Symbolic coverings for general Pisot β -transformations

Charlene Kalle, joint work with Wolfgang Steiner (LIAFA, Paris)

April 13, 2010

Introduction

Let $\beta > 1$ and $A = \{a_1, \dots, a_m\}$ a set of real numbers with $a_1 < a_2 < \dots < a_m$. Expressions of the form

$$x = \sum_{n=1}^{\infty} \frac{b_n}{\beta^n},$$

with $b_n \in A$ for all $n \ge 1$, are called β -expansions with arbitrary digits.

This gives numbers in the interval $\left[\frac{a_1}{\beta-1},\frac{a_m}{\beta-1}\right]$.

 β is called the base, A is the digit set and elements of A are called digits. The sequence $b_1b_2\cdots$ is a digit sequence for x.

If, for a given $\beta > 1$, a set of real numbers $A = \{a_1, \dots, a_m\}$ satisfies

- (i) $a_1 < \cdots < a_m$,
- $\text{(ii)} \ \max_{2 \leq j \leq m} (a_j a_{j-1}) \leq \frac{a_m a_1}{\beta 1},$

it is called an allowable digit set.

Theorem (Pedicini, 2005)

If A is an allowable digit set for β , then every $x \in \left[\frac{a_1}{\beta-1}, \frac{a_m}{\beta-1}\right]$ has a β -expansion with digits in A.

- Introduce a class of transformations that generate β-expansions.
- Characterize the set of digit sequences given by such a transformation.
- For specific β 's (Pisot units) give a construction of a natural extension for the transformation.
- ► From the natural extension, get an absolutely continuous invariant measure.
- Under a further assumption, construct a symbolic covering of the torus that is almost everywhere finite-to-one.
- ▶ Give an example in which this map is not one-to-one.

- Introduce a class of transformations that generate β-expansions.
- Characterize the set of digit sequences given by such a transformation.
- For specific β 's (Pisot units) give a construction of a natural extension for the transformation.
- ► From the natural extension, get an absolutely continuous invariant measure.
- Under a further assumption, construct a symbolic covering of the torus that is almost everywhere finite-to-one.
- Give an example in which this map is not one-to-one.

- Introduce a class of transformations that generate β-expansions.
- Characterize the set of digit sequences given by such a transformation.
- For specific β 's (Pisot units) give a construction of a natural extension for the transformation.
- ► From the natural extension, get an absolutely continuous invariant measure.
- Under a further assumption, construct a symbolic covering of the torus that is almost everywhere finite-to-one.
- ▶ Give an example in which this map is not one-to-one.

- Introduce a class of transformations that generate β-expansions.
- Characterize the set of digit sequences given by such a transformation.
- For specific β 's (Pisot units) give a construction of a natural extension for the transformation.
- From the natural extension, get an absolutely continuous invariant measure.
- Under a further assumption, construct a symbolic covering of the torus that is almost everywhere finite-to-one.
- ▶ Give an example in which this map is not one-to-one.

- Introduce a class of transformations that generate β-expansions.
- Characterize the set of digit sequences given by such a transformation.
- For specific β 's (Pisot units) give a construction of a natural extension for the transformation.
- From the natural extension, get an absolutely continuous invariant measure.
- Under a further assumption, construct a symbolic covering of the torus that is almost everywhere finite-to-one.
- Give an example in which this map is not one-to-one.

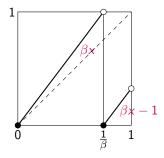
- Introduce a class of transformations that generate β-expansions.
- Characterize the set of digit sequences given by such a transformation.
- For specific β 's (Pisot units) give a construction of a natural extension for the transformation.
- From the natural extension, get an absolutely continuous invariant measure.
- Under a further assumption, construct a symbolic covering of the torus that is almost everywhere finite-to-one.
- Give an example in which this map is not one-to-one.

Transformations

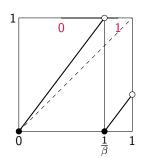
For each $\beta>1$ and allowable digit set $A=\{a_1,\ldots,a_m\}$ there exist transformations that generate β -expansions with digits in A by iteration.

Example: $x \mapsto \beta x \pmod{1}$

Consider a non-integer $1 < \beta < 2$ and digit set $A = \{0,1\}$. One transformation that generates β -expansions with digits in this set is the map $Tx = \beta x \pmod{1}$.



This is the map $x \mapsto \beta x \pmod{1}$.



Assign a digit to each interval.

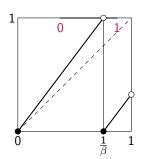
Make a digit sequence by setting

$$b_1(x) = \begin{cases} 0, & \text{if } x < \frac{1}{\beta}, \\ 1, & \text{otherwise.} \end{cases}$$

and $b_n(x) = b_1(T^{n-1}x)$ for $n \ge 1$. Then we have $Tx = \beta x - b_1$ and $T^2x = \beta Tx - b_2$, etc.

$$x = \frac{b_1}{\beta} + \frac{Tx}{\beta} = \frac{b_1}{\beta} + \frac{b_2}{\beta^2} + \frac{T^2x}{\beta^2} = \dots = \sum_{k=1}^n \frac{b_k}{\beta^k} + \frac{T^nx}{\beta^n}.$$

In the limit $x = \sum_{k=1}^{\infty} \frac{b_k}{\beta^k}$.



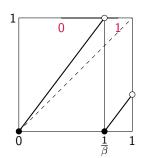
Assign a digit to each interval. Make a digit sequence by setting

$$b_1(x) = \begin{cases} 0, & \text{if } x < \frac{1}{\beta}, \\ 1, & \text{otherwise.} \end{cases}$$

and $b_n(x) = b_1(T^{n-1}x)$ for $n \ge 1$. Then we have $Tx = \beta x - b_1$ and $T^2x = \beta Tx - b_2$, etc.

$$x = \frac{b_1}{\beta} + \frac{Tx}{\beta} = \frac{b_1}{\beta} + \frac{b_2}{\beta^2} + \frac{T^2x}{\beta^2} = \dots = \sum_{k=1}^n \frac{b_k}{\beta^k} + \frac{T^nx}{\beta^n}.$$

In the limit $x = \sum_{k=1}^{\infty} \frac{b_k}{\beta^k}$.



