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Terminology

Let β > 1 be a non-integer. By a β-expansion we mean an expression of
the form

x =
∞∑
i=1

bi

βi
,

with bi ∈ {0, 1, . . . , bβc}.
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Definition of Kβ

Roughly, Kβ is obtained by randomizing the greedy map, and the lazy map.
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Figure 1: The greedy map Tβ (left), and lazy map Lβ (right). Here β = π.

Karma Dajani () Two special invariant measures for the random β-transformationApril 12, 2011 4 / 52



Definition of Kβ

If we take the common refinement, or simply superimpose the two maps,
we get the following picture on [0, bβc/(β − 1)].

1

0

1

E0 E1S1 E2S2 EbβcSbβc
1
β bβc

β(β−1)

2
β

• • •

bβc
β

1
β

bβc
β−1

bβc
β−1

bβc
β−1

− 1

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
..

Figure 1: The greedy and lazy maps, and their switch regions.
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Definition of Kβ: a special partition

We get a partition of the interval [0,
bβc
β − 1

] into bβc switch regions,

S1, . . . ,Sbβc, and bβc+ 1 uniqueness regions, E0, . . . ,Ebβc, where

E0 =

[
0,

1

β

)
, Ebβc =

( bβc
β(β − 1)

+
bβc − 1

β
,
bβc
β − 1

]
,

Ek =

( bβc
β(β − 1)

+
k − 1

β
,

k + 1

β

)
, k = 1, . . . , bβc − 1,

Sk =

[
k

β
,
bβc

β(β − 1)
+

k − 1

β

]
, k = 1, . . . , bβc.
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Definition of Kβ: a special partition

On Sk , the greedy map assigns the digit k , while the lazy map assigns
the digit k − 1. On Ek both maps assign the same digit k .

We use a random rule by flipping a coin every time the orbit is in the
switch region.
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The map Kβ

Consider Ω = {0, 1}N with product σ-algebra. Let σ : Ω→ Ω be the left
shift. Define K = Kβ : Ω× [0, bβc/(β − 1)]→ Ω× [0, bβc/(β − 1)] by

K (ω, x) =


(ω, βx − `) x ∈ E`, ` = 0, 1, . . . , bβc,

(σ(ω), βx − `) x ∈ S` and ω1 = 1, ` = 1, . . . , bβc,

(σ(ω), βx − `+ 1) x ∈ S` and ω1 = 0, ` = 1, . . . , bβc.
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Random Digits

Let

d1 = d1(ω, x) =


` if x ∈ E`, ` = 0, 1, . . . , bβc,

or (ω, x) ∈ {ω1 = 1} × S`, ` = 1, 2, . . . , bβc,

`− 1 if (ω, x) ∈ {ω1 = 0} × S`, ` = 1, 2, . . . , bβc,

then

Kβ(ω, x) =


(ω, βx − d1) if x ∈ E ,

(σ(ω), βx − d1) if x ∈ S .
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Random β-expansions

Set dn = dn(ω, x) = d1

(
Kn−1
β (ω, x)

)
, and let

π2 : Ω× [0, bβc/(β − 1)]→ [0, bβc/(β − 1)] be the canonical projection
onto the second coordinate. Then

π2
(
Kn
β (ω, x)

)
= βnx − βn−1d1 − · · · − βdn−1 − dn,

rewriting gives

x =
d1

β
+

d2

β2
+ · · ·+ dn

βn
+
π2

(
Kn
β (ω, x)

)
βn

.

Since π2
(

Kn
β (ω, x)

)
∈ [0, bβc/(β − 1)], it follows that

∣∣∣∣∣ x −
n∑

i=1

di

βi

∣∣∣∣∣ =
π2

(
Kn
β (ω, x)

)
βn

→ 0 as n→∞.
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Random β-expansions

Theorem

(D. + de Vries) Suppose x ∈ [0, bβc/(β − 1)] can be written as

x =
b1

β
+

b2

β2
+ · · ·+ bn

βn
+ · · · ,

with bi ∈ {0, 1, · · · , bβc}. Then, there exists ω ∈ Ω such that

bn = dn(ω, x) = d1

(
Kn−1
β (ω, x)

)
for all n ≥ 1.

