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Farey map

• The Farey map F : [0,1]→ [0,1] is given by

F (x) :=

{ x
1−x , x ∈

[
0, 1

2

]
,

1
x −1, x ∈

(1
2 ,1
]
.
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ABBILDUNG 4.1.1. Die Farey-Abbildung T und die uniforme Rück-
kehrmenge K1. 0 ist der einzige indifferente Fixpunkt, während γ− 1
ist ein weiterer Fixpunkt von T . Dabei bezeichnet γ den Goldenen
Schnitt. Für n ≥ 2 gilt T (1/(n + 1), 1/n] = (1/n, 1/(n − 1)].

4.1. Die Farey-Intervallabbildung

Wir betrachten die Farey-Abbildung T : [0, 1] → [0, 1], definiert durch

T (x) :=

{
T0 (x) , x ∈

[
0, 1

2

]
,

T1 (x) , x ∈
(

1
2 , 1

]
,

wobei

T0 (x) :=
x

1 − x
und T1 (x) :=

1
x
− 1.

Mit den Bezeichnungen B (0) =
[
0, 1

2

]
, B (1) =

(
1
2 , 1

]
und J = {0} ersieht man

leicht, dass die Farey-Abbildung die Thaler-Voraussetzungen im Beispiel 1.2.11 er-

füllt. Ferner ist es einfach zu zeigen, dass T̂ (1) = 1 für h (x) := dµ
dλ (x) = 1

x

gilt. Somit bildet ([0, 1] , T,B, µ) ein konservatives ergodisches invariantes dynami-
sches System. Jede vom indifferenten Fixpunkt 0 weg beschränkte messbare Menge
A ∈ B[0,1] mit λ (A) > 0 ist eine uniforme Menge. Weiter erhält man

Wn := Wn

((
1
2
, 1

])
=

∫ 1

1
n+2

1
x

dx = log (n + 2) ∼ log (n) (n → ∞) .

Fig. 1 The Farey map T and the uniformly returning set A1. 0 is the critical and γ − 1 is the non-critical fixed point of T , in
here γ denotes the golden ratio. For n ≥ 2 we have T (1/(n + 1), 1/n] = (1/n, 1/(n− 1)].

Let F = {An}n≥1 be the countable collection of pairwise disjoint subintervals of [0, 1] given by An =(
1

n+1 , 1
n

]
. Setting A0 = [0, 1), it is easy to check that T (An) = An−1 for all n ≥ 1. The first entry time

e : I → N in the interval A1 is defined as

e (x) := min
{
k ≥ 0 : T k (x) ∈ A1

}
.

Then the first entry time is connected to the first digit in the continued fraction expansion by

a1 (x) = 1 + e (x) and ϕ (x) = a1 ◦ T (x) , x ∈ I.

We now consider the induced map S : I → I defined by

S (x) := T e(x)+1 (x) .

Since for all n ≥ 1

{x ∈ I : e (x) = n− 1} = An ∩ I,

we have by (6) for any x ∈ An ∩ I

S (x) = Tn (x) = T1 ◦ Tn−1
0 (x) =

1
x
− n =

1
x
− a1(x).

This implies that the induced transformation S coincides with Gauss map G on I.
In the next lemma we connect the number theoretical process Xn defined in (1) with the renewal process Zn

with respect to the Farey map defined in (5).
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Gauss map

• The Gauss map G : [0,1]\Q→ [0,1]\Q is given by

G (x) :=
1
x
−
⌊
1
x

⌋
.

Kleine und große Abweichungen am Beispiel modularer Gruppen Marc Keßeböhmer
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Jump Transformation

• G is invariant with respect to the (finite) Gauss measure
dµ (x) := ((1+ x) log2)−1dλ (x).

• F is invariant with respect to the (infinite) measure
dm (x) := 1/x ·dλ (x).