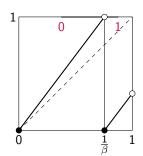
Assign a digit to each interval. Make a digit sequence by setting

$$b_1(x) = \begin{cases} 0, & \text{if } x < \frac{1}{\beta}, \\ 1, & \text{otherwise.} \end{cases}$$

and $b_n(x) = b_1(T^{n-1}x)$ for $n \ge 1$. Then we have $Tx = \beta x - b_1$ and $T^2x = \beta Tx - b_2$, etc.

$$x = \frac{b_1}{\beta} + \frac{Tx}{\beta} = \frac{b_1}{\beta} + \frac{b_2}{\beta^2} + \frac{T^2x}{\beta^2} = \dots = \sum_{k=1}^n \frac{b_k}{\beta^k} + \frac{T^nx}{\beta^n}.$$

In the limit $x = \sum_{k=1}^{\infty} \frac{b_k}{\beta^k}$.



Assign a digit to each interval. Make a digit sequence by setting

$$b_1(x) = \begin{cases} 0, & \text{if } x < \frac{1}{\beta}, \\ 1, & \text{otherwise.} \end{cases}$$

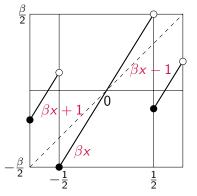
and $b_n(x) = b_1(T^{n-1}x)$ for $n \ge 1$. Then we have $Tx = \beta x - b_1$ and $T^2x = \beta Tx - b_2$, etc.

$$x = \frac{b_1}{\beta} + \frac{Tx}{\beta} = \frac{b_1}{\beta} + \frac{b_2}{\beta^2} + \frac{T^2x}{\beta^2} = \dots = \sum_{k=1}^n \frac{b_k}{\beta^k} + \frac{T^nx}{\beta^n}.$$

In the limit $x = \sum_{k=1}^{\infty} \frac{b_k}{\beta^k}$.

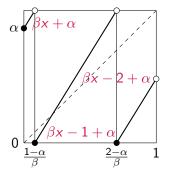
Other transformations: the minimal weight transformation

Take β to be the golden mean and $A=\{-1,0,1\}$. This is a minimal weight transformation, i.e., if an x has a finite β -expansion, then the expansion generated by this transformation has the highest number of 0's. [Frougny & Steiner, 2009]



Other transformations: the linear mod 1 transformation

Take $\beta > 1$ and $0 \le \alpha < 1$. Suppose $n < \beta + \alpha \le n + 1$. The linear mod 1 transformation below ($Tx = \beta x + \alpha \pmod{1}$) gives β -expansions with digits in $\{j - \alpha : 0 \le j \le n\}$.



The class of transformations

Given a real number $\beta > 1$ and a digit set $A = \{a_1, \dots, a_m\}$, we consider the class of transformations that have the following properties.

- ▶ For each digit in the digit set a_i , there is a bounded interval Z_i and if $i \neq j$, then $Z_i \cap Z_j = \emptyset$. We assume $Z_i = [b_i, c_i)$ for $b_i, c_i \in \mathbb{R}$.
- ▶ On the interval Z_i the transformation is given by $Tx = \beta x a_i$.
- ▶ If $X = \bigcup_{i=1}^m Z_i$, then TX = X.

The class of transformations

Given a real number $\beta > 1$ and a digit set $A = \{a_1, \dots, a_m\}$, we consider the class of transformations that have the following properties.

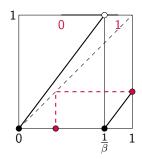
- ▶ For each digit in the digit set a_i , there is a bounded interval Z_i and if $i \neq j$, then $Z_i \cap Z_j = \emptyset$. We assume $Z_i = [b_i, c_i)$ for $b_i, c_i \in \mathbb{R}$.
- On the interval Z_i the transformation is given by $Tx = \beta x a_i$.
- ▶ If $X = \bigcup_{i=1}^m Z_i$, then TX = X.

The class of transformations

Given a real number $\beta > 1$ and a digit set $A = \{a_1, \dots, a_m\}$, we consider the class of transformations that have the following properties.

- ▶ For each digit in the digit set a_i , there is a bounded interval Z_i and if $i \neq j$, then $Z_i \cap Z_j = \emptyset$. We assume $Z_i = [b_i, c_i)$ for $b_i, c_i \in \mathbb{R}$.
- On the interval Z_i the transformation is given by $Tx = \beta x a_i$.
- If $X = \bigcup_{i=1}^m Z_i$, then TX = X.

Admissible sequences



Expansions $\sum_{k=1}^{\infty} \frac{b_k}{\beta^k}$ are uniquely determined by the digit sequences $(b_k)_{k\geq 1}$.

A transformation T with digit set A does not produce all sequences in $A^{\mathbb{N}}$.

Transformations and admissible sequences

Here, for example, the block 11 never occurs.

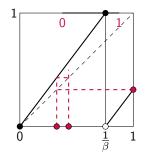
The set of admissible sequences

Given a transformation T for a $\beta>1$ and digit set A, we call a sequence $u_1u_2\cdots\in A^{\mathbb{N}}$ admissible for T if there is an $x\in X$ such that $u_1u_2\cdots=b_1(x)b_2(x)\cdots$.

A two-sided sequence $\cdots u_{-1}u_0u_1\cdots$ is called admissible if for each $n\in\mathbb{Z}$ there is an $x\in X$, such that $u_nu_{n+1}\cdots=b_1(x)b_2(x)\cdots$.

Notation: S^+ is the set of one-sided admissible sequences and S is the set of two-sided ones.

Admissible sequences for $x \mapsto \beta x \pmod{1}$



For the map $Tx = \beta x \pmod{1}$ there is a characterisation of all the generated sequences.

