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Diophantine approximation



Motivation

Classical Diophantine approximation attempts to quantify the
density of the set Qd of rational vectors in affine space Rd and,
more generally, the density of Qd in any one of its completion Qd

v .

Naturally, one wants to consider Diophantine approximation on
algebraic varieties more general than affine space.

Let X be an affine algebraic variety defined over Q, and X(Q) its
set of rational points.

Fix a height function H : X(Q)→ R+ on the set of rational points
on the variety,

and a metric distv on the variety X(Qv ) itself.
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Quantitative approximation

Let us introduce a function ωv (x , ε) which measures the density
of the rational points X(Q) in a neighborhood of a point x in the
variety X(Qv) :

ωv (x , ε) := min{H(z) : z ∈ X(Q), distv (x , z) ≤ ε}

(if no such z exists, we set ωv (x , ε) =∞).

This function is a natural generalization of the uniform irrationality
exponent of a real number ξ.

ωv (x , ε) is non-increasing, bounded as ε→ 0+ if and only if
x ∈ X(Q), and finite if and only if x ∈ X(Q). For x ∈ X(Q)\X(Q),
the growth rate of ωv (x , ε) as ε→ 0+ provides a quantitative
measure of the Diophantine properties of x with respect to Q.
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Constrained approximation

It is also of great interest to consider rational approximation with
prescribed integrality conditions.

For exmple, suppose that the subset of rational points given by
X(Z[ 1

p ]) is dense in X(Qv ), for some prime p.

We can then use the standard p-adic height on X(Z[ 1
p ]), and

consider the problem of estimating the rate of approximation by
rational points constrained to be integral at all places except at p.

More generally, we can consider integrality constraints
determined by any finite or infinite subset of the set of
completions of Q, and the corresponding rate of approximation
by rational points satisfying these constraints.

We proceed to describe some examples

.
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Diophantine approximation on the 2-sphere

Let Sd , d ≥ 2 be the unit sphere of dimension d , viewed as the
level set of the quadratic form given by the sum of squares.

Fix a prime p ≡ 1 mod 4. Then Sd (Z[1/p]) is dense in Sd (R).

Theorem 1a. Consider the unit sphere S2 ⊂ R3 :
For almost every x ∈ S2(R), δ > 0, and ε ∈ (0, ε0(x , δ)), there
exists z ∈ S2(Z[1/p]) such that

‖x − z‖∞ ≤ ε and H(z) ≤ ε−2−δ.

Furthermore the exponent 2 is the best possible.
For every x ∈ S2(R), δ > 0, and ε ∈ (0, ε0(δ)), there exists
z ∈ S2(Z[1/p]) such that

‖x − z‖∞ ≤ ε and H(z) ≤ ε−4−δ.

The same results holds for S3 ⊂ R4, with almost sure exponent
3/2 which is best possible, and uniform exponent 3.
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Higher dimensional spheres

Theorem 1b. Consider the unit sphere Sd ⊂ Rd+1, d ≥ 4 even :

For almost every x ∈ Sd (R), δ > 0, and ε ∈ (0, ε0(x , δ)), there
exists z ∈ Sd (Z[1/p]) such that

‖x − z‖∞ ≤ ε and H(z) ≤ ε−2−δ.

A general lower bound for the exponent which is valid here is
d

d−1 . At present we do not know whether the exponent 2 can be
improved.

For every x ∈ Sd (R), δ > 0, and ε ∈ (0, ε0(δ)), there exists
z ∈ Sd (Z[1/p]) such that

‖x − z‖∞ ≤ ε and H(z) ≤ ε−4−δ.

Similar results hold for odd-dimensional spheres

.

Diophantine approximation



Higher dimensional spheres

Theorem 1b. Consider the unit sphere Sd ⊂ Rd+1, d ≥ 4 even :

For almost every x ∈ Sd (R), δ > 0, and ε ∈ (0, ε0(x , δ)), there
exists z ∈ Sd (Z[1/p]) such that

‖x − z‖∞ ≤ ε and H(z) ≤ ε−2−δ.

