#### Rational weak mixing in infinite measure spaces

Jon. Aaronson (TAU)

ETDS Workshop, Warwick

July 2011

Preprint link: http://arxiv.org/abs/1105.3541

 $T = R \circ B : X = \mathbb{R}_+ \times [0,1] \equiv [0,1]^2 \times \mathbb{Z}_+ \to X$  where B is the Baker's transformation on each box  $[0,1]^2 \times \{n\}$  and R is



 $T = R \circ B : X = \mathbb{R}_+ \times [0,1] \equiv [0,1]^2 \times \mathbb{Z}_+ \to X$  where B is the Baker's transformation on each box  $[0,1]^2 \times \{n\}$  and R is



T preserves Lebesgue measure m & is ratio mixing:

$$\sqrt{\frac{\pi n}{2}} m(A \cap T^{-n}B) \xrightarrow[n \to \infty]{} m(A)m(B)$$

$$\forall A, B \text{ bounded with } m(\partial A) = m(\partial B) = 0.$$

 $T = R \circ B : X = \mathbb{R}_+ \times [0,1] \equiv [0,1]^2 \times \mathbb{Z}_+ \to X$  where  $B = \mathbb{R}_+ \times \mathbb{R}_+$ 



T preserves Lebesgue measure m & is ratio mixing:

$$\sqrt{\frac{\pi n}{2}} m(A \cap T^{-n}B) \xrightarrow[n \to \infty]{} m(A)m(B)$$

$$\forall A, B \text{ bounded with } m(\partial A) = m(\partial B) = 0.$$

• Hopf asked whether:  $(\maltese) \ \forall \ A, B$  bounded measurable sets ?

 $T = R \circ B : X = \mathbb{R}_+ \times [0,1] \equiv [0,1]^2 \times \mathbb{Z}_+ \to X$  where  $B = \mathbb{R}_+ \times \mathbb{R}_+$ 



T preserves Lebesgue measure m & is ratio mixing:

$$\sqrt{\frac{\pi n}{2}} m(A \cap T^{-n}B) \xrightarrow[n \to \infty]{} m(A)m(B)$$

$$\forall A, B \text{ bounded with } m(\partial A) = m(\partial B) = 0.$$

• Hopf asked whether:  $(\maltese) \ \forall \ A, \ B$  bounded measurable sets ? Implies ergodicity



 $T = R \circ B : X = \mathbb{R}_+ \times [0,1] \equiv [0,1]^2 \times \mathbb{Z}_+ \to X$  where B is the Baker's transformation on each box  $[0,1]^2 \times \{n\}$  and R is



T preserves Lebesgue measure m & is ratio mixing:

$$\sqrt{\frac{\pi n}{2}} m(A \cap T^{-n}B) \xrightarrow[n \to \infty]{} m(A)m(B)$$

$$\forall A, B \text{ bounded with } m(\partial A) = m(\partial B) = 0.$$

• Hopf asked whether:  $(\maltese) \ \forall \ A, \ B$  bounded measurable sets ? Implies ergodicity  $((\maltese)$  does not!)



 $T = R \circ B : X = \mathbb{R}_+ \times [0,1] \equiv [0,1]^2 \times \mathbb{Z}_+ \to X$  where  $B = \mathbb{R}_+ \times \mathbb{R}_+$ 



T preserves Lebesgue measure m & is ratio mixing:

$$\sqrt{\frac{\pi n}{2}} m(A \cap T^{-n}B) \underset{n \to \infty}{\longrightarrow} m(A) m(B)$$

$$\forall A, B \text{ bounded with } m(\partial A) = m(\partial B) = 0.$$

• Hopf asked whether: ( $\P$ )  $\forall$  A, B bounded measurable sets ? Implies ergodicity (( $\P$ ) does not!) & isomorphism invariance of  $\sqrt{n}$ .

 $T = R \circ B : X = \mathbb{R}_+ \times [0,1] \equiv [0,1]^2 \times \mathbb{Z}_+ \to X$  where  $B = \mathbb{R}_+ \times \mathbb{R}_+$ 



T preserves Lebesgue measure m & is ratio mixing:

$$\sqrt{\frac{\pi n}{2}} m(A \cap T^{-n}B) \underset{n \to \infty}{\longrightarrow} m(A) m(B)$$

$$\forall A, B \text{ bounded with } m(\partial A) = m(\partial B) = 0.$$

- Hopf asked whether: ( $\maltese$ )  $\forall$  A, B bounded measurable sets ? Implies ergodicity (( $\maltese$ ) does not!) & isomorphism invariance of  $\sqrt{n}$ .
- Summed ( $\maltese$ ) OK  $\forall$  A, B bdd. meas. via Markov property.

