Dynamical properties of the negative beta transformation

Lingmin Liao
Joint with Wolfgang Steiner (University Paris 7)
Université Paris-Est Créteil (Paris 12)

Ergodic Theory and Number Theory, Warwick, 15/04/2011

Outline

(1) The $(-\beta)$-transformation and $(-\beta)$-shift
(2) Dynamical properties of $(-\beta)$-transformation
(3) ($-\beta$)-number VS β-number
(4) Questions

The ($-\beta$)-transformation

and $(-\beta)$-shift

I. The β-transformation and the $(-\beta)$-transformation

FIG.: β-transformation (left) and ($-\beta$)-transformation (right), $\beta=\frac{1+\sqrt{5}}{2}$.

II. The $(-\beta)$-transformation

Define $T_{-\beta}:(0,1] \rightarrow(0,1]$ by

$$
T_{-\beta}(x):=-\beta x+\lfloor\beta x\rfloor+1 .
$$

Let

$$
d_{-\beta, 1}(x)=\lfloor\beta x\rfloor+1, \quad d_{-\beta, n}(x)=d_{-\beta, 1}\left(T_{-\beta}^{n-1}(x)\right) \quad \text { for } n \geq 1 .
$$

Then

$$
x=\frac{-d_{-\beta, 1}}{-\beta}+\frac{-d_{-\beta, 2}}{(-\beta)^{2}}+\frac{-d_{-\beta, 3}}{(-\beta)^{3}}+\frac{-d_{-\beta, 4}}{(-\beta)^{4}}+\cdots
$$

Sequence $d_{-\beta}(x)=d_{-\beta, 1}(x) d_{-\beta, 2}(x) \cdots \longrightarrow(-\beta)$-expansion of x.
Example : $\beta=\frac{1+\sqrt{5}}{2}$,

$$
1=\frac{-2}{-\beta}+\frac{-1}{(-\beta)^{2}}+\frac{-1}{(-\beta)^{3}}+\frac{-1}{(-\beta)^{4}}+\cdots
$$

\rightarrow expansion of $1 \longrightarrow 2 \overline{1}=2111 \ldots$.

III. Remarks about the definition

- Ito and Sadahiro 2009: On the interval $\left[-\frac{\beta}{\beta+1}, \frac{1}{\beta+1}\right)$:

$$
x \mapsto-\beta x-\left\lfloor-\beta x+\frac{\beta}{\beta+1}\right\rfloor
$$

\rightarrow conjugate to our $T_{-\beta}$ through the conjugacy function $\phi(x)=\frac{1}{\beta+1}-x$. So all results can be translated to our case.

- Our definition is one case of generalized β-transformations studied by Góra 2007 and Faller 2008 (Ph.D Thesis).

III. Remarks about the definition

- Ito and Sadahiro 2009: On the interval $\left[-\frac{\beta}{\beta+1}, \frac{1}{\beta+1}\right)$:

$$
x \mapsto-\beta x-\left\lfloor-\beta x+\frac{\beta}{\beta+1}\right\rfloor .
$$

\rightarrow conjugate to our $T_{-\beta}$ through the conjugacy function $\phi(x)=\frac{1}{\beta+1}-x$. So all results can be translated to our case.

- Our definition is one case of generalized β-transformations studied by Góra 2007 and Faller 2008 (Ph.D Thesis).
IV. Other works on $(-\beta)$-transformations
- P. Ambrož, D. Dombek, Z. Masákova, and E. Pelantová
- A. Bertrand-Mathis
- K. Dajani and C. Kalle
- C. Frougny and A. Lai

V. Admissible sequence and $(-\beta)$-shift

A sequence $a_{1} a_{2} \cdots$ is said admissible if $\exists x \in(0,1], d_{-\beta}(x)=a_{1} a_{2} \cdots$. Alternate order : $a_{1} a_{2} \cdots \prec b_{1} b_{2} \cdots$ if and only if

$$
\exists k \geq 1, \quad a_{i}=b_{i} \text { for } i<k \quad \text { and } \quad(-1)^{k}\left(b_{k}-a_{k}\right)<0 .
$$

Denote $a_{1} a_{2} \cdots \preceq b_{1} b_{2} \cdots$, if $a_{1} a_{2} \cdots \prec b_{1} b_{2} \cdots$ or $a_{1} a_{2} \cdots=b_{1} b_{2} \cdots$.
The $(-\beta)$-shift $S_{-\beta}$ on the alphabet $\{1, \ldots,\lfloor\beta\rfloor+1\}$ is the closure of the set of admissible sequences.