A general lower bound for the exponent which is valid here is
d

d−1 . At present we do not know whether the exponent 2 can be
improved.

For every x ∈ Sd (R), δ > 0, and ε ∈ (0, ε0(δ)), there exists
z ∈ Sd (Z[1/p]) such that

‖x − z‖∞ ≤ ε and H(z) ≤ ε−4−δ.

Similar results hold for odd-dimensional spheres

.

Diophantine approximation



Higher dimensional spheres

Theorem 1b. Consider the unit sphere Sd ⊂ Rd+1, d ≥ 4 even :

For almost every x ∈ Sd (R), δ > 0, and ε ∈ (0, ε0(x , δ)), there
exists z ∈ Sd (Z[1/p]) such that

‖x − z‖∞ ≤ ε and H(z) ≤ ε−2−δ.

A general lower bound for the exponent which is valid here is
d

d−1 . At present we do not know whether the exponent 2 can be
improved.

For every x ∈ Sd (R), δ > 0, and ε ∈ (0, ε0(δ)), there exists
z ∈ Sd (Z[1/p]) such that

‖x − z‖∞ ≤ ε and H(z) ≤ ε−4−δ.

Similar results hold for odd-dimensional spheres

.

Diophantine approximation



Higher dimensional spheres

Theorem 1b. Consider the unit sphere Sd ⊂ Rd+1, d ≥ 4 even :

For almost every x ∈ Sd (R), δ > 0, and ε ∈ (0, ε0(x , δ)), there
exists z ∈ Sd (Z[1/p]) such that

‖x − z‖∞ ≤ ε and H(z) ≤ ε−2−δ.

A general lower bound for the exponent which is valid here is
d

d−1 . At present we do not know whether the exponent 2 can be
improved.

For every x ∈ Sd (R), δ > 0, and ε ∈ (0, ε0(δ)), there exists
z ∈ Sd (Z[1/p]) such that

‖x − z‖∞ ≤ ε and H(z) ≤ ε−4−δ.

Similar results hold for odd-dimensional spheres.

Diophantine approximation



Overview

Our goal is to prove results in Diophantine approximation :

for arbitrary affine homogenous varieties of all semisimple
groups,

defined over an arbitrary number field K ,

using K -rational points constrained by arbitrarily prescribed
integrality conditions,

achieving simultaneous approximation over several completions
of the field K ,

with the approximation rate being given as an explicit exponent.
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Method of proof

Our approach is based on the following ingredients :

effective duality principle on homogeneous spaces,

quantitative ergodic theorems for semisimple group actions,

spectral estimates in the automorphic representation,

the shrinking targets method in Diophantine approximation

We will demonstrate some of the techniques in the case of principal
homogeneous space, namely the group variety itself, but before that
let us comment on some prior relevant results and methods.
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Relevant results

Using elementary methods based on rational parametrisations of
spheres, it was shown by Schmutz 2008 that for every x ∈ Sd (R)
and ε ∈ (0,1), there exists z ∈ Sd (Q) such that

‖x − z‖∞ ≤ ε and H(z) ≤ const ε−2dlog2(d+1)e.

Despite the fact that this result allows approximation using all
Q-points on Sd rather than just Z[1/p]-points, the exponent
obtained is unbounded as a function of d .

Lubotzky,Phillips and Sarnak 1986 have constructed dense
groups of rational (in fact Z[ 1

p ])) quaternions in SU2(C) acting on
S3, and they have established a spectral estimate for their unitary
representation on the sphere.

It is possible to derive a rate of equidistribution for the group
orbits using this estimate, and then derive an exponent for the
uniform rate of diophantine approximation on spheres.
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Relevant methods

Our approach is motivated by and owes much to several methods
and ideas developed in other contexts, as follows.

Waldschmidt has considered the problem of estimating an
exponent for Diophantine approximation for homogeneous
varieties, specifically Abelian varieties defined over Q equipped
with a suitable height function.

