# Periodic Points and Entropy 

## Doug Lind

(Joint work with Klaus Schmidt and Evgeny Verbitzkiy)

## Periodic Points: Definitions and results

- Let $\alpha$ be an action of $\mathbb{Z}^{d}$ by automorphisms of a compact abelian group $X$
- For every finite-index subgroup $\Gamma$ of $\mathbb{Z}^{d}$ define $\operatorname{Fix}_{\Gamma}(\alpha)$ to be the subgroup of points in $X$ fixed by every element of $\Gamma$
- Let $\langle\Gamma\rangle$ be the norm of the smallest nonzero element of $\Gamma$
- $\operatorname{Fix}_{\Gamma}^{0}(\alpha)$ is the connected component of the identity in $\operatorname{Fix}_{\Gamma}(\alpha)$
- Count the number of connected components $P_{\Gamma}(\alpha)$ of $\operatorname{Fix}_{\Gamma}(\alpha)$ by $\left|\operatorname{Fix}_{\Gamma}(\alpha) / \operatorname{Fix}_{\Gamma}^{0}(\alpha)\right|$
- Define $p^{-}(\alpha)=\liminf \left\langle\langle \rangle \rightarrow \infty \frac{1}{\left|\mathbb{Z}^{d} / \Gamma\right|} \log P_{\Gamma}(\alpha)\right.$ and $\left.p^{+}(\alpha)=\limsup _{\langle\Gamma\rangle \rightarrow \infty} \frac{1}{\left|\mathbb{Z}^{d} / \Gamma\right|}\right| \log P_{\Gamma}(\alpha)$
- Let $B(\varepsilon)$ be the ball of radius $\varepsilon$ in $X$ and $\mu$ be Haar measure on $X$
- Define the entropy $h(\alpha)=\lim _{\varepsilon \rightarrow 0} \lim \sup _{n \rightarrow \infty}-\frac{1}{n} \log \mu\left(\bigcap_{i=1}^{n} \alpha^{-i}(B(\varepsilon))\right)$
- Assume that $h(\alpha)<\infty$, that the dual group of $X$ is finitely generated under the automorphism dual to $\alpha$
- Obviously $p^{-}(\alpha) \leq p^{+}(\alpha) \leq h(\alpha)$
- Fact: Under our assumptions, $p^{+}(\alpha)=h(\alpha)$ [L-Schmidt, 1996]
- For toral automorphisms the equality of $p^{-}(\alpha)$ and $p^{+}(\alpha)$ is equivalent to a deep theorem of Gelfond
- We can use homoclinic points to provide an "easy" proof of a slightly weaker version of Gelfond's result

> Who can possibly understand a slide like this?
\begin\{curmudgeon \} }

## Beamer is destroying Math Talks!!



## \end \{ curmudgeon \} 

}
## Classic Example

$$
\alpha=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right) \quad \text { on } \quad X=\mathbb{T}^{2}, \quad \mathbb{T}=\mathbb{R} / \mathbb{Z}
$$

$$
\begin{aligned}
P_{n \mathbb{Z}}(\alpha) & =\left\{t \in \mathbb{T}^{2}: \alpha^{k}(t)=t \text { for all } k \in n \mathbb{Z}\right\} \\
& =\left\{t \in \mathbb{T}^{2}: \alpha^{n}(t)=t\right\} \\
& =\operatorname{ker}\left(\alpha^{n}-I\right)
\end{aligned}
$$

$$
p(\alpha)=\lim _{n \rightarrow \infty} \frac{1}{\mathbb{Z} / n \mathbb{Z} \mid} \log \left|P_{n \mathbb{Z}}(\alpha)\right|
$$

$$
\operatorname{ker}\left(\alpha^{n}-I\right)=P_{n \mathbb{Z}}(\alpha)
$$



$$
\left|P_{n \mathbb{Z}}(\alpha)\right|=\text { area }=\left|\operatorname{det}\left(\alpha^{n}-I\right)\right|
$$