• Fix A1 := (1/2,1] . For x ∈ [0,1]\Q define the jump time

ϕA1 (x) := inf {n ∈ N0 : F n (x) ∈ A1}

and let the jump transformation of the Farey map F with
respect to A1 for x ∈ [0,1]\Q be given by

FA1 (x) := F ϕA1 (x)+1 (x)

Fact
G = FA1 .
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Continued Fractions: Sum-level Result

• n-th Sum-Level-Set:

Cn :=

{
x ∈ [a1, . . . ,ak ] :

k

∑
i=1

ai = n, for some k ∈ N

}
,

Theorem (K/Stratmann ’10)

λ (Cn)∼ log2
logn

and
n

∑
k=1

λ (Ck)∼ n log2
logn

.

Proof.
Observe F−n+1 ([1/2,1]) = Cn and use Infinite Ergodic Theory
for the transfer operator F̂ of F on

(
[0,1] ,B,x−1dλ (x)

)
.
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Farey Spectrum

• S : [0,1]→ [0,1] diff’able, x ∈ [0,1],

Λ(S ,x) := lim
n→∞

1
n

n−1

∑
k=0

log
∣∣∣S ′(Sk(x))

∣∣∣ .
• Lyapunov spectra (K./Stratmann ’07)

L1 (α) := {x ∈ [0,1] : Λ(F ,x) = α}.

The following theorem gives the first main results of this paper. In here, P̂P refers to the
Legendre transform of P, given for t A R by P̂PðtÞ :¼ sup

y AR
fyt$ PðyÞg.

Theorem 1.1 (see Fig. 1.1). (1) The Stern-Brocot pressure P is convex, non-increasing
and di¤erentiable throughout R. Furthermore, P is real-analytic on the interval ð$y; 1Þ and is
equal to 0 on ½1;yÞ.

(2) For every a A ½0; 2 log g&, there exist a' ¼ a'ðaÞ A R and aK¼ aKðaÞ A RW fyg re-
lated by a ( aK¼ a' such that, with the conventions a'ð0Þ :¼ w and aKð0Þ :¼ y,

dimH

!
L1ðaÞ

"
¼ dimH

!
L2ðaKÞXL3ða'Þ

"
ð¼: tðaÞÞ:

Furthermore, the dimension function t is continuous and strictly decreasing on ½0; 2 log g&, it
vanishes outside the interval ½0; 2 log gÞ, and for a A ½0; 2 log g& we have

a ( tðaÞ ¼ $P̂Pð$aÞ;

where tð0Þ :¼ lim
a&0

$P̂Pð$aÞ=a ¼ 1. Also, for the left derivative of t at 2 log g we have

lim
a%2 log g

t 0ðaÞ ¼ $y.

Theorem 1.1 has some interesting implications for other canonical level sets. In order
to state these, recall that the elements of Tn cover the interval ½0; 1Þ without overlap. There-
fore, for each x A ½0; 1Þ and n A N there exists a unique Stern-Brocot interval TnðxÞ A Tn

containing x. The interval TnðxÞ is covered by two neighbouring intervals from Tnþ1, a
left and a right subinterval. If Tnþ1ðxÞ is the left of these then we encode this event by the
letter A, otherwise we encode it by the letter B. In this way every x A ½0; 1Þ can be described
by a unique sequence of nested Stern-Brocot intervals of any order that contain x, and
therefore by a unique infinite word in the alphabet fA;Bg. It is well-known that this type
of coding is canonically associated with the continued fraction expansion of x (see Section 2
for the details). In particular, this allows to relate the level sets L1 and L3 to level sets given
by means of the Stern-Brocot growth rate l4 of the nested sequences

!
TnðxÞ

"
, and to level

Figure 1.1. The Stern-Brocot pressure P and the multifractal spectrum t for l1.
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Gauss Spectrum

• Lyapunov spectrum for the Gauss map (Pollicott/Weiss ’99,
K./Stratmann ’07, Fan/Liao/Wang/Wu ’09)

L3(α) := {x ∈ [0,1] : Λ(G ,x) = s}.