In terms of our notation, he proved upper estimates on the
function ω∞(x , ε) and conjectured that for every δ > 0,
ε ∈ (0, ε0(δ)), and x ∈ X(K ) ⊂ X(R),

ω∞(x , ε) ≤ ε−
2 dim(X)

rank(X(Q))
−δ
.

This conjecture is remarkably strong as one can show that the
exponent in this estimate is the best possible. A similar
conjecture has been formulated in the case of algebraic tori.
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Relevant methods

The method of reducing problems in Diophantine approximation
on homogeneous varieties to the recurrence properties of
one-parameter group orbits in Γ \G was developed by Dani and
termed the Dani correspondence by Kleinbock and Margulis.

Kleinbock and Margulis have used quantitative estimates of
decay of matrix coefficients in the automorphic representation
along one parameter split subgroups of SLn(R) in their work on
Diophantine approximation in Rn.

The formulation of Diophantine approximation as a "shrinking
target" problem for one-parameter group orbits was developed
by the previous authors and also by Hersonsky-Paulin in the
context of hyperbolic geometry. More recent further work along
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The duality principle - namely the reduction of dynamical
questions about the Γ-orbits in G/H to questions about the
dynamics of H-orbits in Γ \G - was expanded significantly over
the last decade by Ledrappier, Ledrappier-Pollicott, and
Gorodnik. A definitive analysis of equidistribution results via
duality is due to Gorodnik-Weiss. Effective forms of the duality
principle have been developed by Gorodnik+N.

Recent quantitative Diophantine approximation results for the
distribution of SL2(Z)-orbits in R2 have been developed by
Nogueira and by Maucourant-Weiss.

The LPS construction of dense subgroups of SO3(R) produces
the best possible spectral gap estimate. This underlies the best
possible rate of Diophantine approximation for S2, S3.

A more general spectral estimate for averaging on Hecke points
in the automorphic representation was established by
Clozel-Oh-Ullmo 2002, and used to obtain quantitative
equidistribution of Hecke points for smooth functions in the
automorphic representation. This can be used to establish a
uniform rate of diophantine approximation on the group variety.
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General set-up

The abstract set-up consists of an lcsc group G which is a
product of two closed subgroups G = GS1 ×GS2 , and a lattice
Γ ⊂ G, which is irreducible and embedded diagonally, namely its
(injective) projection to each of the factors GS1 and GS2 is dense.

Typically, each of the groups GSi decomposes further, with
GS1 =

∏
v∈S1

Gv , and GS2 =
∏

v∈S2
Gv , where S1 and S2 are two

disjoint non-empty index sets.

We fix a distance function (called height) on each Gv , namely a
proper continuous submultiplicative function Hv : Gv → R+, with
Hv (xy) ≤ Hv (x)Hv (y), and the associated left-invariant metrics
dv on the component groups Gv .

We consider the associated distance (height) function on G,
given by the product of the local factors.
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Density of projected lattice points

Since the height function is proper on G, the set of lattice points
of bounded height is finite.

Our goal is to give an upper bound on the height of an element
γ ∈ Γ with the property that its projection to GS1 approximates a
given element in GS1 well.

Formulated quantitatively, we would like to realize the
simultaneous approximation dv (gv , γ) ≤ εv for v ∈ S1 by an
element γ ∈ Γ with height bounded by H(γ) ≤

(∏
v∈S1

εv
)κ with

0 < κ <∞ fixed.

We are interested in two kinds of results : the first states that a
certain rate κ is valid for almost all points in GS1 , and the second
that a certain rate κ′ ≥ κ is valid for all points in GS1 .
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Algebraic set-up

In our setting, S1 and S2 are finite sets of valuations of a number
field K , and we assume that S1 contains all the Archimedean
valuations.

We fix a semisimple algebraic matrix group G defined over K ,
and our goal is simultaneous approximation of elements in the
group GS1 =

∏
v∈S1

Gv where Gv = G(Kv ).

We will always assume that the group GS2 is non-compact
(equivalently, that G is non-isotropic over S2).

The set of matrices whose entries are K -rational and w-integral
for every valuation w /∈ (S1 ∪ S2) is a lattice which is embedded
diagonally in Γ ⊂ G = GS1 ×GS2 , whose elements satisfy
integrality constrains.

