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The Sierpinski carpet F is the attractor of the
IFS

G :=

{
gi(x , y) =

1
3

(x , y) +
1
3

ti

}8

i=1
,

where we order the vectors
(u, v) ∈ {0,1,2} × {0,1,2} \ {(1,1)} in
lexicographic order and write ti for the i-th
vector, i = 1, . . . ,8.
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Figure: We call ν the equally distributed "natural"
measure on the carpet F
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Figure: The θ projection to Iθ and the projected measure
νθ supported by Iθ
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Let Σ8 := {1, . . . ,8}N Let Π : Σ8 → F ,

Π(i) := lim
n→∞

gi1...in(0) and

ν := Π∗µ8

the natural measure on F , where
µ8 :=

{1
8 , . . . ,

1
8

}N
is the Bernoulli measure on

Σ8 given by.
νθ := projθ∗(ν).

Clearly, νθ is the invariant measure for the IFS

Φθ :=

{
ϕθi (t) =

1
3
· t +

1
3
· projθ(ti)

}8

i=1

with equal weights. That is:
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νθ(B) =
8∑

k=1

1
8
νθ
((
ϕθk
)−1

(B)
)
.

It follows from a theorem due to DJ Feng (2003)
that for νθ-almost all a ∈ Iθ = we have:

d(νθ,a) := lim
r→0

log νθ[a− r ,a + r ]

log r
= dimH ν

θ.

(1)
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Let Eθ,a := {(x , y) ∈ F : y − x tan θ = a} be the
intersection of the Sierpinski Carpet F with the
line of slope θ through (0,a). We shall study the
dimension of Eθ,a, a ∈ [0,1]. We pay special
attention to the case when tan θ ∈ Q
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Figure: The intersection of the Sierpinski carpet with the
line y = 2

5x + a for some a ∈ [0,1].
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Recall: F : Sierpinski carpet,
Eθ,a := {(x , y) ∈ F : y − x tan θ = a}

Theorem (Marstrand)
For all θ , for Leb1 almost all a we have

dimH(Eθ,a) ≤ dimH F − 1. (2)

Theorem (Marstrand)
Leb2 {(θ, a) : dimH(Eθ,a) = dimH(F )− 1} > 0.

Actually, for Leb2 a.a. (θ, a) if Eθ,a 6= ∅ then
dimH(Eθ,a) = s − 1.
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Theorem (Liu, Xi and Zhao (2007))
If tan(θ) ∈ Q then,

(a) for Lebesgue almost a,
dimH(Eθ,a) = dimB(Eθ,a)

(b) The dimension of Eθ,a is the same
constant for almost all a ∈ [0,1].

recall : F : Sierpinski carpet, Eθ,a := {(x , y) ∈ F : y − x tan θ = a}
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Motivation

Conjecture (Liu, Xi and Zhao (2007))
For all θ such that tan θ ∈ Q , for almost all a we
have dimH(Eθ,a) < dimH F − 1.

For tan θ ∈
{

1, 1
2 ,

1
3 ,

1
4

}
, this Conjecture was

verified by Liu, Xi and Zhao.

recall : F : Sierpinski carpet, Eθ,a := {(x , y) ∈ F : y − x tan θ = a}
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With Anthony Manning we proved that the
conjecture above holds:

Theorem (Manning, S. (2009) )
For all tan θ ∈ Q, for almost all a ∈ [0,1] we have
dimH(Eθ,a) < dimH F − 1.

recall : F : Sierpinski carpet, Eθ,a := {(x , y) ∈ F : y − x tan θ = a}
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Theorem (Dimension conservation,
Manning, S.)
∀ θ ∈ [0, π/2) and a ∈ Iθ if either of the two limits

dimB(Eθ,a) = lim
n→∞

log Nθ,a(n)

log 3n ,

d(νθ,a) = lim
δ→0

log(νθ[a− δ,a + δ])

log δ
exists then the other limit also exists, and, in

this case,

dimB(Eθ,a) + d(νθ,a) = s. (3)

recall : F : Sierpinski carpet, Eθ,a := {(x , y) ∈ F : y − x tan θ = a}



Theorem (Dimension conservation,
Manning, S.)
∀ θ ∈ [0, π/2) and a ∈ Iθ if either of the two limits