The paper is organized as follows. In Section 2 we first recall two ways of coding ele-
ments of the unit interval. One is based on a finite alphabet and the other on an infinite
alphabet, and both are defined in terms of the modular group. These codings are canoni-
cally related to regular continued fraction expansions, and we end the section by comment-
ing on a 1-1 correspondence between Stern-Brocot sequences and finite continued fraction
expansions. In Section 3 we introduce certain cocycles which are relevant in our multifrac-
tal analysis. In particular, we give various estimates relating these cocycles with the geo-
metry of the modular codings and with the sizes of the Stern-Brocot intervals. This will
then enable us to prove the first part of Proposition 1.2. Section 4 is devoted to the discus-
sion of several aspects of the Stern-Brocot pressure and its Legendre transform. In Section
5 we give the proof of Theorem 1.1, which we have split into the parts The lower bound,
The upper bound, and Discussion of boundary points of the spectrum. Finally, in Section 6
we give the proof of Theorem 1.3 by showing how to adapt the multifractal formalism de-
veloped in Section 4 and 5 to the situation here.

Throughout, we shall use the notation f f g to denote that for two non-negative
functions f and g we have that f =g is uniformly bounded away from infinity. If f f g and
gf f , then we write f ! g.

Remark 1.1. One immediately verifies that the results of Theorem 1.1 and Proposi-
tion 1.2 can be expressed in terms of the Farey map f acting on ½0; 1#, and then t represents
the multifractal spectrum of the measure of maximal entropy (see e.g. [24]). Likewise, the
results of Theorem 1.3 can be written in terms of the Gauss map g, and then in this termi-
nology tD describes the Lyapunov spectrum of g. For the definitions of f and g and for a
discussion of their relationship we refer to Remark 2.1.

Remark 1.2. Since the theory of multifractals started through essays of Mandelbrot
[18], [19], Frisch and Parisi [7], and Halsey et al. [8], there has been a steady increase of
the literature on multifractals and calculations of specific multifractal spectra. For a com-
prehensive account on the mathematical work we refer to [27] and [26]. Essays which are
closely related to the work on multifractal number theory in this paper are for instance [3],
[5], [13], [9], [23], [24] and [28]. We remark that brief sketches of some parts of Theorem 1.3

Figure 1.2. The Diophantine pressure PD and the multifractal spectrum tD for l3.
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7/37



Linearised versions: α-Lüroth and α-Farey maps

0
1

1

...

0 1

1

.....
.

• α-Lüroth map • α-Farey map
• J. Lüroth. Über eine eindeutige Entwicklung von Zahlen in
eine unendliche Reihe. Math. Ann. 21:411–423, 1883.
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Generating partition α

• countable partition α := {An : n ∈ N} of [0,1] consisting of left
open, right closed intervals; ordered from right to left, starting
with A1.

• an := λ (An); tn := ∑
∞

k=n ak .

• α-Lüroth map Lα (x) :=

{
(tn− x)/an for x ∈ An,n ∈ N,
0 for x = 0.

• α-Farey map

Fα (x) :=


(1− x)/a1 for x ∈ A1,

an−1 (x− tn+1)/a1 + tn for x ∈ An,n ≥ 2,
0 for x = 0.
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α-Lüroth and α-Farey

• λ is invariant with respect to Lα .
• Lα is the jump transformation of Fα with respect to A1.
• α is said to be of finite type if ∑

∞
n=1 tn < ∞

• α is said to be of infinite type if ∑
∞
n=1 tn = ∞

• α is called expansive of exponent θ≥ 0 if tn = ψ(n)n−θ , for all
n ∈ N and some slowly varying function ψ . Then:

lim
n→∞

tn
tn+1

= 1 and F ′α (0+) = 1

• α is said to be expanding if limn→∞ tn/tn+1 = ρ > 1. Then:

F ′α (0+) = ρ.
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α-Lüroth and α-Farey

• ∃να � λ invariant with respect to Fα and density
∑

∞
n=1 tn/an ·1An .

