Characterization of α -limit sets for continuous maps of the interval

G. Dvorníková¹, M. Lampart² and P. Oprocha³

¹Silesian University in Opava, Czech Republic.

²Technical University of Ostrava, Czech Republic

³AGH University of Science and Technology, Poland

Definition of α limit set

Definition 1 A complete negative trajectory of a point $x \in I$ is an infinite sequence $\{x_{-n}\}_{n=0}^{\infty}$ such that $x_0 = x$ and $f(x_{-(n+1)}) = x_{-n}$ for any $n \ge 0$.

Definition of α limit set

Definition 2 Let $\{x_{-n}\}_{n=0}^{\infty}$ be a complete negative trajectory of a point x with respect to a map $f \in C(I)$. Then the set $\alpha_f(\{x_{-n}\}_{n=0}^{\infty})$ of limit points of $\{x_{-n}\}_{n=0}^{\infty}$ is called the α -limit set of $\{x_{-n}\}_{n=0}^{\infty}$.

Definition of α **limit set**

Lemma 1 For any compact space (X,d), any $f \in C(X)$ and any negative trajectory $\{x_{-n}\}_{n=0}^{\infty}$, the set $\alpha_f(\{x_{-n}\}_{n=0}^{\infty})$ is nonempty, closed and invariant.

A set V is *right* (resp. *left*) *unilateral neighborhood* of $x \in I$ if there exists an $\varepsilon > 0$ such that $[x, x + \varepsilon) \subset V$ (resp. $(x - \varepsilon, x] \subset V$). If T is a side of x (i.e. T means "right" or "left") then we can talk about T-unilateral neighborhoods of x.

Let $U\subset I$ be the union of finitely many pairwise disjoint compact and non-degenerate intervals and let $K\subset U$. Then

- $f_U(K) := f(K) \cap U$,
- $f_U^n(K) := f_U(f_U^{n-1}(K))$, e.g. $f_U^2(K) := f(f(K) \cap U) \cap U$,
- $\bullet \ \tilde{K}_U := \bigcup_{i=1}^{\infty} f_U^i(K).$

- Let $A \subset I$ be a closed set and let $x \in A$.
- We say that a side T of x is A-covering if for any union of finitely many closed intervals U such that $A \subset \operatorname{Int} U$ and any closed T-unilateral neighborhood V of x there are finitely many components of \tilde{V}_U such that the closure of their union covers A.
- If every $x \in A$ has A-covering side we call the set A *locally expanding* (with respect to f).

Lemma 2 ([3, Theorem 2.12]) Let $f \in C(I)$. A closed set A is an ω -limit set of f if and only if A is locally expanding.

Lemma 3 ([3, Lemma 2.3]) Let $K \subset U$ be an interval. Then \tilde{K} is the union of two disjoint sets A, \mathcal{B} where:

- ${\cal A}$ is a finite union of disjoint intervals and
- $-\mathcal{B}$ the union of orbits of finitely many pairwise pairwise disjoint wandering intervals.

Moreover, if K is closed then so are all of the wandering intervals defining \mathcal{B} .

Theorem 1 For any $f \in C(I)$ and any negative trajectory $\{x_{-n}\}_{n=0}^{\infty}$, the set $\alpha_f(\{x_{-n}\}_{n=0}^{\infty})$ is locally expanding.

Corollary 2 Let $f \in C(I)$. Then any α -limit set $\alpha_f(\{x_{-n}\}_{n=0}^{\infty})$ is an ω -limit set of f.

Basic sets and α -limit sets

Lemma 4 ([8]) Let M be a basic set of a map $f \in C(I)$ and let $\omega_f(x) \subset M$ for some $x \in I$. Then the set

$$\{z \in M : \omega_f(z) = \omega_f(x)\}$$

is dense in M.

Basic sets and α -limit sets

A *portion* of a basic set M is the intersection of M with an interval J which is nonempty.

Lemma 5 ([1, Lemma 2.4]) Let M be a basic set of $f \in C(I)$ and let J be an interval with endpoints in M such that $J \cap M$ is infinite. Then $\lim_{n \to \infty} f^n(J \cap M)$ exists (in the sense of Hausdorff metric) and contains the portion $(\min M, \max M) \cap M$.