dimB(Eθ,a) = lim
n→∞

log Nθ,a(n)

log 3n ,

d(νθ,a) = lim
δ→0

log(νθ[a− δ,a + δ])

log δ
exists then the other limit also exists, and, in

this case,

dimB(Eθ,a) + d(νθ,a) = s. (3)

recall : F : Sierpinski carpet, Eθ,a := {(x , y) ∈ F : y − x tan θ = a}



Theorem (Dimension conservation,
Manning, S.)
∀ θ ∈ [0, π/2) and a ∈ Iθ if either of the two limits

dimB(Eθ,a) = lim
n→∞

log Nθ,a(n)

log 3n ,

d(νθ,a) = lim
δ→0

log(νθ[a− δ,a + δ])

log δ
exists then the other limit also exists, and, in

this case,

dimB(Eθ,a) + d(νθ,a) = s. (3)

recall : F : Sierpinski carpet, Eθ,a := {(x , y) ∈ F : y − x tan θ = a}



Theorem (Dimension conservation,
Manning, S.)
∀ θ ∈ [0, π/2) and a ∈ Iθ if either of the two limits

dimB(Eθ,a) = lim
n→∞

log Nθ,a(n)

log 3n ,

d(νθ,a) = lim
δ→0

log(νθ[a− δ,a + δ])

log δ
exists then the other limit also exists, and, in

this case,

dimB(Eθ,a) + d(νθ,a) = s. (3)

recall : F : Sierpinski carpet, Eθ,a := {(x , y) ∈ F : y − x tan θ = a}



Theorem
∀ θ ∈ [0, π/2) and for νθ-almost all a ∈ Iθ we
have

dimB(Eθ,a) = s − dimH(νθ) ≥ s − 1.

The assertion includes that the box dimension
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tan θ ∈ Q
Theorem
If tan θ ∈ Q then, for Lebesgue almost all a ∈ Iθ,
we have

dθ(Leb) := dimB(Eθ,a) = dimH(Eθ,a) <
log 8
log 3

− 1.

Corollary
If tan θ ∈ Q then, for Lebesgue almost all a ∈ Iθ,
we have

d(νθ,a) =
log 8
log 3

− dθ(Leb) > 1.

Similar resalt for Belrnoulli convolutions was
obtained by Nikita Sidorov and De Jung Feng.
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Proposition
If tan θ ∈ Q then there is a constant dθ(νθ) such
that for νθ-almost all a ∈ Iθ we have

dimH(Eθ,a) = dimB(Eθ,a) = dimB(Eθ,a) ≥ s − 1.
(4)

The left hand side is νθ-almost everywhere
constant.
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Thm [MS]: tan θ ∈ Q =⇒ dimH(Eθ,a)<dimH F − 1 for a.a. a.

We define three matrices A0,A1,A2 then we
consider the Lyapunov exponent of the random
matrix product

γ := lim
n→∞

1
n

log ‖Ai1 · · ·Ain‖1,

where Aik ∈ {A0,A1,A2} chosen independently
in every step with probabilities (1

3 ,
1
3 ,

1
3). Then we

prove that

γ< log8
log 3 .
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There are K:=2N+M-1 level zero shapes
Q1, . . . ,QK . For each "horizontal" (I mean
non-vertical) stripes S0,S1,S2 we define the
K × K matrix A0,A1,A2 respectively as follows:



A`(i , j) = 1 iff the level zero shape i contains a
level one shape j in stripe S`.
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A`(i , j) = 1 iff the level zero shape i contains a
level one shape j in stripe S`.
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All elements of the matrices A0, A1, A2 are either zero or one.
Example (a): The non zero elements of the first line of A0
are in the following rows: 1, 2, 3, 5, 6, 7.
Example (b): A0(4, 2) = 1, ∀j 6= 2 : A0(4, j) = 0.
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The intersection of S0 and Shape 1



A`(i , j) = 1 iff the level zero shape i
contains a level one shape j in stripe
S`.