$\alpha$ has eigenvalues $\lambda=\frac{1+\sqrt{5}}{2}$ and $\mu=\frac{1-\sqrt{5}}{2} \quad \operatorname{det}\left(\alpha^{n}-I\right)=\left(\lambda^{n}-1\right)\left(\mu^{n}-1\right)$

$$
\frac{1}{n} \log \left|P_{n \mathbb{Z}}(\alpha)\right|=\frac{1}{n} \log \left|\lambda^{n}-1\right|+\frac{1}{n} \log \left|\mu^{n}-1\right| \rightarrow \log \lambda
$$



## Growth rate of periodic points equals entropy

## Caution:

## This doesn't work smoothly

Theorem (Kaloshin, Ph.D. 2001): For any $2 \leq r<\infty$ there is an open set $U \subset \operatorname{Diff}^{r}(M)$ such that for "generic" $f \in U$ the periodic point growth for $f$ is superexponential. Here "generic" means residual.

## What could possibly go wrong?

## Too many periodic points

$$
\alpha=I
$$

## Solution: Count connected components

$$
\left|P_{n \mathbb{Z}}(\alpha) / P_{n \mathbb{Z}}^{0}(\alpha)\right|
$$

$\operatorname{dim} P_{n \mathbb{Z}}^{0}(\alpha)=\#$ of $n$th roots of unity that are eigenvalues of $\alpha$

Not enough periodic points

$$
\begin{array}{cc}
X=\hat{\mathbb{Q}} & \hat{X}=\mathbb{Q} \\
\alpha=\left(\times \frac{3}{2}\right) \wedge & \hat{\alpha}=\times \frac{3}{2} \\
P_{n \mathbb{Z}}(\alpha) \subset X & \mathbb{Q} /\left(\left(\frac{3}{2}\right)^{n}-1\right) \mathbb{Q}=\{0\}
\end{array}
$$

No nonzero periodic points!

$$
p(\alpha)=0 \quad h(\alpha)=\log 3
$$

Solution: require dual group to be finitely generated under the dual automorphism

## Not quite enough periodic points

$$
\begin{array}{cc}
X=\mathbb{Z}[\widehat{1} / 3] & \hat{X}=\mathbb{Z}[1 / 3] \\
\alpha=(\times 2)^{\wedge} & \hat{\alpha}=\times 2 \\
P_{n \mathbb{Z}}(\alpha) \subset X & \mathbb{Z}[1 / 3] /\left(2^{n}-1\right) \mathbb{Z}[1 / 3]
\end{array}
$$

Need to know the 3 -divisibility of $2^{n}-1$
To compute this we invoke the following powerful theorem from number theory:

$$
2=3-1
$$

Then $\left|2^{n}-1\right|_{3}=1$ if $n$ is odd, and $\frac{1}{3}|n|_{3}$ if $n$ is even
This is small compared with $2^{n}$ and so $p(\alpha)=h(\alpha)=\log 2$

## Infinite entropy

$$
\begin{gathered}
\alpha=\text { shift on } \mathbb{T}^{\mathbb{Z}} \\
p(\alpha)=0 \quad h(\alpha)=\infty
\end{gathered}
$$

Solution: require finite entropy

## Diophantine Problems

$$
\begin{gathered}
f(x)=x^{2}-x-1=(x-\lambda)(x-\mu)=\text { char poly of } \alpha \\
\left(\lambda^{n}-1\right)\left(\mu^{n}-1\right)=\prod_{\omega^{n}=1}(\lambda-\omega)(\mu-\omega)=\prod_{\omega^{n}=1}(\omega-\lambda)(\omega-\mu)=\prod_{\omega^{n}=1} f(\omega) \\
\frac{1}{n} \log \left|\left(\lambda^{n}-1\right)\left(\mu^{n}-1\right)\right|=\frac{1}{n} \sum_{\omega^{n}=1} \log |f(\omega)| \stackrel{\text { R.S. }}{\approx} \int_{\mathbb{S}} \log |f|=\text { Mahler measure of } f
\end{gathered}
$$

where $\mathbb{S}=$ unit circle in $\mathbb{C}=e^{2 \pi i \mathbb{T}}$


This works great because $f\left(e^{2 \pi i s}\right)$ never vanishes

## But what if it does?

$$
g(x)=x^{4}-x^{3}-2 x^{2}-x+1
$$




Do the Riemann sums for $\log |g|$ converge to $\int_{\mathbb{S}} \log |g|$ ?

