Symbolic coverings for general Pisot β-transformations

Charlene Kalle, joint work with Wolfgang Steiner (LIAFA, Paris)

April 13, 2010

Introduction

Let $\beta>1$ and $A=\left\{a_{1}, \ldots, a_{m}\right\}$ a set of real numbers with $a_{1}<a_{2}<\cdots<a_{m}$. Expressions of the form

$$
x=\sum_{n=1}^{\infty} \frac{b_{n}}{\beta^{n}}
$$

with $b_{n} \in A$ for all $n \geq 1$, are called β-expansions with arbitrary digits.
This gives numbers in the interval $\left[\frac{a_{1}}{\beta-1}, \frac{a_{m}}{\beta-1}\right]$.
β is called the base, A is the digit set and elements of A are called digits. The sequence $b_{1} b_{2} \cdots$ is a digit sequence for x.

Allowable digit sets

If, for a given $\beta>1$, a set of real numbers $A=\left\{a_{1}, \ldots, a_{m}\right\}$ satisfies
(i) $a_{1}<\cdots<a_{m}$,
(ii) $\max _{2 \leq j \leq m}\left(a_{j}-a_{j-1}\right) \leq \frac{a_{m}-a_{1}}{\beta-1}$,
it is called an allowable digit set.

Theorem (Pedicini, 2005)
If A is an allowable digit set for β, then every
$x \in\left[\frac{a_{1}}{\beta-1}, \frac{a_{m}}{\beta-1}\right]$ has a β-expansion with digits in A.

Outline

- Introduce a class of transformations that generate β-expansions.
- Characterize the set of digit sequences given by such a transformation.
- For specific β^{\prime} s (Pisot units) give a construction of a natural extension for the transformation.
- From the natural extension, get an absolutely continuous invariant measure.
- Under a further assumption, construct a symbolic covering of the torus that is almost everywhere finite-to-one.
- Give an example in which this map is not one-to-one.

Outline

- Introduce a class of transformations that generate β-expansions.
- Characterize the set of digit sequences given by such a transformation.
- For specific β^{\prime} s (Pisot units) give a construction of a natural extension for the transformation.
- From the natural extension, get an absolutely continuous invariant measure.
- Under a further assumption, construct a symbolic covering of the torus that is almost everywhere finite-to-one.
- Give an example in which this map is not one-to-one.

Outline

- Introduce a class of transformations that generate β-expansions.
- Characterize the set of digit sequences given by such a transformation.
- For specific β 's (Pisot units) give a construction of a natural extension for the transformation.
- From the natural extension, get an absolutely continuous invariant measure.
- Under a further assumption, construct a symbolic covering of the torus that is almost everywhere finite-to-one.
- Give an example in which this map is not one-to-one.

Outline

- Introduce a class of transformations that generate β-expansions.
- Characterize the set of digit sequences given by such a transformation.
- For specific β 's (Pisot units) give a construction of a natural extension for the transformation.
- From the natural extension, get an absolutely continuous invariant measure.
- Under a further assumption, construct a symbolic covering of the torus that is almost everywhere finite-to-one.
- Give an example in which this map is not one-to-one.

Outline

- Introduce a class of transformations that generate β-expansions.
- Characterize the set of digit sequences given by such a transformation.
- For specific β 's (Pisot units) give a construction of a natural extension for the transformation.
- From the natural extension, get an absolutely continuous invariant measure.
- Under a further assumption, construct a symbolic covering of the torus that is almost everywhere finite-to-one.
- Give an example in which this map is not one-to-one.

Outline

- Introduce a class of transformations that generate β-expansions.
- Characterize the set of digit sequences given by such a transformation.
- For specific β 's (Pisot units) give a construction of a natural extension for the transformation.
- From the natural extension, get an absolutely continuous invariant measure.
- Under a further assumption, construct a symbolic covering of the torus that is almost everywhere finite-to-one.
- Give an example in which this map is not one-to-one.

Transformations

For each $\beta>1$ and allowable digit set $A=\left\{a_{1}, \ldots, a_{m}\right\}$ there exist transformations that generate β-expansions with digits in A by iteration.

Example: $x \mapsto \beta x(\bmod 1)$
Consider a non-integer $1<\beta<2$ and digit set $A=\{0,1\}$. One transformation that generates β-expansions with digits in this set is the map $T x=\beta x(\bmod 1)$.

The classical β-expansions

This is the map
$x \mapsto \beta x(\bmod 1)$.

Transformations and admissible sequences

The classical β-expansions

Assign a digit to each interval. Make a digit sequence by setting

$$
b_{1}(x)=\left\{\begin{array}{cc}
0, & \text { if } x<\frac{1}{\beta} \\
1, & \text { otherwise }
\end{array}\right.
$$

$$
\text { and } b_{n}(x)=b_{1}\left(T^{n-1} x\right) \text { for } n \geq
$$

$$
\text { 1. Then we have } T x=\beta x-b_{1}
$$

$$
\text { and } T^{2} x=\beta T x-b_{2} \text {, etc. }
$$

$$
x=\frac{b_{1}}{\beta}+\frac{T x}{\beta}=\frac{b_{1}}{\beta}+\frac{b_{2}}{\beta^{2}}+\frac{T^{2} x}{\beta^{2}}=\cdots=\sum_{k=1}^{n} \frac{b_{k}}{\beta^{k}}+\frac{T^{n} x}{\beta^{n}} .
$$

In the limit $x=\sum_{k=1}^{\infty} \frac{b_{k}}{\beta^{k}}$

The classical β-expansions

Assign a digit to each interval. Make a digit sequence by setting

$$
b_{1}(x)= \begin{cases}0, & \text { if } x<\frac{1}{\beta} \\ 1, & \text { otherwise }\end{cases}
$$

