Dynamical properties of the negative beta transformation

Lingmin Liao

Joint with Wolfgang Steiner (University Paris 7)

Université Paris-Est Créteil (Paris 12)

Ergodic Theory and Number Theory, Warwick, 15/04/2011

Outline

2 Dynamical properties of $(-\beta)$ -transformation

```
(3) (-\beta)-number VS \beta-number
```


伺 とう ラン うちょう

3

The $(-\beta)$ -transformation and $(-\beta)$ -shift

伺い イラト イラト

3

I. The β -transformation and the $(-\beta)$ -transformation

FIG.: β -transformation (left) and $(-\beta)$ -transformation (right), $\beta = \frac{1+\sqrt{5}}{2}$.

4/30

э

II. The $(-\beta)$ -**transformation** Define $T_{-\beta}: (0,1] \rightarrow (0,1]$ by

$$T_{-\beta}(x) := -\beta x + \lfloor \beta x \rfloor + 1.$$

Let

$$d_{-\beta,1}(x) = \lfloor \beta x \rfloor + 1 \,, \quad d_{-\beta,n}(x) = d_{-\beta,1}(T^{n-1}_{-\beta}(x)) \quad \text{for } n \geq 1 \,.$$

Then

$$x = \frac{-d_{-\beta,1}}{-\beta} + \frac{-d_{-\beta,2}}{(-\beta)^2} + \frac{-d_{-\beta,3}}{(-\beta)^3} + \frac{-d_{-\beta,4}}{(-\beta)^4} + \cdots$$

Sequence $d_{-\beta}(x) = d_{-\beta,1}(x)d_{-\beta,2}(x)\cdots \longrightarrow (-\beta)$ -expansion of x. Example : $\beta = \frac{1+\sqrt{5}}{2}$,

$$1 = \frac{-2}{-\beta} + \frac{-1}{(-\beta)^2} + \frac{-1}{(-\beta)^3} + \frac{-1}{(-\beta)^4} + \cdots$$

 \rightarrow expansion of $1 \longrightarrow 2\overline{1} = 2111....$

伺い イラト イラト

-

III. Remarks about the definition

• Ito and Sadahiro 2009 : On the interval $\left[-\frac{\beta}{\beta+1}, \frac{1}{\beta+1}\right)$:

$$x \mapsto -\beta x - \lfloor -\beta x + \frac{\beta}{\beta + 1} \rfloor.$$

 \rightarrow conjugate to our $T_{-\beta}$ through the conjugacy function $\phi(x)=\frac{1}{\beta+1}-x.$ So all results can be translated to our case.

• Our definition is one case of generalized β -transformations studied by Góra 2007 and Faller 2008 (Ph.D Thesis).

IV. Other works on $(-\beta)$ -transformations

- P. Ambrož, D. Dombek, Z. Masákova, and E. Pelantová
- A. Bertrand-Mathis
- K. Dajani and C. Kalle
- C. Frougny and A. Lai

III. Remarks about the definition

• Ito and Sadahiro 2009 : On the interval $\left[-\frac{\beta}{\beta+1}, \frac{1}{\beta+1}\right)$:

$$x \mapsto -\beta x - \lfloor -\beta x + \frac{\beta}{\beta + 1} \rfloor.$$

 \rightarrow conjugate to our $T_{-\beta}$ through the conjugacy function $\phi(x)=\frac{1}{\beta+1}-x.$ So all results can be translated to our case.

- Our definition is one case of generalized β -transformations studied by Góra 2007 and Faller 2008 (Ph.D Thesis).
- IV. Other works on $(-\beta)$ -transformations
 - P. Ambrož, D. Dombek, Z. Masákova, and E. Pelantová
 - A. Bertrand-Mathis
 - K. Dajani and C. Kalle
 - C. Frougny and A. Lai

V. Admissible sequence and $(-\beta)$ -shift

A sequence $a_1a_2\cdots$ is said **admissible** if $\exists x \in (0,1], d_{-\beta}(x) = a_1a_2\cdots$. Alternate order : $a_1a_2\cdots \prec b_1b_2\cdots$ if and only if

 $\exists k \geq 1, \quad a_i = b_i \text{ for } i < k \quad \text{and} \quad (-1)^k (b_k - a_k) < 0.$

Denote $a_1a_2\cdots \preceq b_1b_2\cdots$, if $a_1a_2\cdots \prec b_1b_2\cdots$ or $a_1a_2\cdots = b_1b_2\cdots$.