Let $\xi \in \mathbb{S}$ be a root of $g$.
If $\omega$ is an $n$th root of unity, can $|\xi-\omega|$ be incredibly small?

Quantitatively, convergence of the Riemann sums is exactly equivalent to:
For every $\varepsilon>0$ the inequality

$$
\left|\xi^{n}-1\right|<e^{-\varepsilon n}
$$

has only finitely many solutions

$$
\text { Simple to prove: }\left|\xi^{n}-1\right| \geq e^{-(h / 2) n}
$$

$$
\text { Use: } \prod_{g(\lambda)=0}\left(\lambda^{n}-1\right) \in \mathbb{Z} \backslash\{0\}
$$



Gelfond (1932): If $\xi \in \mathbb{S}$ is an algebraic number and $\varepsilon>0$, then

$$
\left|\xi^{n}-1\right|<e^{-\varepsilon n}
$$

has only finitely many solutions in $n$.

This is deep, one part of a much larger set of results that proves, for example, that $2^{\sqrt{2}}$ is transcendental

Theorem (L-Schmidt): Let $\alpha$ be an automorphism of a compact abelian group $X$, and make the necessary assumptions we discussed (finite entropy, finite generation). Then the limit growth rate of the periodic components exists and equals entropy.

## The automorphism machine

$f(x) \in \mathbb{Z}\left[x^{ \pm 1}\right] \longrightarrow \alpha_{f}$ an automorphism of a compact abelian group $X_{f}$

$$
\begin{aligned}
& f(x)=x^{2}-x-1 \longrightarrow X_{f}=\left\{t \in \mathbb{T}^{\mathbb{Z}}: t_{n+2}-t_{n+1}-t_{n}=0 \text { for all } n\right\} \\
& \alpha_{f}=\text { left shift }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{ccc}
\nsupseteq \\
\mathbb{T}^{2} & \ni & \downarrow \\
{\left[\begin{array}{l}
t_{0} \\
t_{1}
\end{array}\right]}
\end{array} \xrightarrow{\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right]}\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
t_{0} \\
t_{1}
\end{array}\right] \stackrel{\downarrow}{=}\left[\begin{array}{l}
t_{1} \\
t_{2}
\end{array}\right] \\
& f^{*}(x)=f\left(x^{-1}\right)=x^{-2}-x^{-1}-1 \\
& t=\left(t_{n}\right) \in \mathbb{T}^{\mathbb{Z}} \leftrightarrow \sum_{-\infty}^{\infty} t_{n} x^{n} \\
& t \in X_{f} \quad \text { iff } \quad t * f^{*}(x)=0
\end{aligned}
$$

## The automorphism machine (two-variable version)

$$
\begin{gathered}
f(x, y) \in \mathbb{Z}\left[x^{ \pm 1}, y^{ \pm 1}\right] \longrightarrow \mathbb{Z}^{2} \text {-action } \alpha_{f} \text { on a compact abelian group } X_{f} \\
\mathbb{T}^{\mathbb{Z}^{2}} \supset X_{f}=\left\{t=\sum t_{m, n} x^{m} y^{n}: t * f *(x, y)=0\right\} \quad \alpha_{f}=\langle\text { left shift, down shift }\rangle \\
f(x, y)=1+x+y
\end{gathered}
$$

## Periodic points

$$
\begin{gathered}
\Gamma: \text { finite-index subgroup of } \mathbb{Z}^{2} \quad\langle\Gamma\rangle=\min \{\|\mathbf{n}\|: \mathbf{n} \in \Gamma \backslash\{\boldsymbol{0}\}\} \\
P_{\Gamma}\left(\alpha_{f}\right):=\left\{t \in X_{f}: \alpha_{f}^{\mathbf{n}}(t)=t \text { for all } \mathbf{n} \in \Gamma\right\}
\end{gathered}
$$

## Main Goal

$$
\lim _{\langle\Gamma\rangle \rightarrow \infty} \frac{1}{\left|\mathbb{Z}^{2} / \Gamma\right|} \log \left|P_{\Gamma}\left(\alpha_{f}\right) / P_{\Gamma}^{0}\left(\alpha_{f}\right)\right|=h\left(\alpha_{f}\right)
$$

