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Definition of α limit set

Definition 1 A complete negative trajectory of a point x ∈ I is an infinite sequence

{x−n}∞n=0 such that x0 = x and f(x−(n+1)) = x−n for any n ≥ 0.
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Definition of α limit set

Definition 2 Let {x−n}∞n=0 be a complete negative trajectory of a point x with respect

to a map f ∈ C(I). Then the set αf ({x−n}∞n=0) of limit points of {x−n}∞n=0 is called the

α-limit set of {x−n}∞n=0.
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Definition of α limit set

Lemma 1 For any compact space (X, d), any f ∈ C(X) and any negative trajectory

{x−n}∞n=0, the set αf ({x−n}∞n=0) is nonempty, closed and invariant.
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Every α-limit set is ω-limit set

A set V is right (resp. left) unilateral neighborhood of x ∈ I if there exists an ε > 0
such that [x, x+ ε) ⊂ V (resp. (x− ε, x] ⊂ V ). If T is a side of x (i.e. T means ”right”

or ”left”) then we can talk about T -unilateral neighborhoods of x.
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Every α-limit set is ω-limit set

Let U ⊂ I be the union of finitely many pairwise disjoint compact and non-degenerate

intervals and let K ⊂ U . Then

• fU(K) := f(K) ∩ U,

• fn
U(K) := fU(fn−1

U (K)), e.g. f 2
U(K) := f(f(K) ∩ U) ∩ U ,

• K̃U :=
⋃∞

i=1 f
i
U(K).
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Every α-limit set is ω-limit set

• Let A ⊂ I be a closed set and let x ∈ A.

• We say that a side T of x is A-covering if for any union of finitely many closed

intervals U such that A ⊂ IntU and any closed T -unilateral neighborhood V of

x there are finitely many components of ṼU such that the closure of their union

covers A.

• If every x ∈ A has A-covering side we call the set A locally expanding (with

respect to f ).
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Every α-limit set is ω-limit set

Lemma 2 ([3, Theorem 2.12]) Let f ∈ C(I). A closed set A is an ω-limit set of f if

and only if A is locally expanding.

Lemma 3 ([3, Lemma 2.3]) Let K ⊂ U be an interval. Then K̃ is the union of two

disjoint sets A,B where:

– A is a finite union of disjoint intervals and

– B the union of orbits of finitely many pairwise pairwise disjoint wandering inter-

vals.

Moreover, if K is closed then so are all of the wandering intervals defining B.
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Every α-limit set is ω-limit set

Theorem 1 For any f ∈ C(I) and any negative trajectory {x−n}∞n=0, the set αf ({x−n}∞n=0)
is locally expanding.
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Every α-limit set is ω-limit set

Corollary 2 Let f ∈ C(I). Then any α-limit set αf ({x−n}∞n=0) is an ω-limit set of f .
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Basic sets and α-limit sets

Lemma 4 ([8]) Let M be a basic set of a map f ∈ C(I) and let ωf (x) ⊂ M for some

x ∈ I . Then the set

{z ∈M : ωf (z) = ωf (x)}

is dense in M .
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Basic sets and α-limit sets

A portion of a basic setM is the intersection ofM with an interval J which is nonempty.

Lemma 5 ([1, Lemma 2.4]) Let M be a basic set of f ∈ C(I) and let J be an interval

with endpoints in M such that J ∩M is infinite. Then limn→∞ f
n(J ∩M) exists (in the

sense of Hausdorff metric) and contains the portion (minM,maxM) ∩M .
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Basic sets and α-limit sets

Theorem 3 Let M be a basic set and let A = ωf (x) for some x ∈ I . If A ⊂ M then

A = αf ({x−n}∞n=0) for some negative orbit {x−n}∞n=0 ⊂ I .
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Zero entropy case

Lemma 6 ([9, Theorem 3.5]) Let f ∈ C(I) be a map with htop(f) = 0 and let M be

a maximal infinite ω-limit set. Then there is a sequence {In}∞n=0 of compact periodic

intervals such that for any n

1. In has period 2n,

2. In+1 ∪ f 2n
(In+1) ⊂ In,

3. Orb(In) ⊃M ,

4. M ∩ f i(In) 6= ∅ for every i,
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Zero entropy case

Lemma 7 ([4, Theorem 6.5]) An infinite compact set W ⊂ (0, 1) is an ω-limit set of a

map f ∈ C(I) with zero topological entropy if and only if W = Q ∪ P where Q is a

Cantor set and P is empty or countably infinite set disjoint with Q and satisfying the

following two coditions:

1. every interval J contiguous to Q (i.e. Int J ∩ Q = ∅ and ∂J ⊂ Q) contains at

most two points of P ,

2. each of the intervals [0,minQ], [maxQ, 1] contains at most one point of P .
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Zero entropy case

Theorem 4 Let f ∈ C(I) ans assume that htop(f) = 0. If M is an infinite ω-limit set of

f then any infinite α-limit set αf ({x−n}∞n=0) contained in M is perfect.
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Zero entropy case

Theorem 5 For any f ∈ C(I) with zero topological entropy the system of α-limit sets

is the system of minimal sets of f .
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Zero entropy case

Theorem 6 Any ω-limit set of a map f ∈ C(I) which is contained in a basic set of f
belongs to α(f).
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Zero entropy case

Theorem 7 There is a map f ∈ C(I) with zero topological entropy such that the set

α(f) of α-limit sets of f is not closed in the Hausdorff metric.
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Zero entropy case

Theorem 8 Let f ∈ C(I) have zero topological entropy. Than the collection α(f) of

α-limit sets is closed in the Hausdorff metric if and only if the set Rec(f) of recurrent

points is closed.
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