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Terminology

Let 8 > 1 be a non-integer. By a [3-expansion we mean an expression of
the form

with b € {0,1,..., 8]}
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Definition of Kjs

Roughly, Kz is obtained by randomizing the greedy map, and the lazy map.
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Figure 1: The greedy map Tj (left), and lazy map Lg (right). Here 8 = 7.
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Definition of Kjs

If we take the common refinement, or simply superimpose the two maps,
we get the following picture on [0, |5]/(8 — 1)].
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Figure 1: The greedy and lazy maps, and their switch regions.
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Definition of Kj: a special partition

18]
68—1
S1,---, 58], and [B] + 1 uniqueness regions, Eo, ..., E|g|, where
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We get a partition of the interval [0, | into | 3] switch regions,

}, k=1,...,|8].
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Definition of Kj: a special partition

@ On S, the greedy map assigns the digit k, while the lazy map assigns
the digit k — 1. On Ej both maps assign the same digit k.
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Definition of Kj: a special partition

@ On S, the greedy map assigns the digit k, while the lazy map assigns
the digit k — 1. On Ej both maps assign the same digit k.

@ We use a random rule by flipping a coin every time the orbit is in the
switch region.
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Consider Q = {0, 1} with product o-algebra. Let o : Q — Q be the left
shift. Define K = Kz : Q x [0, 3]/(B—1)] = Q2 x [0, |5]/(8 —1)] by

(w, Bx —¥) x€E, =0,1,...,|8],
K(w,x) = ¢ (o(w),Bx —¥) xeSyand w1 =1,4=1,...,|8],

(o(w),fx —€+1) x€Sy and w1 =0,¢0=1,...,[5].

Karma Dajani () Two special invariant measures for the randor April 12, 2011 8 /52



Random Digits

Let
1 if xe E,, £=0,1,...,|8],
dh = di(w,x) = or (w,x)€{wr =1} x5, ¢=1,2,...,|8],
-1 if (w,x)e{wr =0} x5, £=1,2,...,[5],
then

(w,8x —di)  if x€E,
Ks(w,x) = {
(o0(w),Bx —di) if xeS.
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Random (-expansions

Set d, = dp(w,x) = di (Kg_l(w,x)), and let
o Q2 x [0, [B8]/(B—1)] = [0,|8]/(8 — 1)] be the canonical projection
onto the second coordinate. Then

72 (K§(w,x)) = B — B dy — - — Bdp_1 — dn,

rewriting gives

X

_ dl d2 dn T2 (Kg(w,x))
TRt TR T e

Since (Kg(w,x)) € [0,[8]/(B —1)], it follows that

) (Kg(w,x))
Bn

— 0 as n — oo.

n
d;
X—;E
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Random [-expansions

Theorem
(D. + de Vries) Suppose x € [0, | 5] /(8 — 1)] can be written as
bk b
B B gr ’

with bj € {0,1,--- ,|8]|}. Then, there exists w € Q such that
b, = dp(w,x) = db (Kg_l(w,x)> for all n > 1.
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Random [-expansions

Theorem
(D. + de Vries) Suppose x € [0, | 5] /(8 — 1)] can be written as

x=D 2y gy

B B gr ’
with bj € {0,1,--- ,|B|}. Then, there exists w € Q such that
by = dp(w,x) = di (Kg_l(w,x)> for all n > 1.

The proof relies on the behavior of the sequence
{xn =372 % :n> 1} If the set N(x) = {n: x, € S} is infinite,

1

then there is a unique w € Q such that b, = dy(w, x). If N(x) is finite,
then there are uncountably many w € Q such that b, = dy(w, x).

Karma Dajani () Two special invariant measures for the randor April 12, 2011 12 / 52



Unique measure of maximal entropy

The measure of maximal entropy is basically obtained by identifying Kjp
with the full shift on (|3] + 1) symbols with the uniform product measure.
It is easy to see that the full shift is a factor (no measure yet) of Kj
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Unique measure of maximal entropy

o Consider the Bernoulli shift (D, F,P,¢’), where
D =1{0,1,---, 8]}, F the product o-algebra, P the uniform
product measure, and o’ the left shift.
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Unique measure of maximal entropy

o Consider the Bernoulli shift (D, F,P,¢’), where

D =1{0,1,---, 8]}, F the product o-algebra, P the uniform
product measure, and o’ the left shift.

o Define ¢ : Q x [0, |8]/(8—1)] = D by

d(w, x) = (di(w, x), da(w, %), ,).
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Unique measure of maximal entropy

o Consider the Bernoulli shift (D, F,P,¢’), where

D =1{0,1,---, 8]}, F the product o-algebra, P the uniform
product measure, and o’ the left shift.

o Define ¢ : Q x [0, |8]/(8—1)] = D by
d(w, x) = (di(w, x), da(w, %), ,).