## Connection to Riemann sums

$\Gamma \longleftrightarrow \Omega_{\Gamma}=\left(\mathbb{Z}^{2} / \Gamma\right)^{\wedge} \subset \mathbb{S}^{2}$, the " $\Gamma^{\text {h }}$ roots of unity"
$N \mathbb{Z} \oplus N \mathbb{Z}$

$\Omega_{N \mathbb{Z} \oplus N \mathbb{Z}}$

$$
\begin{gathered}
\frac{1}{\left|\mathbb{Z}^{2} / \Gamma\right|} \log \left|P_{\Gamma}\left(\alpha_{f}\right) / P_{\Gamma}^{0}\left(\alpha_{f}\right)\right|=\frac{1}{\left|\Omega_{\Gamma}\right|} \sum_{\omega \in \Omega_{\Gamma}} \log _{0}|f(\omega)| \\
\stackrel{\text { R.S. }}{\approx} \int_{\mathbb{S}^{2}} \log |f|=h\left(\alpha_{f}\right) \\
\log _{0} t= \begin{cases}\log t & \text { if } t>0 \\
0 & \text { if } t=0\end{cases}
\end{gathered}
$$

$$
U(f)=\text { unitary variety of } f=\left\{(\xi, \eta) \in \mathbb{S}^{2}: f(\xi, \eta)=0\right\}
$$

If $U(f)=\varnothing$, then $\log |f|$ is continuous on $\mathbb{S}^{2}$, and everything is hunky-dorey

$$
U(f)=\varnothing \Leftrightarrow \alpha_{f} \text { is expansive }
$$

## $U(f) \neq \varnothing ? ? ?$

$$
\begin{gathered}
f(x, y)=2-x-y \quad U(f)=\{(1,1)\} \\
f(x, y)=1+x+y \quad U(f)=\left\{\left(\omega, \omega^{2}\right),\left(\omega^{2}, \omega\right)\right\} \quad \omega=e^{2 \pi i / 3} \\
f(x, y)=2-x^{2}+y-x y \quad U(f)=\{(\xi, \eta),(\bar{\xi}, \bar{\eta})\} \\
\xi=\frac{1-\sqrt{57}}{8}+i\left(\frac{3+\sqrt{57}}{32}\right)^{1 / 2} \\
\eta=\frac{-1}{56+8 \sqrt{57}}[34+6 \sqrt{57}+i(11 \sqrt{6+2 \sqrt{57}}+\sqrt{342+114 \sqrt{57}})]
\end{gathered}
$$

$$
f(x, y)=3-x-x^{-1}-y-y^{-1}
$$



## Two views of $\log |f|$



Do the Riemann sums over finite subgroups
converge to the integral?

## Homoclinic points

$t=\left(t_{\mathbf{n}}\right) \in X_{f}$ is homoclinic for $\alpha_{f}$ if $t_{\mathbf{n}} \rightarrow 0$ as $\|\mathbf{n}\| \rightarrow \infty$ $t=\left(t_{\mathbf{n}}\right) \in X_{f}$ is a summable homoclinic point if $\sum_{\mathbf{n}}\left|t_{\mathbf{n}}\right|<\infty$


If $\left(z_{\mathrm{n}}\right)$ is any bounded $\Gamma$-periodic array of integers
then $\sum_{\mathbf{n}} z_{\mathbf{n}} \alpha_{f}^{\mathbf{n}}(t)$ is a well-defined $\Gamma$-periodic point in $X_{f}$

## Where do homoclinic points come from?

$$
\begin{gathered}
w \in \ell^{\infty}\left(\mathbb{Z}^{2}, \mathbb{R}\right) \longrightarrow w * f^{*} \in \ell^{\infty}\left(\mathbb{Z}^{2}, \mathbb{Z}\right) \\
t \in X_{f} \subset \mathbb{T}^{\mathbb{Z}^{2}} \longrightarrow t * f^{*}=0 \\
w * f^{*}=\delta_{0} \\
\hat{w} \cdot \widehat{f^{*}}=1 \\
\hat{w}=\frac{1}{\widehat{f^{*}}} \\
w=\left(\frac{1}{\widehat{f^{*}}}\right)^{2}
\end{gathered}
$$