• να ([0,1]) = +∞ ⇐⇒ α of infinite type.
• Fα and the tend map are topologically conjugate with
conjugating homeomorphism given by (the α-Minkowski-?
function)

θα (x) :=−2∑(−1)k 2−∑
k
i=1 `i

for x = [`1, `2, . . .]α = ∑
∞
n=1 (−1)n−1 (∏i<n a`i ) t`n (α-Lüroth

Expansion).
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Examples for different expansive α

0 1

1 1

0

...

..
.

1

• tn = 1/n2 – finite type. • tn = 1/
√
n – infinite type.
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Renewal Theoretical Questions

• α-sum-level sets

L
(α)
n :=

{
x ∈ Cα (`1, `2, . . . , `k) :

k

∑
i=1

`i = n, for some k ∈ N

}
,

where

Cα (`1, . . . , `k) := {x ∈ [0,1] : Li−1
α (x) ∈ Ali ,∀i = 1, . . . ,k}.

• Important fact: L
(α)
n = F−(n−1)

α (A1), for all n ∈ N.
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Renewal laws for sum-level sets

Theorem (K./Munday/Stratmann ’11)

1 We have that ∑
∞
n=1 λ (L

(α)
n ) diverges, and that

lim
n→∞

λ

(
L

(α)
n

)
=

{
0, if α is of infinite type;
(∑

∞

k=1 tk)−1 , if α is of finite type.

2 Let α be either expansive of exponent θ ∈ [0,1]
(Kα := 1

Γ(2−θ)Γ(1+θ) ,kα := 1
Γ(2−θ)Γ(θ)), or of finite type

Kα := kα := 1.

(a) Weak renewal law.
n

∑
k=1

λ

(
L

(α)
k

)
∼ Kα ·n ·

(
n

∑
k=1

tk

)−1

.

(b) Strong renewal law. λ

(
L (α)

n

)
∼ kα ·

(
n

∑
k=1

tk

)−1

.
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Proof of Part (1)

Fact (Renewal Equation)

For each n ∈ N, we have that

λ

(
L

(α)
n

)
=

n

∑
m=1

am λ

(
L

(α)
n−m

)
.

Proof.
Proved by induction using linearity.

Proof of ∑
∞
n=0 λ (L

(α)
n ) diverges.

Define a(s) := ∑
∞
n=1 ansn and `(s) := ∑

∞
m=0 λ

(
L

(α)
m

)
sm. Then for

s ∈ (0,1) we have that `(s)−1 = `(s)a(s), and hence,
`(s) = 1/(1−a(s)). Since a(1) = 1 we have lims↗1 `(s) = ∞
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Proof of First Theorem

Proof Part (1).

Classical Renewal Theorem by Erdős, Pollard and Feller gives

lim
n→∞

λ (L
(α)
n ) =

1
∑

∞
m=1m ·am

=
1

∑
∞

k=1 tk
.

(P. Erdős, H. Pollard, W. Feller. A property of power series with
positive coefficients. Bull. Amer. Math. Soc. 55:201-204,
1949)

Proof Part (2).

For the finite case consider part (1). For the expansive case apply a
strong renewal theorems obtained in [K. B. Erickson. Strong
renewal theorems with infinite mean. Trans. Amer. Math. Soc.
151, 1970], [A. Garsia, J. Lamperti. A discrete renewal theorem
with infinite mean. Comment. Math. Helv. 37, 1963].
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α-Farey Free Energy Function

• S : [0,1]→ [0,1] diff’able, x ∈ [0,1],

Λ(S ,x) := lim
n→∞

1
n

n−1

∑
k=0

log
∣∣∣S ′(Sk(x))

∣∣∣ .
• α-Farey Lyapunov spectrum, s ∈ R,

σα (s) := dimH ({x ∈ [0,1] : Λ(Fα ,x) = s}) .

• α-Farey free energy function v : R→ R∪{∞}

v(u) := inf

{
r ∈ R :

∞

∑
n=1

au
n exp(−rn)≤ 1

}
.