• Weakly wandering set for MPT  $(X, \mathcal{B}, m, T)$ :  $W \in \mathcal{B} \text{ s.t. } \exists n_1 < n_2 < \dots \text{ with } \{T^{-n_k}W : k \in \mathbb{N}\} \text{ disjoint.}$ 

- Weakly wandering set for MPT  $(X, \mathcal{B}, m, T)$ :  $W \in \mathcal{B} \text{ s.t. } \exists n_1 < n_2 < \dots \text{ with } \{T^{-n_k}W : k \in \mathbb{N}\} \text{ disjoint.}$

- Weakly wandering set for MPT  $(X, \mathcal{B}, m, T)$ :  $W \in \mathcal{B} \text{ s.t. } \exists n_1 < n_2 < \dots \text{ with } \{T^{-n_k}W : k \in \mathbb{N}\} \text{ disjoint.}$
- $(X, \mathcal{B}, m, T) \text{ MPT, } u_n > 0 \& W \in \mathcal{F}_+ \text{ weakly wandering}$   $\implies 0 = \underline{\lim}_{n \to \infty} \frac{m(W \cap T^{-n}W)}{u_n} \neq m(W)^2. \text{ So no improved } (\maltese).$

- Weakly wandering set for MPT  $(X, \mathcal{B}, m, T)$ :  $W \in \mathcal{B} \text{ s.t. } \exists n_1 < n_2 < \dots \text{ with } \{T^{-n_k}W : k \in \mathbb{N}\} \text{ disjoint.}$
- $(X, \mathcal{B}, m, T) \text{ MPT, } u_n > 0 \& W \in \mathcal{F}_+ \text{ weakly wandering}$   $\implies 0 = \underline{\lim}_{n \to \infty} \frac{m(W \cap T^{-n}W)}{u_n} \neq m(W)^2. \text{ So no improved } (\maltese).$

For Hopf ex., 
$$\sqrt{\frac{\pi n}{2}} m(A \cap T^{-n}B) \xrightarrow[n \to \infty]{\text{density}} m(A) m(B)$$
 ( $\clubsuit$ )

4□ → 4□ → 4 = → 4 = → 9 < ○</p>

- Weakly wandering set for MPT  $(X, \mathcal{B}, m, T)$ :  $W \in \mathcal{B} \text{ s.t. } \exists n_1 < n_2 < \dots \text{ with } \{T^{-n_k}W : k \in \mathbb{N}\} \text{ disjoint.}$
- $(X, \mathcal{B}, m, T) \text{ MPT, } u_n > 0 \& W \in \mathcal{F}_+ \text{ weakly wandering}$   $\implies 0 = \underline{\lim}_{n \to \infty} \frac{m(W \cap T^{-n}W)}{u_n} \neq m(W)^2. \text{ So no improved } (\maltese).$

For Hopf ex., 
$$\sqrt{\frac{\pi n}{2}} m(A \cap T^{-n}B) \xrightarrow[n \to \infty]{\text{density}} m(A) m(B)$$
 ( $\clubsuit$ )  $\forall A, B \text{ bounded, measurable.}$ 

## Question about Hopf example



- Weakly wandering set for MPT  $(X, \mathcal{B}, m, T)$ :  $W \in \mathcal{B} \text{ s.t. } \exists n_1 < n_2 < \dots \text{ with } \{T^{-n_k}W : k \in \mathbb{N}\} \text{ disjoint.}$
- $(X, \mathcal{B}, m, T) \text{ MPT, } u_n > 0 \& W \in \mathcal{F}_+ \text{ weakly wandering}$   $\implies 0 = \underline{\lim}_{n \to \infty} \frac{m(W \cap T^{-n}W)}{u_n} \neq m(W)^2. \text{ So no improved } (\maltese).$

For Hopf ex., 
$$\sqrt{\frac{\pi n}{2}} m(A \cap T^{-n}B) \xrightarrow[n \to \infty]{\text{density}} m(A) m(B)$$
 ( $\clubsuit$ )  $\forall A, B \text{ bounded, measurable.}$ 

Question about Hopf example ∃? exhaustive weakly wandering set of finite measure?