Define

$$
\begin{aligned}
& d_{-\beta}^{*}(0):=\lim _{x \rightarrow 0+} d_{-\beta}(x) \\
= & \left\{\begin{array}{lll}
\overline{1 b_{1} b_{2} \cdots b_{q-1}\left(b_{q}-1\right)}, & \text { if } d_{-\beta}(1)=\overline{b_{1} \cdots b_{q-1} b_{q}} & \text { for some odd } q \\
1 d_{-\beta}(1) & \text { otherwise } .
\end{array}\right.
\end{aligned}
$$

VI. Admissible sequence and ($-\beta$)-shift (continued)

Theorem (Ito-Sadahiro 2009)

A sequence $a_{1} a_{2} \cdots$ is admissible if and only if for each $n \geq 1$

$$
d_{-\beta}^{*}(0) \prec a_{n} a_{n+1} \cdots \preceq d_{-\beta}(1) .
$$

A sequence $a_{1} a_{2} \cdots$ is in $S_{-\beta}$ if and only if for each $n \geq 1$

$$
d_{-\beta}^{*}(0) \preceq x_{n} x_{n+1} \cdots \preceq d_{-\beta}(1) .
$$

Theorem (Frougny-Lai 2009)
 The ($-\beta$)-shift is of finite type if and only if $d_{-\beta}(1)$ is purely periodic

Theorem (Ito-Sadahiro 2009)
 The $(-\beta)$-shift is sofic if and only if $d_{-\beta}(1)$ is eventually periodic

Theorem (Frougny-Lai 2009)
If β is a Pisot number, then the $(-\beta)$-shift is sofic

VI. Admissible sequence and $(-\beta)$-shift (continued)

Theorem (Ito-Sadahiro 2009)

A sequence $a_{1} a_{2} \ldots$ is admissible if and only if for each $n \geq 1$

$$
d_{-\beta}^{*}(0) \prec a_{n} a_{n+1} \cdots \preceq d_{-\beta}(1) .
$$

A sequence $a_{1} a_{2} \cdots$ is in $S_{-\beta}$ if and only if for each $n \geq 1$

$$
d_{-\beta}^{*}(0) \preceq x_{n} x_{n+1} \cdots \preceq d_{-\beta}(1) .
$$

Theorem (Frougny-Lai 2009)

The $(-\beta)$-shift is of finite type if and only if $d_{-\beta}(1)$ is purely periodic.

Theorem (Ito-Sadahiro 2009)
 The $(-\beta)$-shift is sofic if and only if $d_{-\beta}(1)$ is eventually periodic

Theorem (Frougny-Lai 2009)
If β is a Pisot number, then the $(-\beta)$-shift is sofic

VI. Admissible sequence and $(-\beta)$-shift (continued)

Theorem (Ito-Sadahiro 2009)

A sequence $a_{1} a_{2} \ldots$ is admissible if and only if for each $n \geq 1$

$$
d_{-\beta}^{*}(0) \prec a_{n} a_{n+1} \cdots \preceq d_{-\beta}(1) .
$$

A sequence $a_{1} a_{2} \cdots$ is in $S_{-\beta}$ if and only if for each $n \geq 1$

$$
d_{-\beta}^{*}(0) \preceq x_{n} x_{n+1} \cdots \preceq d_{-\beta}(1) .
$$

Theorem (Frougny-Lai 2009)

The $(-\beta)$-shift is of finite type if and only if $d_{-\beta}(1)$ is purely periodic.

Theorem (Ito-Sadahiro 2009)

The $(-\beta)$-shift is sofic if and only if $d_{-\beta}(1)$ is eventually periodic.

Theorem (Frougny-Lai 2009)

If β is a Pisot number, then the $(-\beta)$-shift is sofic.

