Lipschitz functions ϕ and $n \geq 1$. Following an idea of Furstenberg, it is a key point of our argument that we would like to give an integral representation of the Lyapunov exponent γ_{B} as an integral of a function φ to be introduced below against the measure ν.

Lemma
Let γ_{B} be the Lyapunov exponent of the random matrix product formed from the matrices
B_{1}, \ldots, B_{T} taking each of the matrices with equal weight independently in every step. Then

$$
n_{0} \gamma=\gamma_{B}=\int_{\Delta} \varphi(\mathbf{x}) d \nu(\mathbf{x})
$$

where $\varphi: \Delta \rightarrow \mathbb{R}$ is defined by

$$
\begin{equation*}
\varphi(\mathbf{x}):=\frac{1}{T} \cdot \sum_{k=1}^{T} \log \left\|\mathbf{x}^{T} \cdot B_{k}\right\|_{1}, \quad \mathbf{x} \in \Delta . \tag{10}
\end{equation*}
$$

recall: ν is the unique invariant measure for the IFS $\left\{\widetilde{B}_{1}, \ldots, \widetilde{B}_{T}\right\}$

A good piece of news:
Lemma
We have $\operatorname{Lip}(\varphi) \leq 1$ on the metric space (Δ, d).

A good piece of news:

A good piece of news:

Lemma
We have $\operatorname{Lip}(\varphi) \leq 1$ on the metric space (Δ, d).
recall : $\varphi: \Delta \rightarrow \mathbb{R}, \varphi(\mathbf{x}):=\frac{1}{T} \cdot \sum_{k=1}^{T} \log \left\|\mathbf{x} \cdot B_{k}\right\|_{1}, \quad \mathbf{x} \in \Delta$.

$$
n_{0} \gamma=\gamma_{B}=\int_{\Delta} \varphi(\mathbf{x}) d \nu(\mathbf{x})
$$

We need to prove that:

$$
\begin{equation*}
\gamma_{B}<n_{0} \cdot \log \frac{8}{3} \tag{11}
\end{equation*}
$$

where $\gamma_{B}=n_{0} \cdot \gamma$ is the Lyapunov exponent for the random matrix product formed from the matrices B_{1}, \ldots, B_{T} each chosen independently with equal probabilities.

Let $\mathbf{w} \in \mathbb{R}^{K}$ be the center of the simplex Δ :

$$
\mathbf{w}:=\frac{1}{K} \cdot \mathbf{e} \text { where } \mathbf{e}:=(1, \ldots, 1) \in \mathbb{R}^{K} .
$$

We define the sequence of measures $\nu_{n} \in \mathcal{M}^{1}$

 by $\nu_{0}:=\delta_{w}$ and for $H \subset \Delta$:Let $\mathbf{w} \in \mathbb{R}^{K}$ be the center of the simplex Δ :

$$
\mathbf{w}:=\frac{1}{K} \cdot \mathbf{e} \text { where } \mathbf{e}:=(1, \ldots, 1) \in \mathbb{R}^{K} .
$$

We define the sequence of measures $\nu_{n} \in \mathcal{M}^{1}$ by $\nu_{0}:=\delta_{\mathrm{w}}$ and for $H \subset \Delta$:

$$
\nu_{n}(H):=\left(\mathcal{F}^{n} \nu_{0}\right)(H)=\frac{1}{T^{n}} \cdot \sum_{i_{1} \ldots i_{n}} \nu_{0}\left(\widetilde{B}_{i_{1} \ldots i_{n}}^{-1}(H)\right)
$$

recall : $\mathcal{F} \nu(H):=\frac{1}{T} \cdot \sum_{i=1}^{T} \nu\left(\widetilde{B}_{i}^{-1}(H)\right)$.
$\tilde{B}: \Delta \rightarrow \Delta \quad \tilde{B}(\mathbf{x}):=\frac{\mathbf{x}^{\top} \cdot B}{\| \|^{\top} \cdot B \|_{1}}$

We prove that $\exists \varepsilon^{\prime}$ s.t. for every n big enough:

$$
\begin{aligned}
\int_{\Delta} \varphi(\mathbf{x}) d \nu_{n}(\mathbf{x}) & =\frac{1}{T^{m}} \cdot \sum_{\mid \mathrm{i}=m} \frac{1}{T} \sum_{j=1}^{T} \log \frac{\left\|B_{j} \cdot B_{\mathrm{i}}\right\|_{1}}{\left\|B_{\mathrm{i}}\right\|_{1}} \\
& \leq n_{0} \cdot \log \frac{8}{3}-\varepsilon^{\prime}
\end{aligned}
$$

We prove that $\exists \varepsilon^{\prime}$ s.t. for every n big enough:

$$
\begin{aligned}
\int_{\Delta} \varphi(\mathbf{x}) d \nu_{n}(\mathbf{x}) & =\frac{1}{T^{m}} \cdot \sum_{|\mathrm{i}|=m} \frac{1}{T} \sum_{j=1}^{T} \log \frac{\left\|B_{j} \cdot B_{\mathrm{i}}\right\|_{1}}{\left\|B_{\mathrm{i}}\right\|_{1}} \\
& \leq n_{0} \cdot \log \frac{8}{3}-\varepsilon^{\prime}
\end{aligned}
$$

Then

$$
\lim _{n \rightarrow \infty} \int_{\Delta} \varphi(\mathbf{x}) d \nu_{n}(\mathbf{x})=\int_{\Delta} \varphi(\mathbf{x}) d \nu(\mathbf{x})=\gamma_{B}
$$

which completes the proof.