The $(-\beta)$ -shift $S_{-\beta}$ on the alphabet $\{1, \ldots, \lfloor \beta \rfloor + 1\}$ is the closure of the set of admissible sequences.

Define

$$\begin{aligned} &d_{-\beta}^*(0) := \lim_{x \to 0+} d_{-\beta}(x) \\ &= \begin{cases} \overline{1b_1 b_2 \cdots b_{q-1}(b_q-1)}, & \text{if } d_{-\beta}(1) = \overline{b_1 \cdots b_{q-1} b_q} \\ 1d_{-\beta}(1) & \text{otherwise.} \end{cases} \text{ for some odd } q \end{aligned}$$

向下 イヨト イヨト

-

VI. Admissible sequence and $(-\beta)$ -shift (continued)

Theorem (Ito-Sadahiro 2009)

A sequence $a_1a_2\cdots$ is admissible if and only if for each $n\geq 1$

$$d^*_{-\beta}(0) \prec a_n a_{n+1} \cdots \preceq d_{-\beta}(1).$$

A sequence $a_1a_2\cdots$ is in $S_{-\beta}$ if and only if for each $n\geq 1$

$$d_{-\beta}^*(0) \preceq x_n x_{n+1} \cdots \preceq d_{-\beta}(1).$$

Theorem (Frougny-Lai 2009)

The $(-\beta)$ -shift is of finite type if and only if $d_{-\beta}(1)$ is purely periodic.

Theorem (Ito-Sadahiro 2009)

The $(-\beta)$ -shift is sofic if and only if $d_{-\beta}(1)$ is eventually periodic.

Theorem (Frougny-Lai 2009)

If β is a **Pisot number**, then the $(-\beta)$ -shift is **sofic**.

VI. Admissible sequence and $(-\beta)$ -shift (continued)

Theorem (Ito-Sadahiro 2009)

A sequence $a_1a_2\cdots$ is admissible if and only if for each $n\geq 1$

$$d^*_{-\beta}(0) \prec a_n a_{n+1} \cdots \preceq d_{-\beta}(1).$$

A sequence $a_1a_2\cdots$ is in $S_{-\beta}$ if and only if for each $n\geq 1$

$$d_{-\beta}^*(0) \preceq x_n x_{n+1} \cdots \preceq d_{-\beta}(1).$$

Theorem (Frougny-Lai 2009)

The $(-\beta)$ -shift is of finite type if and only if $d_{-\beta}(1)$ is purely periodic.

Theorem (Ito-Sadahiro 2009)

The $(-\beta)$ -shift is sofic if and only if $d_{-\beta}(1)$ is eventually periodic.

Theorem (Frougny-Lai 2009)

If β is a **Pisot number**, then the $(-\beta)$ -shift is **sofic**.

VI. Admissible sequence and $(-\beta)$ -shift (continued)

Theorem (Ito-Sadahiro 2009)

A sequence $a_1a_2\cdots$ is admissible if and only if for each $n\geq 1$

$$d^*_{-\beta}(0) \prec a_n a_{n+1} \cdots \preceq d_{-\beta}(1).$$

A sequence $a_1a_2\cdots$ is in $S_{-\beta}$ if and only if for each $n\geq 1$

$$d_{-\beta}^*(0) \preceq x_n x_{n+1} \cdots \preceq d_{-\beta}(1).$$

Theorem (Frougny-Lai 2009)

The $(-\beta)$ -shift is of finite type if and only if $d_{-\beta}(1)$ is purely periodic.

Theorem (Ito-Sadahiro 2009)

The $(-\beta)$ -shift is sofic if and only if $d_{-\beta}(1)$ is eventually periodic.