Dynamical properties of $(-\beta)$-transformation

I. Some notions of dynamical systems

Suppose $T: X \rightarrow X$ be a dynamical system.

- locally eventually onto : if for every nonempty open subset $U \subset X$, there exists a positive integer n_{0} such that for every $f^{n_{0}}(U)=X$.
- exactness : T acting on (X, \mathcal{B}, μ) is called exact if

$$
\cap_{n=0}^{\infty} T^{-n} \mathcal{B}=\{X, \emptyset\}
$$

or equivalently, for any positive measure set A with
$T^{n}(A) \in \mathcal{B}(n \geq 0)$,

$$
\mu\left(T^{n}(A)\right) \rightarrow 1(n \rightarrow \infty)
$$

- maximal entropy measure : the measure attaining the maximum of

$$
\sup \left\{h_{\mu}: \mu \text { invariant }\right\}
$$

- intrinsic ergodicity : the maximal entropy measure is unique.

II. General piecewise monotone transformation

$T:[0,1] \rightarrow[0,1]$.

- finite partition of $[0,1]: P=\left\{P_{1}, \cdots, P_{N}\right\}$.
- on each P_{i}, T is monotonic, Lipschitz continous and $\left|T^{\prime}\right| \geq \rho>1$.

Lasota-Yorke 1974 : There is an invariant measure $d \mu=h d \lambda$, where $d \lambda$ is the Lebesgue measure and h is a density of bounded variation.

Keller 1978 : The set $\{h \neq 0\}$ is a finite union of intervals.
Wagner 1979 : We can decompose $[0,1]=\cup_{i=1}^{s} A_{i} \cup B$, such that

- on each A_{i} there is an invariant measure which is equivalent to the Lebesgue measure restricted to A_{i}
- each A_{i} can be decomposed as $A_{i}=\cup_{j=1}^{m_{i}} A_{i j}$ and $T^{m_{i}}$ is exact on each $A_{i j}$.
- the set B satisfies $T^{-1} B \subset B$ and $\lim _{n \rightarrow \infty} \lambda\left(T^{-n} B\right)=0$.

Hofbauer 1981 : The number of maximal entropy measures is finite. If T is topological transitive, then it is intrinsic ergodic.

III. Dynamical properties - the $(-\beta)$ case

Ito-Sadahiro 2009 : Let $h_{-\beta}$ be a real-valued function defined on $(0,1]$ by

$$
h_{-\beta}(x)=\sum_{n \geq 1,} \frac{1}{T_{-\beta}^{n}(1) \geq x} \text {. }
$$

Then the measure $h_{-\beta}(x) d \lambda$ is an invariant measure of $T_{-\beta}$.
Remark : The density may be zero on some intervals. So the invariant measure is not equivalent to the Lebesgue measure. (Different to the β case).

Góra 2007: for $\beta>\gamma_{1}=1.3247 \ldots$... (the smallest Pisot number), the transformation $T_{-\beta}$ is exact and he conjectured that this would hold for all $\beta>1$.

Faller 2008: $\beta>\sqrt[3]{2}, T_{-\beta}$ admits a unique maximal measure.

IV. How many gaps?

A question :

For a given β, how many intervals (gaps) on which the density $h_{-\beta}$ equals to 0 ?

When β decreases, the numbers should be like

$$
0,1,2,5,10,21
$$

What is the next?

V. Our results-Notations

For each $n \geq 0$, let γ_{n} be the positive real number defined by

$$
\gamma_{n}^{g_{n}+1}=\gamma_{n}+1, \quad \text { with } \quad g_{n}=\left\lfloor 2^{n+2} / 3\right\rfloor .
$$