MPT  $(X, \mathcal{B}, m, T)$  is rationally weakly mixing (RWM) if  $\exists F \in \mathcal{F}_+$  s.t.

MPT  $(X, \mathcal{B}, m, T)$  is rationally weakly mixing (RWM) if  $\exists F \in \mathcal{F}_+$  s.t.

$$\frac{m(A\cap T^{-n}B)}{u_n(F)} \stackrel{u(F)-\text{density}}{\underset{n\to\infty}{\longrightarrow}} m(A)m(B) \quad \forall \ A, \ B\in\mathcal{B}\cap F \quad (\bigstar)$$

where 
$$u(F) = (u_n(F))_{n \ge 0} := (\frac{m(F \cap T^{-n}F)}{m(F)^2})_{n \ge 0} \&$$

MPT  $(X, \mathcal{B}, m, T)$  is rationally weakly mixing (RWM) if  $\exists F \in \mathcal{F}_+$  s.t.

$$\frac{m(A\cap T^{-n}B)}{u_n(F)} \quad \overset{u(F)-\text{density}}{\underset{n\to\infty}{\longrightarrow}} \quad m(A)m(B) \quad \forall \ A, \ B\in\mathcal{B}\cap F \quad (\bigstar)$$

where 
$$u(F) = (u_n(F))_{n \ge 0} := (\frac{m(F \cap T^{-n}F)}{m(F)^2})_{n \ge 0} \&$$

$$s_n \xrightarrow[n \to \infty]{u-\text{density}} L \text{ means } s_n \xrightarrow[n \to \infty]{n \ne K} L$$

where  $K \subset \mathbb{N}$  is u-small i.e.

MPT  $(X, \mathcal{B}, m, T)$  is rationally weakly mixing (RWM) if  $\exists F \in \mathcal{F}_+$  s.t.

$$\frac{m(A\cap T^{-n}B)}{u_n(F)} \quad \overset{u(F)-\text{density}}{\underset{n\to\infty}{\longrightarrow}} \quad m(A)m(B) \quad \forall \ A, \ B\in\mathcal{B}\cap F \quad (\bigstar)$$

where 
$$u(F) = (u_n(F))_{n \ge 0} := (\frac{m(F \cap T^{-n}F)}{m(F)^2})_{n \ge 0} \&$$

$$s_n \xrightarrow[n \to \infty]{u-\text{density}} L \text{ means } s_n \xrightarrow[n \to \infty]{n \ne K} L$$

where 
$$K \subset \mathbb{N}$$
 is  $\underline{u}$ -small i.e.  $\frac{\sum_{k \in K \cap [1,n]} u_k}{\sum_{k \in [1,n]} u_k} \xrightarrow[n \to \infty]{} 0$ .

MPT  $(X, \mathcal{B}, m, T)$  is rationally weakly mixing (RWM) if  $\exists F \in \mathcal{F}_+$  s.t.

$$\frac{m(A\cap T^{-n}B)}{u_n(F)} \stackrel{u(F)-\text{density}}{\underset{n\to\infty}{\longrightarrow}} m(A)m(B) \quad \forall \ A, \ B\in\mathcal{B}\cap F \quad (\bigstar)$$

where 
$$u(F) = (u_n(F))_{n \ge 0} := (\frac{m(F \cap T^{-n}F)}{m(F)^2})_{n \ge 0} \&$$

$$s_n \xrightarrow[n \to \infty]{u-\text{density}} L \text{ means } s_n \xrightarrow[n \to \infty]{n} L$$

where  $K \subset \mathbb{N}$  is  $\underline{u}$ -small i.e.  $\frac{\sum_{k \in K \cap [1,n]} u_k}{\sum_{k \in [1,n]} u_k} \xrightarrow[n \to \infty]{} 0$ .

• For  $u_n$   $\gamma$ -regularly varying with  $\gamma \in (-1,0)$ ,  $K \subset \mathbb{N}$  is u-small  $\iff$  it has density zero.