So the coordinates of $w$ are just the Fourier coefficients of $1 / \widehat{f^{*}}$

$$
\begin{aligned}
& f(x, y)=2-x-y \quad f *(x, y)=2-x^{-1}-y^{-1} \\
& \frac{1}{\widehat{f^{*}}}=\frac{1}{2-e^{-2 \pi i u}-e^{-2 \pi i v}}=\frac{1}{2}\left(\frac{1}{1-\frac{1}{2}\left(e^{-2 \pi i u}+e^{-2 \pi i v}\right)}\right)=\sum_{n=0}^{\infty} 2^{-n-1}\left(e^{-2 \pi i u}+e^{-2 \pi i v}\right)^{n} \\
& \begin{array}{llllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array} \\
& \frac{1}{32} \quad \frac{1}{16} \quad \frac{1}{8} \quad \frac{1}{4} \quad \frac{1}{2} \quad 0 \quad 0 \quad 0 \\
& \begin{array}{lllllll}
\frac{4}{32} & \frac{3}{16} & 2 & \frac{1}{4} & 0 & 0 & 0
\end{array} \\
& \begin{array}{llllll}
32 & \frac{3}{16} & \frac{1}{8} & 0 & 0 & 0 \\
\frac{4}{32} & \frac{1}{16} & 0 & 0 & 0
\end{array} \\
& \begin{array}{llllll}
32 & \frac{3}{16} & \frac{1}{8} & 0 & 0 & 0 \\
\frac{4}{32} & \frac{1}{16} & 0 & 0 & 0
\end{array} \\
& \frac{1}{2^{2 n+1}}\binom{2 n}{n} \approx \frac{c}{\sqrt{n}} \quad \frac{1}{32} \quad 0 \quad 0 \quad 0 \\
& \begin{array}{cc}
\hline-1 & \\
2 & -1 \\
\hline
\end{array}
\end{aligned}
$$

Create a summable homoclinic point by killing off the singularity of $1 / f(x, y)$

$$
\frac{(x-1)^{3}}{2-x-y}
$$

has absolutely convergent
Fourier series


This idea handles the case $U(f)=\left\{\left(\xi_{j}, \eta_{j}\right): 1 \leq j \leq r\right\}$ is finite:
For each $\xi_{j}$ find $g_{j}(x) \in \mathbb{Z}[x]$ with $g_{j}\left(\xi_{j}\right)=0$, and then $\frac{g_{1}(x)^{N_{1}} \cdots g_{r}(x)^{N_{r}}}{f(x, y)}$
will be smooth enough to have summable Fourier coefficients if $N_{1}, \ldots, N_{r}$ are big enough
However, this requires that each $\xi_{j}$ is an algebraic number. Is it??

## Logic to the rescue!

$$
\text { Algebraic set in } \mathbb{R}^{n}:\left\{\begin{array}{c}
f_{1}\left(x_{1}, \ldots, x_{n}\right)=0 \\
\vdots \\
f_{r}\left(x_{1}, \ldots, x_{n}\right)=0
\end{array}\right.
$$

Semialgebraic set in $\mathbb{R}^{n}:\left\{\begin{array}{c}f_{1}\left(x_{1}, \ldots, x_{n}\right) \triangleright_{1} 0 \\ \vdots \\ f_{r}\left(x_{1}, \ldots, x_{n}\right) \triangleright_{r} 0\end{array}\right.$
where each $\triangleright_{j}$ is either $=,<,>, \leq$, or $\geq$

What happens to such sets under projections to $\mathbb{R}^{k}$ ?
projection(algebraic) $\neq$ algebraic:


$$
\left\{(x, y): x^{2}+y^{2}-1=0\right\}
$$



$$
\begin{aligned}
& \left\{x: \exists y, x^{2}+y^{2}-1=0\right\} \\
& =\{x: x-1 \leq 0 \text { and } x+1 \geq 0\}
\end{aligned}
$$

Tarski-Seidenberg: Projection(semialgebraic) $=$ semialgebraic

Also, if $A$ is semialgbraic using polynomials with rational coefficients (or $A$ is definable over $\mathbb{Q}$ ), then so is its projection.