The projection of the lattice to GS1 is a dense subgroup of GS1 ,
consisting of the elements allowed in the approximation process.
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The approximation process

To approximate a point g1 ∈ GS1 by an element γ ∈ Γ we must
insure that γ−1g1 lies in a small neighborhood O1

ε of the identity
element in GS1 . Equivalently, we can look at the Γ-orbit of g1GS2

in the homogeneous space G/GS2
∼= GS1 and its approach to the

identity coset [GS2 ]. In G, the condition is
(γ−1, γ−1)(g1,e) ∈ O1

ε ×GS2 .

The application of the duality principle in this case consists of the
observation that to find such an element γ, it suffices to find a
point x in a small neighborhood (g1O1

ε ,O2
ε) of g1 in G, whose

orbit under the complementary group GS2 is close to a point
(γ−1, γ−1) ∈ Γ.

Equivalently, in the homogeneous space Γ \G the orbit of the
small neighborhood Γg1Oε of the coset Γg1 under GS2 must
return to small neighborhoods of the identity coset [Γ].

Thus the rate at which the Γ-orbit of [g1GS2 ] in G/GS2 visits
neighborhoods of the coset [GS2 ] is translated to the rate in which
the GS2 -orbit of Γg1 in Γ \G visits neighborhoods of the coset [Γ].
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Ergodic theorem for G-actions

Very briefly, to obtain a quantitative gauge for recurrence to
neighborhoods of the identity coset in Γ \G we consider height
balls of increasing size in the acting group GS2 , and we seek an
estimate saying that in a ball of height h in GS2 we can find an
element that yields an approximation to the coset [Γ] ∈ Γ \G up
to distance bounded by h−κ.

The underlying method to derive such an estimate is spectral,
and we use the estimate of the operator norms of normalized
height ball averages on GS2 acting by convolution on L2(Γ \G).

These estimates rely of the spectral estimates for spherical
functions in the automorphic representation and their quality is
determined by the bounds towards the generalized
Ramanujan-Petersson conjectures.
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The defining feature of this analysis is that the estimate of the
operator norm of a normalized ball of height h decays like h−κ.
This of course determines a rate in which the ball averages
distribute the mass of a neighborhood of a point in the space
Γ \G as the height increases, and thus the rate in which this
convolution must enter shrinking small neighborhoods of the
identity coset, measures by the decay of the volume of these
shrinking targets.

Matching the decay of the volume of the shrinking targets to the
rate of decay of the norm ball averages we obtain an upper
bound on the rate of approximation via a Borel Cantelli argument.
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Upper bounds on operator norms

The fundamental quantity we should now estimate is the
operator norm of a family of averaging operators on height balls,
acting on L2(Γ \G).

Specifically, consider the height balls on GS2 given by
Bh = {g ∈ GS2 ; HS2 (g) ≤ h}, which are bounded sets of positive
finite Haar measure on GS2 .

The averaging operators on L2(Γ \G) are defined by

π(βh)φ(ζ) =
1

mG(Bh)

∫
g∈Bh

φ(g−1ζ)dmG(g)

where mG is Haar measure on G.

The lattice Γ being irreducible in G, the action of GS2 on Γ \G is
ergodic.
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The spectral gap property

Furthermore, βh satisfy the quantitative mean ergodic theorem
with parameter q, namely for every φ ∈ L2(Γ \G),∥∥∥∥∥π(βh)φ−

∫
G/Γ

φdµ

∥∥∥∥∥
2

�δ mG(Bh)−
1
q +δ

for every δ > 0.

This fact is a consequence of fundamental estimates of spherical
functions on semisimple algebraic groups, and the validity of
property τ for congruence subgroups of the lattice in question,
proved in full generality by Clozel

.

Equivalently this estimate is a quantitative version of the spectral
gap property of the automorphic representation.

The parameter q is determined by the integrability parameter of
the spherical functions appearing in the automorphic
representation and is subject to the Ramanujan conjectures.

