Mathematical diffraction theory of deterministic and stochastic structures

Michael Baake \& Uwe Grimm

Bielefeld \& Milton Keynes

(joint work with Matthias Birkner, Daniel Lenz,
Robert V. Moody, Aernout C.D. van Enter and Tom Ward)

Menue

- Diffraction theory
- PP spectra
- Poisson formula
- Model sets
- SC spectra
- Cantor
- Thue-Morse
- AC spectra
- Bernoulli
- Rudin-Shapiro
- Further Directions
- Algebraic systems
- Random systems

Diffraction theory

Structure: translation bounded measure ω assumed 'amenable'

Autocorrelation: $\quad \gamma=\gamma_{\omega}=\omega \circledast \widetilde{\omega}:=\lim _{R \rightarrow \infty} \frac{\left.\omega\right|_{R} * \widetilde{\left.\omega\right|_{R}}}{\operatorname{vol}\left(B_{R}\right)}$

Diffraction:

$$
\widehat{\gamma}=\widehat{\gamma}_{\mathrm{pp}}+\widehat{\gamma}_{\mathrm{sc}}+\widehat{\gamma}_{\mathrm{ac}}
$$

(relative to λ)

- pp: Bragg peaks
- ac: diffuse scattering with density
- sc: whatever remains ...

Diffraction theory, ctd

Setting: $\omega \curvearrowright \gamma=\omega \circledast \widetilde{\omega} \curvearrowright \widehat{\gamma} \npreceq \omega$

Dirac comb on \mathbb{Z} :

$$
\omega=\sum_{n \in \mathbb{Z}} w(n) \delta_{n} \quad \curvearrowright \quad \gamma=\sum_{m \in \mathbb{Z}} \eta(m) \delta_{m}
$$

Autocorrelation coefficients:

$$
\eta(m)=\lim _{N \rightarrow \infty} \frac{1}{2 N+1} \sum_{n=-N}^{N} w(n) \overline{w(n-m)}
$$

(similar for lattices)

Pure point spectra

Point measures: $\quad \delta_{x}, \quad \delta_{S}:=\sum_{x \in S} \delta_{x}$

Poisson summation formula: $\quad \widehat{\delta_{\Gamma}}=\operatorname{dens}(\Gamma) \delta_{\Gamma^{*}}$
for lattice Γ, dual lattice Γ^{*}

Perfect crystals: $\quad \omega=\mu * \delta_{\Gamma} \quad(\mu$ finite $)$

$$
\begin{array}{ll}
\Longrightarrow & \gamma=\operatorname{dens}(\Gamma)(\mu * \widetilde{\mu}) * \delta_{\Gamma} \\
\Longrightarrow & \widehat{\gamma}=(\operatorname{dens}(\Gamma))^{2}|\widehat{\mu}|^{2} \delta_{\Gamma^{*}}
\end{array}
$$

pure point

Pure point spectra, ctd

Silver mean substitution: $\quad a \mapsto a b a, b \mapsto a \quad\left(\lambda_{\mathrm{PF}}=1+\sqrt{2}\right)$
Silver mean point set: $\quad \Lambda=\left\{x \in \mathbb{Z}[\sqrt{2}] \left\lvert\, x^{\prime} \in\left[-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right]\right.\right\}$

Pure point spectra, ctd

CPS:

Model set:

$$
\Lambda=\left\{x \in L \mid x^{\star} \in W\right\}
$$

(assumed regular)
with $W \subset \mathbb{R}^{m}$ compact, $\lambda(\partial W)=0$

Diffraction:

$$
\widehat{\gamma}=\sum_{k \in L^{\circledR}}|A(k)|^{2} \delta_{k}
$$

pure point !! $\quad\left(\omega=\delta_{A}\right)$
with $L^{\circledast}=\pi\left(\mathcal{L}^{*}\right) \quad$ (Fourier module of Λ)
and amplitude $A(k)=\frac{\operatorname{dens}(A)}{\operatorname{vol}(W)} \widehat{\widehat{W}_{W}}\left(-k^{\star}\right)$

