α-Farey and α-Lüroth maps - new types of phase transitions

Marc Kesseböhmer
(joint work with Sara Munday, Bernd O. Stratmann)

University of Bremen

May 9, 2011

Farey map

- The Farey map $F:[0,1] \rightarrow[0,1]$ is given by

$$
F(x):= \begin{cases}\frac{x}{1-x}, & x \in\left[0, \frac{1}{2}\right] \\ \frac{1}{x}-1, & x \in\left(\frac{1}{2}, 1\right] .\end{cases}
$$

Gauss map

- The Gauss map $G:[0,1] \backslash \mathbb{Q} \rightarrow[0,1] \backslash \mathbb{Q}$ is given by

$$
G(x):=\frac{1}{x}-\left\lfloor\frac{1}{x}\right\rfloor .
$$

Jump Transformation

- G is invariant with respect to the (finite) Gauss measure $d \mu(x):=((1+x) \log 2)^{-1} d \lambda(x)$.
- F is invariant with respect to the (infinite) measure $d m(x):=1 / x \cdot d \lambda(x)$.
- Fix $A_{1}:=(1 / 2,1]$. For $x \in[0,1] \backslash \mathbb{Q}$ define the jump time

$$
\varphi_{A_{1}}(x):=\inf \left\{n \in \mathbb{N}_{0}: F^{n}(x) \in A_{1}\right\}
$$

and let the jump transformation of the Farey map F with respect to A_{1} for $x \in[0,1] \backslash \mathbb{Q}$ be given by

$$
F_{A_{1}}(x):=F^{\varphi_{A_{1}}(x)+1}(x)
$$

Fact

$$
G=F_{A_{1}}
$$

Continued Fractions: Sum-level Result

- n-th Sum-Level-Set:

$$
\mathscr{C}_{n}:=\left\{x \in\left[a_{1}, \ldots, a_{k}\right]: \sum_{i=1}^{k} a_{i}=n, \text { for some } k \in \mathbb{N}\right\}
$$

Theorem (K/Stratmann '10)

$$
\lambda\left(\mathscr{C}_{n}\right) \sim \frac{\log 2}{\log n} \text { and } \sum_{k=1}^{n} \lambda\left(\mathscr{C}_{k}\right) \sim \frac{n \log 2}{\log n} .
$$

Proof.

Observe $F^{-n+1}([1 / 2,1])=\mathscr{C}_{n}$ and use Infinite Ergodic Theory for the transfer operator \widehat{F} of F on $\left([0,1], \mathscr{B}, x^{-1} d \lambda(x)\right)$.

Farey Spectrum

- $S:[0,1] \rightarrow[0,1]$ diff'able, $x \in[0,1]$,

$$
\Lambda(S, x):=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} \log \left|S^{\prime}\left(S^{k}(x)\right)\right| .
$$

- Lyapunov spectra (K./Stratmann '07)

$$
\mathscr{L}_{1}(\alpha):=\{x \in[0,1]: \Lambda(F, x)=\alpha\} .
$$

Gauss Spectrum

- Lyapunov spectrum for the Gauss map (Pollicott/Weiss '99, K./Stratmann '07, Fan/Liao/Wang/Wu '09)

$$
\mathscr{L}_{3}(\alpha):=\{x \in[0,1]: \Lambda(G, x)=s\} .
$$

Linearised versions: α-Lüroth and α-Farey maps

- α-Lüroth map

- α-Farey map
- J. Lüroth. Über eine eindeutige Entwicklung von Zahlen in eine unendliche Reihe. Math. Ann. 21:411-423, 1883.