Theorem (Frougny-Lai 2009)

If β is a **Pisot number**, then the $(-\beta)$ -shift is sofic.

Dynamical properties of $(-\beta)$ -transformation

I. Some notions of dynamical systems

Suppose $T: X \to X$ be a dynamical system.

- locally eventually onto : if for every nonempty open subset U ⊂ X, there exists a positive integer n₀ such that for every f^{n₀}(U) = X.
- exactness : T acting on (X, \mathcal{B}, μ) is called exact if

$$\cap_{n=0}^{\infty} T^{-n} \mathcal{B} = \{X, \emptyset\}$$

or equivalently, for any positive measure set A with $T^n(A)\in \mathcal{B}\ (n\geq 0),$

$$\mu(T^n(A)) \to 1 \ (n \to \infty).$$

• maximal entropy measure : the measure attaining the maximum of

 $\sup\{h_{\mu}: \mu \text{ invariant}\}.$

• intrinsic ergodicity : the maximal entropy measure is unique.

II. General piecewise monotone transformation $T: [0,1] \rightarrow [0,1].$

- finite partition of $[0, 1] : P = \{P_1, \dots, P_N\}.$
- on each P_i , T is monotonic, Lipschitz continous and $|T'| \ge \rho > 1$.

Lasota-Yorke 1974 : There is an invariant measure $d\mu = hd\lambda$, where $d\lambda$ is the Lebesgue measure and h is a density of bounded variation.

Keller 1978 : The set $\{h \neq 0\}$ is a **finite** union of intervals.

Wagner 1979 : We can decompose $[0,1] = \bigcup_{i=1}^{s} A_i \cup B$, such that

- $\bullet\,$ on each A_i there is an invariant measure which is equivalent to the Lebesgue measure restricted to A_i
- each A_i can be decomposed as $A_i = \bigcup_{j=1}^{m_i} A_{ij}$ and T^{m_i} is exact on each A_{ij} .
- the set B satisfies $T^{-1}B \subset B$ and $\lim_{n\to\infty} \lambda(T^{-n}B) = 0$.

Hofbauer 1981 : The number of maximal entropy measures is **finite**. If T is topological transitive, then it is **intrinsic ergodic**.

(人間) とうき くうき

-

III. Dynamical properties - the $(-\beta)$ case

Ito-Sadahiro 2009 : Let $h_{-\beta}$ be a real-valued function defined on (0,1] by

$$h_{-\beta}(x) = \sum_{n \ge 1, \ T^n_{-\beta}(1) \ge x} \frac{1}{(-\beta)^n}.$$

Then the measure $h_{-\beta}(x)d\lambda$ is an invariant measure of $T_{-\beta}$.

Remark : The density may be zero on some intervals. So the invariant measure is not equivalent to the Lebesgue measure. (Different to the β case).

Góra 2007 : for $\beta > \gamma_1 = 1.3247...$ (the smallest Pisot number), the transformation $T_{-\beta}$ is exact and he conjectured that this would hold for all $\beta > 1$.

Faller 2008 : $\beta > \sqrt[3]{2}$, $T_{-\beta}$ admits a unique maximal measure.

IV. How many gaps?

A question :

For a given β , how many intervals (gaps) on which the density $h_{-\beta}$ equals to 0?

When β decreases, the numbers should be like

 $0, \ 1, \ 2, \ 5, \ 10, \ 21,$

What is the next?

V. Our results-Notations

For each $n \ge 0$, let γ_n be the positive real number defined by

$$\gamma_n^{g_n+1} = \gamma_n + 1 \,, \quad \text{with} \quad g_n = \lfloor 2^{n+2}/3 \rfloor \,.$$

Then

$$2 > \gamma_0 > \gamma_1 > \gamma_2 > \cdots > 1.$$

Note that γ_0 is the golden ratio and that γ_1 is the smallest Pisot number. For each $n \ge 0$ and $1 < \beta < \gamma_n$, set

$$\mathcal{G}_n(\beta) = \left\{ G_{m,k}(\beta) \mid 0 \le m \le n, \, 0 \le k < \frac{2^{m+1} + (-1)^m}{3} \right\},\,$$

with open intervals

$$G_{m,k}(\beta) = \begin{cases} \left(T_{-\beta}^{2^{m+1}+k}(1), \ T_{-\beta}^{(2^{m+2}-(-1)^m)/3+k}(1)\right) & \text{if } k \text{ is even}, \\ \left(T_{-\beta}^{(2^{m+2}-(-1)^m)/3+k}(1), \ T_{-\beta}^{2^{m+1}+k}(1)\right) & \text{if } k \text{ is odd}. \end{cases}$$

VI. Our results-Theorems

We call an interval a gap if the density of the invariant measure is zero on it.