Transformations and admissible

$$
\begin{aligned}
& \text { and } b_{n}(x)=b_{1}\left(T^{n-1} x\right) \text { for } n \geq \\
& \text { 1. Then we have } T x=\beta x-b_{1} \\
& \text { and } T^{2} x=\beta T x-b_{2} \text {, etc. }
\end{aligned}
$$

[^0]
The classical β-expansions

Assign a digit to each interval. Make a digit sequence by setting

$$
b_{1}(x)= \begin{cases}0, & \text { if } x<\frac{1}{\beta} \\ 1, & \text { otherwise }\end{cases}
$$

Transformations and admissible

$$
x=\frac{b_{1}}{\beta}+\frac{T x}{\beta}=\frac{b_{1}}{\beta}+\frac{b_{2}}{\beta^{2}}+\frac{T^{2} x}{\beta^{2}}=\cdots=\sum_{k=1}^{n} \frac{b_{k}}{\beta^{k}}+\frac{T^{n} x}{\beta^{n}} .
$$

In the limit $x=\sum_{k=1}^{\infty} \frac{b_{k}}{\beta^{k}}$.

The classical β-expansions

Assign a digit to each interval. Make a digit sequence by setting

$$
b_{1}(x)= \begin{cases}0, & \text { if } x<\frac{1}{\beta} \\ 1, & \text { otherwise }\end{cases}
$$

Transformations and admissible

$$
x=\frac{b_{1}}{\beta}+\frac{T x}{\beta}=\frac{b_{1}}{\beta}+\frac{b_{2}}{\beta^{2}}+\frac{T^{2} x}{\beta^{2}}=\cdots=\sum_{k=1}^{n} \frac{b_{k}}{\beta^{k}}+\frac{T^{n} x}{\beta^{n}} .
$$

In the limit $x=\sum_{k=1}^{\infty} \frac{b_{k}}{\beta^{k}}$.
and $b_{n}(x)=b_{1}\left(T^{n-1} x\right)$ for $n \geq$ 1. Then we have $T x=\beta x-b_{1}$ and $T^{2} x=\beta T x-b_{2}$, etc.

Other transformations: the minimal weight

 transformationTake β to be the golden mean and $A=\{-1,0,1\}$. This is a minimal weight transformation, i.e., if an x has a finite β-expansion, then the expansion generated by this transformation has the highest number of 0's. [Frougny \& Steiner, 2009]

Transformations and admissible sequences

Other transformations: the linear mod 1

 transformationTake $\beta>1$ and $0 \leq \alpha<1$. Suppose $n<\beta+\alpha \leq n+1$. The linear mod 1 transformation below $(T x=\beta x+\alpha(\bmod 1))$ gives β-expansions with digits in $\{j-\alpha: 0 \leq j \leq n\}$.

Transformations and admissible sequences

The class of transformations

Given a real number $\beta>1$ and a digit set $A=\left\{a_{1}, \ldots, a_{m}\right\}$, we consider the class of transformations that have the following properties.

- For each digit in the digit set a_{i}, there is a bounded interval Z_{i} and if $i \neq j$, then $Z_{i} \cap Z_{j}=\emptyset$. We assume $Z_{i}=\left[b_{i}, c_{i}\right)$ for $b_{i}, c_{i} \in \mathbb{R}$.

The class of transformations

Given a real number $\beta>1$ and a digit set $A=\left\{a_{1}, \ldots, a_{m}\right\}$, we consider the class of transformations that have the following properties.

- For each digit in the digit set a_{i}, there is a bounded interval Z_{i} and if $i \neq j$, then $Z_{i} \cap Z_{j}=\emptyset$. We assume $Z_{i}=\left[b_{i}, c_{i}\right)$ for $b_{i}, c_{i} \in \mathbb{R}$.
- On the interval Z_{i} the transformation is given by $T x=\beta x-a_{i}$.

The class of transformations

Given a real number $\beta>1$ and a digit set $A=\left\{a_{1}, \ldots, a_{m}\right\}$, we consider the class of transformations that have the following properties.

- For each digit in the digit set a_{i}, there is a bounded interval Z_{i} and if $i \neq j$, then $Z_{i} \cap Z_{j}=\emptyset$. We assume $Z_{i}=\left[b_{i}, c_{i}\right)$ for $b_{i}, c_{i} \in \mathbb{R}$.
- On the interval Z_{i} the transformation is given by $T x=\beta x-a_{i}$.
- If $X=\bigcup_{i=1}^{m} Z_{i}$, then $T X=X$.

Admissible sequences

Expansions $\quad \sum_{k=1}^{\infty} \frac{b_{k}}{\beta^{k}} \quad$ are uniquely determined by the digit sequences $\left(b_{k}\right)_{k \geq 1}$.
A transformation T with digit set A does not produce all sequences in $A^{\mathbb{N}}$.

Here, for example, the block 11 never occurs.

Transformations and admissible sequences

The set of admissible sequences

Given a transformation T for a $\beta>1$ and digit set A, we call a sequence $u_{1} u_{2} \cdots \in A^{\mathbb{N}}$ admissible for T if there is an $x \in X$ such that $u_{1} u_{2} \cdots=b_{1}(x) b_{2}(x) \cdots$.
A two-sided sequence $\cdots u_{-1} u_{0} u_{1} \cdots$ is called admissible if for each $n \in \mathbb{Z}$ there is an $x \in X$, such that $u_{n} u_{n+1} \cdots=b_{1}(x) b_{2}(x) \cdots$.

Notation: \mathcal{S}^{+}is the set of one-sided admissible sequences and \mathcal{S} is the set of two-sided ones.

Transformations and admissible

Theorem (Parry, 1960)
Let $\tilde{b}(1)$ be the expansion of 1 generated by \tilde{T}. Then a sequence $u_{1} u_{2} \cdots \in\{0,1\}^{\mathbb{N}}$ is generated by T iff for each $n \geq 1$,

$$
u_{n} u_{n+1} \cdots \prec \tilde{b}(1)
$$

where \prec is the lexicographical ordering.