• We say that Fα exhibits no phase transition if and only if v is
diff’able everywhere.
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α-Lüroth Lyapunov Spectrum

Theorem (K./Munday/Stratmann ’11)

Let α either expanding, or expansive and eventually decreasing. For
s− := inf{−(logan)/n : n ∈ N} and s+ := sup{−(logan)/n : n ∈ N},
we have that σα (s) vanishes outside the interval [s−,s+] and for
each s ∈ (s−,s+), we have

σα (s) = inf
u∈R

(
u+ s−1v (u)

)
.

1 α expanding: Fα exhibits no phase transition. In particular, v
is strictly decreasing and bijective.

2 α expansive of exponent θ and eventually decreasing:
Fα exhibits no phase transition ⇐⇒ α is of infinite type. In
particular, v ≥ 0 and v |[1,∞) = 0.
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α-Lüroth Pressure

• α-Lüroth Lyapunov spectrum, s ∈ R

τα (s) := dimH ({x ∈U : Λ(Lα ,x) = s}) .

• α-Lüroth pressure function p : R→ R∪{∞}

p : u 7→ log
∞

∑
n=1

au
n .

• We say that Lα exhibits no phase transition if and only if the
pressure function p is differentiable everywhere (that is, the
right and left derivatives of p coincide everywhere, with the
convention that p′(u) = ∞ if p(u) = ∞).
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α-Lüroth Lyapunov Spectrum

Theorem (K./Munday/Stratmann ’11)

For t− := min{− logan : n ∈ N} we have that τα vanishes on
(−∞, t−), and for each s ∈ (t−,∞) we have

τα (s) = inf
u∈R

(
u+ s−1p(u)

)
.

Moreover, lims→∞ τα (s) =t∞ := inf{r > 0 : ∑
∞

k=1 a
r
n < ∞} ≤ 1.

1 α expanding: Lα exhibits no phase transition and t∞ = 0.
2 α expansive of exponent θ > 0 and eventually

decreasing: t∞ = 1/(1+ θ).

Lα exhibits no phase trans. ⇐⇒
∞

∑
n=1

ψ(n)1/(1+θ) logn
n

= ∞.

3 α expansive of exponent θ = 0 and eventually
decreasing: t∞ = 1.
Lα exhibits no phase trans. ⇐⇒ ∑

∞
n=1 an log(an) = ∞.
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Good set

Theorem (Munday ’10)

The critical value t∞ is also equal to the Hausdorff dimension of the
Good-type set G (α)

∞ associated to Lα , given by

G (α)
∞ := {[`1, `2, . . .]α : lim

n→∞
`n = ∞}.

• If Lα exhibits a phase transition, that is ∑at∞
n < +∞ with finite

right derivative t0 in t∞, then for t ∈ [t0,+∞),

τα (t) =
log∑

∞
n=1 a

t∞
n

t
+ t∞.
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Expansive Example : The classical alternating Lüroth system

1

1

0

2

3

105st

1

+–

t
∞

• For αH := {(1/(n+1) ,1/n],n ∈ N} The figure shows the
αH -Farey free energy v (solid line), the αH -Lüroth pressure
function p (dashed line), and the associated dimension graphs
σαH and ταH . Here, t− = log2, t∞ = 1/2 and s+ = (log6)/2.
We have p(t∞) = ∞, no phase transition for the αH-Farey
free energy function and the αH-Lüroth pressure
function.
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Expansive Example: an := ζ (5/4)−1n−5/4

0

1

1

-1

-2

1

10 20t

t

–

∞

+
=s

• The Farey spectrum and the Lüroth spectrum intersect
in a single point, for α expansive. The α-Farey free energy
v (solid line), the α-Lüroth pressure function p (dashed line),
and the associated dimension graphs for an := ζ (5/4)−1 n−5/4.
Here, Fα exhibits no phase transition.
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Expanding Example: an := 2 ·3−n

-2 2

2

4

2 4

1

st
t

+– –
=s

∞

• The Farey spectrum is completely contained in the
Lüroth spectrum, for α expanding. The α-Farey free
energy v (solid line), the α-Lüroth pressure function p (dashed
line), and the associated dimension graphs. The α-Farey
system is given in this situation by the tent map with slopes 3
and −3/2.
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Example for Lüroth Phase Transition an := C
n2·(log(n+5))12