MPT  $(X, \mathcal{B}, m, T)$  is rationally weakly mixing (RWM) if  $\exists F \in \mathcal{F}_+$  s.t.

$$\frac{m(A\cap T^{-n}B)}{u_n(F)} \quad \overset{u(F)-\text{density}}{\underset{n\to\infty}{\longrightarrow}} \quad m(A)m(B) \quad \forall \ A, \ B\in\mathcal{B}\cap F \quad (\bigstar)$$

where 
$$u(F) = (u_n(F))_{n \ge 0} := (\frac{m(F \cap T^{-n}F)}{m(F)^2})_{n \ge 0} \&$$

$$s_n \xrightarrow[n \to \infty]{u-\text{density}} L \text{ means } s_n \xrightarrow[n \to \infty]{n} L$$

where  $K \subset \mathbb{N}$  is  $\underline{u}$ -small i.e.  $\frac{\sum_{k \in K \cap [1,n]} u_k}{\sum_{k \in [1,n]} u_k} \xrightarrow[n \to \infty]{} 0$ .

• For  $u_n$   $\gamma$ -regularly varying with  $\gamma \in (-1,0)$ ,  $K \subset \mathbb{N}$  is u-small  $\iff$  it has density zero.

So RWM of Hopf's example & box in  $R(T) \implies (\clubsuit)$ .



Suppose that  $(X, \mathcal{B}, m, T)$  is a RWM, MPT, then

Suppose that  $(X, \mathcal{B}, m, T)$  is a RWM, MPT, then

¶1 T is weakly rationally ergodic (WRE) i.e.  $\exists F \in \mathcal{F}_+$  s.t.

$$\frac{1}{a_n(F)} \sum_{k=0}^{n-1} m(A \cap T^{-k}B) \underset{n \to \infty}{\longrightarrow} \quad m(A)m(B) \quad \forall \ A, \ B \in \mathcal{B} \cap F \ (\mathring{\bowtie})$$

where 
$$a_n(F) := \sum_{k=0}^{n-1} u_k(F)$$
.

Suppose that  $(X, \mathcal{B}, m, T)$  is a RWM, MPT, then

¶1 T is weakly rationally ergodic (WRE) i.e.  $\exists F \in \mathcal{F}_+$  s.t.

$$\frac{1}{a_n(F)}\sum_{k=0}^{n-1}m(A\cap T^{-k}B)\underset{n\to\infty}{\longrightarrow}\quad m(A)m(B)\quad\forall\ A,\ B\in\mathcal{B}\cap F\ \left(^{\wedge}_{\bowtie}\right)$$

where  $a_n(F) := \sum_{k=0}^{n-1} u_k(F)$ . Moreover

$$R(T) := \{ F \in \mathcal{F}_+ : (\nwarrow) \text{ holds} \} = \{ F \in \mathcal{F}_+ : (\bigstar) \text{ holds} \}.$$

Suppose that  $(X,\mathcal{B},m,T)$  is a RWM, MPT, then

¶1 T is weakly rationally ergodic (WRE) i.e.  $\exists F \in \mathcal{F}_+$  s.t.

$$\frac{1}{a_n(F)}\sum_{k=0}^{n-1}m(A\cap T^{-k}B)\underset{n\to\infty}{\longrightarrow}\quad m(A)m(B)\quad\forall\ A,\ B\in\mathcal{B}\cap F\ \left(^{\wedge}_{\bowtie}\right)$$

where  $a_n(F) := \sum_{k=0}^{n-1} u_k(F)$ . Moreover

$$R(T) := \{ F \in \mathcal{F}_+ : \ (\nwarrow) \text{ holds} \} = \{ F \in \mathcal{F}_+ : \ (\bigstar) \text{ holds} \}.$$

$$\P$$
1'Isomorphism:  $T \cong T'$  RWM  $\Longrightarrow \frac{u_n^{(T)}}{u_n^{(T')}} \stackrel{u-\text{density}}{\longrightarrow} 1.$ 



Suppose that  $(X,\mathcal{B},m,T)$  is a RWM, MPT, then

¶1 T is weakly rationally ergodic (WRE) i.e.  $\exists F \in \mathcal{F}_+$  s.t.

$$\frac{1}{a_n(F)}\sum_{k=0}^{n-1}m(A\cap T^{-k}B)\underset{n\to\infty}{\longrightarrow}\quad m(A)m(B)\quad\forall\ A,\ B\in\mathcal{B}\cap F\ \left(^{L}_{\bowtie}\right)$$

where  $a_n(F) := \sum_{k=0}^{n-1} u_k(F)$ . Moreover

$$R(T) := \{ F \in \mathcal{F}_+ : ( ) \text{ holds} \} = \{ F \in \mathcal{F}_+ : ( ) \text{ holds} \}.$$

$$\P$$
1'Isomorphism:  $T \cong T'$  RWM  $\Longrightarrow \frac{u_n^{(T)}}{u_n^{(T')}} \stackrel{u-\text{density}}{\longrightarrow} 1.$ 

¶2 T is weakly mixing (WM):  $T \times S$  is ergodic  $\forall$  EPPT S.