Then

$$
2>\gamma_{0}>\gamma_{1}>\gamma_{2}>\cdots>1
$$

Note that γ_{0} is the golden ratio and that γ_{1} is the smallest Pisot number. For each $n \geq 0$ and $1<\beta<\gamma_{n}$, set

$$
\mathcal{G}_{n}(\beta)=\left\{G_{m, k}(\beta) \mid 0 \leq m \leq n, 0 \leq k<\frac{2^{m+1}+(-1)^{m}}{3}\right\},
$$

with open intervals

$$
G_{m, k}(\beta)= \begin{cases}\left(T_{-\beta}^{2^{m+1}+k}(1), T_{-\beta}^{\left(2^{m+2}-(-1)^{m}\right) / 3+k}(1)\right) & \text { if } k \text { is even }, \\ \left(T_{-\beta}^{\left(2^{m+2}-(-1)^{m}\right) / 3+k}(1), T_{-\beta}^{2^{m+1}+k}(1)\right) & \text { if } k \text { is odd. }\end{cases}
$$

VI. Our results-Theorems

We call an interval a gap if the density of the invariant measure is zero on it.

Theorem (L-Steiner arXiv 2011)

If $\beta \geq \gamma_{0}$, then there is no gap. If $\gamma_{n+1} \leq \beta<\gamma_{n}, n \geq 0$, then the set of gaps is $\mathcal{G}_{n}(\beta)$ which consists of $g_{n}=\left\lfloor 2^{n+2} / 3\right\rfloor$ disjoint non-empty intervals.

Define

$$
G(\beta)=\left\{\begin{array}{cl}
\emptyset & \text { if } \beta \geq \gamma_{0}, \\
\bigcup_{I \in \mathcal{G}_{n}(\beta)} I & \text { if } \gamma_{n+1} \leq \beta<\gamma_{n}, n \geq 0 .
\end{array}\right.
$$

Theorem (L-Steiner arXiv 2011)

The transformation $T_{-\beta}$ is locally eventually onto on $(0,1] \backslash G(\beta)$,

$$
T_{-\beta}^{-1}(G(\beta)) \subset G(\beta) \quad \text { and } \quad \lim _{n \rightarrow \infty} \lambda\left(T_{-\beta}^{-n}(G(\beta))\right)=0
$$

VII. Our results-Theorems (continued)

Define a morphism on the symbolic space $\{1,2\}^{\mathbb{N}}$ by

$$
\varphi: 1 \mapsto 2, \quad 2 \mapsto 211
$$

Theorem (L-Steiner arXiv 2011)

(1) For every $n \geq 0$, we have $d_{-\gamma_{n}}(1)=\varphi^{n}\left(21^{\omega}\right)$. Hence

$$
\lim _{\beta \rightarrow 1} d_{-\beta}(1)=\lim _{n \rightarrow \infty} \varphi^{n}(2)=2112221121121122 \cdots
$$

(2) When β tends to 1 , the $(-\beta)$ shift $S_{-\beta}$ tends to the substitution dynamical system determined by $2112221121121122 \cdots$.

Remarks :

(1) Thue-Morse sequence : $011010010110 \ldots . \rightarrow \varnothing 1101001$ 0110....

Then count the numbers of consecutive ones and zeros:

(2) $\left|\varphi^{m}(2)\right|=\left|\varphi^{m+1}(1)\right|=g_{n}+\frac{1-(-1)^{n}}{2}$ and $\left|\varphi^{m}(21)\right|=2^{m+1}$.

VIII. Our results-Corollaries

Corollary

For any $\beta>1$, the transformation $T_{-\beta}$ is exact.

Corollary
For any $\beta>1$, the transformation $T_{-\beta}$ has a unique maximal measure, and hence is intrinsic ergodic.

Corollary
The set of periodic points is dense in $(0,1] \backslash G(\beta)$.

IX. Our results-Proofs

For every word $a_{1} \cdots a_{n} \in\{1,2\}^{n}, n \geq 0$, define the polynomial

$$
P_{a_{1} \cdots a_{n}}=(-X)^{n}+\sum_{k=1}^{n} a_{k}(-X)^{n-k} \in \mathbb{Z}[X]
$$

Lemma

For $1 \leq m<n$, we have

$$
P_{a_{1} \cdots a_{n}}=(-X)^{n-m}\left(P_{a_{1} \cdots a_{m}}-1\right)+P_{a_{m+1} \cdots a_{n}} .
$$

For $n \geq 0$ we have the identities:

- $X^{\frac{1+(-1)^{n}}{2}} P_{\varphi^{n}(2)}+X^{\frac{1-(-1)^{n}}{2}} P_{\varphi^{n}(11)}=X+1=X^{\frac{1+(-1)^{n}}{2}}+X^{\frac{1-(-1)^{n}}{2}}$
- $1-P_{\varphi^{n}(1)}=X^{\frac{1+(-1)^{n}}{2}} \prod_{k=0}^{n-1}\left(X^{\left|\varphi^{k}(1)\right|}-1\right)$
- $P_{\varphi^{n}(21)}-P_{\varphi^{n}(2)}=\left(X^{g_{n}+1}-X-1\right) \prod_{k=0}^{n-1}\left(X^{\left|\varphi^{k}(1)\right|}-1\right)$

X. Our results-Proofs-continued

Let $1<\beta<\gamma_{n}, n \geq 0$. Then the elements of $\mathcal{F}_{n}(\beta)$ and $\mathcal{G}_{n}(\beta)$ are intervals of positive length which form a partition of $(0,1]$. Moreover, we have

- $d_{-\beta}(1)$ starts with $\varphi^{n+1}(2), T^{\left|\varphi^{n+1}(2)\right|}(1) \in F_{n, 0}$,
(1) $1 / \beta$ is an interior point of $F_{n, g_{n}-1}$,
(1) $F_{n, k}=T^{k}\left(F_{n, 0}\right)$ for all $0 \leq k<g_{n}$,
(0) $T^{g_{n}}\left(F_{n, 0}\right)=F_{n, g_{n}} \cup F_{n, 0}, T\left(F_{n, g_{n}}\right)=F_{n+1,0}$, if n is even,
(1) $T^{g_{n}}\left(F_{n, 0}\right)=F_{n, g_{n}} \cup F_{n+1,0}, T\left(F_{n, g_{n}}\right)=F_{n, 0}$, if n is odd,

XI. Hofbauer's recent work

Fig.: Piecewise linear transformation with two different negative slopes.

Theorem (Hofbauer preprint 2011)

We can explicitly construct the non-wandering set which is a union of periodic orbits and some closed intervals.

(- β)-number VS β-number

I. Definitions

Extend the definition of T_{β} to 1 by $T_{\beta}(1):=\beta-\lfloor\beta\rfloor$

- β-number (Parry Number) : number $\beta>1$ such that the orbit of 1 under T_{β} is eventually periodic.
- ($-\beta$)-number : number $\beta>1$ such that the orbit of 1 under $T_{-\beta}$ is eventually periodic.
- Pisot Number : algebraic integer number $\beta>1$, whose conjugates all have modulus <1.
- Perron Number : algebraic integer number $\beta>1$, whose conjugates all have modulus $<\beta$.

II. Results

Schmidt 1980, Bertrand 1977 : All Pisot numbers are β-numbers.
Frougny-Lai 2009 : All Pisot numbers are ($-\beta$)-numbers.
Lind 1984, Denker-Grillenberger-Sigmund 1976 : All β-numbers are Perron numbers.

Solomyak 1994 : All conjugates of a β-number have modulus less than golden number.
Masákova-Pelantová arXiv 2010 : All conjugates of a ($-\beta$)-number have modulus less than 2 , so all $(-\beta)$-numbers with modului ≥ 2 are Perron numbers.

Theorem (L-Steiner, arXiv 2011)

All ($-\beta$)-numbers are Perron numbers.

III. Results-Conitnued

Lemma

Let $\beta>1$ such that $\beta^{4}=\beta+1$, i.e., $\beta \approx 1.2207$. Then
$T_{-\beta}^{10}(1)=T_{-\beta}^{5}(1)$, and $\left(T_{\beta}^{n}(1)\right)_{n \geq 0}$ is aperiodic.

Lemma

Let $\beta>1$ such that $\beta^{7}=\beta^{6}+1$, i.e., $\beta \approx 1.2254$. Then $T_{\beta}^{7}(1)=0$, and $\left(T_{-\beta}^{n}(1)\right)_{n \geq 0}$ is aperiodic.

Theorem (L-Steiner, arXiv 2011)

The set $(-\beta)$-numbers and the set of β-numbers do not include each other.