A0 =


1 1 1 0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 1 0 1
. . .
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Why do we need this?
For an a =

∞∑
k=1

ak · 3−k , with ak ∈ {0,1,2}:
Observation: Aa1...an(i , j) is the number of level
n non-deleted squares that intersect Eθ,a within
Qi in a level n shape j . So, the number of level
n-squares needed to cover Eθ,a is equal to
‖Aa1 · · ·Aan‖1, that is the sum of the elements of
the non-negative K × K matrix Aa1 · · ·Aan. Since
the size of the level n squares are

√
2 · 3−n this

yields that

dimB(Eθ,a) ≤

γ︷ ︸︸ ︷
lim

n→∞
1
n

log ‖Aa1 · · ·Aan‖1

log 3
, (5)
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To estimate the dimension of Eθ,a we need to
understand the exponential growth rate of the
norm of Aa1...an := Aa1 · · ·Aan which is the
Lyapunov exponent of the random matrix
product where each term in the matrix product
is chosen from {A0,A1,A3} with probability 1/3
independently:

γ := lim
n→∞

1
n

log ‖Aa1...an‖1, for a.a. (a1,a2, . . . ).

(6)
The limit exists (sub additive E.T.) and

γ = lim
n→∞

1
n

∑
a1...an

1
3n log ‖Ai1...in‖1. (7)



Essentially what we need to prove it is that

γ < log
8
3

(8)

holds. Namely, by (5) dimB(Eθ,a) ≤ γ
log 3 and

hence γ < log 8
3 is equivalent to

dimB(Eθ,a) ≤ γ

log 3

<
log 8/3
log 3

=
log 8
log 3

− 1 = dimH(F )− 1.
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Clearly, γ≤ log 8
3 holds. Namely, for
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We needed to take higher iterates of the system
(to get a system for which can verify that it is
contracting on average in the projective
distance) to prove the strict inequality.



I CA: the set of K × K non-negative, column
allowable (all columns contain non-zero
elements) matrices.

I CAp: the set of those element of CA for
which every row vector is either all positive
or all zero.

I We prove (and this is an important part of
our argument) that ∃n0 and
(a′1, . . . ,a

′
n0

) ∈ {0,1,2}n0 s.t.

B1 := Aa′1 · · ·Aa′n0
∈ CAp.

Clearly, Ai1 · · ·Ain0
∈ CA holds for all

(i1, . . . in0).
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Let T := 3n0, we have already defined the matrix
B1 now we define B2, . . . ,BT :

{B1, . . . ,BT} :=
{

Aa1...an0

}
a1...an0∈{0,1,2}

n0
.

For the vectors with all elements positive
x = (x1, . . . , xK ) > 0 and y = (y1, . . . , yK ) > 0 we
define the pseudo-metric

d(x,y) := log
[

maxi(xi/yi)

minj(xj/yj)

]
.



d(x,y) := log
[

maxi(xi/yi)
minj(xj/yj)

]
d defines a metric on the simplex:

∆ :=

{
x = (x1, . . . , xK ) ∈ RK : xi > 0 and

K∑
i=1

xi = 1

}
.

We call it projective distance. For all A ∈ CA we
define

Ã : ∆→ ∆ Ã(x) :=
xT · A
‖xT · A‖1

.
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Ã : ∆→ ∆ Ã(x) := xT ·A
‖xT ·A‖1

For A ∈ CA: the Birkhoff contraction coefficient
τB(A) is defined as the Lipschitz constant for Ã:

τB(A) := sup
x,y∈∆, x6=y

d(xT · A,yT · A)

d(x,y)
.

Lemma (Well known)

(a) For ∀ i = 1, . . . ,3n0: τ(Bi) ≤ 1.
(b) The map B1 is a strict contraction in

the projective distance:

h := τ(B1) < 1.
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Corollary of the Lemma:
So, the following IFS acting on the non-compact
metric space (∆,d) is contracting on average:{

B̃1, . . . , B̃T

}
in the strong sense that the average of the
Lipschitz constants is less than one.
recall : ∆ : is the simplex:

∆ :=

{
x = (x1, . . . , xK ) ∈ RK : xi > 0 and

K∑
i=1

xi = 1
}

d(x,y) := log
[

maxi (xi/yi )
minj (xj/yj )

]
the projective distance on ∆.