Diophantine approximation



The spectral gap property

Furthermore, βh satisfy the quantitative mean ergodic theorem
with parameter q, namely for every φ ∈ L2(Γ \G),∥∥∥∥∥π(βh)φ−

∫
G/Γ

φdµ

∥∥∥∥∥
2

�δ mG(Bh)−
1
q +δ

for every δ > 0.

This fact is a consequence of fundamental estimates of spherical
functions on semisimple algebraic groups, and the validity of
property τ for congruence subgroups of the lattice in question,
proved in full generality by Clozel.

Equivalently this estimate is a quantitative version of the spectral
gap property of the automorphic representation.

The parameter q is determined by the integrability parameter of
the spherical functions appearing in the automorphic
representation and is subject to the Ramanujan conjectures.

Diophantine approximation



The spectral gap property

Furthermore, βh satisfy the quantitative mean ergodic theorem
with parameter q, namely for every φ ∈ L2(Γ \G),∥∥∥∥∥π(βh)φ−

∫
G/Γ

φdµ

∥∥∥∥∥
2

�δ mG(Bh)−
1
q +δ

for every δ > 0.

This fact is a consequence of fundamental estimates of spherical
functions on semisimple algebraic groups, and the validity of
property τ for congruence subgroups of the lattice in question,
proved in full generality by Clozel.

Equivalently this estimate is a quantitative version of the spectral
gap property of the automorphic representation.

The parameter q is determined by the integrability parameter of
the spherical functions appearing in the automorphic
representation and is subject to the Ramanujan conjectures.
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Caveat : We have not mentioned yet the fact that there may
appear automorphic characters in the automorphic
representation, which imply that the limit in the ergodic theorem
stated above is valid only in the space orthogonal to their span.
The span is finite dimensional so this issue can easily be
resolved separately.

To conclude the estimate of operator norms we note the fact that
the volume growth of height balls is estimated by

mGS2
(Bh)� haS2

(G)

with aS2 an explicit growth rate which can be computed from the
structure of the root system of the group G.

Thus both the spectral parameter and the volume growth can be
given explicitly, and this yields an explicit upper bound for the rate
of approximation.
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finally, to establish that the rate is best possible, the matching
lower bound is estimated essentially by a pigeon hole argument,
which estimates the rate in which the set of elements in Γ of
bounded height can become ε-dense in a variety of a given
dimension.

the rate of growth of lattice elements of bounded height is of
course the basic problem of counting lattice point in a semisimple
groups which has a very general solution.
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Going back to conclude the proof of Theorem 1, in order to
deduce the exponents for S2 and S3, consider the algebraic
group G of norm one elements of Hamilton’s quaternion algebra,
which can be identified with the variety S3.

Since p = 1 mod 4, the quaternion algebra splits over p and
ramifies at∞. In this case, we have qVQ\{p}(G) = 2, namely the
local representations appearing in the automorphic
representation are all tempered, as noted by
Lubotzky-Phillips-Sarnak.

Here dim(G) = 3 , and the growth rate of rational points is
aVQ\{p}(G) = 2, and so the exponent is 3/2.

S2 can be identified with the homogeneous space consisting of
pure quaternions of norm 1, and similar considerations give the
exponent 2.
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Quadrics

Let Q be a non-degenerate quadratic form in three variables defined
over a number field K ⊂ R, a ∈ K , and

X = {Q(x) = a}.

For a finite set of non-Archimedean places of K , we denote by OS the
ring of S-integers. We suppose that Q is isotropic over S and
X(OS) 6= ∅. Then assuming the Ramanujan–Petersson conjecture for
PGL2 over K , our main results imply that (w.r.t. the maximum norm
‖ · ‖∞ on R3, the completion at v =∞)
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(i) for almost every x ∈ X(R), δ > 0, and ε ∈ (0, ε0(x , δ)), there
exists z ∈ X(OS) such that