Example: Ammann-Beenker

$$
L=\mathbb{Z}[\xi] \quad \mathcal{L} \sim \mathbb{Z}^{4} \subset \mathbb{R}^{2} \times \mathbb{R}^{2} \quad O \text { : octagon }
$$

$$
\begin{gathered}
\xi=\exp (2 \pi i / 8) \quad \phi(8)=4 \quad \star \text {-map: } \xi \mapsto \xi^{3} \\
\Lambda_{\mathrm{AB}}=\left\{x \in \mathbb{Z} 1+\mathbb{Z} \xi+\mathbb{Z} \xi^{2}+\mathbb{Z} \xi^{3} \mid x^{\star} \in O\right\}
\end{gathered}
$$

Example: Ammann-Beenker

physical space

internal space

Example: Ammann-Beenker

Interlude: Homometry

Problem: distinct structures with identical autocorrelation

Example 1: $\quad \delta_{6 \mathbb{Z}} * \sum_{j=0}^{5} c_{j} \delta_{j} \quad$| j | 0 | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| c_{j} | 11 | 25 | 42 | 45 | 31 | 14 |
| c_{j} | 10 | 21 | 39 | 46 | 35 | 17 |

same correlations up to order 5 (Grünbaum \& Moore)

Interlude: Homometry

Problem: distinct structures with identical autocorrelation
Example 1: $\quad \delta_{6 \mathbb{Z}} * \sum_{j=0}^{5} c_{j} \delta_{j}$

j	0	1	2	3	4	5
c_{j}	11	25	42	45	31	14
c_{j}	10	21	39	46	35	17

same correlations up to order 5 (Grünbaum \& Moore)
Example 2: homometric models sets with distinct windows

windows

Interlude: Homometry

Interlude: Homometry

Interlude: Homometry

Singular spectra

Thue-Morse chain

Substitution: $\quad \varrho: \begin{aligned} & 1 \mapsto 1 \overline{1} \\ & \overline{1} \mapsto \overline{1} 1\end{aligned} \quad(\overline{1} \hat{=}-1)$
Iteration and fixed point:
$1 \mapsto 1 \overline{1} \mapsto 1 \overline{1} \overline{1} 1 \mapsto 1 \overline{1} \overline{1} 1 \overline{1} 11 \overline{1} \mapsto \ldots \longrightarrow v=\varrho(v)=v_{0} v_{1} v_{2} v_{3} \ldots$

- $v_{2 i}=v_{i}$ and $v_{2 i+1}=\bar{v}_{i}$
- $v_{i}=(-1)^{\text {sum of the binary digits of } i}$
- v is (strongly) cube-free
- hull of v is aperiodic and strictly ergodic

Two-sided version: $\quad w_{i}= \begin{cases}v_{i}, & \text { for } i \geq 0 \\ v_{-i-1}, & \text { for } i<0\end{cases}$

TM: Autocorrelation

Structure: $\quad \gamma=\sum_{m \in \mathbb{Z}} \eta(m) \delta_{m}=\eta \delta_{\mathbb{Z}}$

$$
\begin{aligned}
& \text { with } \eta(m)=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=0}^{n-1} v_{i} v_{i+m} \\
& \text { and } \eta(-m)=\eta(m) \text { for } m \geq 0
\end{aligned}
$$

Recursion: $\quad \eta(0)=1, \eta(1)=-\frac{1}{3} \quad$ and, for all $m \geq 0$,

$$
\eta(2 m)=\eta(m) \quad \text { and } \quad \eta(2 m+1)=-\frac{1}{2}(\eta(m)+\eta(m+1))
$$

(also valid for all $m \in \mathbb{Z}$)

Observation: $\quad \operatorname{supp}(\gamma) \subset \mathbb{Z} \quad \Longrightarrow \quad \delta_{1} * \widehat{\gamma}=\widehat{\gamma}$

Diffraction: Absence of pp part

$\widehat{\gamma}=\mu * \delta_{\mathbb{Z}} \quad$ with $\mu=\left.\widehat{\gamma}\right|_{[0,1)}$ and $\quad \eta(m)=\int_{0}^{1} \mathrm{e}^{2 \pi i m y} \mathrm{~d} \mu(y)$
(Herglotz-Bochner)

Wiener's criterion: $\quad \mu_{\mathrm{pp}}=0 \Longleftrightarrow \Sigma(N)=o(N)$

$$
\text { where } \Sigma(N)=\sum_{m=-N}^{N}(\eta(m))^{2}
$$

Argument: $\quad \Sigma(4 N) \leq \frac{3}{2} \Sigma(2 N) \quad$ (by recursion for η)

$$
\Longrightarrow \quad \mu=\mu_{\mathrm{cont}}=\mu_{\mathrm{sc}}+\mu_{\mathrm{ac}}
$$