Generating partition α

- countable partition $\alpha:=\left\{A_{n}: n \in \mathbb{N}\right\}$ of $[0,1]$ consisting of left open, right closed intervals; ordered from right to left, starting with A_{1}.
- $a_{n}:=\lambda\left(A_{n}\right) ; t_{n}:=\sum_{k=n}^{\infty} a_{k}$.
- α-Lüroth map $L_{\alpha}(x):= \begin{cases}\left(t_{n}-x\right) / a_{n} & \text { for } x \in A_{n}, n \in \mathbb{N}, \\ 0 & \text { for } x=0 .\end{cases}$
- α-Farey map

$$
F_{\alpha}(x):= \begin{cases}(1-x) / a_{1} & \text { for } x \in A_{1} \\ a_{n-1}\left(x-t_{n+1}\right) / a_{1}+t_{n} & \text { for } x \in A_{n}, n \geq 2 \\ 0 & \text { for } x=0\end{cases}
$$

α-Lüroth and α-Farey

- λ is invariant with respect to L_{α}.
- L_{α} is the jump transformation of F_{α} with respect to A_{1}.
- α is said to be of finite type if $\sum_{n=1}^{\infty} t_{n}<\infty$
- α is said to be of infinite type if $\sum_{n=1}^{\infty} t_{n}=\infty$
- α is called expansive of exponent $\theta \geq 0$ if $t_{n}=\psi(n) n^{-\theta}$, for all $n \in \mathbb{N}$ and some slowly varying function ψ. Then:

$$
\lim _{n \rightarrow \infty} \frac{t_{n}}{t_{n+1}}=1 \text { and } F_{\alpha}^{\prime}(0+)=1
$$

- α is said to be expanding if $\lim _{n \rightarrow \infty} t_{n} / t_{n+1}=\rho>1$. Then:

$$
F_{\alpha}^{\prime}(0+)=\rho
$$

α-Lüroth and α-Farey

- $\exists v_{\alpha} \ll \lambda$ invariant with respect to F_{α} and density $\sum_{n=1}^{\infty} t_{n} / a_{n} \cdot \mathbf{1}_{A_{n}}$.
- $v_{\alpha}([0,1])=+\infty \Longleftrightarrow \alpha$ of infinite type.
- F_{α} and the tend map are topologically conjugate with conjugating homeomorphism given by (the α-Minkowski-? function)

$$
\theta_{\alpha}(x):=-2 \sum(-1)^{k} 2^{-\sum_{i=1}^{k} \ell_{i}}
$$

for $x=\left[\ell_{1}, \ell_{2}, \ldots\right]_{\alpha}=\sum_{n=1}^{\infty}(-1)^{n-1}\left(\prod_{i<n} a_{\ell_{i}}\right) t_{\ell_{n}}$ (α-Lüroth Expansion).

Examples for different expansive α

- $t_{n}=1 / n^{2}$ - finite type.
- $t_{n}=1 / \sqrt{n}$ - infinite type.

Renewal Theoretical Questions

- α-sum-level sets

$$
\mathscr{L}_{n}^{(\alpha)}:=\left\{x \in C_{\alpha}\left(\ell_{1}, \ell_{2}, \ldots, \ell_{k}\right): \sum_{i=1}^{k} \ell_{i}=n, \text { for some } k \in \mathbb{N}\right\},
$$

where

$$
C_{\alpha}\left(\ell_{1}, \ldots, \ell_{k}\right):=\left\{x \in[0,1]: L_{\alpha}^{i-1}(x) \in A_{l_{i}}, \forall i=1, \ldots, k\right\} .
$$

- Important fact: $\mathscr{L}_{n}^{(\alpha)}=F_{\alpha}^{-(n-1)}\left(A_{1}\right)$, for all $n \in \mathbb{N}$.