## Quadratic formula

$$
\begin{gathered}
a x^{2}+b x+c \in \mathbb{R}[a, b, c, x] \\
V=\left\{(a, b, c, x): a x^{2}+b x+c=0\right\} \subset \mathbb{R}^{4} \\
\operatorname{proj}_{a, b, c}(V)=\left\{(a, b, c): \exists x \in \mathbb{R}, a x^{2}+b x+c=0\right\}
\end{gathered}
$$

$\left(a \neq 0\right.$ and $\left.b^{2}-4 a c \geq 0\right)$ or $(a=0$ and $b \neq 0)$ or $(a=0$ and $b=0$ and $c=0)$


Mathematica does quantifier elimination with Reduce
$\ln [14]=$ Reduce $\left[a x^{2}+b x+c=0, x\right.$, Reals] // TraditionalForm
2ut[14y/TraditionalForm=

$$
\begin{aligned}
& \left(c<0 \bigwedge\left(\left(b<0 \bigwedge \bigwedge\left(\left\{a=\frac{b^{2}}{4 c} \bigwedge x=-\frac{1}{2} \sqrt{\frac{b^{2}-4 a c}{a^{2}}}-\frac{b}{2 a}\right) \bigvee\left(\frac{b^{2}}{4 c}<a<0 \bigwedge\left(x=-\frac{1}{2} \sqrt{\frac{b^{2}-4 a c}{a^{2}}}-\frac{b}{2 a} \bigvee x=\frac{1}{2} \sqrt{\frac{b^{2}-4 a c}{a^{2}}}-\frac{b}{2 a}\right)\right) \bigvee\right.\right.\right.\right. \\
& \left.\left.\left(a=0 \bigwedge x=-\frac{c}{b}\right) \bigvee\left(a>0 \bigwedge\left(x=-\frac{1}{2} \sqrt{\frac{b^{2}-4 a c}{a^{2}}}-\frac{b}{2 a} \bigvee x=\frac{1}{2} \sqrt{\frac{b^{2}-4 a c}{a^{2}}}-\frac{b}{2 a}\right)\right)\right)\right) \bigvee\left(b=0 \bigwedge a>0 \bigwedge\left(x=-\sqrt{-\frac{c}{a}} \bigvee x=\sqrt{-\frac{c}{a}}\right)\right) \bigvee \\
& \left(b>0 \bigwedge\left(\left(a=\frac{b^{2}}{4 c} \bigwedge x=-\frac{1}{2} \sqrt{\frac{b^{2}-4 a c}{a^{2}}}-\frac{b}{2 a}\right) \bigvee\left(\frac{b^{2}}{4 c}<a<0 \bigwedge\left(x=-\frac{1}{2} \sqrt{\frac{b^{2}-4 a c}{a^{2}}}-\frac{b}{2 a} \bigvee x=\frac{1}{2} \sqrt{\frac{b^{2}-4 a c}{a^{2}}}-\frac{b}{2 a}\right)\right) \bigvee\right.\right. \\
& \left.\left.\left.\left.\left(a=0 \bigwedge x=-\frac{c}{b}\right) \bigvee\left(a>0 \bigwedge\left(x=-\frac{1}{2} \sqrt{\frac{b^{2}-4 a c}{a^{2}}}-\frac{b}{2 a} \bigvee x=\frac{1}{2} \sqrt{\frac{b^{2}-4 a c}{a^{2}}}-\frac{b}{2 a}\right)\right)\right)\right)\right)\right) \ \ \\