B̃ : ∆→ ∆ B̃(x) := xT ·B
‖xT ·B‖1
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Definition
Suggested by a paper of Kravchenko (2006), on
the complete metric space (∆,d) we write M(∆)
for the set of all probability measures on ∆ for
which µ(φ) <∞ holds for all real valued
Lipschitz functions φ defined on (∆,d). After
Kantorovich, Rubinstein we define the distance
of µ, ν ∈ M(∆) by

L(µ, ν) := sup {µ(φ)− ν(φ)|φ : ∆→ R, Lip(φ) ≤ 1} .

Kravchenko (2006):
Proposition
The metric space (M(∆),L) is complete.
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We introduce the operator F : M(∆)→ M(∆)

Fν(H) :=
1
T
·

T∑
i=1

ν
(

B̃−1
i (H)

)
.

for a Borel set H ⊂ ∆. Using ν ∈ M(∆), for
every Lipschitz function φ we have

Fν(φ) = 1
T ·

T∑
i=1

ν(φ ◦ B̃i).
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Lemma
(a) F is a contraction on the metric space

(M(∆),L).
(b) There is a unique fixed point

ν ∈ M(∆) of F and for all µ ∈ M(∆)
we have L(ν,Fnµ)→ 0.

recall : L(µ, ν) := sup {µ(φ)− ν(φ)|φ : ∆→ R, Lip(φ) ≤ 1} ,

Fν(H) := 1
T ·

T∑
i=1

ν
(

B̃−1
i (H)

)
.



Lemma
(a) F is a contraction on the metric space

(M(∆),L).
(b) There is a unique fixed point

ν ∈ M(∆) of F and for all µ ∈ M(∆)
we have L(ν,Fnµ)→ 0.

recall : L(µ, ν) := sup {µ(φ)− ν(φ)|φ : ∆→ R, Lip(φ) ≤ 1} ,

Fν(H) := 1
T ·

T∑
i=1

ν
(

B̃−1
i (H)

)
.



Lemma
(a) F is a contraction on the metric space

(M(∆),L).
(b) There is a unique fixed point

ν ∈ M(∆) of F and for all µ ∈ M(∆)
we have L(ν,Fnµ)→ 0.

recall : L(µ, ν) := sup {µ(φ)− ν(φ)|φ : ∆→ R, Lip(φ) ≤ 1} ,

Fν(H) := 1
T ·

T∑
i=1

ν
(

B̃−1
i (H)

)
.



From now on we always write ν ∈ M(∆) for the
unique fixed point of the operator F on M(∆).
That is

ν(φ) =
1

T n ·
∑
i1...in

ν(φ ◦ B̃i1...in). (9)

holds for all Lipschitz functions φ and n ≥ 1.
Following an idea of Furstenberg, it is a key
point of our argument that we would like to give
an integral representation of the Lyapunov
exponent γB as an integral of a function ϕ to be
introduced below against the measure ν.
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Lemma
Let γB be the Lyapunov exponent of the random
matrix product formed from the matrices
B1, . . . ,BT taking each of the matrices with
equal weight independently in every step. Then

n0γ = γB =

∫
∆

ϕ(x)dν(x)

where ϕ : ∆→ R is defined by

ϕ(x) :=
1
T
·

T∑
k=1

log ‖xT · Bk‖1, x ∈ ∆. (10)

recall: ν is the unique invariant measure for the IFS
{

B̃1, . . . , B̃T

}



A good piece of news:

Lemma
We have Lip(ϕ) ≤ 1 on the metric space (∆,d).

recall : ϕ : ∆→ R, ϕ(x) := 1
T ·

T∑
k=1

log ‖x · Bk‖1, x ∈ ∆.

n0γ = γB =
∫

∆
ϕ(x)dν(x)
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We need to prove that:

γB < n0 · log
8
3

(11)

where γB = n0 · γ is the Lyapunov exponent for
the random matrix product formed from the
matrices B1, . . . ,BT each chosen independently
with equal probabilities.



Let w ∈ RK be the center of the simplex ∆:

w :=
1
K
· e where e := (1, . . . ,1) ∈ RK .