Karma Dajani () Two special invariant measures for the random β-transformationApril 12, 2011 11 / 52



Random β-expansions

Theorem

(D. + de Vries) Suppose x ∈ [0, bβc/(β − 1)] can be written as

x =
b1

β
+

b2

β2
+ · · ·+ bn

βn
+ · · · ,

with bi ∈ {0, 1, · · · , bβc}. Then, there exists ω ∈ Ω such that

bn = dn(ω, x) = d1

(
Kn−1
β (ω, x)

)
for all n ≥ 1.

The proof relies on the behavior of the sequence

{xn =
∑∞

i=1

bn−1+i

βi
: n ≥ 1}. If the set N(x) = {n : xn ∈ S} is infinite,

then there is a unique ω ∈ Ω such that bn = dn(ω, x). If N(x) is finite,
then there are uncountably many ω ∈ Ω such that bn = dn(ω, x).
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Unique measure of maximal entropy

The measure of maximal entropy is basically obtained by identifying Kβ

with the full shift on (bβc+ 1) symbols with the uniform product measure.
It is easy to see that the full shift is a factor (no measure yet) of Kβ
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Unique measure of maximal entropy

Consider the Bernoulli shift (D,F ,P, σ′), where
D = {0, 1, · · · , bβc}N, F the product σ-algebra, P the uniform
product measure, and σ′ the left shift.

Define φ : Ω× [0, bβc/(β − 1)]→ D by

φ(ω, x) = (d1(ω, x), d2(ω, x), · · · , ) .

Then, φ is (i) measurable, (ii) surjective and (iii) φ ◦ Kβ = σ′ ◦ φ.

φ is not invertible.
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Unique measure of maximal entropy

Let

Z = {(ω, x) ∈ Ω× [0, bβc/(β − 1)] : π(Kn
β (ω, x)) ∈ S i.o.},

D ′ = {(b1, b2, . . .) ∈ D :
∞∑
i=1

bj+i−1
βi

∈ S for infinitely many j ’s}.

Then, (i) φ(Z ) = D ′, (ii) K−1β (Z ) = Z , and (iii) (σ′)−1(D ′) = D ′.
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Unique measure of maximal entropy

Lemma

(D. de Vries) Let φ′ be the restriction of φ to Z , then φ′ : Z → D ′ is a
measurable bijection, and P(D ′) = 1.
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Unique measure of maximal entropy

Lemma

(D. de Vries) Let φ′ be the restriction of φ to Z , then φ′ : Z → D ′ is a
measurable bijection, and P(D ′) = 1.

Define the Kβ-invariant measure νβ by νβ(A) = P(φ′(Z ∩ A)).
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Unique measure of maximal entropy

Lemma

(D. de Vries) Let φ′ be the restriction of φ to Z , then φ′ : Z → D ′ is a
measurable bijection, and P(D ′) = 1.

Define the K -invariant measure νβ by ν(βA) = P(φ′(Z ∩ A)). Then,

Theorem

(D.+ de Vries) Let β > 1 be a non-integer. Then the dynamical systems
(Ω× [0, bβc/(β − 1)], νβ,Kβ) and (D,P, σ′) are measurably isomorphic.
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Unique measure of maximal entropy

A consequence of the above theorem is that among all the Kβ-invariant
measures with support Z , νβ has the largest entropy, namely log (1 + bβc).
It is the only one with support Z , and this value of the entropy.
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A consequence of the above theorem is that among all the Kβ-invariant
measures with support Z , νβ has the largest entropy, namely log (1 + bβc).
It is the only one with support Z , and this value of the entropy.
In fact we have more,

Lemma

(D.+ de Vries) Let µ be a Kβ-invariant measure such that µ(Z c) > 0,
then hµ(Kβ) < log (1 + bβc).
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Unique measure of maximal entropy

A consequence of the above theorem is that among all the Kβ-invariant
measures with support Z , νβ has the largest entropy, namely log (1 + bβc).
It is the only one with support Z , and this value of the entropy.
In fact we have more,

Lemma

(D.+ de Vries) Let µ be a Kβ-invariant measure such that µ(Z c) > 0,
then hµ(Kβ) < log (1 + bβc).