$s-1=0.5849$	Leb-a.e.	$v-a . e$.
$\frac{p}{q}=1$	0.5716	0.5961
$\frac{p}{q}=\frac{1}{2}$	0.5805	0.5893
$\frac{p}{q}=\frac{2}{3}$	0.5846	0.5853

Figure: $s=\frac{\log ^{\log } 2}{\log 2}$ the dimensions of Lebesgue typical and natural measure typical slices

Outline

Introduction

Orthogonal projections ν^{θ} of the natural measure y of the Sierpinski Carpet
Intersection of the Sierpinski carpet with a straight line
Rational slopes
the rational case with detail

The dimension of ν-typical slices

The dimension of ν-typical slices

All new results from now are joint with Balázs Bárány (TU Budapest)

We have started to study the dimension of NOT only the Lebesgue but also the natural measure $\left(\nu_{\theta}\right)$-typical slices for a fixed angle θ of the Sierpinski Gasket. Our research started with the following observation

The dimension of ν-typical slices

All new results from now are joint with Balázs Bárány (TU Budapest)

We have started to study the dimension of NOT only the Lebesgue but also the natural measure $\left(\nu_{\theta}\right)$-typical slices for a fixed angle θ of the Sierpinski Gasket. Our research started with the following observation

Lemma

The dimension preservation Lemma holds for all self-similar IFS on the plane satisfying

Lemma

The dimension preservation Lemma holds for all self-similar IFS on the plane satisfying

- the IFS is homogeneous (all contraction ratios are the same),
- the attractor is connected,
- te group of the rotations in the linear parts is finite.

So, in particular these all holds for the Sierpinski Gasket.

Lemma

The dimension preservation Lemma holds for all self-similar IFS on the plane satisfying

- the IFS is homogeneous (all contraction ratios are the same),
- the attractor is connected,
te group of the rotations in the linear parts is finite.

So, in particular these all holds for the Sierpinski Gasket.

Lemma

The dimension preservation Lemma holds for all self-similar IFS on the plane satisfying

- the IFS is homogeneous (all contraction ratios are the same),
- the attractor is connected,
- te group of the rotations in the linear parts is finite.

So, in particular these all holds for the
Sierpinski Gasket.

Lemma

The dimension preservation Lemma holds for all self-similar IFS on the plane satisfying

- the IFS is homogeneous (all contraction ratios are the same),
- the attractor is connected,
- te group of the rotations in the linear parts is finite.

So, in particular these all holds for the
Sierpinski Gasket.

Lemma

The dimension preservation Lemma holds for all self-similar IFS on the plane satisfying

- the IFS is homogeneous (all contraction ratios are the same),
- the attractor is connected,
- te group of the rotations in the linear parts is finite.

So, in particular these all holds for the Sierpinski Gasket.

Using a change of coordinates it is enough to consider the slices of the carpet which is the attractor of the self-similar IFS $\left\{g_{i}(x)\right\}_{i=1}^{3}$

$$
g_{i}(x)=\frac{1}{2} x+t_{i}, t_{1}=(0,0), t_{2}=\left(0, \frac{1}{2}\right), t_{3}=\left(\frac{1}{2}, 0\right)
$$

Since we focus on natural measure typical
\square this purpose, the matrices introduced by Liu, Xi and Zhao (2007) seems to be more suitable. We introduce them through a concrete example when $\tan \theta=\frac{3}{2}$,

Using a change of coordinates it is enough to consider the slices of the carpet which is the attractor of the self-similar IFS $\left\{g_{i}(x)\right\}_{i=1}^{3}$

$$
g_{i}(x)=\frac{1}{2} x+t_{i}, t_{1}=(0,0), t_{2}=\left(0, \frac{1}{2}\right), t_{3}=\left(\frac{1}{2}, 0\right)
$$

Since we focus on natural measure typical slices, we use different approach. Namely, for this purpose, the matrices introduced by Liu, Xi and Zhao (2007) seems to be more suitable.

Using a change of coordinates it is enough to consider the slices of the carpet which is the attractor of the self-similar IFS $\left\{g_{i}(x)\right\}_{i=1}^{3}$
$g_{i}(x)=\frac{1}{2} x+t_{i}, t_{1}=(0,0), t_{2}=\left(0, \frac{1}{2}\right), t_{3}=\left(\frac{1}{2}, 0\right)$
Since we focus on natural measure typical slices, we use different approach. Namely, for this purpose, the matrices introduced by Liu, Xi and Zhao (2007) seems to be more suitable. We introduce them through a concrete example when $\tan \theta=\frac{3}{2}$.

Figure: $\tan \theta=\frac{2}{3}$

Figure: $\tan \theta=\frac{2}{3}$

$$
A_{0}=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right] \text { and } A_{1}=\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

$$
A_{0}=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right] \text { and } A_{1}=\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

$$
A_{1} A_{0} A_{1}^{3} A_{0}=\left[\begin{array}{lllll}
2 & 2 & 1 & 1 & 1 \\
3 & 4 & 2 & 4 & 3 \\
2 & 3 & 1 & 4 & 2 \\
3 & 3 & 1 & 4 & 2 \\
1 & 1 & 1 & 1 & 1
\end{array}\right]
$$