Suppose that  $(X,\mathcal{B},m,T)$  is a RWM, MPT, then

 $\P 1$  T is weakly rationally ergodic (WRE) i.e.  $\exists F \in \mathcal{F}_+$  s.t.

$$\frac{1}{a_n(F)}\sum_{k=0}^{n-1}m(A\cap T^{-k}B)\underset{n\to\infty}{\longrightarrow}\quad m(A)m(B)\quad\forall\ A,\ B\in\mathcal{B}\cap F\ \left(^{L}_{\bowtie}\right)$$

where  $a_n(F) := \sum_{k=0}^{n-1} u_k(F)$ . Moreover

$$R(T) \coloneqq \{F \in \mathcal{F}_+ : \ (\nwarrow) \text{ holds}\} = \{F \in \mathcal{F}_+ : \ (\bigstar) \text{ holds}\}.$$

$$\P$$
1'Isomorphism:  $T \cong T'$  RWM  $\Longrightarrow \frac{u_n^{(T)}}{u_n^{(T')}} \stackrel{u-\text{density}}{\longrightarrow} 1.$ 

- ¶2 T is weakly mixing (WM):  $T \times S$  is ergodic  $\forall$  EPPT S.
- ¶3  $T \times S$  is RWM  $\forall$  WM, PPT S.

# 5. Sufficient condition: Krickeberg mixing

Given  $(X, \mathcal{B}, m, T)$  a MPT &  $\alpha \subset \mathcal{B}$  a countable generating partition, say that T is  $\alpha$ -ratio mixing  $(\alpha$ -RM) if

# 5. Sufficient condition: Krickeberg mixing

Given  $(X, \mathcal{B}, m, T)$  a MPT &  $\alpha \in \mathcal{B}$  a countable generating partition, say that T is  $\alpha$ -ratio mixing  $(\alpha$ -RM) if  $\exists \ \rho_n > 0 \ (n \ge 1)$  such that

$$\rho_n m(A \cap T^{-n}B) \underset{n \to \infty}{\longrightarrow} m(A) m(B) \ \forall \ A, B \in \mathcal{C}_{\alpha}.$$

where

$$C_{\alpha} := \{ [a_1, \ldots, a_N]_k := \bigcap_{j=1}^N T^{j_k} a_j : N \in \mathbb{N}, k \in \mathbb{Z}, a_1, \ldots, a_N \in \alpha \}.$$

# 5. Sufficient condition: Krickeberg mixing

Given  $(X,\mathcal{B},m,T)$  a MPT &  $\alpha \in \mathcal{B}$  a countable generating partition, say that T is  $\alpha$ -ratio mixing  $(\alpha$ -RM) if  $\exists \ \rho_n > 0 \ (n \ge 1)$  such that

$$\rho_n m(A \cap T^{-n}B) \xrightarrow[n \to \infty]{} m(A)m(B) \ \forall \ A, B \in \mathcal{C}_{\alpha}.$$

where

$$C_{\alpha} := \{ [a_1, \ldots, a_N]_k := \bigcap_{j=1}^N T^{j_k} a_j : N \in \mathbb{N}, k \in \mathbb{Z}, a_1, \ldots, a_N \in \alpha \}.$$

¶4 Suppose  $(X, \mathcal{B}, m, T)$  WRE, MPT &  $\exists$  a countable generating partition  $\alpha \subset R(T)$  and  $\Omega \in \mathcal{C}_{\alpha}$  such that

$$\frac{m(A\cap T^{-n}B)}{u_n} \quad \mathop{\longrightarrow}\limits_{n\to\infty}^{u-{\rm density}} \quad m(A)m(B) \quad \forall \ A, \ B\in \mathcal{C}_\alpha$$

where  $u = u(\Omega)$ , then  $(X, \mathcal{B}, m, T)$  is RWM.



Irreducible, recurrent Markov shifts with the strong ratio limit property (SRLP) are  $\alpha$ -RM with  $\alpha$  = {state occupied at time 0}.

Irreducible, recurrent Markov shifts with the strong ratio limit property (SRLP)  $(p_{s,s}^{(n)} \sim p_{s,s}^{(n+1)} \, \forall \, \text{states } s)$  are  $\alpha$ -RM with  $\alpha$  = {state occupied at time 0}.