Consider the map \tilde{T} , given by

$$\tilde{T}x = \begin{cases} \beta x, & \text{if } x \leq \frac{1}{\beta}, \\ \beta x - 1, & \text{if } \frac{1}{\beta} < x \leq 1. \end{cases}$$

Transformations and admissible sequences

Theorem (Parry, 1960)

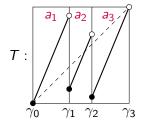
Let $\tilde{b}(1)$ be the expansion of 1 generated by \tilde{T} . Then a sequence $u_1u_2\cdots\in\{0,1\}^{\mathbb{N}}$ is generated by T iff for each $n\geq 1$,

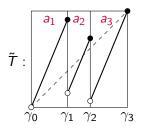
$$u_nu_{n+1}\cdots \prec \tilde{b}(1),$$

where \prec is the lexicographical ordering.

Admissible sequences

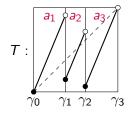
We can characterise the digit sequences generated by any transformation similarly.

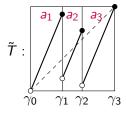




Let b(x) be a digit sequence given by T and $\tilde{b}(x)$ the one given by \tilde{T} . Then we have the following characterization in terms of the sequences $b(\gamma_i)$ and $\tilde{b}(\gamma_i)$.

Admissible sequences





Transformations and admissible sequences

Admissible sequences

A sequence $u_1u_2\cdots\in\{a_1,\ldots,a_m\}^\mathbb{N}$ is generated by T iff for each $n\geq 1$, if $u_n=a_j$, then

$$b(\gamma_j) \leq u_n u_{n+1} \cdots \prec \tilde{b}(\gamma_{j+1}),$$

where \leq denotes the lexicographical ordering.

Shift space

Let
$$A = \{a_1, \ldots, a_m\}$$
. Define the map $\xi((b_k)_{k \ge 1}) = \sum_{k=1}^{\infty} \frac{b_k}{\beta^k}$.

Transformations and admissible sequences

Let σ denote the left shift on \mathcal{S}^+ . Then ξ gives the commuting diagram:

$$\begin{array}{ccc}
\mathcal{S}^{+} & \xrightarrow{\sigma} \mathcal{S}^{+} \\
\xi \downarrow & & \downarrow \xi \\
X & \xrightarrow{T} & X
\end{array}$$

Using the symbolic space (S, σ) , we find a 'nice' natural extension of the dynamical system (X, T).

Consider the non-invertible system (X, \mathcal{B}, μ, T) , where \mathcal{B} is the Lebesgue σ -algebra on X and μ an invariant measure for T. Then a version of the natural extension of (X, \mathcal{B}, μ, T) is an invertible system $(\hat{X}, \hat{\mathcal{B}}, \nu, \hat{T})$, such that

► There is a map $\pi: \hat{X} \to X$ that is surjective, measurable and such that $\pi \circ \hat{T} = T \circ \pi$.

- ► For all measurable sets $E \in \mathcal{B}$, $\mu(E) = (\nu \circ \pi^{-1})(E)$. We can define the measure μ in this way.
- ► This system is the smallest in the sense of σ -algebras: $\bigvee_{n\geq 0} \hat{T}^n(\pi^{-1}(\mathcal{B})) = \hat{\mathcal{B}}.$

Consider the non-invertible system (X, \mathcal{B}, μ, T) , where \mathcal{B} is the Lebesgue σ -algebra on X and μ an invariant measure for T. Then a version of the natural extension of (X, \mathcal{B}, μ, T) is an invertible system $(\hat{X}, \hat{\mathcal{B}}, \nu, \hat{T})$, such that

► There is a map $\pi: \hat{X} \to X$ that is surjective, measurable and such that $\pi \circ \hat{T} = T \circ \pi$.

- ▶ For all measurable sets $E \in \mathcal{B}$, $\mu(E) = (\nu \circ \pi^{-1})(E)$. We can define the measure μ in this way.
- ► This system is the smallest in the sense of σ -algebras: $\bigvee_{n\geq 0} \hat{T}^n(\pi^{-1}(\mathcal{B})) = \hat{\mathcal{B}}.$

Consider the non-invertible system (X, \mathcal{B}, μ, T) , where \mathcal{B} is the Lebesgue σ -algebra on X and μ an invariant measure for T. Then a version of the natural extension of (X, \mathcal{B}, μ, T) is an invertible system $(\hat{X}, \hat{\mathcal{B}}, \nu, \hat{T})$, such that

- ► There is a map $\pi: \hat{X} \to X$ that is surjective, measurable and such that $\pi \circ \hat{T} = T \circ \pi$.
- ▶ For all measurable sets $E \in \mathcal{B}$, $\mu(E) = (\nu \circ \pi^{-1})(E)$. We can define the measure μ in this way.
- ► This system is the smallest in the sense of σ -algebras: $\bigvee_{n\geq 0} \hat{T}^n(\pi^{-1}(\mathcal{B})) = \hat{\mathcal{B}}.$

Consider the non-invertible system (X, \mathcal{B}, μ, T) , where \mathcal{B} is the Lebesgue σ -algebra on X and μ an invariant measure for T. Then a version of the natural extension of (X, \mathcal{B}, μ, T) is an invertible system $(\hat{X}, \hat{\mathcal{B}}, \nu, \hat{T})$, such that

- ▶ There is a map $\pi: \hat{X} \to X$ that is surjective, measurable and such that $\pi \circ \hat{T} = T \circ \pi$.
- ► For all measurable sets $E \in \mathcal{B}$, $\mu(E) = (\nu \circ \pi^{-1})(E)$. We can define the measure μ in this way.
- ► This system is the smallest in the sense of σ -algebras: $\bigvee_{n>0} \hat{T}^n(\pi^{-1}(\mathcal{B})) = \hat{\mathcal{B}}.$

Pisot β 's

 $X = \bigcup_{i=1}^{m} Z_i$ where $Z_i = [b_i, c_i)$ are disjoint intervals and $Tx = \beta x - a_i$ on Z_i .