Admissible sequences for $x \mapsto \beta x(\bmod 1)$

For the map $T_{x}=\beta x(\bmod 1)$ there is a characterisation of all the generated sequences.
Consider the map \tilde{T}, given by

$$
\tilde{T}_{x}= \begin{cases}\beta x, & \text { if } x \leq \frac{1}{\beta} \\ \beta x-1, & \text { if } \frac{1}{\beta}<x \leq 1\end{cases}
$$

Transformations and admissible

Admissible sequences

We can characterise the digit sequences generated by any transformation similarly.

Let $b(x)$ be a digit sequence given by T and $\tilde{b}(x)$ the one given by \tilde{T}. Then we have the following characterization in terms of the sequences $b\left(\gamma_{j}\right)$ and $\tilde{b}\left(\gamma_{j}\right)$.

Transformations and admissible sequences

Admissible sequences

Admissible sequences
A sequence $u_{1} u_{2} \cdots \in\left\{a_{1}, \ldots, a_{m}\right\}^{\mathbb{N}}$ is generated by T iff for each $n \geq 1$, if $u_{n}=a_{j}$, then

$$
b\left(\gamma_{j}\right) \preceq u_{n} u_{n+1} \cdots \prec \tilde{b}\left(\gamma_{j+1}\right),
$$

where \preceq denotes the lexicographical ordering.

Transformations and admissible sequences

Shift space

Let $A=\left\{a_{1}, \ldots, a_{m}\right\}$. Define the map $\xi\left(\left(b_{k}\right)_{k \geq 1}\right)=\sum_{k=1}^{\infty} \frac{b_{k}}{\beta^{k}}$.
Let σ denote the left shift on \mathcal{S}^{+}. Then ξ gives the commuting diagram:

$$
\begin{gathered}
\mathcal{S}^{+} \xrightarrow{\sigma} \mathcal{S}^{+} \\
\xi \mid \\
\\
X \xrightarrow{T} \left\lvert\, \begin{array}{l}
\mid \\
\hline
\end{array}\right.
\end{gathered}
$$

Using the symbolic space (\mathcal{S}, σ), we find a 'nice' natural extension of the dynamical system (X, T).

Natural extensions

Consider the non-invertible system (X, \mathcal{B}, μ, T), where \mathcal{B} is the Lebesgue σ-algebra on X and μ an invariant measure for T. Then a version of the natural extension of (X, \mathcal{B}, μ, T) is an invertible system ($\hat{X}, \hat{\mathcal{B}}, \nu, \hat{T})$, such that

- There is a map $\pi: \hat{X} \rightarrow X$ that is surjective, measurable and such that $\pi \circ \hat{T}=T \circ \pi$.
- For all measurable sets $E \in \mathcal{B}, \mu(E)=\left(\nu \circ \pi^{-1}\right)(E)$.

Natural extensions

Consider the non-invertible system (X, \mathcal{B}, μ, T), where \mathcal{B} is the Lebesgue σ-algebra on X and μ an invariant measure for T. Then a version of the natural extension of (X, \mathcal{B}, μ, T) is an invertible system ($\hat{X}, \hat{\mathcal{B}}, \nu, \hat{T})$, such that

- There is a map $\pi: \hat{X} \rightarrow X$ that is surjective, measurable and such that $\pi \circ \hat{T}=T \circ \pi$.
- For all measurable sets $E \in \mathcal{B}, \mu(E)=\left(\nu \circ \pi^{-1}\right)(E)$. We can define the measure μ in this way.

Natural extensions

Consider the non-invertible system (X, \mathcal{B}, μ, T), where \mathcal{B} is the Lebesgue σ-algebra on X and μ an invariant measure for T. Then a version of the natural extension of (X, \mathcal{B}, μ, T) is an invertible system ($\hat{X}, \hat{\mathcal{B}}, \nu, \hat{T})$, such that

- There is a map $\pi: \hat{X} \rightarrow X$ that is surjective, measurable and such that $\pi \circ \hat{T}=T \circ \pi$.
- For all measurable sets $E \in \mathcal{B}, \mu(E)=\left(\nu \circ \pi^{-1}\right)(E)$. We can define the measure μ in this way.
- This system is the smallest in the sense of σ-algebras: $V_{n \geq 0} \hat{T}^{n}\left(\pi^{-1}(\mathcal{B})\right)=\hat{\mathcal{B}}$.

Natural extensions

Consider the non-invertible system (X, \mathcal{B}, μ, T), where \mathcal{B} is the Lebesgue σ-algebra on X and μ an invariant measure for T. Then a version of the natural extension of (X, \mathcal{B}, μ, T) is an
invertible system ($\hat{X}, \hat{\mathcal{B}}, \nu, \hat{T})$, such that

- There is a map $\pi: \hat{X} \rightarrow X$ that is surjective, measurable and such that $\pi \circ \hat{T}=T \circ \pi$.
- For all measurable sets $E \in \mathcal{B}, \mu(E)=\left(\nu \circ \pi^{-1}\right)(E)$. We can define the measure μ in this way.
- This system is the smallest in the sense of σ-algebras: $V_{n \geq 0} \hat{T}^{n}\left(\pi^{-1}(\mathcal{B})\right)=\hat{\mathcal{B}}$.

Pisot β 's

$X=\bigcup_{i=1}^{m} Z_{i}$ where $Z_{i}=\left[b_{i}, c_{i}\right)$ are disjoint intervals and $T x=\beta x-a_{i}$ on Z_{i}.

From now on we assume that the real number $\beta>1$ is a Pisot unit:

- β is an algebraic unit: it is a root of a minimal polynomial of the form $x^{d}-c_{1} x^{d-1}-\cdots-c_{d}$, with $c_{i} \in \mathbb{Z}$ for all i and $c_{d} \in\{-1,1\}$.
- Denote all the other roots of the polynomial

We also assume that $a_{i} \subset \mathbb{Q}(\beta)$ for all $1 \leq i \leq m$. For convenience, we take $a_{i} \subset \mathbb{Z}$.