Irreducible, recurrent Markov shifts with the strong ratio limit property (SRLP)  $(p_{s,s}^{(n)} \sim p_{s,s}^{(n+1)} \ \forall \ \text{states } s)$  are  $\alpha$ -RM with  $\alpha$  = {state occupied at time 0}. e.g. Hopf's example isom. to the symm RW on  $\mathbb{Z}_+$  with reflecting barrier at 0.

Irreducible, recurrent Markov shifts with the strong ratio limit property (SRLP)  $(p_{s,s}^{(n)} \sim p_{s,s}^{(n+1)} \,\,\forall\,\,$  states s) are  $\alpha$ -RM with  $\alpha$  = {state occupied at time 0}. e.g. Hopf's example isom. to the symm RW on  $\mathbb{Z}_+$  with reflecting barrier at 0. Transition matrix has SRLP:  $p_{0,0}^{(n)} \sim \sqrt{\frac{2}{\pi n}}$ .

Irreducible, recurrent Markov shifts with the strong ratio limit property (SRLP)  $(p_{s,s}^{(n)} \sim p_{s,s}^{(n+1)} \ \forall \ \text{states } s)$  are  $\alpha$ -RM with  $\alpha$  = {state occupied at time 0}. e.g. Hopf's example isom. to the symm RW on  $\mathbb{Z}_+$  with reflecting barrier at 0. Transition matrix has SRLP:  $p_{0,0}^{(n)} \sim \sqrt{\frac{2}{\pi n}}$ .

¶5 The irreducible, recurrent Markov shift is RWM iff for some and hence all states s, the renewal sequence  $u = (p_{s,s}^{(n)})_{n \ge 0}$  is smooth:

$$\sum_{k=0}^n |u_k-u_{k+1}| = o\bigg(\sum_{k=0}^n u_k\bigg) \text{ as } n\to\infty.$$

Irreducible, recurrent Markov shifts with the strong ratio limit property (SRLP)  $(p_{s,s}^{(n)} \sim p_{s,s}^{(n+1)} \ \forall \ \text{states } s)$  are  $\alpha$ -RM with  $\alpha$  = {state occupied at time 0}. e.g. Hopf's example isom. to the symm RW on  $\mathbb{Z}_+$  with reflecting barrier at 0. Transition matrix has SRLP:  $p_{0,0}^{(n)} \sim \sqrt{\frac{2}{\pi n}}$ .

¶5 The irreducible, recurrent Markov shift is RWM iff for some and hence all states s, the renewal sequence  $u = (p_{s,s}^{(n)})_{n \ge 0}$  is smooth:

$$\sum_{k=0}^n \left| u_k - u_{k+1} \right| = o \Biggl( \sum_{k=0}^n u_k \Biggr) \ \text{as} \ n \to \infty.$$

© Smoothness of ap. rec.  $u = (u_0, u_1, ...)$  with lifetime dist.  $f \in \mathcal{P}(\mathbb{N})$  if e.g.  $\exists N \geq 1$ ,  $\sum_{n=N}^{\infty} \frac{1}{V(n)^2} < \infty (V(t) := \sum_{1 \leq n \leq t} n^2 f_n) \& \sum_{k=1}^{n} f([k, \infty)) = o(\sqrt{n})$ .

### 7. Modes of convergence

For 
$$u \in \mathfrak{W} = \{ \text{weights} \} := \{ u \in \ell^{\infty}(\mathbb{Z}_{+})_{+} : a_{u}(n) := \sum_{k=1}^{n} u_{k} \longrightarrow \infty \},$$

For 
$$u \in \mathfrak{W} = \{ \text{weights} \} := \{ u \in \ell^{\infty}(\mathbb{Z}_{+})_{+} : a_{u}(n) := \sum_{k=1}^{n} u_{k} \longrightarrow \infty \},$$

$$s_n \xrightarrow[n \to \infty]{u-\text{density}} L \text{ if } \exists K \subset \mathbb{N} \text{ } u-\text{small such that } s_n \xrightarrow[n \to \infty, \ n \notin K]{} L;$$