Define: $\quad F(x)=\mu([0, x])$ for $x \in[0,1]$, where $F=F_{\text {ac }}+F_{\text {sc }}$

Diffraction: Absence of ac part

Functional relation:

$$
\begin{aligned}
\mathrm{d} F\left(\frac{x}{2}\right)+\mathrm{d} F\left(\frac{x+1}{2}\right) & =\mathrm{d} F(x) \\
\mathrm{d} F\left(\frac{x}{2}\right)-\mathrm{d} F\left(\frac{x+1}{2}\right) & =-\cos (\pi x) \mathrm{d} F(x)
\end{aligned}
$$

valid for F_{ac} and F_{sc} separately $\left(\mu_{\mathrm{ac}} \perp \mu_{\mathrm{sc}}\right)$

Define: $\quad \eta_{\mathrm{ac}}(m)=\int_{0}^{1} \mathrm{e}^{2 \pi \mathrm{i} m x} \mathrm{~d} F_{\mathrm{ac}}(x)$
\curvearrowright same recursion as for $\eta(m)$, but $\eta_{\mathrm{ac}}(0)$ free
Riemann-Lebesgue lemma: $\quad \lim _{m \rightarrow \pm \infty} \eta_{\mathrm{ac}}(m)=0$
$\Longrightarrow \quad \eta_{\mathrm{ac}}(0)=0 \quad \Longrightarrow \quad \eta_{\mathrm{ac}}(m) \equiv 0 \quad \Longrightarrow \quad F_{\mathrm{ac}}=0$
(Fourier uniqueness thm)
Theorem: $\mu=\mu_{\mathrm{sc}}$ and $\widehat{\gamma}$ is purely sc.

TM measure

Fourier series and Volterra iteration

Functional equation: $\quad F(1-x)+F(x)=1$ on $[0,1]$ and

$$
\begin{aligned}
& F(x)=\frac{1}{2} \int_{0}^{2 x}(1-\cos (\pi y)) \mathrm{d} F(y) \quad \text { for } x \in\left[0, \frac{1}{2}\right] \\
& \Longrightarrow \quad F(x)=x+\sum_{m \geq 1} \frac{\eta(m)}{m \pi} \sin (2 \pi m x) \quad \begin{array}{c}
\text { uniform } \\
\text { convergence }
\end{array}
\end{aligned}
$$

Define: $\quad F_{0}(x)=x$ and

$$
\begin{aligned}
F_{n+1}(x)=\frac{1}{2} \int_{0}^{2 x} & (1-\cos (\pi y)) F_{n}^{\prime}(y) \mathrm{d} y \\
& \text { for } n \geq 0 \text { and } x \in\left[0, \frac{1}{2}\right] \\
& \text { extension to }[0,1] \text { by symmetry }
\end{aligned}
$$

Generalised Morse sequences

Substitution: $\quad \varrho: \begin{aligned} & 1 \mapsto 1^{k} \overline{1} \ell \\ & \overline{1} \mapsto \overline{1}^{k} 1^{\ell}\end{aligned} \quad$ (with $k, \ell \in \mathbb{N}$)
Fixed point: $\quad v_{0}=1, \quad v_{m(k+\ell)+r}= \begin{cases}v_{m}, & \text { if } 0 \leq r<k \\ \bar{v}_{m}, & \text { if } k \leq r<k+\ell\end{cases}$

Coefficients: $\quad \eta(0)=1, \eta(\pm 1)=\frac{k+\ell-3}{k+\ell+1}$, and

$$
\eta((k+\ell) m+r)=\frac{1}{k+\ell}\left(\alpha_{k, \ell, r} \eta(m)+\alpha_{k, \ell, k+\ell-r} \eta(m+1)\right)
$$

with $m \in \mathbb{Z}, 0 \leq r \leq k+\ell-1$, and

$$
\alpha_{k, \ell, r}=k+\ell-r-2 \min (k, \ell, r, k+\ell-r)
$$

Generalised Morse sequences

Fourier series: $\quad F(x)=\widehat{\gamma}([0, x])$

$$
\begin{aligned}
& =x+\sum_{m \geq 1} \frac{\eta(m)}{m \pi} \sin (2 \pi m x) \\
& \text { (uniform convergence) }
\end{aligned}
$$