The natural extension

Pisot β 's

$X=\bigcup_{i=1}^{m} Z_{i}$ where $Z_{i}=\left[b_{i}, c_{i}\right)$ are disjoint intervals and $T x=\beta x-a_{i}$ on Z_{i}.

From now on we assume that the real number $\beta>1$ is a Pisot unit:

- β is an algebraic unit: it is a root of a minimal polynomial of the form $x^{d}-c_{1} x^{d-1}-\cdots-c_{d}$, with $c_{i} \in \mathbb{Z}$ for all i and $c_{d} \in\{-1,1\}$.
- Denote all the other roots of the polynomial $x^{d}-c_{1} x^{d-1}-\cdots-c_{d}$ by β_{j}, then $\left|\beta_{j}\right|<1$ for all j.

We also assume that $a_{i} \subset \mathbb{Q}(\beta)$ for all $1 \leq i \leq m$. For convenience, we take $a_{i} \subset \mathbb{Z}$.

Pisot β 's

$X=\bigcup_{i=1}^{m} Z_{i}$ where $Z_{i}=\left[b_{i}, c_{i}\right)$ are disjoint intervals and $T x=\beta x-a_{i}$ on Z_{i}.

From now on we assume that the real number $\beta>1$ is a Pisot unit:

- β is an algebraic unit: it is a root of a minimal polynomial of the form $x^{d}-c_{1} x^{d-1}-\cdots-c_{d}$, with $c_{i} \in \mathbb{Z}$ for all i and $c_{d} \in\{-1,1\}$.
- Denote all the other roots of the polynomial $x^{d}-c_{1} x^{d-1}-\cdots-c_{d}$ by β_{j}, then $\left|\beta_{j}\right|<1$ for all j.

We also assume that $a_{i} \subset \mathbb{Q}(\beta)$ for all $1 \leq i \leq m$. For convenience, we take $a_{i} \subset \mathbb{Z}$.

Hyperbolic toral automorphism

Let $\beta>1$ be a Pisot unit with minimal polynomial
$x^{d}-c_{1} x^{d-1}-\cdots-c_{d}, c_{i} \in \mathbb{Z}$ and $c_{d} \in\{-1,1\}$. Consider the companion matrix M :

$$
M=\left(\begin{array}{ccccc}
c_{1} & c_{2} & \cdots & c_{d-1} & c_{d} \\
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & 0
\end{array}\right)
$$

The eigenvalues are β and $\beta_{2}, \ldots, \beta_{d}$, the Galois conjugates of β. Also, $|\operatorname{det} M|=1$, so M is invertible.

Hyperbolic toral automorphism

β is a Pisot unit with minimal polynomial $x^{d}-c_{1} x^{d-1}-\cdots-c_{d}$ and Galois conjugates $\beta_{2}, \ldots, \beta_{d}$.

$$
\left(\begin{array}{ccccc}
c_{1} & c_{2} & \cdots & c_{d-1} & c_{d} \\
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & 0
\end{array}\right)\left(\begin{array}{c}
\beta_{j}^{d-1} \\
\beta_{j}^{d-2} \\
\vdots \\
1
\end{array}\right)
$$

$=\left(\begin{array}{c}c_{1} \beta_{j}^{d-1}+\cdots+c_{d} \\ \beta_{j}^{d-1} \\ \vdots \\ \beta_{j}\end{array}\right)=\left(\begin{array}{c}\beta_{j}^{d} \\ \beta_{j}^{d-1} \\ \vdots \\ \beta_{j}\end{array}\right)=\beta_{j} \mathbf{v}_{j}$.

The natural extension space

We use the eigenvectors of M to define the natural extension space by mapping the admissible sequences into \mathbb{R}^{d}.

Let $w \cdot u=\cdots w_{-1} w_{0} u_{1} u_{2} \cdots \in A^{\mathbb{Z}}$. Define the map
$\psi: A^{\mathbb{Z}} \rightarrow \mathbb{R}^{d}$ by:

Set $\hat{X}=\psi(\mathcal{S})$. This is the natural extension space.

The natural extension

The natural extension space

We use the eigenvectors of M to define the natural extension space by mapping the admissible sequences into \mathbb{R}^{d}.

Let $w \cdot u=\cdots w_{-1} w_{0} u_{1} u_{2} \cdots \in A^{\mathbb{Z}}$. Define the map $\psi: A^{\mathbb{Z}} \rightarrow \mathbb{R}^{d}$ by:

$$
\begin{gathered}
\psi(w \cdot u)=\sum_{n=1}^{\infty} \frac{u_{n}}{\beta^{n}} \mathbf{v}_{1}-\sum_{j=2}^{d} \sum_{n=0}^{\infty} w_{-n} \beta_{j}^{n} \mathbf{v}_{j} . \\
\left(\left|\beta_{j}\right|<1\right)
\end{gathered}
$$

Set $\hat{X}=\psi(\mathcal{S})$. This is the natural extension space.

The natural extension space

We use the eigenvectors of M to define the natural extension space by mapping the admissible sequences into \mathbb{R}^{d}.

Let $w \cdot u=\cdots w_{-1} w_{0} u_{1} u_{2} \cdots \in A^{\mathbb{Z}}$. Define the map $\psi: A^{\mathbb{Z}} \rightarrow \mathbb{R}^{d}$ by:

$$
\begin{gathered}
\psi(w \cdot u)=\sum_{n=1}^{\infty} \frac{u_{n}}{\beta^{n}} \mathbf{v}_{1}-\sum_{j=2}^{d} \sum_{n=0}^{\infty} w_{-n} \beta_{j}^{n} \mathbf{v}_{j} . \\
\left(\left|\beta_{j}\right|<1\right)
\end{gathered}
$$

Set $\hat{X}=\psi(\mathcal{S})$. This is the natural extension space.