Renewal laws for sum-level sets

Theorem (K./Munday/Stratmann '11)

(1) We have that $\sum_{n=1}^{\infty} \lambda\left(\mathscr{L}_{n}^{(\alpha)}\right)$ diverges, and that

$$
\lim _{n \rightarrow \infty} \lambda\left(\mathscr{L}_{n}^{(\alpha)}\right)= \begin{cases}0, & \text { if } \alpha \text { is of infinite type } \\ \left(\sum_{k=1}^{\infty} t_{k}\right)^{-1}, & \text { if } \alpha \text { is of finite type }\end{cases}
$$

(2) Let α be either expansive of exponent $\theta \in[0,1]$ $\left(K_{\alpha}:=\frac{1}{\Gamma(2-\theta) \Gamma(1+\theta)}, k_{\alpha}:=\frac{1}{\Gamma(2-\theta) \Gamma(\theta)}\right)$, or of finite type $K_{\alpha}:=k_{\alpha}:=1$.
(a) Weak renewal law. $\sum_{k=1}^{n} \lambda\left(\mathscr{L}_{k}^{(\alpha)}\right) \sim K_{\alpha} \cdot n \cdot\left(\sum_{k=1}^{n} t_{k}\right)^{-1}$.
(b) Strong renewal law. $\lambda\left(\mathscr{L}_{n}^{(\alpha)}\right) \sim k_{\alpha} \cdot\left(\sum_{k=1}^{n} t_{k}\right)^{-1}$.

Proof of Part (1)

Fact (Renewal Equation)

For each $n \in \mathbb{N}$, we have that

$$
\lambda\left(\mathscr{L}_{n}^{(\alpha)}\right)=\sum_{m=1}^{n} a_{m} \lambda\left(\mathscr{L}_{n-m}^{(\alpha)}\right) .
$$

Proof.

Proved by induction using linearity.
Proof of $\sum_{n=0}^{\infty} \lambda\left(\mathscr{L}_{n}^{(\alpha)}\right)$ diverges.
Define $a(s):=\sum_{n=1}^{\infty} a_{n} s^{n}$ and $\ell(s):=\sum_{m=0}^{\infty} \lambda\left(\mathscr{L}_{m}^{(\alpha)}\right) s^{m}$. Then for $s \in(0,1)$ we have that $\ell(s)-1=\ell(s) a(s)$, and hence, $\ell(s)=1 /(1-a(s))$. Since $a(1)=1$ we have $\lim _{s / 1} \ell(s)=\infty$

Proof of First Theorem

Proof Part (1).

Classical Renewal Theorem by Erdős, Pollard and Feller gives

$$
\lim _{n \rightarrow \infty} \lambda\left(\mathscr{L}_{n}^{(\alpha)}\right)=\frac{1}{\sum_{m=1}^{\infty} m \cdot a_{m}}=\frac{1}{\sum_{k=1}^{\infty} t_{k}} .
$$

(P. Erdős, H. Pollard, W. Feller. A property of power series with positive coefficients. Bull. Amer. Math. Soc. 55:201-204, 1949)

Proof Part (2).

For the finite case consider part (1). For the expansive case apply a strong renewal theorems obtained in [K. B. Erickson. Strong renewal theorems with infinite mean. Trans. Amer. Math. Soc. 151, 1970], [A. Garsia, J. Lamperti. A discrete renewal theorem with infinite mean. Comment. Math. Helv. 37, 1963].

α-Farey Free Energy Function

- $S:[0,1] \rightarrow[0,1]$ diff'able, $x \in[0,1]$,

$$
\Lambda(S, x):=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} \log \left|S^{\prime}\left(S^{k}(x)\right)\right| .
$$

- α-Farey Lyapunov spectrum, $s \in \mathbb{R}$,

$$
\sigma_{\alpha}(s):=\operatorname{dim}_{H}\left(\left\{x \in[0,1]: \wedge\left(F_{\alpha}, x\right)=s\right\}\right) .
$$

- α-Farey free energy function $v: \mathbb{R} \rightarrow \mathbb{R} \cup\{\infty\}$

$$
v(u):=\inf \left\{r \in \mathbb{R}: \sum_{n=1}^{\infty} a_{n}^{u} \exp (-r n) \leq 1\right\} .
$$

- We say that F_{α} exhibits no phase transition if and only if v is diff'able everywhere.