@ Then, ¢ is (i) measurable, (ii) surjective and (iii) ¢ o Kg = 0’ 0 ¢.
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Unique measure of maximal entropy

o Consider the Bernoulli shift (D, F,P,¢’), where
D =1{0,1,---, 8]}, F the product o-algebra, P the uniform
product measure, and o’ the left shift.

o Define ¢ : Q x [0, |8]/(8—1)] = D by

d(w, x) = (di(w, x), da(w, %), ,).

@ Then, ¢ is (i) measurable, (ii) surjective and (iii) ¢ o Kg = 0’ 0 ¢.
@ ¢ is not invertible.
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Unique measure of maximal entropy

o Let
Z = {(w,x)eQx|o, LﬂJ/(ﬂ—l)] m(Kg(w,x)) € Sio},

D" = {(b1,b2,...) €D: Z JE’ L € S for infinitely many j's}.
i=1
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Unique measure of maximal entropy

o Let
Z = {(w,x)eQx|o, LﬂJ/(ﬂ—l)] m(Kg(w,x)) € Sio},

D" = {(b1,b2,...) €D: Z JE’ L € S for infinitely many j's}.
i=1

o Then, () ¢(Z) = D', (i) K;*(Z) = Z, and (iii) (o) "}(D') = D/
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Unique measure of maximal entropy

(D. de Vries) Let ¢' be the restriction of ¢ to Z, then ¢ : Z — D' is a
measurable bijection, and P(D') = 1.
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Unique measure of maximal entropy

(D. de Vries) Let ¢ be the restriction of ¢ to Z, then ¢' : Z — D' is a
measurable bijection, and P(D') = 1.

Define the Kg-invariant measure vg by v3(A) = P(¢'(Z N A)).
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Unique measure of maximal entropy

(D. de Vries) Let ¢' be the restriction of ¢ to Z, then ¢ : Z — D' is a
measurable bijection, and P(D') = 1.

Define the K-invariant measure vz by v(gA) = P(¢/(Z N A)). Then,

(D.+ de Vries) Let B > 1 be a non-integer. Then the dynamical systems
(Qx[0,8]/(B—1)],vs,Kg) and (D,P,c") are measurably isomorphic.
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Unique measure of maximal entropy

A consequence of the above theorem is that among all the Kg-invariant
measures with support Z, vg has the largest entropy, namely log (1 + | 3]).
It is the only one with support Z, and this value of the entropy.
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Unique measure of maximal entropy

A consequence of the above theorem is that among all the Kg-invariant

measures with support Z, vg has the largest entropy, namely log (1 + |3]).

It is the only one with support Z, and this value of the entropy.
In fact we have more,

(D.+ de Vries) Let jn be a Kg-invariant measure such that u(Z<) > 0,
then h,(Kg) < log (1+ |8]).
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Unique measure of maximal entropy

A consequence of the above theorem is that among all the Kg-invariant

measures with support Z, vg has the largest entropy, namely log (1 + |3]).

It is the only one with support Z, and this value of the entropy.
In fact we have more,

(D.+ de Vries) Let ju be a Kg-invariant measure such that u(Z<) > 0,
then h,(Kg) < log (1 + |5]).

This leads to

(D.+ de Vries) vs is the unique Kg-invariant measure of maximal entropy.
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The marginals

The projection of v5 in the second coordinate is the Erdés measure:

Qx[0,[8]/(6-1] & [0,[8]/(8-1)]
VR Th
{0,1,..., LﬁJ}N
b;

where h(by, bp,...) =>4 3 ie vgo 7, ! gives the distribution of the
random variable h.
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The marginals

Projection in the first coordinate need not be product measure, only in
special cases, namely if the greedy expansion of 1 has the form

ai ap ap
B tR T

with ai,...,an, > 0. In this case the dynamics can be identified with (a
symmetric) Markov chain (more later).

1
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The marginals

Projection in the first coordinate need not be product measure, only in
special cases, namely if the greedy expansion of 1 has the form

al an dn
l=—+>S+...+——,
B B2 pr
with a1,...,an, > 0. In this case the dynamics can be identified with (a

symmetric) Markov chain (more later).

