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e The Farey map F :[0,1] — [0,1] is given by
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e The Gauss map G :[0,1]\Q — [0,1]\ Q is given by
G (x) :=1— {EJ .
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Jump Transformation

e G is invariant with respect to the (finite) Gauss measure
du(x) := ((1+x)log2)~1dA (x).

e F is invariant with respect to the (infinite) measure
dm(x):=1/x-dA (x).

e Fix A1 :=(1/2,1]. For x € [0,1]\ Q define the jump time

®a, (x) :=inf{neNg: F"(x) € A1}

and let the jump transformation of the Farey map F with
respect to A; for x € [0,1]\ Q be given by

Faq (x) := FoM 007 (x)

Fact
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e n-th Sum-Level-Set:

k
Cn = {xe[al,...,ak] : Za,-:n, for some kEN},

i=1

n

and Z)L(‘fk

Iog2 nlog?2

logn

A (%h) ~

logn

Observe F~"1([1/2,1]) = %y, and use Infinite Ergodic Theory
for the transfer operator F of F on ([0,1],%,x dA (x)). O
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e 5:[0,1] — [0,1] diff'able, x € [0,1],

T 1 = 1( ck
A(S,x) = Jm;kzzlolog s'(s (x))‘.

e Lyapunov spectra (K./Stratmann '07)
2 (o) :={x€[0,1] : A(F,x) = a}.

dim (%1 ()
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e Lyapunov spectrum for the Gauss map (Pollicott/Weiss '99,
K./Stratmann '07, Fan/Liao/Wang/Wu '09)

L(a):={xe[0,1] : A(G,x) =s}.

dimpy ()

172 4
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Linearised versions: a-Liiroth and a-Farey maps

e o-Liiroth map e a-Farey map

e J. Liiroth. Uber eine eindeutige Entwicklung von Zahlen in
eine unendliche Reihe. Math. Ann. 21:411-423, 1883.
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Generating partition o

countable partition a := {A, : n € N} of [0,1] consisting of left
open, right closed intervals; ordered from right to left, starting
with Aj.

an:=A(An); th:=Y70_, ak.

th — f A N
a-Liroth map Lg(x) := {( n—x)/an forx €A, neN,

for x =0.
o-Farey map
(1—x)/a1 for x € Ay,
Fa(x):=<¢ an-1(x—tpr1)/a1+t, forxeA,,n>2,
0 for x =0.
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o-Liiroth and a-Farey

A is invariant with respect to L.

Lg is the jump transformation of F, with respect to A;.

o is said to be of finite type if Yo 1 t, <o

o is said to be of infinite type if Y5 1 t, =

a is called expansive of exponent 6> 0 if t, = w(n)n=?, for all
n € N and some slowly varying function y. Then:

lim =1land F,(0+)=1

n—eo tniq
o is said to be expanding if lim,_ e tp/tht1 =p > 1. Then:

Fo (0+) =p.
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o-Liiroth and a-Farey

Jv, < A invariant with respect to Fy and density
Z(;::l tn/an : ]-A,,-
Ve ([0,1]) = +o0 <= a of infinite type.

Fo and the tend map are topologically conjugate with
conjugating homeomorphism given by (the a-Minkowski-7
function)

0o (x) 1= —22(—1)"2—):}(:14:

for x = [01,02,.. .o = Tip—1 (—1)" " (IT<n ;) tr, (o-Liiroth
Expansion).
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e t,=1/n? - finite type.

e t, =1/y/n - infinite type.

12/37



e a-sum-level sets

k
f,sa) = {x € Ca(l1,02,...,0): Zé,- =n, for some k € N},

i=1
where
Call1,.. lx) = {x€[0,1]: Ly} (x) € A, Vi=1,...,k}.

e Important fact: 2 = Fo (n- 1)(A1) for all ne N.
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Renewal laws for sum-level sets

Theorem (K./Munday/Stratmann '11)
@® We have that ¥, _; l(f,ga)) diverges, and that

() 0, if a is of infinite type;
am A ("f ) { (Sr_ite) b, if ais of finite type.

@® Let a be either expansive of exponent 6 € [0,1]

k ), or of finite type

(K = rayriaeey ke = oy

Ko = ko :=1.
(a) Weak renewal law. Z A (.,?(a ) Ko -n- (Zn: )
K

(b) Strong renewal law. A < (Z tk>

k=1

14/37



For each n € N, we have that

£ (47) - £ o (42,

Proved by induction using linearity.

Define a(s) :=Y_qans” and £(s) =Y m_oA (z,&“)) s™. Then for
s €(0,1) we have that ¢(s) —1 = {(s)a(s), and hence,
{(s)=1/(1—a(s)). Since a(1) =1 we have limg » £(s) = oo O
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Proof of First Theorem

Proof Part (1).

Classical Renewal Theorem by Erdés, Pollard and Feller gives

1 1
lim (L) = ==
n—oo S Yom=1M-am  Yi_1tk
(P. Erdés, H. Pollard, W. Feller. A property of power series with
positive coefficients. Bull. Amer. Math. Soc. 55:201-204,
1949) O

Proof Part (2).