α-Lüroth Lyapunov Spectrum

Theorem (K./Munday/Stratmann '11)

Let α either expanding, or expansive and eventually decreasing. For $s_{-}:=\inf \left\{-\left(\log a_{n}\right) / n: n \in \mathbb{N}\right\}$ and $s_{+}:=\sup \left\{-\left(\log a_{n}\right) / n: n \in \mathbb{N}\right\}$, we have that $\sigma_{\alpha}(s)$ vanishes outside the interval $\left[s_{-}, s_{+}\right]$and for each $s \in\left(s_{-}, s_{+}\right)$, we have

$$
\sigma_{\alpha}(s)=\inf _{u \in \mathbb{R}}\left(u+s^{-1} v(u)\right)
$$

(1) α expanding: F_{α} exhibits no phase transition. In particular, v is strictly decreasing and bijective.
(2) α expansive of exponent θ and eventually decreasing: F_{α} exhibits no phase transition $\Longleftrightarrow \alpha$ is of infinite type. In particular, $v \geq 0$ and $\left.v\right|_{[1, \infty)}=0$.

α-Lüroth Pressure

- α-Lüroth Lyapunov spectrum, $s \in \mathbb{R}$

$$
\tau_{\alpha}(s):=\operatorname{dim}_{H}\left(\left\{x \in \mathscr{U}: \Lambda\left(L_{\alpha}, x\right)=s\right\}\right)
$$

- α-Lüroth pressure function $p: \mathbb{R} \rightarrow \mathbb{R} \cup\{\infty\}$

$$
p: u \mapsto \log \sum_{n=1}^{\infty} a_{n}^{u} .
$$

- We say that L_{α} exhibits no phase transition if and only if the pressure function p is differentiable everywhere (that is, the right and left derivatives of p coincide everywhere, with the convention that $p^{\prime}(u)=\infty$ if $\left.p(u)=\infty\right)$.

α-Lüroth Lyapunov Spectrum

Theorem (K./Munday/Stratmann '11)

For $t_{-}:=\min \left\{-\log a_{n}: n \in \mathbb{N}\right\}$ we have that τ_{α} vanishes on $\left(-\infty, t_{-}\right)$, and for each $s \in\left(t_{-}, \infty\right)$ we have

$$
\tau_{\alpha}(s)=\inf _{u \in \mathbb{R}}\left(u+s^{-1} p(u)\right)
$$

Moreover, $\lim _{s \rightarrow \infty} \tau_{\alpha}(s)=t_{\infty}:=\inf \left\{r>0: \sum_{k=1}^{\infty} a_{n}^{r}<\infty\right\} \leq 1$.
(1) α expanding: L_{α} exhibits no phase transition and $t_{\infty}=0$.
(2) α expansive of exponent $\theta>0$ and eventually decreasing: $t_{\infty}=1 /(1+\theta)$.
L_{α} exhibits no phase trans. $\Longleftrightarrow \sum_{n=1}^{\infty} \psi(n)^{1 /(1+\theta)} \frac{\log n}{n}=\infty$.
(3) α expansive of exponent $\theta=0$ and eventually decreasing: $t_{\infty}=1$.
L_{α} exhibits no phase trans. $\Longleftrightarrow \sum_{n=1}^{\infty} a_{n} \log \left(a_{n}\right)=\infty$.