However, the projection is symmetric:

uﬁowfl({wl =f,...,wp=In}) = VIBOﬂ'l_l({wl =1—i,...,wp=1—in}).
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The marginals

Projection in the first coordinate need not be product measure, only in
special cases, namely if the greedy expansion of 1 has the form

al an an
1=+ =4+
B B2 pr
with aj,...,a, > 0. In this case the dynamics can be identified with (a

symmetric) Markov chain (more later).

However, the projection is symmetric:
vgory *({wr = i1, ... wn = in}) = vgor *({wr = 1—i1, ..., wn = 1—in}).

As a consequence,

vgom ({wr =1}) =vgom ({wr = 0}) = 1/2.
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The invariant measure m, X g,

For 0 < p <1, let mp, be the (p,1 — p) product measure on .
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The invariant measure m, X g p

For 0 < p <1, let m, be the (p,1 — p) product measure on Q.

Theorem

(D.+de Vries) There exists a probability measure 13, on [0, |5]/(8 — 1)]
equivalent with Lebesgue measure \ such that
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The invariant measure m, X g p

For 0 < p <1, let m, be the (p,1 — p) product measure on Q.

Theorem

(D.+de Vries) There exists a probability measure 13, on [0, |5]/(8 — 1)]
equivalent with Lebesgue measure \ such that

(i) the measure my, x g, is Kg-invariant, ergodic and is equivalent to
mp X A
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The invariant measure m, X g p

For 0 < p <1, let m, be the (p,1 — p) product measure on Q.

Theorem

(D.+de Vries) There exists a probability measure 13, on [0, |5]/(8 — 1)]
equivalent with Lebesgue measure \ such that

(i) the measure my, x g, is Kg-invariant, ergodic and is equivalent to
mp X A

(ii) pg,p has density bounded away from 0.
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The invariant measure m, X g p

For 0 < p <1, let m, be the (p,1 — p) product measure on Q.

(D.+de Vries) There exists a probability measure 13, on [0, |5]/(8 — 1)]
equivalent with Lebesgue measure \ such that

(i) the measure my, x g, is Kg-invariant, ergodic and is equivalent to
mp X A

ii as density bounded away from 0.

ii) pg,p has density bounded away from 0

(iii) pg,p satisfies

1pp = Pppo Ty (= )/‘/BPOL
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The invariant measure m, X g p

For 0 < p <1, let m, be the (p,1 — p) product measure on Q.

(D.+de Vries) There exists a probability measure 13, on [0, |5]/(8 — 1)]
equivalent with Lebesgue measure \ such that

(i) the measure my, x g, is Kg-invariant, ergodic and is equivalent to
mp X A

ii as density bounded away from 0.

ii) pg,p has density bounded away from 0

(iii) pg,p satisfies
Hg.p = PHB,p © T,B_l + (1= p)uspo LEI'

(iv) Let vg be the measure of maximal entropy, then vg # mp X g p. As
a consequence the two measures are mutually singular.
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Comments on the construction

To construct m, X g p, we use an intermediate transformation, namely
the genuine skew product

Rg(w, x) = (ow, Ty, x),

where Tg = Lg and T; = Tg.
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Some observations

Let 1 be any Borel probability measure on [0, |3]/(8 — 1)]. The following
are equivalent:
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Some observations

Let 1 be any Borel probability measure on [0, |3]/(8 — 1)]. The following
are equivalent:

@ The measure mp, X p is Rg-invariant
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Some observations

Let 1 be any Borel probability measure on [0, |3]/(8 — 1)]. The following
are equivalent:

@ The measure mp, X p is Rg-invariant

@ y satisfies y=ppuo Tﬁ_l—i-(l—p)uoLEl
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Some observations

Let 1 be any Borel probability measure on [0, |3]/(8 — 1)]. The following
are equivalent:

@ The measure mp, X p is Rg-invariant
@ y satisfies y=ppuo Tﬁ_l—i-(l—p)uoLEl
@ The measure m, x u is Kg-invariant
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An Rg-invariant measure of product type

We consider a randomized version of the Perron-Frobenius operator
defined for probability density functions:

Pf:pPTg+(1_p)PLg7

where Pr,, and Py, are the Perron-Frobenius operator of Tj and Lg
respectively.
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An Rg-invariant measure of product type

(Pelikan) For any probability density f, the limit

n—1

1 .
T N
Jim 52 PE =

J:

exists in L1,and Pf* = f*.
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An Rg-invariant measure of product type

(Pelikan) For any probability density f, the limit

n—1
1 .
lim =" Pif = f*

n—o0 N 4
J=0

exists in L1,and Pf* = f*.