For 
$$u \in \mathfrak{W} = \{ \text{weights} \} := \{ u \in \ell^{\infty}(\mathbb{Z}_{+})_{+} : a_{u}(n) := \sum_{k=1}^{n} u_{k} \longrightarrow \infty \},$$

$$s_{n} \xrightarrow[n \to \infty]{} L \text{ if } \exists K \subset \mathbb{N} \text{ } u\text{-small such that } s_{n} \xrightarrow[n \to \infty]{} L;$$

$$s_{n} \xrightarrow[n \to \infty]{} L \text{ if } \frac{1}{a_{u}(n)} \sum_{k=0}^{n} u_{k} |s_{k} - L| \xrightarrow[n \to \infty]{} 0.$$

For 
$$u \in \mathfrak{W} = \{ \text{weights} \} := \{ u \in \ell^{\infty}(\mathbb{Z}_{+})_{+} : a_{u}(n) := \sum_{k=1}^{n} u_{k} \longrightarrow \infty \},$$

$$s_{n} \xrightarrow[n \to \infty]{u-\text{density}} L \text{ if } \exists K \subset \mathbb{N} \text{ } u-\text{small such that } s_{n} \xrightarrow[n \to \infty]{} L;$$

$$s_{n} \xrightarrow[n \to \infty]{u-\text{s. Cesaro}} L \text{ if } \frac{1}{a_{u}(n)} \sum_{k=0}^{n} u_{k} |s_{k} - L| \xrightarrow[n \to \infty]{} 0.$$

$$\text{Evidently} \xrightarrow[n \to \infty]{u-\text{density}} \xrightarrow[n \to \infty]{u-\text{density}}.$$

For 
$$u \in \mathfrak{W} = \{ \text{weights} \} := \{ u \in \ell^{\infty}(\mathbb{Z}_{+})_{+} : a_{u}(n) := \sum_{k=1}^{n} u_{k} \longrightarrow \infty \},$$

$$s_{n} \xrightarrow[n \to \infty]{u-\text{density}} L \text{ if } \exists K \in \mathbb{N} \text{ } u-\text{small such that } s_{n} \xrightarrow[n \to \infty]{} L;$$

$$s_{n} \xrightarrow[n \to \infty]{u-\text{s. Cesaro}} L \text{ if } \frac{1}{a_{u}(n)} \sum_{k=0}^{n} u_{k} |s_{k} - L| \xrightarrow[n \to \infty]{} 0.$$

$$\text{Evidently} \xrightarrow[n \to \infty]{u-\text{s. Cesaro}} \Longrightarrow \xrightarrow[n \to \infty]{u-\text{density}} .$$

 $\P 6$  Smoothing Lemma:  $u \in \mathfrak{W}$ ,  $x = (x_1, x_2, \dots) \in \mathbb{R}^{\mathbb{N}}$  bdd. below:

$$\frac{1}{a_u(n)} \sum_{k=0}^n u_k x_k \xrightarrow[n \to \infty]{} L \& \exists K_0 \subset \mathbb{N}, u\text{-small s.t.}$$

$$\underset{n \to \infty, n \notin K_0}{\underline{\lim}} x_n \ge L \implies x_n \xrightarrow[n \to \infty]{} L.$$

A weight  $u \in \mathfrak{W}$  is (good for the) mean ergodic theorem (MET) if  $\forall$  ergodic PPT  $(\Omega, \mathcal{A}, P, S)$ :

A weight  $u \in \mathfrak{W}$  is (good for the) mean ergodic theorem (MET) if  $\forall$  ergodic PPT  $(\Omega, \mathcal{A}, P, S)$ :

$$\frac{1}{a_u(n)} \sum_{k=0}^{n-1} u_k f \circ S^k \xrightarrow[n \to \infty]{L^2(P)} E(f) \quad \forall \ f \in L^2(P). \tag{MET}$$

A weight  $u \in \mathfrak{W}$  is (good for the) mean ergodic theorem (MET) if  $\forall$  ergodic PPT  $(\Omega, \mathcal{A}, P, S)$ :

$$\frac{1}{a_u(n)} \sum_{k=0}^{n-1} u_k f \circ S^k \xrightarrow[n \to \infty]{L^2(P)} E(f) \quad \forall \ f \in L^2(P). \tag{MET}$$

Known that

(i)  $u \in \mathfrak{W}$  smooth  $\Longrightarrow$  MET.