Good set

Theorem (Munday '10)

The critical value t_{∞} is also equal to the Hausdorff dimension of the Good-type set $G_{\infty}^{(\alpha)}$ associated to L_{α}, given by

$$
G_{\infty}^{(\alpha)}:=\left\{\left[\ell_{1}, \ell_{2}, \ldots\right]_{\alpha}: \lim _{n \rightarrow \infty} \ell_{n}=\infty\right\} .
$$

- If L_{α} exhibits a phase transition, that is $\sum a_{n}^{t_{\infty}}<+\infty$ with finite right derivative t_{0} in t_{∞}, then for $t \in\left[t_{0},+\infty\right)$,

$$
\tau_{\alpha}(t)=\frac{\log \sum_{n=1}^{\infty} a_{n}^{t_{\infty}}}{t}+t_{\infty}
$$

Expansive Example: The classical alternating Lüroth system

- For $\alpha_{H}:=\{(1 /(n+1), 1 / n], n \in \mathbb{N}\}$ The figure shows the α_{H}-Farey free energy v (solid line), the α_{H}-Lüroth pressure function p (dashed line), and the associated dimension graphs $\sigma_{\alpha_{H}}$ and $\tau_{\alpha_{H}}$. Here, $t_{-}=\log 2, t_{\infty}=1 / 2$ and $s_{+}=(\log 6) / 2$. We have $p\left(t_{\infty}\right)=\infty$, no phase transition for the α_{H}-Farey free energy function and the α_{H}-Lüroth pressure function.

Expansive Example: $a_{n}:=\zeta(5 / 4)^{-1} n^{-5 / 4}$

- The Farey spectrum and the Lüroth spectrum intersect in a single point, for α expansive. The α-Farey free energy v (solid line), the α-Lüroth pressure function p (dashed line), and the associated dimension graphs for $a_{n}:=\zeta(5 / 4)^{-1} n^{-5 / 4}$. Here, F_{α} exhibits no phase transition.

Expanding Example: $a_{n}:=2 \cdot 3^{-n}$

- The Farey spectrum is completely contained in the Lüroth spectrum, for α expanding. The α-Farey free energy v (solid line), the α-Lüroth pressure function p (dashed line), and the associated dimension graphs. The α-Farey system is given in this situation by the tent map with slopes 3 and $-3 / 2$.

Example for Lüroth Phase Transition $a_{n}:=\frac{C}{n^{2} \cdot(\log (n+5))^{12}}$

- Finite critical value $p\left(t_{\infty}\right)<\infty$ with phase transition for the α-Lüroth pressure function and α expansive. The α-Lüroth pressure function p, and the associated dimension graphs. In this case $t_{\infty}=1 / 2$ and $p(1 / 2)<\infty$ and L_{α} has a phase transition.

Examples: No Lüroth Phase Transition $a_{n}:=\frac{C}{n^{2} \cdot(\log (n+5))^{4}}$

- Finite critical value $p\left(t_{\infty}\right)<\infty$ and no phase transition for the α-Lüroth pressure function and α expansive. The α-Lüroth pressure function p, and the associated dimension graphs for the α-Lüroth system. In this case $t_{\infty}=1 / 2$ and $p(1 / 2)<\infty$, but L_{α} exhibits no phase transition.

Technical Lemma

Lemma

Let α be a partition such that $\lim _{n \rightarrow \infty} t_{n} / t_{n+1}=\rho \geq 1$ and such that α is either expanding, or expansive of exponent θ and eventually decreasing. Then:
(1) $\lim _{n \rightarrow \infty} \frac{\log a_{n}}{n}=\lim _{n \rightarrow \infty} \frac{\log t_{n}}{n}=-\log \rho . \alpha$ expansive with $\theta>0$, then $a_{n} \sim \theta n^{-1} t_{n}$.
(2) If α expansive with $\theta=0$, then we have $t_{\infty}=1$.
(3) If α is expanding, or expansive with $\theta>0$, then $\lim _{n \rightarrow \infty} \frac{a_{n}}{a_{n+1}}=\rho$.
(4) There exists a sequence $\left(\varepsilon_{k}\right)_{k \in \mathbb{N}}$, with $\lim _{k \rightarrow \infty} \varepsilon_{k}=0$, such that for all $n \in \mathbb{N}$ and $x \in \cup_{k \geq n} A_{k}$ we have that

$$
\left|\frac{1}{n} \sum_{k=0}^{n-1} \log \right| F_{\alpha}^{\prime}\left(F_{\alpha}^{k}(x)\right)|-\log \rho|<\varepsilon_{n} .
$$