This leads to

Theorem

(D.+ de Vries) νβ is the unique Kβ-invariant measure of maximal entropy.
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The marginals

The projection of νβ in the second coordinate is the Erdős measure:

Ω× [0, bβc/(β − 1)]
π2−→ [0, bβc/(β − 1)]

↘ φ

xh

{0, 1, . . . , bβc}N
,
where h(b1, b2, . . .) =

∑∞
i=1

bi
βi , i.e. νβ ◦ π−12 gives the distribution of the

random variable h.
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The marginals

Projection in the first coordinate need not be product measure, only in
special cases, namely if the greedy expansion of 1 has the form

1 =
a1
β

+
a2
β2

+ . . .+
an
βn
,

with a1, . . . , an > 0. In this case the dynamics can be identified with (a
symmetric) Markov chain (more later).
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1 =
a1
β

+
a2
β2

+ . . .+
an
βn
,

with a1, . . . , an > 0. In this case the dynamics can be identified with (a
symmetric) Markov chain (more later).

However, the projection is symmetric:

νβ◦π−11 ({ω1 = i1, . . . , ωn = in}) = νβ◦π−11 ({ω1 = 1−i1, . . . , ωn = 1−in}).
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The marginals

Projection in the first coordinate need not be product measure, only in
special cases, namely if the greedy expansion of 1 has the form

1 =
a1
β

+
a2
β2

+ . . .+
an
βn
,

with a1, . . . , an > 0. In this case the dynamics can be identified with (a
symmetric) Markov chain (more later).

However, the projection is symmetric:

νβ◦π−11 ({ω1 = i1, . . . , ωn = in}) = νβ◦π−11 ({ω1 = 1−i1, . . . , ωn = 1−in}).

As a consequence,

νβ ◦ π−11 ({ω1 = 1}) = νβ ◦ π−11 ({ω1 = 0}) = 1/2.
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The invariant measure mp × µβ,p

For 0 < p < 1, let mp be the (p, 1− p) product measure on Ω.
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The invariant measure mp × µβ,p

For 0 < p < 1, let mp be the (p, 1− p) product measure on Ω.

Theorem

(D.+de Vries) There exists a probability measure µβ,p on [0, bβc/(β − 1)]
equivalent with Lebesgue measure λ such that

(i) the measure mp × µβ,p is Kβ-invariant, ergodic and is equivalent to
mp × λ.

(ii) µβ,p has density bounded away from 0.

(iii) µβ,p satisfies

µβ,p = pµβ,p ◦ T−1β + (1− p)µβ,p ◦ L−1β .

(iv) Let νβ be the measure of maximal entropy, then νβ 6= mp × µβ,p. As
a consequence the two measures are mutually singular.

Karma Dajani () Two special invariant measures for the random β-transformationApril 12, 2011 27 / 52
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The invariant measure mp × µβ,p

For 0 < p < 1, let mp be the (p, 1− p) product measure on Ω.

Theorem

(D.+de Vries) There exists a probability measure µβ,p on [0, bβc/(β − 1)]
equivalent with Lebesgue measure λ such that

(i) the measure mp × µβ,p is Kβ-invariant, ergodic and is equivalent to
mp × λ.

(ii) µβ,p has density bounded away from 0.

(iii) µβ,p satisfies

µβ,p = pµβ,p ◦ T−1β + (1− p)µβ,p ◦ L−1β .

(iv) Let νβ be the measure of maximal entropy, then νβ 6= mp × µβ,p. As
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Comments on the construction

To construct mp × µβ,p, we use an intermediate transformation, namely
the genuine skew product

Rβ(ω, x) = (σω,Tω1x),

where T0 = Lβ and T1 = Tβ.
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Some observations

Let µ be any Borel probability measure on [0, bβc/(β − 1)]. The following
are equivalent:

The measure mp × µ is Rβ-invariant

µ satisfies µ = p µ ◦ T−1β + (1− p)µ ◦ L−1β
The measure mp × µ is Kβ-invariant
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An Rβ-invariant measure of product type

We consider a randomized version of the Perron-Frobenius operator
defined for probability density functions:

Pf = p PTβ + (1− p) PLβ ,

where PTβ , and PLβ are the Perron-Frobenius operator of Tβ and Lβ
respectively.
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An Rβ-invariant measure of product type

Theorem

(Pelikan) For any probability density f , the limit

lim
n→∞

1

n

n−1∑
j=0

P j f = f ∗

exists in L1,and Pf ∗ = f ∗.
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An Rβ-invariant measure of product type

Theorem

(Pelikan) For any probability density f , the limit

lim
n→∞

1

n

n−1∑
j=0

P j f = f ∗

exists in L1,and Pf ∗ = f ∗.