Riesz product: $\prod \vartheta\left((k+\ell)^{n} x\right) \quad$ with

$$
\vartheta(x)=1+\frac{2}{k+\ell} \sum_{r=1}^{k+\ell-1} \alpha_{k, \ell, r} \cos (2 \pi r x)
$$

(vague convergence)
$\mathrm{TM}(k=\ell=1): \quad \prod_{n \geq 0}\left(1-\cos \left(2^{n+1} \pi x\right)\right)$

Further TM measures

Period doubling sequences

Block map: $\quad \psi: \quad 1 \overline{1}, \overline{1} 1 \mapsto a, \quad 11, \overline{1} \overline{1} \mapsto b$ gen. period doubling:

$$
\varrho^{\prime}: \begin{gathered}
a \mapsto b^{k-1} a b^{\ell-1} b \\
b \mapsto b^{k-1} a b^{\ell-1} a
\end{gathered}
$$

\mathbb{X}_{TM}
$\psi \downarrow$
$\mathbb{X}_{\mathrm{pd}} \xrightarrow{\varrho^{\prime}} \mathbb{X}_{\mathrm{pd}}$
$\pi \downarrow \quad \downarrow \pi \quad$ (a.e. 1:1)
Sol $\xrightarrow[\times(k+\ell)]{\times 2}$ Sol

AC spectra: Coin tossing sequence

Sequence: i.i.d. random variables $W_{n} \in\{ \pm 1\}$ with probabilities p and $1-p$

Metric entropy: $\quad H(p)=-p \log (p)-(1-p) \log (1-p)$
Autocorrelation: $\gamma_{\mathrm{B}}=\sum_{m \in \mathbb{Z}} \eta_{\mathrm{B}}(m) \delta_{m}$ with

$$
\eta_{\mathrm{B}}(m):=\lim _{N \rightarrow \infty} \frac{1}{2 N+1} \sum_{n=-N}^{N} W_{n} W_{n+m} \stackrel{\text { (a.s.) }}{=} \begin{cases}1, & m=0 \\ (2 p-1)^{2}, & m \neq 0\end{cases}
$$

(strong law of large numbers)

Diffraction measure:

$$
\widehat{\gamma_{\mathrm{B}}} \stackrel{(\text { a.s. })}{=}(2 p-1)^{2} \delta_{\mathbb{Z}}+4 p(1-p) \lambda
$$

Rudin-Shapiro sequence

Substitution: $\quad \varrho: a \mapsto a c, b \mapsto d c, c \mapsto a b, d \mapsto d b$
Fixed point: $\quad b\left|a \xrightarrow{\varrho^{2}} d b a b\right| a c a b \xrightarrow{\varrho^{2}} \ldots \longrightarrow u=\varrho^{2}(u)$
Reduction: $\quad \varphi: \quad a, c \mapsto 1, \quad b, d \mapsto-1, \quad w:=\varphi(u)$
-०००००००००००००००००००००००००००००००ф०००००००००००००००००००००००००००००००
Alternative description: $\quad w(-1)=-1, w(0)=1$, and

$$
w(4 n+\ell)= \begin{cases}w(n), & \text { for } \ell \in\{0,1\} \\ (-1)^{n+\ell} w(n), & \text { for } \ell \in\{2,3\}\end{cases}
$$

Autocorrelation: $\quad \gamma_{\mathrm{RS}}=\sum_{m \in \mathbb{Z}} \eta(m) \delta_{m}$

RS: Autocorrelation

Define: $\left.\begin{array}{c}\eta(m) \\ \vartheta(m)\end{array}\right\}:=\lim _{N \rightarrow \infty} \frac{1}{2 N+1} \sum_{n=-N}^{N} w(n) w(n+m)\left\{\begin{array}{c}1 \\ (-1)^{n}\end{array}\right.$
(all limits exist by Birkhoff's ergodic theorem)
Recursion: $\quad \eta(0)=1, \vartheta(0)=0$, and