From now on we assume that the real number $\beta>1$ is a Pisot unit:

- ▶ β is an algebraic unit: it is a root of a minimal polynomial of the form $x^d c_1 x^{d-1} \cdots c_d$, with $c_i \in \mathbb{Z}$ for all i and $c_d \in \{-1, 1\}$.
- ▶ Denote all the other roots of the polynomial $x^d c_1 x^{d-1} \cdots c_d$ by β_j , then $|\beta_j| < 1$ for all j.

We also assume that $a_i \subset \mathbb{Q}(\beta)$ for all $1 \leq i \leq m$. For convenience, we take $a_i \subset \mathbb{Z}$.

Pisot β 's

 $X = \bigcup_{i=1}^{m} Z_i$ where $Z_i = [b_i, c_i)$ are disjoint intervals and $Tx = \beta x - a_i$ on Z_i .

From now on we assume that the real number $\beta>1$ is a Pisot unit:

- ▶ β is an algebraic unit: it is a root of a minimal polynomial of the form $x^d c_1 x^{d-1} \cdots c_d$, with $c_i \in \mathbb{Z}$ for all i and $c_d \in \{-1, 1\}$.
- ▶ Denote all the other roots of the polynomial $x^d c_1 x^{d-1} \cdots c_d$ by β_j , then $|\beta_j| < 1$ for all j.

We also assume that $a_i \subset \mathbb{Q}(\beta)$ for all $1 \leq i \leq m$. For convenience, we take $a_i \subset \mathbb{Z}$.

Pisot β 's

 $X = \bigcup_{i=1}^{m} Z_i$ where $Z_i = [b_i, c_i)$ are disjoint intervals and $Tx = \beta x - a_i$ on Z_i .

From now on we assume that the real number $\beta>1$ is a Pisot unit:

- β is an algebraic unit: it is a root of a minimal polynomial of the form $x^d c_1 x^{d-1} \cdots c_d$, with $c_i \in \mathbb{Z}$ for all i and $c_d \in \{-1,1\}$.
- ▶ Denote all the other roots of the polynomial $x^d c_1 x^{d-1} \cdots c_d$ by β_j , then $|\beta_j| < 1$ for all j.

We also assume that $a_i \subset \mathbb{Q}(\beta)$ for all $1 \leq i \leq m$. For convenience, we take $a_i \subset \mathbb{Z}$.

Hyperbolic toral automorphism

Let $\beta>1$ be a Pisot unit with minimal polynomial $x^d-c_1x^{d-1}-\cdots-c_d$, $c_i\in\mathbb{Z}$ and $c_d\in\{-1,1\}$. Consider the companion matrix M:

$$M = \begin{pmatrix} c_1 & c_2 & \cdots & c_{d-1} & c_d \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \end{pmatrix}.$$

The eigenvalues are β and β_2, \dots, β_d , the Galois conjugates of β . Also, $|\det M| = 1$, so M is invertible.

Hyperbolic toral automorphism

 β is a Pisot unit with minimal polynomial $x^d-c_1x^{d-1}-\cdots-c_d$ and Galois conjugates β_2,\ldots,β_d .

$$\begin{pmatrix} c_1 & c_2 & \cdots & c_{d-1} & c_d \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \end{pmatrix} \begin{pmatrix} \beta_j^{d-1} \\ \beta_j^{d-2} \\ \vdots \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} c_1 \beta_j^{d-1} + \dots + c_d \\ \beta_j^{d-1} \\ \vdots \\ \beta_i \end{pmatrix} = \begin{pmatrix} \beta_j^d \\ \beta_j^{d-1} \\ \vdots \\ \beta_i \end{pmatrix} = \beta_j \mathbf{v}_j.$$

The natural extension space

We use the eigenvectors of M to define the natural extension space by mapping the admissible sequences into \mathbb{R}^d .

Let $w \cdot u = \cdots w_{-1}w_0u_1u_2\cdots \in A^{\mathbb{Z}}$. Define the map $\psi : A^{\mathbb{Z}} \to \mathbb{R}^d$ by:

$$\psi(w \cdot u) = \sum_{n=1}^{\infty} \frac{u_n}{\beta^n} \mathbf{v}_1 - \sum_{j=2}^{d} \sum_{n=0}^{\infty} w_{-n} \beta_j^n \mathbf{v}_j.$$
$$(\beta > 1) \qquad (|\beta_j| < 1)$$

Set $\hat{X} = \psi(S)$. This is the natural extension space.

We use the eigenvectors of M to define the natural extension space by mapping the admissible sequences into \mathbb{R}^d .

Let $w \cdot u = \cdots w_{-1} w_0 u_1 u_2 \cdots \in A^{\mathbb{Z}}$. Define the map $\psi : A^{\mathbb{Z}} \to \mathbb{R}^d$ by:

$$\psi(w \cdot u) = \sum_{n=1}^{\infty} \frac{u_n}{\beta^n} \mathbf{v}_1 - \sum_{j=2}^{d} \sum_{n=0}^{\infty} w_{-n} \beta_j^n \mathbf{v}_j.$$
$$(\beta > 1) \qquad (|\beta_j| < 1)$$

Set $\hat{X} = \psi(S)$. This is the natural extension space.

We use the eigenvectors of M to define the natural extension space by mapping the admissible sequences into \mathbb{R}^d .

Let $w \cdot u = \cdots w_{-1} w_0 u_1 u_2 \cdots \in A^{\mathbb{Z}}$. Define the map $\psi : A^{\mathbb{Z}} \to \mathbb{R}^d$ by:

$$\psi(\mathbf{w} \cdot \mathbf{u}) = \sum_{n=1}^{\infty} \frac{u_n}{\beta^n} \mathbf{v}_1 - \sum_{j=2}^{d} \sum_{n=0}^{\infty} w_{-n} \beta_j^n \mathbf{v}_j.$$

$$(\beta > 1) \qquad (|\beta_j| < 1)$$

Set $\hat{X} = \psi(S)$. This is the natural extension space.

We use the eigenvectors of M to define the natural extension space by mapping the admissible sequences into \mathbb{R}^d .