Multifractal Formalism for Countable State Spaces I

Theorem (K./Jaerisch)

Consider the two potential functions $\varphi, \psi: \mathscr{U} \rightarrow \mathbb{R}$ given for $x \in A_{n}$, $n \in \mathbb{N}$, by $\varphi(x):=\log a_{n}$ and $\psi(x):=z_{n}$, for some fixed sequence $\left(z_{n}\right)_{n \in \mathbb{N}}$ of negative real numbers. For all $s \in \mathbb{R}$ we then have that

$$
\operatorname{dim}_{H}\left\{x \in \mathscr{U}: \lim _{n \rightarrow \infty} \frac{\sum_{k=0}^{n-1} \psi\left(L_{\alpha}^{k}(x)\right)}{\sum_{k=0}^{n-1} \varphi\left(L_{\alpha}^{k}(x)\right)}=s\right\} \leq \max \left\{0,-t^{*}(-s)\right\}
$$

The function $t: \mathbb{R} \rightarrow \mathbb{R} \cup\{\infty\}$ is given by

$$
t(v):=\inf \left\{u \in \mathbb{R}: \sum_{n=1}^{\infty} a_{n}^{u} \exp \left(v z_{n}\right) \leq 1\right\}
$$

and t^{*} is the Legendre transform of t.

Multifractal Formalism for Countable State Spaces II

Theorem (K./Jaerisch)

With

$$
\begin{aligned}
& r_{-}:=\inf \left\{-t^{+}(v): v \in \operatorname{Int}(\operatorname{dom}(t))\right\} \\
& r_{+}:=\sup \left\{-t^{+}(v): v \in \operatorname{Int}(\operatorname{dom}(t))\right\}
\end{aligned}
$$

we have for each $s \in\left(r_{-}, r_{+}\right)$,

$$
\operatorname{dim}_{H}\left\{x \in \mathscr{U}: \lim _{n \rightarrow \infty} \frac{\sum_{k=0}^{n-1} \psi\left(L_{\alpha}^{k}(x)\right)}{\sum_{k=0}^{n-1} \varphi\left(L_{\alpha}^{k}(x)\right)}=s\right\}=-t^{*}(-s)
$$

where t^{+}denotes the right derivative of $t, \operatorname{Int}(A)$ denotes the interior of the set A, and $\operatorname{dom}(t):=\{v \in \mathbb{R}: t(v)<+\infty\}$.

Proof of Theorem for α-Farey

- Set $z_{n}:=-n$, then $v: u \mapsto \inf \left\{r \in \mathbb{R}: \sum_{n=1}^{\infty} a_{n}^{u} \exp (-r n) \leq 1\right\}$ is the inverse of t.
- $s_{-}=1 / r_{+}$and $s_{+}=1 / r_{-}$.
- For $s \in\left(s_{-}, s_{+}\right)$, it follows that

$$
\begin{aligned}
\sigma_{\alpha}(s) & =-t^{*}(-1 / s)=\inf _{v \in \mathbb{R}}\left(t(v)+s^{-1} v\right) \\
& =\inf _{u \in \mathbb{R}}\left(u+s^{-1} \log \sum_{n=1}^{\infty} a_{n}^{u}\right)
\end{aligned}
$$

and $\sigma(s)$ vanishes outside of $\left(s_{-}, s_{+}\right)$.