$$
\begin{aligned}
\eta(4 m) & =\frac{1+(-1)^{m}}{2} \eta(m), \quad \eta(4 m+2)=0, \\
\eta(4 m+1) & =\frac{1-(-1)^{m}}{4} \eta(m)+\frac{(-1)^{m}}{4} \vartheta(m)-\frac{1}{4} \vartheta(m+1), \\
\eta(4 m+3) & =\frac{1+(-1)^{m}}{4} \eta(m+1)-\frac{(-1)^{m}}{4} \vartheta(m)+\frac{1}{4} \vartheta(m+1), \\
\vartheta(4 m) & =0, \quad \vartheta(4 m+2)=\frac{(-1)^{m}}{2} \vartheta(m)+\frac{1}{2} \vartheta(m+1), \\
\vartheta(4 m+1) & =\frac{1-(-1)^{m}}{4} \eta(m)-\frac{(-1)^{m}}{4} \vartheta(m)+\frac{1}{4} \vartheta(m+1), \\
\vartheta(4 m+3) & =-\frac{1+(-1)^{m}}{4} \eta(m+1)-\frac{(-1)^{m}}{4} \vartheta(m)+\frac{1}{4} \vartheta(m+1) .
\end{aligned}
$$

RS: Diffraction

Unique solution: $\quad \vartheta(\pm 1)=0 \curvearrowright \vartheta(m)=0$ for all $m \in \mathbb{Z}$ and $\eta(m)=0$ for all $m \neq 0$

Theorem: $\quad \widehat{\gamma_{\mathrm{RS}}=\delta_{0}}$ and $\widehat{\gamma_{\mathrm{RS}}}=\lambda$
\Longrightarrow homometric with coin tossing for $p=\frac{1}{2}$, but zero entropy!

General weights: $h_{ \pm}$instead of ± 1 :

$$
\widehat{\gamma_{h}}=\left|\frac{h_{+}+h_{-}}{2}\right|^{2} \delta_{\mathbb{Z}}+\left|\frac{h_{+}-h_{-}}{2}\right|^{2} \lambda
$$

Bernoullisation

Sequence: $S \in\{ \pm 1\}^{\mathbb{Z}}$ (assumed ergodic) with Dirac comb $\omega_{S}=\sum_{n \in \mathbb{Z}} S_{n} \delta_{n}$ and autocorrelation γ_{S}

Bernoullisation: $\omega:=\sum_{n \in \mathbb{Z}} S_{n} W_{n} \delta_{n} \quad\left(W_{n} \in\{ \pm 1\}\right)$
Autocorrelation: $\quad \gamma \stackrel{(\text { a.s. })}{=}(2 p-1)^{2} \gamma_{S}+4 p(1-p) \delta_{0}$
(strong law of large numbers)
Application: Rudin-Shapiro, with $\gamma_{S}=\gamma_{\mathrm{RS}}=\delta_{0}$
$\curvearrowright \gamma=\delta_{0}$ independently of p
\curvearrowright diffraction $\hat{\gamma} \equiv \lambda$
\curvearrowright homometric, irrespective of entropy

Ledrappier's model

$$
\mathbb{X}_{\mathrm{L}}=\left\{w \in\{ \pm 1\}^{\mathbb{Z}^{2}} \mid w_{x} w_{x+e_{1}} w_{x+e_{2}}=1 \text { for all } x \in \mathbb{Z}^{2}\right\}
$$

Properties:

closed subshift, Abelian group, Haar measure μ_{L}, rank 1 entropy

Dirac comb:

$$
\omega=\sum_{x \in \mathbb{Z}^{2}} w_{x} \delta_{x}
$$

Theorem: $\quad \gamma=\delta_{0} \quad$ and $\quad \hat{\gamma}=\lambda$ (μ_{L}-almost surely)
\curvearrowright homometric with 2D Bernoulli and Rudin-Shapiro
(but different 3-point function)

van Enter's example

Model: \quad closed packed dimers on \mathbb{Z} with random orientation: $\quad++-$ or $\quad-+$

Dirac comb with weights $w_{i} \in\{ \pm 1\}$

Diffraction:

$$
\widehat{\gamma_{w}}=(1-\cos (2 \pi k)) \lambda \quad \text { (purely ac) }
$$

Factor map:

$$
u_{i}=-w_{i} w_{i+1}
$$

$$
\begin{equation*}
\widehat{\gamma_{u}}=\frac{1}{4} \delta_{\mathbb{Z} / 2}+\frac{1}{2} \lambda \tag{mixed}
\end{equation*}
$$

similar to Thue-Morse versus period doubling !