Theorem (L-Steiner arXiv 2011)

If $\beta \geq \gamma_0$, then there is no gap. If $\gamma_{n+1} \leq \beta < \gamma_n$, $n \geq 0$, then the set of gaps is $\mathcal{G}_n(\beta)$ which consists of $g_n = \lfloor 2^{n+2}/3 \rfloor$ disjoint non-empty intervals.

Define

$$G(\beta) = \left\{ \begin{array}{ll} \emptyset & \text{if } \beta \geq \gamma_0 \,, \\ \bigcup_{I \in \mathcal{G}_n(\beta)} I & \text{if } \gamma_{n+1} \leq \beta < \gamma_n, \, n \geq 0 \,. \end{array} \right.$$

Theorem (L-Steiner arXiv 2011)

The transformation $T_{-\beta}$ is locally eventually onto on $(0,1] \setminus G(\beta)$,

$$T^{-1}_{-\beta}(G(\beta)) \subset G(\beta)$$
 and $\lim_{n \to \infty} \lambda \left(T^{-n}_{-\beta}(G(\beta)) \right) = 0$

A 35 A 4

15/30

VII. Our results-Theorems (continued) Define a morphism on the symbolic space $\{1,2\}^{\mathbb{N}}$ by

$$\varphi:\, 1\mapsto 2\,, \quad 2\mapsto 211\,.$$

Theorem (L-Steiner arXiv 2011)

(1) For every $n \geq 0$, we have $d_{-\gamma_n}(1) = \varphi^n(2\,1^\omega)$. Hence

 $\lim_{\beta \to 1} d_{-\beta}(1) = \lim_{n \to \infty} \varphi^n(2) = 2112221121121122\cdots$

(2) When β tends to 1, the $(-\beta)$ shift $S_{-\beta}$ tends to the substitution dynamical system determined by 2112221121122....

Remarks :

(1) Thue-Morse sequence : 0110 1001 0110.... $\rightarrow \cancel{0}$ 110 1001 0110.... Then count the numbers of consecutive ones and zeros :

$$\underbrace{\frac{11}{2} \underbrace{0}_{1}}_{2} \underbrace{\frac{1}{1} \underbrace{00}_{2}}_{1} 1 0110....} 0110....$$
2) $|\varphi^{m}(2)| = |\varphi^{m+1}(1)| = g_{n} + \frac{1-(-1)^{n}}{2} \text{ and } |\varphi^{m}(21)| = 2^{m+1}.$

VIII. Our results-Corollaries

Corollary

For any $\beta > 1$, the transformation $T_{-\beta}$ is exact.

Corollary

For any $\beta > 1$, the transformation $T_{-\beta}$ has a unique maximal measure, and hence is intrinsic ergodic.

Corollary

The set of periodic points is dense in $(0,1] \setminus G(\beta)$.

化原因 化原因

3

IX. Our results-Proofs

For every word $a_1 \cdots a_n \in \{1,2\}^n$, $n \ge 0$, define the polynomial

$$P_{a_1 \cdots a_n} = (-X)^n + \sum_{k=1}^n a_k (-X)^{n-k} \in \mathbb{Z}[X]$$

Lemma

For $1 \leq m < n$, we have

$$P_{a_1 \cdots a_n} = (-X)^{n-m} (P_{a_1 \cdots a_m} - 1) + P_{a_{m+1} \cdots a_n}.$$

For $n \ge 0$ we have the identities :