For the finite case consider part (1). For the expansive case apply a
strong renewal theorems obtained in [K. B. Erickson. Strong
renewal theorems with infinite mean. Trans. Amer. Math. Soc.
151, 1970], [A. Garsia, J. Lamperti. A discrete renewal theorem
with infinite mean. Comment. Math. Helv. 37, 1963|.
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o-Farey Free Energy Function
S:[0,1] — [0,1] diff'able, x € [0,1],

A(S,x):= lim = Z log |S'(S*(x ))‘

n—voo =

a-Farey Lyapunov spectrum, s € R,
Oo(s) :=dimy ({x € [0,1] : A(Fg,x) =s}).

a-Farey free energy function v : R — RU {0}

n=1

v(u) = inf{reR: i apexp(—rn) < 1}.

We say that Fy exhibits no phase transition if and only if v is
diff'able everywhere.
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o-Liiroth Lyapunov Spectrum

Theorem (K./Munday/Stratmann '11)

Let o either expanding, or expansive and eventually decreasing. For
s_:=inf{—(loga,)/n:ne N} and s, :=sup{—(logan)/n: ne N},
we have that G (s) vanishes outside the interval [s_,sy]| and for
each s € (s_,s;), we have

oy (s) = Lllréﬂf{ (u+stv(u)).

® o expanding: F, exhibits no phase transition. In particular, v
is strictly decreasing and bijective.

® a expansive of exponent 6 and eventually decreasing:
Fo exhibits no phase transition <= « is of infinite type. In
particular, v >0 and v|[17°°) =0.
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o-Liroth Pressure

e o-Liiroth Lyapunov spectrum, s € R
To(s) :=dimy ({x € Z : N(La,x) = s}).
e o-Liiroth pressure function p: R — RU {eo}
p:ulog Z ay.
n=1

e We say that Ly exhibits no phase transition if and only if the
pressure function p is differentiable everywhere (that is, the
right and left derivatives of p coincide everywhere, with the
convention that p'(u) = oo if p(u) = ).
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o-Liiroth Lyapunov Spectrum

Theorem (K./Munday/Stratmann '11)

For t_ := min{—loga, : n € N} we have that 1, vanishes on
(—eo,t_), and for each s € (t_,o0) we have
To(s) = inf -1 .
a(s) = inf (u+s""p(u))

Moreover, lims_;e Ta(5) =t :=inf{r >0: Y7 ;a] <oo} <1.
@ o expanding: L, exhibits no phase transition and t., = 0.
® o expansive of exponent 6 > 0 and eventually

decreasing: t..=1/(1+0).
- I
Ly exhibits no phase trans. <= ) l//(n)l/(He)E =oo
n=1 z
© o expansive of exponent 6 =0 and eventually
decreasing: t..=1.
Ly exhibits no phase trans. <= Y ;i anlog(ap) = oo.
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The critical value t.. is also equal to the Hausdorff dimension of the

Good-type set G associated to Lqy, given by

G .= {1, 22, Ja: '!i_r;r:ofn = oo}

o If Ly exhibits a phase transition, that is } ak < +oo with finite
right derivative tg in t., then for t € [tg,+<0),

I °°_ teo
(t) — OgZI;_l an

+ tw.

o
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Expansive Example : The classical alternating Liiroth system
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e For oy :=={(1/(n+1),1/n],n € N} The figure shows the
oy-Farey free energy v (solid line), the ay-Liiroth pressure
function p (dashed line), and the associated dimension graphs
Oay and Tq,,. Here, t_ =log2,t.=1/2 and sy = (log6)/2.
We have p(t.) = e, no phase transition for the o-Farey
free energy function and the ay-Liiroth pressure
function.
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Expansive Example: aj, := ¢ (5/4) "t n~5/4
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e The Farey spectrum and the Liiroth spectrum intersect
in a single point, for a expansive. The a-Farey free energy
v (solid line), the a-Liiroth pressure function p (dashed line),
and the associated dimension graphs for a, := { (5/4) ' n~%/%.
Here, Fy exhibits no phase transition.
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Expanding Example: a,:=2-37"

41

N t
x t=s_ s, 2 4

e The Farey spectrum is completely contained in the
Liiroth spectrum, for o expanding. The a-Farey free
energy v (solid line), the a-Liiroth pressure function p (dashed
line), and the associated dimension graphs. The a-Farey
system is given in this situation by the tent map with slopes 3
and —3/2.
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C

Example for Liiroth Phase Transition aj, := -(log(n5))2

14
4
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e Finite critical value p(t..) < e with phase transition for
the a-Liiroth pressure function and o expansive. The
a-Liiroth pressure function p, and the associated dimension
graphs. In this case t. =1/2 and p(1/2) < e and Ly has a
phase transition.
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C

Examples: No Liiroth Phase Transition a, := 2 (log(775))*

0 12 1\ , , , N
t 5 10

e Finite critical value p(t..) <« and no phase transition for
the o-Liiroth pressure function and o expansive. The
a-Liroth pressure function p, and the associated dimension
graphs for the a-Liiroth system. In this case t. =1/2 and
p(1/2) < oo, but Ly exhibits no phase transition.