Renewal process

Stationary process: $\quad \varrho \in \mathcal{P}\left(\mathbb{R}_{+}\right)$with mean 1
Autocorrelation:

$$
\begin{aligned}
& \gamma=\delta_{0}+\nu+\widetilde{\nu} \quad \text { with } \\
& \nu=\varrho+\varrho * \varrho+\varrho * \varrho * \varrho+\ldots
\end{aligned}
$$

Renewal equations: $\quad \nu=\varrho+\varrho * \nu \quad$ and $\quad(1-\widehat{\varrho}) \widehat{\nu}=\widehat{\varrho}$

Theorem:

$$
\widehat{\gamma}=(\widehat{\gamma})_{\mathrm{pp}}+(1-h) \cdot \lambda
$$

$$
\begin{aligned}
& \text { with } h(k)=\frac{2\left(|\widehat{\varrho}(k)|^{2}-\operatorname{Re}(\widehat{\varrho}(k))\right)}{|1-\widehat{\varrho}(k)|^{2}} \quad \text { and } \\
& (\widehat{\gamma})_{\mathrm{pp}}= \begin{cases}\delta_{0}, & \text { if } \operatorname{supp}(\varrho) \text { is not a subset of a lattice }, \\
\delta_{\mathbb{Z} / b}, & \text { if } b \mathbb{Z} \text { is the coarsest lattice that contains } \operatorname{supp}(\varrho) .\end{cases}
\end{aligned}
$$

RME on the line

Setting: real eigenvalues of Dyson's random matrix ensembles

- symmetric $(\beta=1)$, Hermitian $(\beta=2)$, symplectic $(\beta=4)$ matrices
- semicircle law (with $r \sim \sqrt{\frac{2 N}{\pi}}$), rescaling of central part (by $\sqrt{\frac{2 N}{\pi}}$)
- stationary, ergodic point process of density 1 in the limit $N \rightarrow \infty$

RME in the plane

Setting: eigenvalues of general, complex random matrices, viewed as point set in the plane (Ginibre's ensemble)

- uniform distribution in circle $\left(r \sim \sqrt{\frac{N}{\pi}}\right)$, as $N \rightarrow \infty$
- Coulomb gas $(\beta=2)$, determinantal correlation functions
- stationary, ergodic point process of density 1 in the limit $N \rightarrow \infty$

Theorem:

$$
\widehat{\gamma} \stackrel{\text { a.s. })}{=} \delta_{0}+\left(1-e^{-\pi|k|^{2}}\right) \lambda
$$

Random clusters

Setting: $\quad \Lambda$ FLC set, autocorrelation $\gamma=\sum_{z \in \Lambda-\Lambda} \eta(z) \delta_{z}$
Modification:

$$
\delta_{\Lambda}^{(\Omega)}=\sum_{x \in \Lambda} \Omega_{x} * \delta_{x}
$$

$\left(\Omega_{x}\right)_{x \in \Lambda}$ i.i.d. with law Q $\mathbb{E}_{Q}(|\Omega|)$ finite measure $\mathbb{E}_{Q}\left(\left(|\Omega|\left(\mathbb{R}^{d}\right)\right)^{2}\right)<\infty$

$$
\begin{aligned}
\Longrightarrow \quad \gamma^{(\Omega)} \stackrel{(\text { a.s. })}{=} & \left(\mathbb{E}_{Q}(\Omega) * \widetilde{\mathbb{E}_{Q}(\Omega)}\right) * \gamma \\
& +\operatorname{dens}(\Lambda)\left(\mathbb{E}_{Q}(\Omega * \widetilde{\Omega})-\mathbb{E}_{Q}(\Omega) * \widetilde{\mathbb{E}_{Q}(\Omega)}\right) * \delta_{0}
\end{aligned}
$$

Theorem:

$$
\widehat{\gamma}^{(\Omega)} \stackrel{(\text { a.s. })}{=}\left|\mathbb{E}_{Q}(\widehat{\Omega})\right|^{2} \cdot \widehat{\gamma}+\operatorname{dens}(\Lambda)\left(\mathbb{E}_{Q}\left(|\widehat{\Omega}|^{2}\right)-\left|\mathbb{E}_{Q}(\widehat{\Omega})\right|^{2}\right) \cdot \lambda
$$

Outlook

- Diffraction as useful tool
- Continuous spectra accessible
- Homometry more difficult
- Insensitivity to entropy
- Generalisation beyond lattice systems
- Extension to higher dimension
- Lower rank entropy (Ledrappier)
- Point process theory
- Randomness with interaction