Phase Transition for the α-Farey Free Energy

- Consider $Z(u, v):=\sum_{n=1}^{\infty} \exp \left(n\left(\frac{u \log a_{n}}{n}-v\right)\right)$.
- α expanding $\Longrightarrow \forall u_{0} \in \mathbb{R}\left\{Z\left(u_{0}, v\right): v \in \mathbb{R}\right\}=(0, \infty) \Longrightarrow$ $\exists f\left(u_{0}\right)$ is unique solution of $Z\left(u_{0}, f\left(u_{0}\right)\right)=1$. By the implicit function theorem there is no phase transition.
- α expansive
- For $u<1$ argue as above
- For $u \geq 1$ we have $\sum_{n=1}^{\infty} a_{n}^{u} e^{-w n}\left\{\begin{array}{ll}<1 & \text { for } w \geq 0 \\ =\infty & \text { for } w<0\end{array} \Longrightarrow\right.$

$$
v(u)=0
$$

- Consider $f^{\prime}(u)=\frac{\sum_{n=1}^{\infty} a_{n}^{u} e^{-f(u) n} \log a_{n}}{\sum_{n=1}^{\infty} n a_{n}^{u} e^{-f(u) n}}$ for $u \nearrow 1$.
- Infinite type: Denominator tends to ∞.
- $\lim _{u \not{ }_{1} 1} f^{\prime}(u)=\lim _{u \not{ }_{\lambda 1}} \sum_{n=1}^{\infty} \frac{\log a_{n}}{n} \frac{n a_{n} e^{-f(u) n}}{\sum_{k=1}^{\infty=1} a_{k} e^{-f(u) k}}=0$.

Geometric Lemma

Lemma

Let α be a partition which is either expanding, or expansive of exponent θ and eventually decreasing. With

$$
\Pi\left(L_{\alpha}, x\right):=\lim _{n \rightarrow \infty}\left(\sum_{k=0}^{n-1} \log \left|L_{\alpha}^{\prime}\left(L_{\alpha}^{k}(x)\right)\right|\right) /\left(\sum_{k=0}^{n-1} N\left(L_{\alpha}^{k}(x)\right)\right),
$$

we then have for each $s \geq 0$ that the sets

$$
\left\{x \in \mathscr{U}: \Pi\left(L_{\alpha}, x\right)=s\right\} \text { and }\left\{x \in \mathscr{U}: \wedge\left(F_{\alpha}, x\right)=s\right\}
$$

coincide up to a countable set of points.

Proof of Theorem for α-Lüroth

- Set $z_{n}:=-1, p: u \mapsto \log \sum_{n=1}^{\infty} a_{n}^{u}$ is the inverse of t.
- $t_{-}:=1 / r_{+}=\inf \left\{-\log a_{n}: n \in \mathbb{N}\right\}$ and $t_{+}:=+\infty$
- For $s \in\left(t_{-},+\infty\right)$, it follows that

$$
\begin{aligned}
\tau_{\alpha}(s) & =-t^{*}(-1 / s)=\inf _{v \in \mathbb{R}}\left(t(v)+s^{-1} v\right) \\
& =\inf _{u \in \mathbb{R}}\left(u+s^{-1} \log \sum_{n=1}^{\infty} a_{n}^{u}\right)
\end{aligned}
$$

and $\tau_{\alpha}(s)$ vanishes for $s<t_{-}$.

No Phase Transition for α-Lüroth

- For the right derivative of the pressure function p of L_{α}, we have that

$$
p^{\prime}(u)=\frac{\sum_{n=1}^{\infty} a_{n}^{u} \log a_{n}}{\sum_{n=1}^{\infty} a_{n}^{u}}
$$

- Clearly, p is real-analytic on $\left(t_{\infty}, \infty\right)$.
- Hence, we have that L_{α} exhibits no phase transition if and only if $\lim _{u \backslash t_{\infty}}-p^{\prime}(u)=+\infty$.
- If α is expanding, then there is no phase transition. This follows, since, by the technical Lemma, we have that $p(u)<\infty$, for all $u>0$. In particular, $t_{\infty}=0$. If α is expansive with $\theta=0$, we have by the Technical Lemma $t_{\infty}=1$. Hence, $\lim _{u \searrow t_{\infty}} p^{\prime}(u)=\infty$ if and only if $-\sum_{n=1}^{\infty} a_{n} \log \left(a_{n}\right)=\infty$.