& \left(c=0 \bigwedge\left(\left(b<0 \bigwedge \bigwedge\left(a<0 \bigwedge\left(x=-\frac{1}{2} \sqrt{\frac{b^{2}}{a^{2}}}-\frac{b}{2 a} \bigvee x=\frac{1}{2} \sqrt{\frac{b^{2}}{a^{2}}}-\frac{b}{2 a}\right)\right) \bigvee(a=0 \wedge x=0) \bigvee\left(a>0 \bigwedge\left(x=-\frac{1}{2} \sqrt{\frac{b^{2}}{a^{2}}}-\frac{b}{2 a} \bigvee x=\frac{1}{2} \sqrt{\frac{b^{2}}{a^{2}}}-\frac{b}{2 a}\right)\right)\right)\right) \\
right. \\
& (b=0 \wedge((a<0 \wedge x=0) \bigvee a=0 \bigvee(a>0 \wedge x=0))) \bigvee \\
& \left.\left.\left.\left(b>0 \wedge\left(\left(a<0 \bigwedge\left(x=-\frac{1}{2} \sqrt{\frac{b^{2}}{a^{2}}}-\frac{b}{2 a} \bigvee x=\frac{1}{2} \sqrt{\frac{b^{2}}{a^{2}}}-\frac{b}{2 a}\right)\right) \bigvee(a=0 \wedge x=0) \bigvee\left(a>0 \bigwedge\left(x=-\frac{1}{2} \sqrt{\frac{b^{2}}{a^{2}}}-\frac{b}{2 a} \bigvee x=\frac{1}{2} \sqrt{\frac{b^{2}}{a^{2}}}-\frac{b}{2 a}\right)\right)\right)\right)\right)\right)\right) \ \ \\
& \left(c>0 \bigwedge\left(\int b<0 \bigwedge\left(\int a<0 \bigwedge\left(x=-\frac{1}{2} \sqrt{\frac{b^{2}-4 a c}{a^{2}}}-\frac{b}{2 a} \bigvee x=\frac{1}{2} \sqrt{\frac{b^{2}-4 a c}{a^{2}}}-\frac{b}{2 a}\right)\right) \bigvee\left(a=0 \bigwedge x=-\frac{c}{b}\right) \bigvee\right.\right. \\
& \left.\left.\left(0<a<\frac{b^{2}}{4 c} \bigwedge\left(x=-\frac{1}{2} \sqrt{\frac{b^{2}-4 a c}{a^{2}}}-\frac{b}{2 a} \bigvee x=\frac{1}{2} \sqrt{\frac{b^{2}-4 a c}{a^{2}}}-\frac{b}{2 a}\right)\right) \bigvee\left(a=\frac{b^{2}}{4 c} \bigwedge x=-\frac{1}{2} \sqrt{\frac{b^{2}-4 a c}{a^{2}}}-\frac{b}{2 a}\right)\right)\right) \bigvee \\
& \left(b=0 \bigwedge a<0 \bigwedge\left(x=-\sqrt{-\frac{c}{a}} \bigvee x=\sqrt{-\frac{c}{a}}\right)\right) \bigvee\left(b>0 \bigwedge\left(\left(a<0 \bigwedge\left(x=-\frac{1}{2} \sqrt{\frac{b^{2}-4 a c}{a^{2}}}-\frac{b}{2 a} \bigvee x=\frac{1}{2} \sqrt{\frac{b^{2}-4 a c}{a^{2}}}-\frac{b}{2 a}\right)\right) \bigvee\left(a=0 \bigwedge x=-\frac{c}{b}\right) \bigvee\right.\right. \\
& \left.\left.\left.\left.\left(0<a<\frac{b^{2}}{4 c} \Lambda\left(x=-\frac{1}{2} \sqrt{\frac{b^{2}-4 a c}{a^{2}}}-\frac{b}{2 a} \bigvee x=\frac{1}{2} \sqrt{\frac{b^{2}-4 a c}{a^{2}}}-\frac{b}{2 a}\right)\right) \bigvee\left(a=\frac{b^{2}}{4 c} \bigwedge x=-\frac{1}{2} \sqrt{\frac{b^{2}-4 a c}{a^{2}}}-\frac{b}{2 a}\right)\right)\right)\right)\right)
\end{aligned}
$$