1/2 10

+∞

5 10

1

tt
0−

t
∞

• Finite critical value p(t∞) < ∞ with phase transition for
the α-Lüroth pressure function and α expansive. The
α-Lüroth pressure function p, and the associated dimension
graphs. In this case t∞ = 1/2 and p(1/2) < ∞ and Lα has a
phase transition.
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Examples: No Lüroth Phase Transition an := C
n2·(log(n+5))4

+∞

1

10 1/2

1

5 10

t

t

∞

−

• Finite critical value p(t∞) < ∞ and no phase transition for
the α-Lüroth pressure function and α expansive. The
α-Lüroth pressure function p, and the associated dimension
graphs for the α-Lüroth system. In this case t∞ = 1/2 and
p(1/2) < ∞, but Lα exhibits no phase transition.
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Technical Lemma

Lemma
Let α be a partition such that limn→∞ tn/tn+1 = ρ ≥ 1 and such
that α is either expanding, or expansive of exponent θ and
eventually decreasing. Then:

1 lim
n→∞

logan

n
= lim

n→∞

log tn
n

=− logρ. α expansive with θ > 0,

then an ∼ θn−1tn.
2 If α expansive with θ = 0, then we have t∞ = 1.
3 If α is expanding, or expansive with θ > 0, then

limn→∞
an

an+1
= ρ .

4 There exists a sequence (εk)k∈N, with limk→∞ εk = 0, such
that for all n ∈ N and x ∈

⋃
k≥nAk we have that∣∣∣∣∣1n n−1

∑
k=0

log
∣∣∣F ′α (F k

α (x))
∣∣∣− logρ

∣∣∣∣∣< εn.
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Multifractal Formalism for Countable State Spaces I

Theorem (K./Jaerisch)

Consider the two potential functions ϕ,ψ : U →R given for x ∈ An,
n ∈ N, by ϕ (x) := logan and ψ (x) := zn, for some fixed sequence
(zn)n∈N of negative real numbers. For all s ∈ R we then have that

dimH

{
x ∈U : lim

n→∞

∑
n−1
k=0 ψ(Lk

α (x))

∑
n−1
k=0 ϕ(Lk

α (x))
= s

}
≤max{0,−t∗ (−s)}.

The function t : R→ R∪{∞} is given by

t (v) := inf

{
u ∈ R :

∞

∑
n=1

au
n exp(vzn)≤ 1

}

and t∗ is the Legendre transform of t.
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Multifractal Formalism for Countable State Spaces II

Theorem (K./Jaerisch)

With

r− := inf
{
−t+ (v) : v ∈ Int(dom(t))

}
,

r+ := sup
{
−t+ (v) : v ∈ Int(dom(t))

}
,

we have for each s ∈ (r−, r+),

dimH

{
x ∈U : lim

n→∞

∑
n−1
k=0 ψ(Lk

α (x))

∑
n−1
k=0 ϕ(Lk

α (x))
= s

}
=−t∗ (−s) .

where t+ denotes the right derivative of t, Int(A) denotes the
interior of the set A, and dom(t) := {v ∈ R : t (v) < +∞}.
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Proof of Theorem for α-Farey

• Set zn :=−n, then v : u 7→ inf {r ∈ R : ∑
∞
n=1 a

u
n exp(−rn)≤ 1}

is the inverse of t.
• s− = 1/r+ and s+ = 1/r−.
• For s ∈ (s−,s+), it follows that

σα (s) = −t∗ (−1/s) = inf
v∈R

(
t (v) + s−1v

)
= inf

u∈R

(
u+ s−1 log

∞

∑
n=1

au
n

)

and σ(s) vanishes outside of (s−,s+).
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Phase Transition for the α-Farey Free Energy

• Consider Z (u,v) := ∑
∞
n=1 exp

(
n
(

u logan
n − v

))
.