•
$$X^{\frac{1+(-1)^n}{2}} P_{\varphi^n(2)} + X^{\frac{1-(-1)^n}{2}} P_{\varphi^n(11)} = X + 1 = X^{\frac{1+(-1)^n}{2}} + X^{\frac{1-(-1)^n}{2}}$$

•
$$1 - P_{\varphi^n(1)} = X^{\frac{1+(-1)^n}{2}} \prod_{k=0}^{n-1} \left(X^{|\varphi^k(1)|} - 1 \right)$$

•
$$P_{\varphi^n(21)} - P_{\varphi^n(2)} = \left(X^{g_n+1} - X - 1\right) \prod_{k=0}^{n-1} \left(X^{|\varphi^k(1)|} - 1\right)$$

<ロ> <同> <同> < 回> < 回>

э

X. Our results-Proofs-continued

Let $1 < \beta < \gamma_n$, $n \ge 0$. Then the elements of $\mathcal{F}_n(\beta)$ and $\mathcal{G}_n(\beta)$ are intervals of positive length which form a partition of (0,1]. Moreover, we have

$$ullet$$
 $d_{-eta}(1)$ starts with $arphi^{n+1}(2)$, $T^{|arphi^{n+1}(2)|}(1)\in F_{n,0}$,

()
$$1/\beta$$
 is an interior point of F_{n,g_n-1} ,

•
$$F_{n,k} = T^k(F_{n,0})$$
 for all $0 \le k < g_n$,

$${f O}$$
 $T^{g_n}(F_{n,0})=F_{n,g_n}\cup F_{n,0}, \ T(F_{n,g_n})=F_{n+1,0}, \ {
m if} \ n \ {
m is even},$

$$\ \ \, \bullet \ \ \, T^{g_n}(F_{n,0})=F_{n,g_n}\cup F_{n+1,0}, \ T(F_{n,g_n})=F_{n,0}, \ \text{if} \ n \ \text{is odd}, \\$$

 $\ensuremath{\operatorname{FiG}}$: Piecewise linear transformation with two different negative slopes.

Theorem (Hofbauer preprint 2011)

We can explicitly construct the non-wandering set which is a union of periodic orbits and some closed intervals.

$(-\beta)$ -number VS β -number

伺い イラト イラト

3

I. Definitions

Extend the definition of T_{β} to 1 by $T_{\beta}(1) := \beta - \lfloor \beta \rfloor$

- β -number (Parry Number) : number $\beta > 1$ such that the orbit of 1 under T_{β} is eventually periodic.
- $(-\beta)$ -number : number $\beta > 1$ such that the orbit of 1 under $T_{-\beta}$ is eventually periodic.
- Pisot Number : algebraic integer number $\beta > 1$, whose conjugates all have modulus < 1.
- Perron Number : algebraic integer number $\beta > 1$, whose conjugates all have modulus $< \beta$.

II. Results

Schmidt 1980, Bertrand 1977 : All Pisot numbers are β -numbers.

Frougny-Lai 2009 : All Pisot numbers are $(-\beta)$ -numbers.

Lind 1984, Denker-Grillenberger-Sigmund 1976 : All β -numbers are Perron numbers.

Solomyak 1994 : All conjugates of a β -number have modulus less than golden number.

Masákova-Pelantová arXiv 2010 : All conjugates of a $(-\beta)$ -number have modulus less than 2, so all $(-\beta)$ -numbers with modului ≥ 2 are Perron numbers.

Theorem (L-Steiner, arXiv 2011)

All $(-\beta)$ -numbers are Perron numbers.

伺い イラト イラト

-

III. Results-Conitnued

Lemma

Let
$$\beta > 1$$
 such that $\beta^4 = \beta + 1$, i.e., $\beta \approx 1.2207$. Then $T^{10}_{-\beta}(1) = T^5_{-\beta}(1)$, and $(T^n_{\beta}(1))_{n \ge 0}$ is aperiodic.

Lemma

Let $\beta > 1$ such that $\beta^7 = \beta^6 + 1$, i.e., $\beta \approx 1.2254$. Then $T^7_{\beta}(1) = 0$, and $(T^n_{-\beta}(1))_{n \geq 0}$ is aperiodic.