v

In particular, if we take f = 1, then P1* = 1%, and the measure defined by

paalA) = [ 17
A

satisfies

op = Phopo T5t+ (1= p)pgpo Ly
i.e. mp X pgp is Rg-invariant, and ergodic (follows from the fact that Tg
and Lg are ergodic w.r.t. an absolutely continuous probability measure).
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Ergodicity

The measure my, X p is Kg-invariant. Ergodicity follows from the
following.
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Ergodicity w.r.t. Kp

The measure my, X p is Kg-invariant. Ergodicity follows from the
following.

o Define F: Q x [0,[5]/(8—1)] = D by
F(w,x) = (di(w, x), di(Ra(w, x)), dl(Ré(w,x)), ).

Then, 0’ o F = F o Rz. Hence the measure m, X pgpo F1is
o’-invariant and ergodic.
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Ergodicity w.r.t. Kp

The measure my, X p is Kg-invariant. Ergodicity follows from the
following.

o Define F: Q x [0,[5]/(8—1)] = D by
F(w,x) = (di(w, x), di(Ra(w, x)), dl(Ré(w,x)), ).

Then, 0’ o F = F o Rz. Hence the measure m, X pgpo F1is
o’-invariant and ergodic.

@ The measure m, X g o F~1is concentrated on ¢(Z) = D'.
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Ergodicity w.r.t. Kp

The measure my, X p is Kg-invariant. Ergodicity follows from the
following.

o Define F: Q x [0,[5]/(8—1)] = D by
F(w,x) = (di(w, x), di(Ra(w, x)), d;l(l?é((,u,x))7 ).

Then, 0’ o F = F o Rz. Hence the measure m, X pgpo F1is
o’-invariant and ergodic.

@ The measure m, X g o F~1is concentrated on ¢(Z) = D'.

@ Therefore, the measure p defined by
p(A) = mp x g0 FY(#(AN Z)) is Ks-invariant and ergodic.
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Ergodicity w.r.t. Kp

The measure my, X p is Kg-invariant. Ergodicity follows from the
following.

o Define F: Q x [0,[5]/(8—1)] = D by
F(w,x) = (di(w, x), di(Ra(w, x)), d;l(l?é((,u,x))7 ).

Then, 0’ o F = F o Rz. Hence the measure m, X pgpo F1is
o’-invariant and ergodic.

@ The measure m, X g o F~1is concentrated on ¢(Z) = D'.

@ Therefore, the measure p defined by
p(A) = mp x g0 FY(#(AN Z)) is Ks-invariant and ergodic.

o p= mp X K, p-
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Comments on the mutual singularity of vg and m, X 3,

Since Kj is ergodic w.r.t. vg and m, X g, we only need to show that
Vg 7 Mp X [16,p-
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Comments on the mutual singularity of vg and m, X 3,

Since Kjg is ergodic w.r.t. vg and mp, X g, we only need to show that
Vﬁ # mP x IU‘B,P

The answer is clear for p # 1/2 since

va({wr =1} x [0, 8] /(8 - 1)]) =1/2,
while

mp X pgp({w1 =1} x [0, [B]/(6 — 1)]) = p-
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Comments on the mutual singularity of vg and m, X 3,

Assume p = 1/2. Choose n large enough so that [1/5,1/8+1/8"]) C S1.
By symmetry of the measure g3 we have

v(fwr = 13 < [0, [8] /(B = DI x [1/6,1/5+1/8")) = 1/2.
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Comments on the mutual singularity of vg and m, X 3,

Assume p = 1/2. Choose n large enough so that [1/5,1/8+1/5"]) C S1.
By symmetry of the measure v3 we have

vp({wr = 13 < [0, [B]/(B = DI x [1/8,1/8 +1/5%)) = 1/2.

On the other hand, if vg = mp X g p, then using the fact that v is the
uniform Bernoulli measure on the (random) digits, and that js p is
bounded away from 0, we get

) ) <o B
vg({wr =1} x [0, [B]/(B = 1)]I2 x [1/B,1/8+1/B")) < C(1 1))

which tends to 0 as n — oo, leading to a contradiction.
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Some consequences: uncountably many expansions

Ergodicity of m, X ug , gives

mp X g p({(w, x) : K/J;(w,x) €QxSio. })=1.
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Some consequences: uncountably many expansions

Ergodicity of m, X ug , gives

mp X pg p({(w,x) : Ké(w,x) €eQxSio. })=1

Thus, the set G = {x : x has a unique 3 — expansion} has Lebesgue
measure 0.
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Some consequences: uncountably many expansions