Basic sets and α -limit sets

Theorem 3 Let M be a basic set and let $A = \omega_f(x)$ for some $x \in I$. If $A \subset M$ then $A = \alpha_f(\{x_{-n}\}_{n=0}^{\infty})$ for some negative orbit $\{x_{-n}\}_{n=0}^{\infty} \subset I$.

Lemma 6 ([9, Theorem 3.5]) Let $f \in C(I)$ be a map with $h_{top}(f) = 0$ and let M be a maximal infinite ω -limit set. Then there is a sequence $\{I_n\}_{n=0}^{\infty}$ of compact periodic intervals such that for any n

- 1. I_n has period 2^n ,
- 2. $I_{n+1} \cup f^{2^n}(I_{n+1}) \subset I_n$,
- 3. $\operatorname{Orb}(I_n) \supset M$,
- 4. $M \cap f^i(I_n) \neq \emptyset$ for every i,

Lemma 7 ([4, Theorem 6.5]) An infinite compact set $W \subset (0,1)$ is an ω -limit set of a map $f \in C(I)$ with zero topological entropy if and only if $W = Q \cup P$ where Q is a Cantor set and P is empty or countably infinite set disjoint with Q and satisfying the following two coditions:

- 1. every interval J contiguous to Q (i.e. $\operatorname{Int} J \cap Q = \emptyset$ and $\partial J \subset Q$) contains at most two points of P,
- 2. each of the intervals $[0, \min Q]$, $[\max Q, 1]$ contains at most one point of P.

Theorem 4 Let $f \in C(I)$ and assume that $h_{top}(f) = 0$. If M is an infinite ω -limit set of f then any infinite α -limit set $\alpha_f(\{x_{-n}\}_{n=0}^{\infty})$ contained in M is perfect.

Theorem 5 For any $f \in C(I)$ with zero topological entropy the system of α -limit sets is the system of minimal sets of f.

Theorem 6 Any ω -limit set of a map $f \in C(I)$ which is contained in a basic set of f belongs to $\alpha(f)$.

Theorem 7 There is a map $f \in C(I)$ with zero topological entropy such that the set $\alpha(f)$ of α -limit sets of f is not closed in the Hausdorff metric.

Theorem 8 Let $f \in C(I)$ have zero topological entropy. Than the collection $\alpha(f)$ of α -limit sets is closed in the Hausdorff metric if and only if the set $\mathrm{Rec}(f)$ of recurrent points is closed.

References

- F. Balibrea, B. Schweizer, A. Sklar and J. Smital, Generalized specification property and distributional chaos. Int. J. Bifur. Chaos 13 (2003), 1683–1694.
- [2] A. Blokh, The "spectral" decomposition for one-dimensional maps. Dynamics reported, 1–59, Dynam. Report. Expositions Dynam. Systems (N.S.), 4, Springer, Berlin, 1995.
- [3] A. Blokh, A.M. Bruckner, P.D. Humke, J. Smital, The space of ω-limit sets of continuous map of the interval. Trans. Amer. Math. Soc. 348 (1996), 1357–1372.
- [4] A.M. Bruckner and J. Smítal, A characterization of ω-limit sets of maps of the interval with zero topological entropy. Ergod. Th. & Dyn. Sys. 13 (1993), 7–19.
- [5] V.V. Fedorenko, A.N. Sharkovsky amd J. Smítal, Characterizations of weakly chaotic maps of the interval, Proc. Amer. Math. Soc., 110 (1990), 141–148.
- [6] M. Misiurewicz, Horseshoes for mappings of the interval, Bull. Acad. Polon. Sci. Sr. Sci. Math., 27 (1979), 167–169.
- [7] B. Schweizer and J. Smital, Measures of chaos and a spectral decomposition of dynamical systems on the interval, Trans. Amer. Math. Soc., 344 (1994), no. 2, 737–754.
- [8] A.N. Sharkovsky, The partially ordered system of atracting sets. Soviet Math. Dokl. 7 (1966), 1384–1386.
- [9] J. Smítal, Chaotic functions with zero topological entropy. Trans. Amer. Math. Soc. 297 (1986), 269-282.