Theorem (L-Steiner, arXiv 2011)

The set $(-\beta)$ -numbers and the set of β -numbers do not include each other.

* E > * E >

3

Questions

- T-

э

きょうきょう

I. About the dynamics

- Are the periodic points for the $(-\beta)$ -shift uniformly distributed with respect to the unique measure of maximal entropy?
- Are the invariant measures concentrated on periodic orbits dense in the set of all invariant measures ?
- Characterization of the β such that the corresponding $(-\beta)$ -shift satisfies the specification property.
- Characterization of the β such that the corresponding $(-\beta)$ -shift is synchronizing.

II. Classification and size

Classical Rényi β case (Blanchard 1989, Schmeling 1997) :

- Class C1. simple Parry numbers $(S_{\beta} \text{ is a subshift of finite type}) \rightarrow \text{dense}.$
- Class C2. Parry numbers (S_β is a is sofic.)
 → at most countable.
- Class C3. (S_{β} satisfies the specification property) \rightarrow Lebesgue measure 0, Hausdorff dimension 1.
- Class C4. (S_β is synchronizing)

 \rightarrow Lebesgue measure 0, Hausdorff dimension 1.

• Class C5. (the rest)

 \rightarrow Lebesgue measure 1.

Question : What is about the $-\beta$ case?

III. Univoque set and size Rényi's β case : Let $J_{\beta} := [0, (\lceil \beta \rceil - 1)/(\beta - 1)]$. We are interested in the following set

 $\mathbb{U}:=\{(x,\beta):\beta>1, x\in J_\beta, x \text{ has exactly one expansion in base }\beta\},$

and the one dimensional sections :

$$\mathcal{U}_{\beta} := \{ x \in J_{\beta} : (x, \beta) \in \mathbb{U} \}, \quad \mathcal{U} := \{ \beta > 1 : (1, \beta) \in \mathbb{U} \}.$$

- \mathbb{U} : Leb = 0, HD = 2 (de Vries-Komornik 2010).
- \mathcal{U}_{β} : (Glendinning-Sidorov 2001)

 - 2 $(1+\sqrt{5})/2 < \beta < \beta_{KL}$: countably infinite;

Here $\beta_{KL} \approx 1.787$ is the Komornik-Loreti constant.

• \mathcal{U} : continuum many (Erdös-Horváth-Joó 1991), Leb = 0, HD = 1 (Daróczy-Kátai 1995).

Question : What is about the $-\beta$ case?

28/30

IV. Schmidt conjecture

Salem Number : algebraic integer number $\beta > 1$, whose conjugates all have modulus ≤ 1 and at least one = 1.

Denote $Per(\beta)$, $Per(-\beta)$ the sets of eventually periodic points for T_{β} and $T_{-\beta}$ respectively.

Schmidt 1980 : If $\mathbb{Q} \cap [0,1) \subset Per(\beta)$, then β is either a Pisot number or a Salem number.

Masákova-Pelantová arXiv 2010 : If $\mathbb{Q} \cap (0,1] \subset Per(-\beta)$, then β is either a Pisot number or a Salem number.

Conversely,

Bertrand 1977 : If β is a Pisot number, then $\mathbb{Q} \cap (0,1] \subset \operatorname{Per}(\beta)$.

Frougny-Lai 2009 : If β is a Pisot number, then $\mathbb{Q} \cap (0,1] \subset Per(-\beta)$.

Schmidt conjecture, 1980

If β is a Salem number, then $\mathbb{Q} \cap (0,1] \subset \operatorname{Per}(\beta)$.

Question : Schmidt conjecture for $-\beta$ case?

V. Schmidt conjecture-progress (β case)

Fact : The degree of a Salem number is even and ≥ 4 .

Boyd 1989 : If β is a Salem number of degree 4, then the orbit of 1 under T_{β} is eventually periodic.

Boyd 1996 : Some examples of Salem numbers of degree 6.

"There are also some very large orbits which have been shown to be finite : an example is given for which the preperiod length is 39420662 and the period length is 93218808".