Phase Transition for α-Lüroth

- If α is expansive such that $t_{n}=\psi(n) n^{-\theta}$, then the Technical Lemma implies that there exists ψ_{0} such that $\psi_{0}(n) \sim \theta \psi(n)$ and $a_{n}=\psi_{0}(n) n^{-(1+\theta)}$. Consequently, we have that $t_{\infty}=1 /(1+\theta)$. Hence, we now observe that

$$
\lim _{u \backslash t_{\infty}}-p^{\prime}(u)=t_{\infty}^{-1} \lim _{u \backslash t_{\infty}} \frac{\sum_{n=1}^{\infty}\left(n^{-1-\theta} \psi_{0}(n)\right)^{u} \log \left(n\left(\psi_{0}(n)\right)^{-\frac{1}{1+\theta}}\right)}{\sum_{n=1}^{\infty}\left(n^{-1-\theta} \psi_{0}(n)\right)^{u}}
$$

- $\sum_{n=1}^{\infty} \psi(n)^{1 /(1+\theta)}(\log n) / n<\infty \Longrightarrow$ numerator and denominator both converge $\Longrightarrow \lim _{u \backslash t_{\infty}}-p^{\prime}(u)<\infty \Longrightarrow$ phase transition.
- $\sum_{n=1}^{\infty} \psi(n)^{1 /(1+\theta)}(\log n) / n=\infty$:
- $\sum_{n=1}^{\infty} n^{-1} \psi_{0}(n)^{1 /(1+\theta)}<\infty \Longrightarrow \lim _{u \backslash t_{\infty}}-p^{\prime}(u)=\infty$.
- $\sum_{n=1}^{\infty} n^{-1} \psi_{0}(n)^{1 /(1+\theta)}=\infty \Longrightarrow$ $\forall k \in \mathbb{N}: \lim _{u \backslash t_{\infty}}\left(k^{-(1+\theta)} \psi_{0}(k)\right)^{u} / \sum_{n=1}^{\infty}\left(n^{-(1+\theta)} \psi_{0}(n)\right)^{u}=0$ $\Longrightarrow \lim _{u \backslash t_{\infty}-p^{\prime}(u)=\infty}$.
- \Longrightarrow no phase transition.

目 J．Jaerisch，M．Kesseböhmer．Regularity of multifractal spectra of conformal iterated function systems．Trans．Amer．Math． Soc．363（1）：313－330， 2011.
圊 M．Kesseböhmer，S．Munday，B．O．Stratmann．Strong renewal theorems and Lyapunov spectra for α－Farey and α－Lüroth systems．To appear in Ergodic Theory \＆Dynamical Systems 2011.
－M．Kesseböhmer，B．O．Stratmann．On the Lebesgue measure of sum－level sets for continued fractions．To appear in Discrete Contin．Dyn．Syst．

囯 M．Kesseböhmer and B．O．Stratmann．A note on the algebraic growth rate of Poincaré series for Kleinian groups．To appear in Proc．（S．J．Patterson＇s 60th birthday）．

Literature II

囲 M. Kesseböhmer and M. Slassi. A distributional limit law for the continued fraction digit sum. Mathematische Nachrichten 81 (2008) no 9, 1294-1306.
(R. M. Kesseböhmer and M. Slassi. Large Deviation Asymptotics for Continued Fraction Expansions. Stochastics and Dynamics 8 (2008), no. 1, 103-113.

圊 M. Kesseböhmer and M. Slassi. Limit Laws for Distorted Critical Return Time Processes in Infinite Ergodic Theory. Stochastics and Dynamics 7 no. 1 (2007) 103-121.

R M. Kesseböhmer and B.O. Stratmann. A multifractal analysis for Stern-Brocot intervals, continued fractions and Diophantine growth rates Journal für die reine und angewandte Mathematik 605 (2007), 133-163