The natural extension space

We use the eigenvectors of M to define the natural extension space by mapping the admissible sequences into \mathbb{R}^{d}.

Let $w \cdot u=\cdots w_{-1} w_{0} u_{1} u_{2} \cdots \in A^{\mathbb{Z}}$. Define the map $\psi: A^{\mathbb{Z}} \rightarrow \mathbb{R}^{d}$ by:

$$
\begin{gathered}
\psi(w \cdot u)=\sum_{n=1}^{\infty} \frac{u_{n}}{\beta^{n}} \mathbf{v}_{1}-\sum_{j=2}^{d} \sum_{n=0}^{\infty} w_{-n} \beta_{j}^{n} \mathbf{v}_{j} . \\
(\beta>1) \quad\left(\left|\beta_{j}\right|<1\right)
\end{gathered}
$$

Set $\hat{X}=\psi(\mathcal{S})$. This is the natural extension space.

The natural extension space

We use the eigenvectors of M to define the natural extension space by mapping the admissible sequences into \mathbb{R}^{d}.

Let $w \cdot u=\cdots w_{-1} w_{0} u_{1} u_{2} \cdots \in A^{\mathbb{Z}}$. Define the map $\psi: A^{\mathbb{Z}} \rightarrow \mathbb{R}^{d}$ by:

$$
\psi(w \cdot u)=\sum_{n=1}^{\infty} \frac{u_{n}}{\beta^{n}} \mathbf{v}_{1}-\sum_{j=2}^{d} \sum_{n=0}^{\infty} w_{-n} \beta_{j}^{n} \mathbf{v}_{j}
$$

Set $\hat{X}=\psi(\mathcal{S})$. This is the natural extension space.

The natural extension transformation

For the natural extension transformation $\hat{T}: \hat{X} \rightarrow \hat{X}$ we want:

- \hat{T} is a.e. invertible.
- \hat{T} preserves the dynamics of T.
- \hat{T} is invariant wrt the Lebesgue measure.

Partition $\hat{X}=\bigcup_{i=1}^{m} \hat{Z}_{i}$ with $\hat{Z}_{i}=\left\{\psi(w \cdot u) \mid u_{1}=a_{i}\right\}$. For $\mathbf{x} \in \hat{X}$, write $\mathbf{x}=x \mathbf{v}_{1}-\sum_{j=2}^{d} y_{j} \mathbf{v}_{j}$. If $\mathbf{x} \in \hat{Z}_{i}$, take

The natural extension

The natural extension transformation

For the natural extension transformation $\hat{T}: \hat{X} \rightarrow \hat{X}$ we want:

- \hat{T} is a.e. invertible.
- \hat{T} preserves the dynamics of T.
- \hat{T} is invariant wrt the Lebesgue measure.

$$
\hat{T} \mathbf{x}=\overbrace{\left(\beta x-a_{i}\right)}^{T x} \mathbf{v}_{1}-\sum_{j=2}^{d}\left(\beta_{j} y_{j}+a_{i}\right) \mathbf{v}_{j}
$$

The natural extension transformation

For the natural extension transformation $\hat{T}: \hat{X} \rightarrow \hat{X}$ we want:

- \hat{T} is a.e. invertible.
- \hat{T} preserves the dynamics of T.
- \hat{T} is invariant wrt the Lebesgue measure.

$$
\begin{aligned}
\hat{T} \mathbf{x} & =\overbrace{\left(\beta x-a_{i}\right)}^{T x} \mathbf{v}_{1}-\sum_{j=2}^{d}\left(\beta_{j} y_{j}+a_{i}\right) \mathbf{v}_{j} \\
& =M \mathbf{x}-\sum_{j=1}^{d} a_{i} \mathbf{v}_{j} .
\end{aligned}
$$

An invariant measure for T

The Lebesgue measure λ^{d} on \mathbb{R}^{d} is invariant for \hat{T} (recall $|\operatorname{det} M|=1$).

Let $\pi: \hat{X} \rightarrow X$ be given by $\pi\left(x \mathbf{v}_{1}-\sum_{j=2}^{d} y_{j} \mathbf{v}_{j}\right)=x$.
Define the measure μ on X by $\mu(E)=\left(\lambda^{d} \circ \pi^{-1}\right)(E)$ for each Borel measurable set E.

Then μ is invariant for T.

Purely periodic points

Denote by H the subspace of \mathbb{R}^{d} spanned by the real and imaginary parts of $\mathbf{v}_{2}, \ldots, \mathbf{v}_{\boldsymbol{d}}$.

Let $\Gamma_{j}: \mathbb{Q}(\beta) \rightarrow \mathbb{Q}\left(\beta_{j}\right): \beta \mapsto \beta_{j}$.
Define the function $\Phi: \mathbb{Q}(\beta) \rightarrow H$ by $\Phi(x)=\sum_{j=2}^{d} \Gamma_{j}(x) \mathbf{v}_{j}$.

Theorem

The expansion of x generated by T is purely periodic iff $x \in \mathbb{Q}(\beta)$ and $x \mathbf{v}_{1}+\Phi(x) \in \hat{X}$.
(For $x \mapsto \beta x(\bmod 1)$, Ito and Rao(2005))

An example: the golden mean

Let β be the golden mean, i.e., the real root >1 of $x^{2}-x-1$, and $T x=\beta x(\bmod 1)$. Then $A=\{0,1\}$ and

$$
M=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right), \mathbf{v}_{1}=\binom{\beta}{1}, \mathbf{v}_{2}=\binom{-\frac{1}{\beta}}{1} .
$$

An example: the tribonacci number

Let β be the tribonacci number. Take $A=\{-1,0,1\}$,
$X_{-1}=\left[-\frac{\beta}{\beta+1},-\frac{1}{\beta+1}\right), X_{0}=\left[-\frac{1}{\beta+1}, \frac{1}{\beta+1}\right)$ and $X_{1}=\left[\frac{1}{\beta+1}, \frac{\beta}{\beta+1}\right)$. Then T is a minimal weight transformation.