We define the sequence of measures νn ∈M1

by ν0 := δw and for H ⊂ ∆:

νn(H) := (Fnν0)(H) =
1

T n ·
∑
i1...in

ν0(B̃−1
i1...in(H)),

recall : Fν(H) := 1
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ν
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)
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· e where e := (1, . . . ,1) ∈ RK .

We define the sequence of measures νn ∈M1

by ν0 := δw and for H ⊂ ∆:

νn(H) := (Fnν0)(H) =
1

T n ·
∑
i1...in

ν0(B̃−1
i1...in(H)),

recall : Fν(H) := 1
T ·

T∑
i=1

ν
(

B̃−1
i (H)

)
.

B̃ : ∆→ ∆ B̃(x) := xT ·B
‖xT ·B‖1



We prove that ∃ε′ s.t. for every n big enough:∫
∆

ϕ(x)dνn(x) =
1

T m ·
∑
|i|=m

1
T

T∑
j=1

log
‖Bj · Bi‖1

‖Bi‖1

≤ n0 · log
8
3
− ε′

Then

lim
n→∞

∫
∆

ϕ(x)dνn(x) =

∫
∆

ϕ(x)dν(x) = γB

which completes the proof.
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s - 1 = 0.5849 Leb - a.e. Ν - a.e.
p

q
= 1 0.5716 0.5961

p

q
=

1
2

0.5805 0.5893

p

q
=

2
3

0.5846 0.5853

Figure: s = log 3
log 2 the dimensions of Lebesgue typical and

natural measure typical slices
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The dimension of ν-typical slices

All new results from now are joint with Balázs
Bárány (TU Budapest)

We have started to study the dimension of NOT
only the Lebesgue but also the natural measure
(νθ)-typical slices for a fixed angle θ of the
Sierpinski Gasket. Our research started with
the following observation
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Lemma
The dimension preservation Lemma holds for all
self-similar IFS on the plane satisfying

I the IFS is homogeneous (all contraction
ratios are the same),

I the attractor is connected,
I te group of the rotations in the linear parts

is finite.

So, in particular these all holds for the
Sierpinski Gasket.



Lemma
The dimension preservation Lemma holds for all
self-similar IFS on the plane satisfying

I the IFS is homogeneous (all contraction
ratios are the same),

I the attractor is connected,
I te group of the rotations in the linear parts

is finite.

So, in particular these all holds for the
Sierpinski Gasket.



Lemma
The dimension preservation Lemma holds for all
self-similar IFS on the plane satisfying

I the IFS is homogeneous (all contraction
ratios are the same),

I the attractor is connected,
I te group of the rotations in the linear parts

is finite.

So, in particular these all holds for the
Sierpinski Gasket.



Lemma
The dimension preservation Lemma holds for all
self-similar IFS on the plane satisfying

I the IFS is homogeneous (all contraction
ratios are the same),

I the attractor is connected,
I te group of the rotations in the linear parts

is finite.

So, in particular these all holds for the
Sierpinski Gasket.



Lemma
The dimension preservation Lemma holds for all
self-similar IFS on the plane satisfying

I the IFS is homogeneous (all contraction
ratios are the same),

I the attractor is connected,
I te group of the rotations in the linear parts

is finite.

So, in particular these all holds for the
Sierpinski Gasket.



Lemma
The dimension preservation Lemma holds for all
self-similar IFS on the plane satisfying

I the IFS is homogeneous (all contraction
ratios are the same),

I the attractor is connected,
I te group of the rotations in the linear parts

is finite.

So, in particular these all holds for the
Sierpinski Gasket.



Using a change of coordinates it is enough to
consider the slices of the carpet which is the
attractor of the self-similar IFS {gi(x)}3

i=1

gi(x) =
1
2

x+ti , t1 = (0,0) , t2 =

(
0,

1
2

)
, t3 =

(
1
2
,0
)
.

Since we focus on natural measure typical
slices, we use different approach. Namely, for
this purpose, the matrices introduced by Liu, Xi
and Zhao (2007) seems to be more suitable.
We introduce them through a concrete example
when tan θ = 3

2.
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A0 =


1 0 0 0 0
0 0 1 0 0
0 1 0 0 1
0 1 0 1 0
0 0 0 1 0

 and A1 =


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1 0 0 1 0
1 0 1 0 0
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0 0 0 0 1


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