In particular, if we take f = 1, then P1∗ = 1∗, and the measure defined by

µβ,p(A) =

∫
A

1∗ dλ

satisfies
µβ,p = p µβ,p ◦ T−1β + (1− p)µβ,p ◦ L−1β

i.e. mp × µβ,p is Rβ-invariant, and ergodic (follows from the fact that Tβ
and Lβ are ergodic w.r.t. an absolutely continuous probability measure).
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Ergodicity w.r.t. Kβ

The measure mp × µ is Kβ-invariant. Ergodicity follows from the
following.

Define F : Ω× [0, bβc/(β − 1)]→ D by

F (ω, x) =
(
d1(ω, x), d1(Rβ(ω, x)), d1(R2

β(ω, x)), . . . ,
)
.

Then, σ′ ◦ F = F ◦ Rβ. Hence the measure mp × µβ,p ◦ F−1 is
σ′-invariant and ergodic.

The measure mp × µβ,p ◦ F−1 is concentrated on φ(Z ) = D ′.

Therefore, the measure ρ defined by
ρ(A) = mp × µβ,p ◦ F−1(φ(A ∩ Z )) is Kβ-invariant and ergodic.

ρ = mp × µβ,p.
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Comments on the mutual singularity of νβ and mp × µβ,p

Since Kβ is ergodic w.r.t. νβ and mp × µβ,p, we only need to show that
νβ 6= mp × µβ,p.
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Comments on the mutual singularity of νβ and mp × µβ,p

Since Kβ is ergodic w.r.t. νβ and mp × µβ,p, we only need to show that
νβ 6= mp × µβ,p.

The answer is clear for p 6= 1/2 since

νβ({ω1 = 1} × [0, bβc/(β − 1)]) = 1/2,

while
mp × µβ,p({ω1 = 1} × [0, bβc/(β − 1)]) = p.
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Comments on the mutual singularity of νβ and mp × µβ,p

Assume p = 1/2. Choose n large enough so that [1/β, 1/β + 1/βn]) ⊂ S1.
By symmetry of the measure νβ we have

νβ({ω1 = 1} × [0, bβc/(β − 1)]|Ω× [1/β, 1/β + 1/βn)) = 1/2.
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Comments on the mutual singularity of νβ and mp × µβ,p

Assume p = 1/2. Choose n large enough so that [1/β, 1/β + 1/βn]) ⊂ S1.
By symmetry of the measure νβ we have

νβ({ω1 = 1} × [0, bβc/(β − 1)]|Ω× [1/β, 1/β + 1/βn)) = 1/2.

On the other hand, if νβ = mp × µβ,p, then using the fact that νβ is the
uniform Bernoulli measure on the (random) digits, and that µβ,p is
bounded away from 0, we get

νβ({ω1 = 1} × [0, bβc/(β − 1)]|Ω× [1/β, 1/β + 1/βn)) ≤ C
βn

(1 + bβc)n

which tends to 0 as n→∞, leading to a contradiction.
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Some consequences: uncountably many expansions

Ergodicity of mp × µβ,p gives

mp × µβ,p({(ω, x) : K i
β(ω, x) ∈ Ω× S i.o. }) = 1.
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Some consequences: uncountably many expansions

Ergodicity of mp × µβ,p gives

mp × µβ,p({(ω, x) : K i
β(ω, x) ∈ Ω× S i.o. }) = 1.

Thus, the set G = {x : x has a unique β − expansion} has Lebesgue
measure 0.
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Some consequences: uncountably many expansions

Ergodicity of mp × µβ,p gives

mp × µβ,p({(ω, x) : K i
β(ω, x) ∈ Ω× S i.o. }) = 1.

Thus, the set G = {x : x has a unique β − expansion} has Lebesgue
measure 0. By non-singularity of the greedy and lazy maps, we get that
the set

F =
∞⋃
n=1

{x : Tu0 ◦ Tu1 ◦ . . . ◦ Tun ∈ G for some u1, . . . , un}

has Lebesgue measure zero, where T0 = Lβ and T1 = Tβ.
For x /∈ F different elements of Ω lead to different expansions. Hence a.e.
x has uncountably many β-expansions.
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Some consequences: universal expansions

An expansion of x ,

x =
∞∑
i=1

bi

βi
,

with digits in A = {0, 1, · · · , bβc} is called universal if every possible block
of digits in A appears somewhere in the the above expansion of x .