Let $w \cdot u = \cdots w_{-1} w_0 u_1 u_2 \cdots \in A^{\mathbb{Z}}$. Define the map $\psi : A^{\mathbb{Z}} \to \mathbb{R}^d$ by:

$$\psi(w \cdot u) = \sum_{n=1}^{\infty} \frac{u_n}{\beta^n} \mathbf{v}_1 - \sum_{j=2}^{d} \sum_{n=0}^{\infty} w_{-n} \beta_j^n \mathbf{v}_j.$$
$$(\beta > 1) \qquad (|\beta_j| < 1)$$

Set $\hat{X} = \psi(S)$. This is the natural extension space.

We use the eigenvectors of M to define the natural extension space by mapping the admissible sequences into \mathbb{R}^d .

Let $w \cdot u = \cdots w_{-1} w_0 u_1 u_2 \cdots \in A^{\mathbb{Z}}$. Define the map $\psi : A^{\mathbb{Z}} \to \mathbb{R}^d$ by:

$$\psi(w \cdot u) = \sum_{n=1}^{\infty} \frac{u_n}{\beta^n} \mathbf{v}_1 - \sum_{j=2}^{d} \sum_{n=0}^{\infty} w_{-n} \beta_j^n \mathbf{v}_j.$$

Set $\hat{X} = \psi(S)$. This is the natural extension space.

The natural extension transformation

For the natural extension transformation $\hat{T}: \hat{X} \to \hat{X}$ we want:

- \hat{T} is a.e. invertible.
- \hat{T} preserves the dynamics of T.
- $ightharpoonup \hat{T}$ is invariant wrt the Lebesgue measure.

Partition $\hat{X} = \bigcup_{i=1}^{m} \hat{Z}_{i}$ with $\hat{Z}_{i} = \{\psi(w \cdot u) \mid u_{1} = a_{i}\}$. For $\mathbf{x} \in \hat{X}$, write $\mathbf{x} = x\mathbf{v}_{1} - \sum_{j=2}^{d} y_{j}\mathbf{v}_{j}$. If $\mathbf{x} \in \hat{Z}_{i}$, take

$$\hat{T}\mathbf{x} = (\beta \mathbf{x} - a_i)\mathbf{v}_1 - \sum_{j=2}^d (\beta_j y_j + a_i)\mathbf{v}_j$$
$$= M\mathbf{x} - \sum_{i=1}^d a_i \mathbf{v}_j.$$

The natural extension transformation

For the natural extension transformation $\hat{T}: \hat{X} \to \hat{X}$ we want:

- \hat{T} is a.e. invertible.
- $ightharpoonup \hat{T}$ preserves the dynamics of T.
- $ightharpoonup \hat{T}$ is invariant wrt the Lebesgue measure.

Partition $\hat{X} = \bigcup_{i=1}^{m} \hat{Z}_{i}$ with $\hat{Z}_{i} = \{\psi(w \cdot u) \mid u_{1} = a_{i}\}$. For $\mathbf{x} \in \hat{X}$, write $\mathbf{x} = x\mathbf{v}_{1} - \sum_{j=2}^{d} y_{j}\mathbf{v}_{j}$. If $\mathbf{x} \in \hat{Z}_{i}$, take

$$\hat{T}\mathbf{x} = (\beta \mathbf{x} - \mathbf{a}_i) \mathbf{v}_1 - \sum_{j=2}^d (\beta_j \mathbf{y}_j + \mathbf{a}_i) \mathbf{v}_j$$
$$= M\mathbf{x} - \sum_{j=1}^d \mathbf{a}_j \mathbf{v}_j.$$

The natural extension transformation

For the natural extension transformation $\hat{T}: \hat{X} \to \hat{X}$ we want:

- $ightharpoonup \hat{T}$ is a.e. invertible.
- \hat{T} preserves the dynamics of T.
- $ightharpoonup \hat{T}$ is invariant wrt the Lebesgue measure.

Partition $\hat{X} = \bigcup_{i=1}^{m} \hat{Z}_{i}$ with $\hat{Z}_{i} = \{\psi(w \cdot u) \mid u_{1} = a_{i}\}$. For $\mathbf{x} \in \hat{X}$, write $\mathbf{x} = x\mathbf{v}_{1} - \sum_{j=2}^{d} y_{j}\mathbf{v}_{j}$. If $\mathbf{x} \in \hat{Z}_{i}$, take

$$\hat{T}\mathbf{x} = (\beta x - a_i) \mathbf{v}_1 - \sum_{j=2}^d (\beta_j y_j + a_i) \mathbf{v}_j$$
$$= M\mathbf{x} - \sum_{j=1}^d a_j \mathbf{v}_j.$$

An invariant measure for T

The Lebesgue measure λ^d on \mathbb{R}^d is invariant for \hat{T} (recall $|\det M|=1$).

Let
$$\pi: \hat{X} \to X$$
 be given by $\pi (x \mathbf{v}_1 - \sum_{j=2}^d y_j \mathbf{v}_j) = x$.

Define the measure μ on X by $\mu(E) = (\lambda^d \circ \pi^{-1})(E)$ for each Borel measurable set E.

Then μ is invariant for T.

Purely periodic points

Denote by H the subspace of \mathbb{R}^d spanned by the real and imaginary parts of $\mathbf{v}_2, \dots, \mathbf{v}_d$.

Let
$$\Gamma_j : \mathbb{Q}(\beta) \to \mathbb{Q}(\beta_j) : \beta \mapsto \beta_j$$
.

Define the function
$$\Phi : \mathbb{Q}(\beta) \to H$$
 by $\Phi(x) = \sum_{j=2}^{d} \Gamma_{j}(x) \mathbf{v}_{j}$.