• α expanding =⇒∀u0 ∈ R{Z (u0,v) : v ∈ R}= (0,∞) =⇒
∃f (u0) is unique solution of Z (u0, f (u0)) = 1. By the implicit
function theorem there is no phase transition.

• α expansive
• For u < 1 argue as above

• For u ≥ 1 we have ∑
∞
n=1 au

ne−wn

{
< 1 for w ≥ 0
= ∞ for w < 0

=⇒

v (u) = 0

• Consider f ′(u) = ∑
∞
n=1 au

ne−f (u)n logan

∑
∞
n=1 nau

ne−f (u)n for u↗ 1.

• Infinite type: Denominator tends to ∞.
• limu↗1 f ′ (u) = limu↗1 ∑

∞
n=1

logan
n

nane−f (u)n

∑
∞

k=1 kake−f (u)k = 0.
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Geometric Lemma

Lemma
Let α be a partition which is either expanding, or expansive of
exponent θ and eventually decreasing. With

Π(Lα ,x) := lim
n→∞

(
n−1

∑
k=0

log
∣∣∣L′α (Lk

α (x))
∣∣∣)/

(
n−1

∑
k=0

N(Lk
α (x))

)
,

we then have for each s ≥ 0 that the sets

{x ∈U : Π(Lα ,x) = s} and {x ∈U : Λ(Fα ,x) = s}

coincide up to a countable set of points.
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Proof of Theorem for α-Lüroth

• Set zn :=−1, p : u 7→ log∑
∞
n=1 au

n is the inverse of t.
• t− := 1/r+ = inf{− logan : n ∈ N} and t+ := +∞

• For s ∈ (t−,+∞), it follows that

τα (s) = −t∗ (−1/s) = inf
v∈R

(
t (v) + s−1v

)
= inf

u∈R

(
u+ s−1 log

∞

∑
n=1

au
n

)

and τα (s) vanishes for s < t−.
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No Phase Transition for α-Lüroth

• For the right derivative of the pressure function p of Lα , we
have that

p′(u) =
∑

∞
n=1 a

u
n logan

∑
∞
n=1 au

n
.

• Clearly, p is real-analytic on (t∞,∞).
• Hence, we have that Lα exhibits no phase transition if and
only if limu↘t∞

−p′(u) = +∞.
• If α is expanding, then there is no phase transition. This
follows, since, by the technical Lemma, we have that
p(u) < ∞, for all u > 0. In particular, t∞ = 0. If α is expansive
with θ = 0, we have by the Technical Lemma t∞ = 1. Hence,
limu↘t∞

p′ (u) = ∞ if and only if −∑
∞
n=1 an log(an) = ∞.
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Phase Transition for α-Lüroth

• If α is expansive such that tn = ψ(n)n−θ , then the Technical
Lemma implies that there exists ψ0 such that ψ0(n)∼ θψ(n)
and an = ψ0(n)n−(1+θ). Consequently, we have that
t∞ = 1/(1+ θ). Hence, we now observe that

lim
u↘t∞

−p′(u) = t−1
∞ lim

u↘t∞

∑
∞
n=1
(
n−1−θ ψ0(n)

)u log(n(ψ0(n))−
1

1+θ

)
∑

∞
n=1 (n−1−θ ψ0(n))

u .

• ∑
∞
n=1 ψ(n)1/(1+θ)(logn)/n < ∞ =⇒ numerator and

denominator both converge =⇒ limu↘t∞
−p′(u) < ∞ =⇒

phase transition.
• ∑

∞
n=1 ψ(n)1/(1+θ)(logn)/n = ∞:
• ∑

∞
n=1 n−1ψ0(n)1/(1+θ) < ∞ =⇒ limu↘t∞

−p′(u) = ∞.
• ∑

∞
n=1 n−1ψ0(n)1/(1+θ) = ∞ =⇒
∀k ∈ N : limu↘t∞

(k−(1+θ)ψ0(k))u/∑
∞
n=1(n

−(1+θ)ψ0(n))u = 0
=⇒ limu↘t∞

−p′(u) = ∞.

• =⇒ no phase transition.
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