Symbolic coverings

Let $A=\left\{a_{1}, \ldots, a_{m}\right\} \subset \mathbb{Z}$. Recall the definition of the map $\psi: A^{\mathbb{Z}} \rightarrow \mathbb{R}^{d}$, but consider it on $\mathbb{T}^{d}=\mathbb{R}^{d} / \mathbb{Z}^{d}$:

$$
\begin{aligned}
& \psi(w \cdot u)=\sum_{n=1}^{\infty} \frac{u_{n}}{\beta^{n}} \mathbf{v}_{1}-\sum_{j=2}^{d} \sum_{n=0}^{\infty} w_{-n} \beta_{j}^{n} \mathbf{v}_{j}\left(\bmod \mathbb{Z}^{d}\right) . \\
& A^{\mathbb{Z}} \xrightarrow{\sigma} A^{\mathbb{Z}} \\
& \psi \left\lvert\, \begin{array}{|l}
\psi \\
\mathbb{T}^{d} \xrightarrow{M} \mathbb{T}^{d}
\end{array}\right.
\end{aligned}
$$

Finite-to-one covering

On $A^{\mathbb{Z}}, \psi$ is a very many-to-one map. We would like to say more for $\left.\psi\right|_{\mathcal{S}}$.

Finite-to-one covering map

Rauzy, 1982 For the Pisot number given by the polynomial $x^{3}-x^{2}-x-1$ (tribonacci number), the map is a.e. one-to-one for the β-shift $\overline{\mathcal{S}}$ given by the $\operatorname{map} x \mapsto \beta x(\bmod 1)$.

Kenyon and Vershik, 1998 Algebraic construction of a sofic subshift $V \subset \tilde{A}^{\mathbb{Z}}$ that gives an a.e. finite-to-one covering.

Schmidt, 2000 For every Pisot number β the set $\overline{\mathcal{S}}$, given by the map $x \mapsto \beta x(\bmod 1)$, provides an a.e. finite-to-one map.

Many others ...

Finite-to-one covering

An additional condition

Recall the transformation \tilde{T} :

Finite-to-one covering

For γ_{i}, let n_{i} be the minimal k such that $T^{k} \gamma_{i}=\tilde{T}^{k} \gamma_{i}$ with $n_{i}=\infty$ if this doesn't happen.

An additional condition

Suppose that $A=\left\{a_{1}, \ldots, a_{m}\right\}$. Define the set \mathcal{V} by

$$
\mathcal{V}=\bigcup_{i=0}^{m}\left\{\gamma_{i}\right\} \cup \bigcup_{1 \leq k<n_{i}, \gamma_{i} \in X, i \neq 0}\left\{T^{k} \gamma_{i}, \tilde{T}^{k} \gamma_{i}\right\}
$$

Finite-to-one covering

The extra assumtion we make is that the set \mathcal{V} is finite. This happens in 2 cases.

- If the points γ_{i} have ultimately periodic orbits.
- If the orbits of the points γ_{i} come together after some steps.

An example: periodic endpoints

$$
\mathcal{V}=\bigcup_{i=0}^{m+1}\left\{\gamma_{i}\right\} \cup \bigcup_{1 \leq k<n_{i}, \gamma_{i} \in X, i \neq 0}\left\{T^{k} \gamma_{i}, \tilde{T}^{k} \gamma_{i}\right\}
$$

$$
\begin{aligned}
- & \bigcup_{i=0}^{2}\left\{\gamma_{i}\right\}=\left\{0, \frac{1}{\beta}, 1\right\} . \\
& \left\{\gamma_{i} \in X \mid i \neq 0\right\}=\{1 / \beta\} . \\
& T^{k}\left(\frac{1}{\beta}\right)=0 \text { for all } k \geq 1 \text {. } \\
& \tilde{T}\left(\frac{1}{\beta}\right)=1, \tilde{T}^{2}\left(\frac{1}{\beta}\right)=\beta-1 \text {. } \\
& \tilde{T}^{3}\left(\frac{1}{\beta}\right)=\frac{1}{\beta} .
\end{aligned} \text { So, } n_{1}=\infty \text {, but } \gamma_{1} \text { is } .
$$ periodic for \tilde{T}.

- $\mathcal{V}=\left\{0, \frac{1}{B}, \beta-1,1\right\}$ is a finite set.
- The associated subshift is of finite type here, sofic in general.

Finite-to-one covering

An example: periodic endpoints

$$
\mathcal{V}=\bigcup_{i=0}^{m+1}\left\{\gamma_{i}\right\} \cup \bigcup_{1 \leq k<n_{i}, \gamma_{i} \in X, i \neq 0}\left\{T^{k} \gamma_{i}, \tilde{T}^{k} \gamma_{i}\right\}
$$

$$
\begin{aligned}
& -\bigcup_{i=0}^{2}\left\{\gamma_{i}\right\}=\left\{0, \frac{1}{\beta}, 1\right\} . \\
& -\left\{\gamma_{i} \in X \mid i \neq 0\right\}=\{1 / \beta\} .
\end{aligned}
$$

$$
\tilde{T}\left(\frac{1}{\beta}\right)=1, \tilde{T}^{2}\left(\frac{1}{\beta}\right)=\beta-1,
$$

$$
\tilde{T}^{3}\left(\frac{1}{\beta}\right)=\frac{1}{\beta} \text {. So, } n_{1}=\infty \text {, but } \gamma_{1} \text { is }
$$ periodic for \tilde{T}.