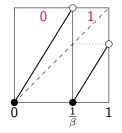
Theorem

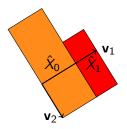
The expansion of x generated by T is purely periodic iff $x \in \mathbb{Q}(\beta)$ and $x\mathbf{v}_1 + \Phi(x) \in \hat{X}$. (For $x \mapsto \beta x \pmod{1}$, Ito and Rao(2005))

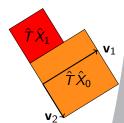
An example: the golden mean

Let β be the golden mean, i.e., the real root >1 of x^2-x-1 , and $Tx=\beta x$ (mod 1). Then $A=\{0,1\}$ and

$$M = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \, \mathbf{v}_1 = \begin{pmatrix} \beta \\ 1 \end{pmatrix}, \, \mathbf{v}_2 = \begin{pmatrix} -rac{1}{eta} \\ 1 \end{pmatrix}.$$

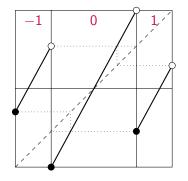


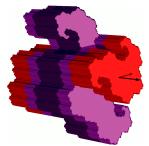




An example: the tribonacci number

Let β be the tribonacci number. Take $A=\{-1,0,1\}$, $X_{-1}=\left[-\frac{\beta}{\beta+1},-\frac{1}{\beta+1}\right)$, $X_0=\left[-\frac{1}{\beta+1},\frac{1}{\beta+1}\right)$ and $X_1=\left[\frac{1}{\beta+1},\frac{\beta}{\beta+1}\right)$. Then T is a minimal weight transformation.

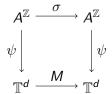




Symbolic coverings

Let $A = \{a_1, \dots, a_m\} \subset \mathbb{Z}$. Recall the definition of the map $\psi : A^{\mathbb{Z}} \to \mathbb{R}^d$, but consider it on $\mathbb{T}^d = \mathbb{R}^d / \mathbb{Z}^d$:

$$\psi(w \cdot u) = \sum_{n=1}^{\infty} \frac{u_n}{\beta^n} \mathbf{v}_1 - \sum_{j=2}^{d} \sum_{n=0}^{\infty} w_{-n} \beta_j^n \mathbf{v}_j \pmod{\mathbb{Z}^d}.$$



On $A^{\mathbb{Z}}$, ψ is a very many-to-one map. We would like to say more for $\psi|_{\mathcal{S}}$.

Finite-to-one covering map

Rauzy, 1982 For the Pisot number given by the polynomial $x^3 - x^2 - x - 1$ (tribonacci number), the map is a.e. one-to-one for the β -shift $\overline{\mathcal{S}}$ given by the map $x \mapsto \beta x \pmod{1}$.

Kenyon and Vershik, 1998 Algebraic construction of a sofic subshift $V \subset \tilde{A}^{\mathbb{Z}}$ that gives an a.e. finite-to-one covering.

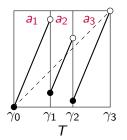
Schmidt, 2000 For every Pisot number β the set \overline{S} , given by the map $x \mapsto \beta x \pmod{1}$, provides an a.e. finite-to-one map.

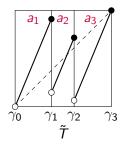
Many others ...

Finite-to-one covering

An additional condition

Recall the transformation \tilde{T} :





For γ_i , let n_i be the minimal k such that $T^k \gamma_i = \tilde{T}^k \gamma_i$ with $n_i = \infty$ if this doesn't happen.

An additional condition

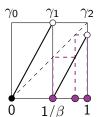
Suppose that $A = \{a_1, \dots, a_m\}$. Define the set $\mathcal V$ by

$$\mathcal{V} = \bigcup_{i=0}^{m} \{\gamma_i\} \cup \bigcup_{1 \le k < n_i, \gamma_i \in X, i \ne 0} \{T^k \gamma_i, \tilde{T}^k \gamma_i\}.$$

The extra assumtion we make is that the set $\mathcal V$ is finite. This happens in 2 cases.

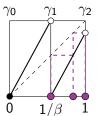
- ▶ If the points γ_i have ultimately periodic orbits.
- ▶ If the orbits of the points γ_i come together after some steps.

$$\mathcal{V} = \bigcup_{i=0}^{m+1} \{ \gamma_i \} \cup \bigcup_{1 \le k < n_i, \gamma_i \in X, i \ne 0} \{ T^k \gamma_i, \tilde{T}^k \gamma_i \}$$



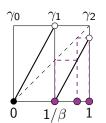
- $\{\gamma_i \in X \mid i \neq 0\} = \{1/\beta\}.$
- ▶ $T^k(\frac{1}{\beta}) = 0$ for all $k \ge 1$. $\tilde{T}(\frac{1}{\beta}) = 1$, $\tilde{T}^2(\frac{1}{\beta}) = \beta - 1$, $\tilde{T}^3(\frac{1}{\beta}) = \frac{1}{\beta}$. So, $n_1 = \infty$, but γ_1 is periodic for \tilde{T} .
- $\mathcal{V} = \{0, \frac{1}{\beta}, \beta 1, 1\}$ is a finite set.
- ► The associated subshift is of finite type here, sofic in general.

$$\mathcal{V} = \bigcup_{i=0}^{m+1} \{ \gamma_i \} \cup \bigcup_{1 \le k < n_i, \gamma_i \in X, i \ne 0} \{ T^k \gamma_i, \tilde{T}^k \gamma_i \}$$



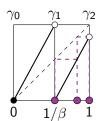
- $\{\gamma_i \in X \mid i \neq 0\} = \{1/\beta\}.$
- ▶ $T^k\left(\frac{1}{\beta}\right) = 0$ for all $k \ge 1$. $\tilde{T}\left(\frac{1}{\beta}\right) = 1$, $\tilde{T}^2\left(\frac{1}{\beta}\right) = \beta - 1$, $\tilde{T}^3\left(\frac{1}{\beta}\right) = \frac{1}{\beta}$. So, $n_1 = \infty$, but γ_1 is periodic for \tilde{T} .
- $\mathcal{V} = \{0, \frac{1}{\beta}, \beta 1, 1\}$ is a finite set.
- ► The associated subshift is of finite type here, sofic in general.

$$\mathcal{V} = \bigcup_{i=0}^{m+1} \{ \gamma_i \} \cup \bigcup_{1 \le k < n_i, \gamma_i \in X, i \ne 0} \{ T^k \gamma_i, \tilde{T}^k \gamma_i \}$$