Perspective

Harmonic Analysis

Algebra \rightarrow Aperiodic Order \leftarrow Topology

Number Theory

Dynamical Systems

κ

Discrete Geometry

References

- N. Wiener, The spectrum of an array and its application to the study of the translation properties of a simple class of arithmetical functions. Part I: The spectrum of an array, J. Math. Massachusetts 6 (1927) 145-157
- K. Mahler, - dto. - Part II: On the translation properties of a simple class of arithmetical functions, J. Math. Massachusetts 6 (1927) 158-163
- M. Keane, Generalized Morse sequences, Z. Wahrscheinlichkeitsth. Verw. Gebiete 10 (1968) 335-353
- S. Kakutani, Strictly ergodic symbolic dynamical systems, in: Proc. 6th Berkeley Symposium on Math. Statistics and Probability, eds. L.M. LeCam, J. Neyman and E.L. Scott (eds.), Univ. of California Press, Berkeley (1972), pp. 319-326
- M. Queffélec, Substitution Dynamical Systems — Spectral Analysis, LNM 1294 (Springer, Berlin, 1987)
- M. Baake \& U. Grimm, The singular continuous diffraction measure of the Thue-Morse chain, J. Phys. A.: Math. Theor. 41 (2008) 422001;
arXiv:0809.0580 (math.DS)
- H.S. Shapiro, Extremal Problems for Polynomials and Power Series, Masters Thesis (MIT, Boston, 1951)
- W. Rudin, Some theorems on Fourier coefficients, Proc. AMS 10 (1959) 855-859

References, ctd

- F.M. Dekking, The spectrum of dynamical systems arising from substitutions of constant length, Z. Wahrscheinlichkeitsth. verw. Geb. 41 (1978) 221-239
- F.A. Grünbaum \& C.C. Moore, The use of higher-order invariants in the determination of generalized Patterson cyclotomic sets, Acta Cryst. A 51 (1995) 310-323
- M. Höffe \& M. Baake, Surprises in diffuse scattering, Z. Krist. 215 (2000) 441-444; arXiv:math-ph/0004022
- M. Baake \& U. Grimm, Homometric model sets and window covariograms, Z. Krist. 222 (2007) 54-58; arXiv:math.MG/0610411
- U. Grimm \& M. Baake, Homometric point sets and inverse problems, Z. Krist. 223 (2008) 777-781; arXiv:0808.0094
- M. Baake \& U. Grimm, Kinematic diffraction is insufficient to distinguish order from disorder, Phys. Rev. B 79 (2009) 020203(R); arXiv:0810. 5750
- X. Deng \& R.V. Moody, How model sets can be determined by their two-point and three-point correlations, J. Stat. Phys. 135 (2009) 621-637; arXiv:0901. 4381
- M. Baake, M. Birkner \& R.V. Moody, Diffraction of stochastic point sets: Explicitly computable examples, Commun. Math. Phys. 293 (2010) 611-660; arXiv: 0803.1266
- M. Baake \& T. Ward, Planar dynamical systems with pure Lebesgue diffraction spectrum, J. Stat. Phys. 140 (2010) 90-102; arXiv:1003.1536

Pinwheel tiling

Pinwheel tiling

Autocorrelation is circularly symmetric,

$$
\gamma_{\Lambda}=\delta_{0}+\sum_{r \in \mathcal{D} \backslash\{0\}} \eta(r) \mu_{r}=\sum_{r \in \mathcal{D}} \eta(r) \mu_{r},
$$

with μ_{r} the normalised uniform distribution on $r \mathbb{S}^{1}$ and $\mu_{0}=\delta_{0}$
R.V. Moody, D. Postnikoff and N. Strungaru, Circular symmetry of pinwheel diffraction, Ann. H. Poincaré 7 (2006) 711-730
$\longrightarrow\left(\widehat{\gamma}_{\Lambda}\right)_{\mathrm{pp}}=(\operatorname{dens}(\Lambda))^{2} \delta_{0}=\delta_{0}$
\square diffraction intensity on rings (singular component) also absolutely continuous component?

Pinwheel tiling

pinwheel radial intensity (numerical)

Pinwheel tiling

pinwheel radial intensity (numerical)
square lattice powder diffraction

(central intensity suppressed; relative scale chosen such peaks at $k=1$ match)

Pinwheel tiling