## How does this help us?

$$
\left\{\begin{array}{l}
x_{1}^{2}+y_{1}^{2}-1=0 \\
x_{2}^{2}+y_{2}^{2}-1=0 \\
\operatorname{Re} f\left(x_{1}+i y_{1}, x_{2}+i y_{2}\right)=0 \\
\operatorname{Im} f\left(x_{1}+i y_{1}, x_{2}+i y_{2}\right)=0
\end{array} \quad \text { over } \mathbb{Q}\left[x_{1}, y_{1}, x_{2}, y_{2}\right]\right.
$$

$$
\begin{aligned}
\text { Tarski-Seidenberg } & \Rightarrow x_{j}, y_{j} \text { are definable over } \mathbb{Q} \\
& \Rightarrow x_{j}, y_{j} \text { are algebraic numbers } \\
& \Rightarrow x_{j}+i y_{j} \in \mathbb{S} \text { is algebraic }
\end{aligned}
$$

and we're back in business

What if $U(f)$ is infinite? Can we find a $g$, not a multiple of $f$, with $U(g)=U(f)$ ? If so, then $\frac{g^{N}}{f}$ will be smooth enough for big $N$ to give summable homoclinic points, and we would be back in business.

$$
\begin{aligned}
& f(x, y, z)=2+x+y+z \\
& g(x, y, z)=f^{*}(x, y, z)=2+x^{-1}+y^{-1}+z^{-1} \\
& \text { on } \mathbb{S}^{3}, \bar{f}=f^{*} \text {, and so } U(g)=U\left(f^{*}\right)=U(f)
\end{aligned}
$$



But what about
$f(x, y)=3-x-x^{-1}-y-y^{-1} ?$


Let $f\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{Z}\left[x_{1}^{ \pm 1}, \ldots, x_{d}^{ \pm 1}\right]$. Then there is a $g$, not a multiple of $f$, with $U(g)=U(f)$ if and only if $\operatorname{dim} U(f) \leq d-2$. In this case we're in business.

Another way to say this is that $U(f)$ is Zariski dense in its complex variety iff $\operatorname{dim} U(f)=d-1$.
This is essentially proved in a recent paper on several complex variables for use in interpolation. Tom Scanlon at Berkeley has shown us how to prove this using Tarski-Seidenberg using the cell decomposition of semialgebraic sets.

But : we're completely out of luck when $\operatorname{dim} U(f)=d-1$, and actually have very little idea how to handle it!


Can there be infinitely many unit roots in $U(f)$ ?

Yes! Let $f(x, y, z)=1+x+y+z$ :

But then a wonderful theorem comes to our rescue:
Theorem : If $U(f)$ contains infinitely many roots of unity, then they must all lie on the union of finitely many cosets of rational subtori.

## Tom Scanlon's survey Counting Special Points: Logic, Diophantine Geometry and Transcendence Theory

## Giving back to diophantine analysis

$$
\begin{gathered}
\xi \in \mathbb{S} \text { algebraic, } g(\xi)=0 \text { for some } g(x) \in \mathbb{Z}[x] \\
f(x, y)=g(x) g *(x)+g(y) g *(y)=|g(x)|^{2}+|g(y)|^{2} \text { for }(x, y) \in \mathbb{S}^{2}
\end{gathered}
$$

Then $(\xi, \xi)$ is an isolated point of $U(f)$, and can use $\frac{g(x)^{N}}{f(x, y)}$ to prove the Riemann sums for $\log |f|$ converge as $\langle\Gamma\rangle \rightarrow \infty$. Using a particular sequence of lattices, get:

Theorem: Let $\phi(n) \rightarrow \infty$ (think $\phi(n)=\log \log \log \log \log \log \log \log \log n)$.
Given an algebraic number $\xi \in \mathbb{S}$ and $\varepsilon>0$, the inequality

$$
\left|\xi^{n}-1\right|<e^{-\varepsilon n \phi(n)}
$$

has only finitely many solutions in $n$.

When $U(f)$ is has codimension $\geq 2$, we get diophantine results about how close torsion points can be to $U(f)$ using homoclinic points.

## Open Questions

- Does specification hold when $\operatorname{dim} U(f)=d-1$ ?
(Known when $d=1$ or and when $\operatorname{dim} U(f) \leq d-2$ )
- If $h\left(\alpha_{f}\right)>0$, do the Haar measures on the periodic sets $P_{\Gamma}\left(\alpha_{f}\right)$ converge exponentially fast to Haar measure on $X_{f}$ ?
- If $h\left(\alpha_{f}\right)>0$, does $\alpha_{f}$ mix sufficiently "smooth" functions exponentially fast?
- Does the geometry of $U(f)$ have dynamical significance?