Ergodicity of m, X ug , gives

mp X pg p({(w,x) : Ké(w,x) €eQxSio. })=1

Thus, the set G = {x : x has a unique /3 — expansion} has Lebesgue
measure 0. By non-singularity of the greedy and lazy maps, we get that
the set

F= U{x: Two Ty o...0T, € G for some ug,...,uy}

n=1

has Lebesgue measure zero, where Tog = Lg and T1 = Tg.
For x ¢ F different elements of Q lead to different expansions. Hence a.e.
x has uncountably many (-expansions.
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Some consequences: universal expansions

An expansion of x,
=yl
ity
with digits in A= {0,1,---,|3]} is called universal if every possible block

of digits in A appears somewhere in the the above expansion of x.

Erdés and Komornik (1998) proved that there exists a 5y € (1,2) such
that for each 8 € (1, 8o), every x has a universal expansion in base £.
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Some consequences: universal expansions

An expansion of x,
[e'S) bi
X = -,
2
with digits in A= {0,1,---, 3]} is called universal if every possible block

of digits in A appears somewhere in the the above expansion of x.

Erdés and Komornik (1998) proved that there exists a 5y € (1,2) such
that for each 8 € (1, 8o), every x has a universal expansion in base [.

Sidorov (2003) showed that for each 5 € (1,2), Lebesgue a.e. point has a
universal expansion.
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Some consequences: universal expansions

Using the ergodicity of the map K3 w.r.t the measure m, x pg p, together
with the equivalence of the measure pg , w.r.t. Lebesgue measure A, one
can show (using the Ergodic Theorem and Fubini) the following result.

Karma Dajani () Two special invariant measures for the randor April 12, 2011 43 / 52



Some consequences: universal expansions

Using the ergodicity of the map K3 w.r.t the measure m, x pg p, together
with the equivalence of the measure p5 , w.r.t. Lebesgue measure A, one
can show (using the Ergodic Theorem and Fubini) the following result.

(D. de Vries) For any non-integer 3 > 1, and for \ a.e.
x €10, [8]/(B —1)], there exists a continuum of universal expansions of x
in base 3.

Karma Dajani () Two special invariant measures for the randor April 12, 2011 44 / 52



Underlying Markov partition

For the rest of this talk, we assume that the greedy expansion of 1 has the

form
al an a

:F—F?—F...—F@,

with a; >0 fori=1,... n.

1
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Underlying Markov partition

For the rest of this talk, we assume that the greedy expansion of 1 has the

form R ; 5
1 2 n
1=+ 4+
g B2 pr
with a; >0fori=1,...,n.
The underlying dynamics of Kj is given by a simple Markov chain.

April 12, 2011 46 /
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Underlying Markov partition

Start with the partition {Eo, S5, SLﬁJ’ ELﬁJ}'
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Underlying Markov partition

Start with the partition {Eo, 51,0, SLrBJ’ ELﬁJ}

Refine using the orbit of 1 and f% — 1. The refinement gives the desired
Markov partition

{C07 C17 ey CL}7

where C; is either S; for some j, or is a subset of E for some k.
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Measure of maximal entropy

We consider the associated topological Markov chain and its corresponding
adjacency matrix. We use the Parry recipe to find the (Markov) measure
Q of maximal entropy.

An easy calculation shows that

Qs -+) = Ty

where the probability vector v = (vi,...,v;) is a right Perron eigenvalue.
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Measure of maximal entropy

We consider the associated topological Markov chain and its corresponding
adjacency matrix. We use the Parry recipe to find the (Markov) measure
Q@ of maximal entropy.

An easy calculation shows that

. . Vi,
Q(L’la'--v./f]) (1+ LBJ)Eil’
where the probability vector v = (vi,...,v;) is a right Perron eigenvalue.
When viewed as a measure on Q x [0, %] one can show that the
projection in the first coordinate is the uniform Bernoulli measure (the
proof uses the strong Markov property, and the fact the elements of Q
depend on the times the Markov chain is in the S-region)
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The measure m, X 3,

To identify the measure pg 5, we consider the transition matrix P = (p; ),
given by

NGNTFIG)/MG) i G C Ey for some k,

pij = p if C; C Sy for some k and j =0,
1-p if C; C Sy for some k and j = L.
Denote by m = (1, ...,7) the stationary distribution of P.
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The measure m, X p3

An easy calculation shows that

L
o ZAf“C-m B8]

g

and pg p has density
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