26/37



Technical Lemma

Lemma
Let o be a partition such that lim,_,. t,/t,+1 = p > 1 and such
that a is either expanding, or expansive of exponent 6 and
eventually decreasing. Then:
. loga . logt
® |Iim g "= lim LU
n—o N n—oo N
then a, ~ On't,.

—logp. a expansive with 6 > 0,

® If a expansive with 8 =0, then we have t., = 1.

®Ifais expanding, or expansive with 6 > 0, then

=p.

O There exists a sequence (&x)ken, With limg ... & =0, such
that for all n € N and x € >, Ax we have that

||m,H°<,

! (FE(x ‘—logp A
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Multifractal Formalism for Countable State Spaces |

Theorem (K./Jaerisch)

Consider the two potential functions @,y : % — R given for x € A,
neN, by ¢(x) :=loga, and y(x) := z,, for some fixed sequence
(zn)nen of negative real numbers. For all s € R we then have that

dimy {x €U : JTMM = s} < max{0,—t*(—s)}.

><

The function t : R — RU {eo} is given by

t(v):= inf{uER: i apexp(vzy) < 1}

n=1

and t* is the Legendre transform of t.
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Multifractal Formalism for Countable State Spaces Il

Theorem (K./Jaerisch)
With

r_ = inf{—t+(v) ‘v e /nt(dom(t))},
ry = sup{—t+(v) [V E /nt(dom(t))},

we have for each s € (r_,ry),
n—1 Lk
dimy {x c : lim M = s} =—t"(-s).

where tT denotes the right derivative of t, Int(A) denotes the
interior of the set A, and dom(t) :={v € R: t(v) < +oo}.
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o Set z,:=—n, then v:u—inf{reR:Y; ;a%exp(—rn) <1}
is the inverse of t.

es . =1/rpandsy =1/r_.
e Forse(s_,s;), it follows that

ou(s) = —t*(=1/s)=inf (t(v)+s 'v)

veR
= inf[u+stlo E
ueR ( + gngl n)

and o(s) vanishes outside of (s_,s;).
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Phase Transition for the a-Farey Free Energy

Consider Z(u,v) =Y _jexp (n (% - v)) )

o expanding = Vug € R{Z(up,v): v € R} =(0,00) =
3f (up) is unique solution of Z(ug,f (up)) = 1. By the implicit
function theorem there is no phase transition.
O expansive
e For u <1 argue as above
<1l forw>0
For u>1 we have ¥ ate™*" -
e For u>1we have ) _;ahe {_oo for w<0
v(u)=0
. / _ Xo-1ape
Consider f'(u) = Z",l;l oy

e Infinite type: Denominator tends to .

—f(u)

n
(If)%,a” foru ~1.

H ! T o loga nape—f(u)n
o lim, ' (u) = limy, ~ Y7, =820 Z‘Zflnkake’f(“

& =0.
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Geometric Lemma

Lemma

Let o be a partition which is either expanding, or expansive of
exponent 6 and eventually decreasing. With

M(Lg,x) ::r!i_rQO(Zlog Ll (LK (x D (ZNLk )

we then have for each s > 0 that the sets

{x €% :N(Ly,x)=s} and {x € % : N(Fq,x) =s}

coincide up to a countable set of points.
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e Set z,:=—1, p:u—>log),_;al is the inverse of t.
ot :=1/rp =inf{—loga,:neN} and t; :=+oo
e For s € (t_,+o), it follows that

To(s) = —t'(-1/s)= jg&(t(v)%—s_lv)

— inf —1| u
LllgR(u-i-s ognglan>

and Ty(s) vanishes for s < t_.
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No Phase Transition for o-Liroth

For the right derivative of the pressure function p of Ly, we

have that ol
_14d,10g a
p/(u) — Zn—l nl0gan )

Yo-14;
Clearly, p is real-analytic on (tw,).
Hence, we have that L, exhibits no phase transition if and
only if limy . —p'(u) = +oo.
If @ is expanding, then there is no phase transition. This
follows, since, by the technical Lemma, we have that
p(u) < oo, for all u> 0. In particular, t. =0. If o is expansive
with 8 =0, we have by the Technical Lemma t.. = 1. Hence,
limy e p’ (u) = oo if and only if —Y}_; aplog(an) = ce.
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Phase Transition for a-Luroth

e If o is expansive such that t, = y(n)n~?, then the Technical
Lemma implies that there exists yy such that yy(n) ~ Oy(n)
and a, = yo(n)n~(1+9) Consequently, we have that
t.=1/(140). Hence, we now observe that

L

o Ema (w(m) log (n(ye(n) T
Jo )=l o1 (n 10 yo(n))"

o Y2 y(n)/+9(logn)/n < o = numerator and
denominator both converge = lim,\ .. —p'(u) < oo =
phase transition.

o X5, w(n)Y/0+0) (logn) /n =

o Yrpn tyo(n)/0F0) <o = limy p, —p (u) = oo,

o Yoy yo(n)HOT0) — e —
vk € N limy e (k- Oyo(k))!/ Xy (= (HOyo(n)) =0
= lim, ¢, —p'(u) =co.

e — no phase transition.
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