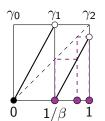
- $\{\gamma_i \in X \mid i \neq 0\} = \{1/\beta\}.$
- $\begin{array}{l} \boldsymbol{\mathcal{T}}^k\big(\frac{1}{\beta}\big) = 0 \text{ for all } k \geq 1. \\ \tilde{\mathcal{T}}\big(\frac{1}{\beta}\big) = 1, \ \tilde{\mathcal{T}}^2\big(\frac{1}{\beta}\big) = \beta 1, \\ \tilde{\mathcal{T}}^3\big(\frac{1}{\beta}\big) = \frac{1}{\beta}. \text{ So, } n_1 = \infty, \text{ but } \gamma_1 \text{ is periodic for } \tilde{\mathcal{T}}. \end{array}$
- $\mathcal{V} = \{0, \frac{1}{\beta}, \beta 1, 1\}$ is a finite set.
- ► The associated subshift is of finite type here, sofic in general.

$$\mathcal{V} = \bigcup_{i=0}^{m+1} \{ \gamma_i \} \cup \bigcup_{1 \le k < n_i, \gamma_i \in X, i \ne 0} \{ T^k \gamma_i, \tilde{T}^k \gamma_i \}$$



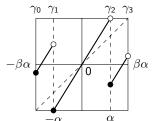
- $\{\gamma_i \in X \mid i \neq 0\} = \{1/\beta\}.$
- $\begin{array}{l} \boldsymbol{\mathcal{T}}^k \left(\frac{1}{\beta}\right) = 0 \text{ for all } k \geq 1. \\ \tilde{\mathcal{T}} \left(\frac{1}{\beta}\right) = 1, \ \tilde{\mathcal{T}}^2 \left(\frac{1}{\beta}\right) = \beta 1, \\ \tilde{\mathcal{T}}^3 \left(\frac{1}{\beta}\right) = \frac{1}{\beta}. \text{ So, } n_1 = \infty, \text{ but } \gamma_1 \text{ is periodic for } \tilde{\mathcal{T}}. \end{array}$
- $\mathcal{V} = \{0, \frac{1}{\beta}, \beta 1, 1\}$ is a finite set.
- ► The associated subshift is of finite type here, sofic in general.

$$\mathcal{V} = \bigcup_{i=0}^{m+1} \{ \gamma_i \} \cup \bigcup_{1 \le k < n_i, \gamma_i \in X, i \ne 0} \{ T^k \gamma_i, \tilde{T}^k \gamma_i \}$$



- $\{\gamma_i \in X \mid i \neq 0\} = \{1/\beta\}.$
- $\begin{array}{l} \boldsymbol{\mathcal{T}}^k \left(\frac{1}{\beta}\right) = 0 \text{ for all } k \geq 1. \\ \tilde{\mathcal{T}} \left(\frac{1}{\beta}\right) = 1, \ \tilde{\mathcal{T}}^2 \left(\frac{1}{\beta}\right) = \beta 1, \\ \tilde{\mathcal{T}}^3 \left(\frac{1}{\beta}\right) = \frac{1}{\beta}. \text{ So, } n_1 = \infty, \text{ but } \gamma_1 \text{ is periodic for } \tilde{\mathcal{T}}. \end{array}$
- $\mathcal{V} = \{0, \frac{1}{\beta}, \beta 1, 1\}$ is a finite set.
- ► The associated subshift is of finite type here, sofic in general.

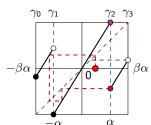
$$\mathcal{V} = \bigcup_{i=0}^{m+1} \{ \gamma_i \} \cup \bigcup_{1 \le k < n_i, \gamma_i \in X, i \ne 0} \{ T^k \gamma_i, \tilde{T}^k \gamma_i \}$$



- $\bigcup_{i=0}^{3} \{ \gamma_i \} = \{ -\beta \alpha, -\alpha, \alpha, \beta \alpha \}.$
- For all $\frac{1}{\beta^2} < \alpha < \frac{\beta}{\beta^2+1}$, $T^3\alpha = \tilde{T}^3\alpha$. So, $n_2 = 3$. By symmetry also $n_1 = 3$.
- $\mathcal{V} = \pm \{\beta \alpha, \alpha, \tilde{T}^2 \alpha, T \alpha, T^2 \alpha\}$ is a finite set.
- ► The associated subshift is not sofic in general.

Finite-to-one covering

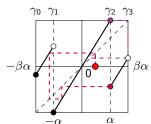
$$\mathcal{V} = \bigcup_{i=0}^{m+1} \{ \gamma_i \} \cup \bigcup_{1 \le k < n_i, \gamma_i \in X, i \ne 0} \{ T^k \gamma_i, \tilde{T}^k \gamma_i \}$$



- $\bigcup_{i=0}^{3} \{ \gamma_i \} = \{ -\beta \alpha, -\alpha, \alpha, \beta \alpha \}.$
- For all $\frac{1}{\beta^2} < \alpha < \frac{\beta}{\beta^2+1}$, $T^3\alpha = \tilde{T}^3\alpha$. So, $n_2 = 3$. By symmetry also $n_1 = 3$.
- $\mathcal{V} = \pm \{\beta \alpha, \alpha, \tilde{T}^2 \alpha, T \alpha, T^2 \alpha\}$ is a finite set
- ► The associated subshift is not sofic in general.