‖x − z‖∞ ≤ ε and H(z) ≤ ε−2−δ,

where the exponent 2 is the best possible.
(ii) for every x ∈ X(R) with ‖x‖ ≤ r , δ > 0, and ε ∈ (0, ε0(r , δ)), there

exists z ∈ X (OS) such that

‖x − z‖∞ ≤ ε and H(z) ≤ ε−4−δ.
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Using the best currently known estimates towards the
Ramanujan–Petersson conjecture our method gives unconditional
solutions to (i) and (ii) with

H(z) ≤ ε− 18
7 −δ and H(z) ≤ ε− 36

7 −δ

respectively. Moreover, when K = Q, (i) and (ii) give unconditional
solutions to the problem of diophantine approximation on the
hyperboloid X (R) (when Q is isotropic over R), with

H(z) ≤ ε− 64
25−δ and H(z) ≤ ε− 128

25 −δ

respectively.
We also mention that a positive proportion of all places satisfy the
bound predicted by the Ramanujan–Petersson conjecture. For such
S, results (i) and (ii) hold unconditionally.

Diophantine approximation



Lower bound for the rate of approximation

The basic gauge of the quality of approximation of an element
gv ∈ Gv by elements by elements in the projection of Γ to Gv is given
by

ωv (g, ε) := min{H(γ) : γ ∈ Γ, dv (gv , γv ) ≤ ε} .

For a subset Y of Gv , we set

ωv (Y , ε) := sup
y∈Y

ωv (y , ε).

Assuming that Y is not contained in the projection of Γ to Gv , one can
give a very general lower bound on ωv (Y , ε) that depends only on two
fundamental metric properties of Y .
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The first is the Minkowski dimension dv (Y ), which measures the
growth of the number of ε-balls in Gv needed to cover Y , and the
second is the exponent av (Y ), which measures the growth of the set
of approximating points of height at most h in a neighborhood of Y .
The precise definition are as follows.
The Minkowski dimension of a subset Y of Gv is defined by

d(Y ) := lim inf
ε→0+

log D(Y , ε)
log(1/ε)

,

where D(Y , ε) denotes the least number of balls of radius ε (w.r.t. the
distance dv ) needed to cover Y .
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The exponent of a subset Y of Gv is defined by

av (Y ) := inf
O⊃Y

lim sup
h→∞

log Av (O,h)

log h
,

where O runs over open neighborhoods of Y in Gv , and

Av (O,h) := |{γ ∈ Γ : H(γ) ≤ h, γv ∈ O}|.

Since Y is not contained in the projection of Γ to Gv , ωv (Y , ε)→∞ as
ε→ 0+.
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Let us fix a sufficiently small neighborhood O of Y , two positive
constants δ1, δ2 > 0 and 0 < ε < ε0(O, δ1, δ2). By definition of
Av (O,h), we can assume that Av (O,h) ≤ hav (Y )+δ1 for all sufficiently
large h. In particular, this holds for h = ωv (Y , ε) for sufficiently small ε,
since ωv (Y , ε)→∞ as ε→ 0+. Hence
Av (O, ωv (Y , ε)) ≤ ωv (Y , ε)av (Y )+δ1 .
Now by definition of ωv (Y , ε), for each point y ∈ Y we can find γ ∈ Γ
such that dv (yv , γv ) ≤ ε, and H(γ) ≤ ωv (Y , ε). Draw a ball of radius ε
around each of the Av (O, ωv (Y , ε)) points γv which satisfy that their
height is bounded by h = ωv (Y , ε) and their v -component is in O.
Clearly their union cover Y with balls of radius ε, so that by definition
D(Y , ε) ≤ Av (O, ωv (Y , ε)). Finally, by definition of the Minkowsky
dimension, for sufficiently small ε, ε−d(Y )+δ2 ≤ D(Y , ε).
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Clearly, the inequalities obtained

ε−d(Y )+δ1 ≤ D(Y , ε) ≤ Av (O, ωv (Y , ε)) ≤ ωv (Y , ε)av (Y )+δ2

imply that for every δ > 0 and sufficiently small ε > 0 depending on δ,

ωv (Y , ε) ≥ ε−
d(Y )
av (Y ) +δ.
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