Questions

I. About the dynamics

- Are the periodic points for the $(-\beta)$-shift uniformly distributed with respect to the unique measure of maximal entropy?
- Are the invariant measures concentrated on periodic orbits dense in the set of all invariant measures?
- Characterization of the β such that the corresponding $(-\beta)$-shift satisfies the specification property.
- Characterization of the β such that the corresponding $(-\beta)$-shift is synchronizing.

II. Classification and size

Classical Rényi β case (Blanchard 1989, Schmeling 1997) :

- Class C1. simple Parry numbers (S_{β} is a subshift of finite type) \rightarrow dense.
- Class C2. Parry numbers (S_{β} is a is sofic.)
\rightarrow at most countable.
- Class C3. (S_{β} satisfies the specification property) \rightarrow Lebesgue measure 0, Hausdorff dimension 1.
- Class C4. (S_{β} is synchronizing)
\rightarrow Lebesgue measure 0, Hausdorff dimension 1 .
- Class C5. (the rest)
\rightarrow Lebesgue measure 1 .
Question: What is about the $-\beta$ case?
III. Univoque set and size

Rényi's β case :
Let $J_{\beta}:=[0,(\lceil\beta\rceil-1) /(\beta-1)]$. We are interested in the following set

$$
\mathbb{U}:=\left\{(x, \beta): \beta>1, x \in J_{\beta}, x \text { has exactly one expansion in base } \beta\right\}
$$

and the one dimensional sections :

$$
\mathcal{U}_{\beta}:=\left\{x \in J_{\beta}:(x, \beta) \in \mathbb{U}\right\}, \quad \mathcal{U}:=\{\beta>1:(1, \beta) \in \mathbb{U}\} .
$$

- $\mathbb{U}: L e b=0, H D=2$ (de Vries-Komornik 2010).
- \mathcal{U}_{β} : (Glendinning-Sidorov 2001)
(1) $1<\beta \leq(1+\sqrt{5}) / 2$: two elements;
(2) $(1+\sqrt{5}) / 2<\beta<\beta_{K L}$: countably infinite ;
(3) $\beta_{K L}<\beta \leq 2$: positive Hausdorff dimension. (tends 1 when $\beta \rightarrow 2$: detailed proof in Jordan-Shmerkin-Solomyak 2010)
Here $\beta_{K L} \approx 1.787$ is the Komornik-Loreti constant.
- \mathcal{U} : continuum many (Erdös-Horváth-Joó 1991), $L e b=0, H D=1$ (Daróczy-Kátai 1995).

Question : What is about the $-\beta$ case?

IV. Schmidt conjecture

Salem Number : algebraic integer number $\beta>1$, whose conjugates all have modulus ≤ 1 and at least one $=1$.
Denote $\operatorname{Per}(\beta), \operatorname{Per}(-\beta)$ the sets of eventually periodic points for T_{β} and $T_{-\beta}$ respectively.

Schmidt 1980 : If $\mathbb{Q} \cap[0,1) \subset \operatorname{Per}(\beta)$, then β is either a Pisot number or a Salem number.
Masákova-Pelantová arXiv 2010: If $\mathbb{Q} \cap(0,1] \subset \operatorname{Per}(-\beta)$, then β is either a Pisot number or a Salem number.
Conversely,
Bertrand 1977: If β is a Pisot number, then $\mathbb{Q} \cap(0,1] \subset \operatorname{Per}(\beta)$.
Frougny-Lai 2009 : If β is a Pisot number, then $\mathbb{Q} \cap(0,1] \subset \operatorname{Per}(-\beta)$.

Schmidt conjecture, 1980

If β is a Salem number, then $\mathbb{Q} \cap(0,1] \subset \operatorname{Per}(\beta)$.
Question : Schmidt conjecture for $-\beta$ case?

V. Schmidt conjecture-progress (β case)

Fact : The degree of a Salem number is even and ≥ 4.
Boyd 1989: If β is a Salem number of degree 4, then the orbit of 1 under T_{β} is eventually periodic.
Boyd 1996 : Some examples of Salem numbers of degree 6.
"There are also some very large orbits which have been shown to be finite : an example is given for which the preperiod length is 39420662 and the period length is $93218808^{\prime \prime}$.