- $\mathcal{V}=\left\{0, \frac{1}{\beta}, \beta-1,1\right\}$ is a finite set.
- The associated subshift is of finite type here, sofic in general.

Finite-to-one covering

An example: periodic endpoints

$$
\mathcal{V}=\bigcup_{i=0}^{m+1}\left\{\gamma_{i}\right\} \cup \bigcup_{1 \leq k<n_{i}, \gamma_{i} \in X, i \neq 0}\left\{T^{k} \gamma_{i}, \tilde{T}^{k} \gamma_{i}\right\}
$$

$$
\begin{aligned}
& \bigcup_{i=0}^{2}\left\{\gamma_{i}\right\}=\left\{0, \frac{1}{\beta}, 1\right\} \\
& \left\{\gamma_{i} \in X \mid i \neq 0\right\}=\{1 / \beta\} \\
& T^{k}\left(\frac{1}{\beta}\right)=0 \text { for all } k \geq 1 \\
& \tilde{T}\left(\frac{1}{\beta}\right)=1, \tilde{T}^{2}\left(\frac{1}{\beta}\right)=\beta-1
\end{aligned}
$$

$$
\tilde{T}^{3}\left(\frac{1}{\beta}\right)=\frac{1}{\beta} \text {. So, } n_{1}=\infty \text {, but } \gamma_{1} \text { is }
$$ periodic for \tilde{T}.

Finite-to-one covering

An example: periodic endpoints

$$
\mathcal{V}=\bigcup_{i=0}^{m+1}\left\{\gamma_{i}\right\} \cup \bigcup_{1 \leq k<n_{i}, \gamma_{i} \in X, i \neq 0}\left\{T^{k} \gamma_{i}, \tilde{T}^{k} \gamma_{i}\right\}
$$

- $\bigcup_{i=0}^{2}\left\{\gamma_{i}\right\}=\left\{0, \frac{1}{\beta}, 1\right\}$.
- $\left\{\gamma_{i} \in X \mid i \neq 0\right\}=\{1 / \beta\}$.
- $T^{k}\left(\frac{1}{\beta}\right)=0$ for all $k \geq 1$. $\tilde{T}\left(\frac{1}{\beta}\right)=1, \tilde{T}^{2}\left(\frac{1}{\beta}\right)=\beta-1$, $\tilde{T}^{3}\left(\frac{1}{\beta}\right)=\frac{1}{\beta}$. So, $n_{1}=\infty$, but γ_{1} is periodic for \tilde{T}.
- $\mathcal{V}=\left\{0, \frac{1}{\beta}, \beta-1,1\right\}$ is a finite set.

Finite-to-one covering

An example: periodic endpoints

$$
\mathcal{V}=\bigcup_{i=0}^{m+1}\left\{\gamma_{i}\right\} \cup \bigcup_{1 \leq k<n_{i}, \gamma_{i} \in X, i \neq 0}\left\{T^{k} \gamma_{i}, \tilde{T}^{k} \gamma_{i}\right\}
$$

- $\bigcup_{i=0}^{2}\left\{\gamma_{i}\right\}=\left\{0, \frac{1}{\beta}, 1\right\}$.
- $\left\{\gamma_{i} \in X \mid i \neq 0\right\}=\{1 / \beta\}$.
- $T^{k}\left(\frac{1}{\beta}\right)=0$ for all $k \geq 1$. $\tilde{T}\left(\frac{1}{\beta}\right)=1, \tilde{T}^{2}\left(\frac{1}{\beta}\right)=\beta-1$, $\tilde{T}^{3}\left(\frac{1}{\beta}\right)=\frac{1}{\beta}$. So, $n_{1}=\infty$, but γ_{1} is periodic for \tilde{T}.
- $\mathcal{V}=\left\{0, \frac{1}{\beta}, \beta-1,1\right\}$ is a finite set.
- The associated subshift is of finite type here, sofic in general.

Finite-to-one covering

An example: meeting endpoints

$$
\mathcal{V}=\bigcup_{i=0}^{m+1}\left\{\gamma_{i}\right\} \cup \bigcup_{1 \leq k<n_{i}, \gamma_{i} \in X, i \neq 0}\left\{T^{k} \gamma_{i}, \tilde{T}^{k} \gamma_{i}\right\}
$$

- The associated subshift is not sofic in general.

Finite-to-one covering

An example: meeting endpoints

$$
\mathcal{V}=\bigcup_{i=0}^{m+1}\left\{\gamma_{i}\right\} \cup \bigcup_{1 \leq k<n_{i}, \gamma_{i} \in X, i \neq 0}\left\{T^{k} \gamma_{i}, \tilde{T}^{k} \gamma_{i}\right\}
$$

$T^{3} \alpha=\tilde{T}^{3} \alpha$. So, $n_{2}=3$. By symmetry also $n_{1}=3$.
is a finite set.

- The associated subshift is not sofic in general.

Finite-to-one covering

An example: meeting endpoints

$$
\mathcal{V}=\bigcup_{i=0}^{m+1}\left\{\gamma_{i}\right\} \cup \bigcup_{1 \leq k<n_{i}, \gamma_{i} \in, i \neq 0}\left\{T^{k} \gamma_{i}, \tilde{T}^{k} \gamma_{i}\right\}
$$

- $\bigcup_{i=0}^{3}\left\{\gamma_{i}\right\}=\{-\beta \alpha,-\alpha, \alpha, \beta \alpha\}$.
- $\left\{\gamma_{i} \in X \mid i \neq 0\right\}=\{\alpha,-\alpha\}$.
- For all $\frac{1}{\beta^{2}}<\alpha<\frac{\beta}{\beta^{2}+1}$,
$T^{3} \alpha=\tilde{T}^{3} \alpha$. So, $n_{2}=3$. By symmetry also $n_{1}=3$.
- $\mathcal{V}= \pm\left\{\beta \alpha, \alpha, \tilde{T}^{2} \alpha, T \alpha, T^{2} \alpha\right\}$ is a finite set.