Erdős and Komornik (1998) proved that there exists a β0 ∈ (1, 2) such
that for each β ∈ (1, β0), every x has a universal expansion in base β.

Karma Dajani () Two special invariant measures for the random β-transformationApril 12, 2011 41 / 52



Some consequences: universal expansions

An expansion of x ,

x =
∞∑
i=1

bi

βi
,

with digits in A = {0, 1, · · · , bβc} is called universal if every possible block
of digits in A appears somewhere in the the above expansion of x .

Erdős and Komornik (1998) proved that there exists a β0 ∈ (1, 2) such
that for each β ∈ (1, β0), every x has a universal expansion in base β.

Sidorov (2003) showed that for each β ∈ (1, 2), Lebesgue a.e. point has a
universal expansion.
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Some consequences: universal expansions

Using the ergodicity of the map Kβ w.r.t the measure mp × µβ,p, together
with the equivalence of the measure µβ,p w.r.t. Lebesgue measure λ, one
can show (using the Ergodic Theorem and Fubini) the following result.
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Some consequences: universal expansions

Using the ergodicity of the map Kβ w.r.t the measure mp × µβ,p, together
with the equivalence of the measure µβ,p w.r.t. Lebesgue measure λ, one
can show (using the Ergodic Theorem and Fubini) the following result.

Theorem

(D. de Vries) For any non-integer β > 1, and for λ a.e.
x ∈ [0, bβc/(β − 1)], there exists a continuum of universal expansions of x
in base β.
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Underlying Markov partition

For the rest of this talk, we assume that the greedy expansion of 1 has the
form

1 =
a1
β

+
a2
β2

+ . . .+
an
βn
,

with ai > 0 for i = 1, . . . , n.
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Underlying Markov partition

For the rest of this talk, we assume that the greedy expansion of 1 has the
form

1 =
a1
β

+
a2
β2

+ . . .+
an
βn
,

with ai > 0 for i = 1, . . . , n.

The underlying dynamics of Kβ is given by a simple Markov chain.
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Underlying Markov partition

Start with the partition {E0, S1, . . . ,Sbβc,Ebβc}.

Karma Dajani () Two special invariant measures for the random β-transformationApril 12, 2011 47 / 52



Underlying Markov partition

Start with the partition {E0, S1, . . . ,Sbβc,Ebβc}.
Refine using the orbit of 1 and bβc

β−1 − 1. The refinement gives the desired
Markov partition

{C0,C1, . . . ,CL},
where Ci is either Sj for some j , or is a subset of Ek for some k.
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Measure of maximal entropy

We consider the associated topological Markov chain and its corresponding
adjacency matrix. We use the Parry recipe to find the (Markov) measure
Q of maximal entropy.
An easy calculation shows that

Q([j1, . . . , j`]) =
vj`

(1 + bβc)`−1 ,

where the probability vector v = (v1, . . . , vL) is a right Perron eigenvalue.
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Measure of maximal entropy

We consider the associated topological Markov chain and its corresponding
adjacency matrix. We use the Parry recipe to find the (Markov) measure
Q of maximal entropy.
An easy calculation shows that

Q([j1, . . . , j`]) =
vj`

(1 + bβc)`−1 ,

where the probability vector v = (v1, . . . , vL) is a right Perron eigenvalue.

When viewed as a measure on Ω× [0, bβcβ−1 ], one can show that the
projection in the first coordinate is the uniform Bernoulli measure (the
proof uses the strong Markov property, and the fact the elements of Ω
depend on the times the Markov chain is in the S-region)
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The measure mp × µβ,p

To identify the measure µβ,p, we consider the transition matrix P = (pi ,j),
given by

pi ,j =


λ(Ci ∩ T−1β Cj)/λ(Ci ) if Ci ⊆ Ek for some k,

p if Ci ⊆ Sk for some k and j = 0,

1− p if Ci ⊆ Sk for some k and j = L.

Denote by π = (π1, . . . , πL) the stationary distribution of P.
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The measure mp × µβ,p

An easy calculation shows that

µβ,p(B) =
L∑

j=0

λ(B ∩ Cj)

λ(Cj)
· π(j) [B ∈ B],

and µβ,p has density

1∗ =
L∑

i=0

πi
λ(Ci )

ICi
.
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