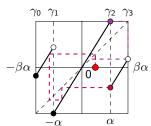
Finite-to-one covering

$$\mathcal{V} = \bigcup_{i=0}^{m+1} \{ \gamma_i \} \cup \bigcup_{1 \le k < n_i, \gamma_i \in X, i \ne 0} \{ T^k \gamma_i, \tilde{T}^k \gamma_i \}$$



- $\bigcup_{i=0}^{3} \{ \gamma_i \} = \{ -\beta \alpha, -\alpha, \alpha, \beta \alpha \}.$
- For all $\frac{1}{\beta^2} < \alpha < \frac{\beta}{\beta^2+1}$, $T^3\alpha = \tilde{T}^3\alpha$. So, $n_2 = 3$. By symmetry also $n_1 = 3$.
- $\mathcal{V} = \pm \{\beta \alpha, \alpha, \tilde{T}^2 \alpha, T \alpha, T^2 \alpha\}$ is a finite set.
- ► The associated subshift is not sofic in general.

$$\mathcal{V} = \bigcup_{i=0}^{m+1} \{ \gamma_i \} \cup \bigcup_{1 \le k < n_i, \gamma_i \in X, i \ne 0} \{ T^k \gamma_i, \tilde{T}^k \gamma_i \}$$



- $\bigcup_{i=0}^{3} \{ \gamma_i \} = \{ -\beta \alpha, -\alpha, \alpha, \beta \alpha \}.$
- For all $\frac{1}{\beta^2} < \alpha < \frac{\beta}{\beta^2+1}$, $T^3\alpha = \tilde{T}^3\alpha$. So, $n_2 = 3$. By symmetry also $n_1 = 3$.
- $\mathcal{V} = \pm \{\beta \alpha, \alpha, \tilde{T}^2 \alpha, T \alpha, T^2 \alpha\}$ is a finite set.
- The associated subshift is not sofic in general.

Finite-to-one covering

A finite-to-one mapping

Theorem

If the set $\mathcal V$ is finite, then there is a constant $\kappa \geq 1$, such that the map $\psi: \overline{\mathcal S} \to \mathbb T^d$ is almost everywhere κ -to-one.

This includes cases in which S is not sofic.

If \mathcal{V} is finite, then the density of the invariant measure $\mu = \lambda^d \circ \pi^{-1}$ of T is a sum of κ indicator functions.

Recall the definition of the map $\psi: \mathcal{S} \to \mathbb{R}^d$:

$$\psi(\mathbf{w}\cdot\mathbf{u}) = \sum_{n=1}^{\infty} \frac{u_n}{\beta^n} \mathbf{v}_1 - \sum_{j=2}^{d} \sum_{n=0}^{\infty} w_{-n} \beta_j^n \mathbf{v}_j.$$

For $x \in X$, we are interested in the set

$$\left\{\sum_{j=2}^{d}\sum_{n=0}^{\infty}w_{-n}\beta_{j}^{n}\mathbf{v}_{j}\mid \cdots w_{-1}w_{0}\cdot b(x)\in\mathcal{S}\right\}\subset H.$$

Recall that H is the real contracting eigenspace for the matrix M.

Finite-to-one covering

Expansions and tiles

Recall that $\Gamma_j: \mathbb{Q}(\beta) \to \mathbb{Q}(\beta_j): \beta \mapsto \beta_j$ and

 $\Phi: \mathbb{Q}(\beta) \to H: x \mapsto \sum_{j=2}^d \Gamma_j(x) \mathbf{v}_j.$

Theorem

The origin $\mathbf{0} \in H$ belongs to a set

$$\Phi(x) + \Big\{ \sum_{j=2}^{d} \sum_{n=0}^{\infty} w_{-n} \beta_j^n \mathbf{v}_j \mid \cdots w_{-1} w_0 \cdot b(x) \in \mathcal{S} \Big\}$$

for $x \in \mathbb{Z}[\beta] \cap X$ iff the expansion of x that is generated by T is purely periodic.

(For $x \mapsto \beta x \pmod{1}$, Akiyama 1999 and Praggastis 1999)

Finite-to-one covering

One-to-one covering?

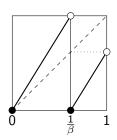
For certain specific cases it is known that the map $\psi: \overline{\mathcal{S}} \to \mathbb{T}^d$ is a.e. one-to-one for the map $x \mapsto \beta x \pmod{1}$.

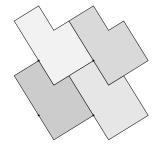
Pisot conjecture (Schmidt 2000, Akiyama 2002 and Sidorov 2003)

If β is a Pisot number and $Tx = \beta x \pmod{1}$, then $\psi : \overline{\mathcal{S}} \to \mathbb{T}^d$ is almost everywhere one-to-one.

An example: the golden mean)

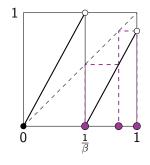
Let β be the golden mean and $Tx = \beta x \pmod{1}$.

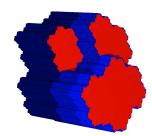




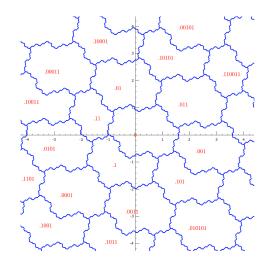
An example: the Rauzy tiling (Rauzy, 1982)

Let β be the tribonacci number and $Tx = \beta x \pmod{1}$.



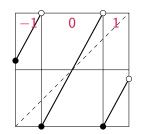


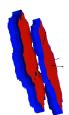
An example: the Rauzy tiling (Rauzy, 1982)



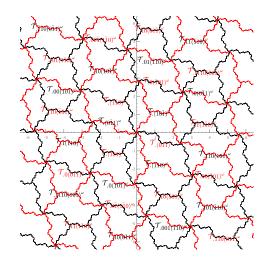
A two-to-one map: the tribonacci number

Let β be the tribonacci number. Take $A=\{-1,0,1\}$, $X_{-1}=\left[-\frac{1}{2},-\frac{1}{2\beta}\right)$, $X_0=\left[-\frac{1}{2\beta},\frac{1}{2\beta}\right)$ and $X_1=\left[\frac{1}{2\beta},\frac{1}{2}\right)$.





A double tiling: the tribonacci number



A double tiling: the tribonacci number

The map ψ is a.e. two-to-one if there is a ball in \mathbb{R}^d , such that for each \mathbf{y} in this ball we have

$$\mathbf{y} = \mathbf{x} + \psi(\mathbf{w} \cdot \mathbf{u}) = \mathbf{x}' + \psi(\mathbf{w}', \mathbf{u}')$$

for two different copies of $\psi(\overline{\mathcal{S}})$.

We fixed specific \mathbf{x} , \mathbf{x}' , u and u' and transformed each w into a 'good' w'.

A double tiling: the tribonacci number

The transducer that transforms a sequence w into w':