Finite-to-one covering

An example: meeting endpoints

$$
\mathcal{V}=\bigcup_{i=0}^{m+1}\left\{\gamma_{i}\right\} \cup \bigcup_{1 \leq k<n_{i}, \gamma_{i} \in X, i \neq 0}\left\{T^{k} \gamma_{i}, \tilde{T}^{k} \gamma_{i}\right\}
$$

- $\bigcup_{i=0}^{3}\left\{\gamma_{i}\right\}=\{-\beta \alpha,-\alpha, \alpha, \beta \alpha\}$.
- $\left\{\gamma_{i} \in X \mid i \neq 0\right\}=\{\alpha,-\alpha\}$.
- For all $\frac{1}{\beta^{2}}<\alpha<\frac{\beta}{\beta^{2}+1}$,
$T^{3} \alpha=\tilde{T}^{3} \alpha$. So, $n_{2}=3$. By symmetry also $n_{1}=3$.
- $\mathcal{V}= \pm\left\{\beta \alpha, \alpha, \tilde{T}^{2} \alpha, \boldsymbol{T} \alpha, \boldsymbol{T}^{2} \alpha\right\}$ is a finite set.
- The associated subshift is not sofic in general.

Finite-to-one covering

A finite-to-one mapping

Theorem

If the set \mathcal{V} is finite, then there is a constant $\kappa \geq 1$, such that the $\operatorname{map} \psi: \overline{\mathcal{S}} \rightarrow \mathbb{T}^{d}$ is almost everywhere κ-to-one.

Finite-to-one covering

This includes cases in which \mathcal{S} is not sofic.

If \mathcal{V} is finite, then the density of the invariant measure $\mu=\lambda^{d} \circ \pi^{-1}$ of T is a sum of κ indicator functions.

Purely periodic expansions

Recall the definition of the map $\psi: \mathcal{S} \rightarrow \mathbb{R}^{d}$:

$$
\psi(w \cdot u)=\sum_{n=1}^{\infty} \frac{u_{n}}{\beta^{n}} \mathbf{v}_{1}-\sum_{j=2}^{d} \sum_{n=0}^{\infty} w_{-n} \beta_{j}^{n} \mathbf{v}_{j}
$$

For $x \in X$, we are interested in the set

$$
\left\{\sum_{j=2}^{d} \sum_{n=0}^{\infty} w_{-n} \beta_{j}^{n} \mathbf{v}_{j} \mid \cdots w_{-1} w_{0} \cdot b(x) \in \mathcal{S}\right\} \subset H
$$

Recall that H is the real contracting eigenspace for the matrix M.

Finite-to-one covering

Expansions and tiles

Recall that $\Gamma_{j}: \mathbb{Q}(\beta) \rightarrow \mathbb{Q}\left(\beta_{j}\right): \beta \mapsto \beta_{j}$ and $\Phi: \mathbb{Q}(\beta) \rightarrow H: x \mapsto \sum_{j=2}^{d} \Gamma_{j}(x) \mathbf{v}_{j}$.

Theorem
The origin $\mathbf{0} \in H$ belongs to a set

$$
\Phi(x)+\left\{\sum_{j=2}^{d} \sum_{n=0}^{\infty} w_{-n} \beta_{j}^{n} \mathbf{v}_{j} \mid \cdots w_{-1} w_{0} \cdot b(x) \in \mathcal{S}\right\}
$$

for $x \in \mathbb{Z}[\beta] \cap X$ iff the expansion of x that is generated by T is purely periodic.
(For $x \mapsto \beta x(\bmod 1)$, Akiyama 1999 and Praggastis 1999)

Finite-to-one covering

One-to-one covering?

For certain specific cases it is known that the map $\psi: \overline{\mathcal{S}} \rightarrow \mathbb{T}^{d}$ is a.e. one-to-one for the map $x \mapsto \beta \times(\bmod 1)$.

Pisot conjecture
(Schmidt 2000, Akiyama 2002 and Sidorov 2003)
If β is a Pisot number and $T_{x}=\beta x(\bmod 1)$, then
$\psi: \overline{\mathcal{S}} \rightarrow \mathbb{T}^{d}$ is almost everywhere one-to-one.

An example: the golden mean)

Let β be the golden mean and $T_{x}=\beta x(\bmod 1)$.

An example: the Rauzy tiling (Rauzy, 1982)

Let β be the tribonacci number and $T x=\beta x(\bmod 1)$.

Two-to-one covering

An example: the Rauzy tiling (Rauzy, 1982)

Two-to-one covering

A two-to-one map: the tribonacci number

Let β be the tribonacci number. Take $A=\{-1,0,1\}$, $X_{-1}=\left[-\frac{1}{2},-\frac{1}{2 \beta}\right), X_{0}=\left[-\frac{1}{2 \beta}, \frac{1}{2 \beta}\right)$ and $X_{1}=\left[\frac{1}{2 \beta}, \frac{1}{2}\right)$.

A double tiling: the tribonacci number

Two-to-one covering

A double tiling: the tribonacci number

The map ψ is a.e. two-to-one if there is a ball in \mathbb{R}^{d}, such that for each \mathbf{y} in this ball we have

$$
\mathbf{y}=\mathbf{x}+\psi(w \cdot u)=\mathbf{x}^{\prime}+\psi\left(w^{\prime}, u^{\prime}\right)
$$

for two different copies of $\psi(\overline{\mathcal{S}})$.
We fixed specific $\mathbf{x}, \mathbf{x}^{\prime}, u$ and u^{\prime} and transformed each w into a 'good' w '.

Two-to-one covering

A double tiling: the tribonacci number

The transducer that transforms a sequence w into w^{\prime} :

Two-to-one covering

[^0]: In the limit $x=\sum_{k=1}^{\infty} \frac{b_{k}}{\beta^{k}}$.