A weight  $u \in \mathfrak{W}$  is (good for the) mean ergodic theorem (MET) if  $\forall$  ergodic PPT  $(\Omega, \mathcal{A}, P, S)$ :

$$\frac{1}{a_u(n)} \sum_{k=0}^{n-1} u_k f \circ S^k \xrightarrow[n \to \infty]{L^2(P)} E(f) \quad \forall \ f \in L^2(P). \tag{MET}$$

Known that

(i)  $u \in \mathfrak{W}$  smooth  $\Longrightarrow$  MET. e.g. u(F) for  $F \in R(T)$ , T RWM.

A weight  $u \in \mathfrak{W}$  is (good for the) mean ergodic theorem (MET) if  $\forall$  ergodic PPT  $(\Omega, \mathcal{A}, P, S)$ :

$$\frac{1}{a_u(n)} \sum_{k=0}^{n-1} u_k f \circ S^k \xrightarrow[n \to \infty]{L^2(P)} E(f) \quad \forall \ f \in L^2(P). \tag{MET}$$

- (i)  $u \in \mathfrak{W}$  smooth  $\Longrightarrow$  MET. e.g. u(F) for  $F \in R(T)$ , T RWM.
- (ii) For T WRE & WM, u(F) is MET  $\forall F \in R(T)$ .

A weight  $u \in \mathfrak{W}$  is (good for the) mean ergodic theorem (MET) if  $\forall$  ergodic PPT  $(\Omega, \mathcal{A}, P, S)$ :

$$\frac{1}{a_u(n)} \sum_{k=0}^{n-1} u_k f \circ S^k \xrightarrow[n \to \infty]{L^2(P)} E(f) \quad \forall \ f \in L^2(P). \tag{MET}$$

- (i)  $u \in \mathfrak{W}$  smooth  $\Longrightarrow$  MET. e.g. u(F) for  $F \in R(T)$ , T RWM.
- (ii) For T WRE & WM, u(F) is MET  $\forall F \in R(T)$ .
- (iii)  $u \in \mathfrak{W} \text{ MET } \Rightarrow u \text{ smooth.}$

A weight  $u \in \mathfrak{W}$  is (good for the) mean ergodic theorem (MET) if  $\forall$  ergodic PPT  $(\Omega, \mathcal{A}, P, S)$ :

$$\frac{1}{a_u(n)} \sum_{k=0}^{n-1} u_k f \circ S^k \xrightarrow[n \to \infty]{L^2(P)} E(f) \quad \forall \ f \in L^2(P). \tag{MET}$$

- (i)  $u \in \mathfrak{W}$  smooth  $\Longrightarrow$  MET. e.g. u(F) for  $F \in R(T)$ , T RWM.
- (ii) For T WRE & WM, u(F) is MET  $\forall F \in R(T)$ .
- (iii)  $u \in \mathfrak{W}$  MET  $\Rightarrow u$  smooth. Qn. for renewal sequences.

A weight  $u \in \mathfrak{W}$  is (good for the) mean ergodic theorem (MET) if  $\forall$  ergodic PPT  $(\Omega, \mathcal{A}, P, S)$ :

$$\frac{1}{a_u(n)} \sum_{k=0}^{n-1} u_k f \circ S^k \xrightarrow[n \to \infty]{L^2(P)} E(f) \quad \forall \ f \in L^2(P). \tag{MET}$$

- (i)  $u \in \mathfrak{W}$  smooth  $\Longrightarrow$  MET. e.g. u(F) for  $F \in R(T)$ , T RWM.
- (ii) For T WRE & WM, u(F) is MET  $\forall F \in R(T)$ .
- (iii)  $u \in \mathfrak{W}$  MET  $\Rightarrow u$  smooth. Qn. for renewal sequences.
- (iv)  $u \in \mathfrak{W}$  MET,  $(\Omega, \mathcal{A}, P, S)$  weakly mixing PPT.

$$\Longrightarrow P(A \cap S^{-n}B) \stackrel{u-\text{density}}{\underset{n \to \infty}{\longrightarrow}} P(A)P(B) \quad \forall A, B \in \mathcal{A}.$$

A weight  $u \in \mathfrak{W}$  is (good for the) mean ergodic theorem (MET) if  $\forall$  ergodic PPT  $(\Omega, \mathcal{A}, P, S)$ :

$$\frac{1}{a_u(n)} \sum_{k=0}^{n-1} u_k f \circ S^k \xrightarrow[n \to \infty]{L^2(P)} E(f) \quad \forall \ f \in L^2(P). \tag{MET}$$

Known that

- (i)  $u \in \mathfrak{W}$  smooth  $\Longrightarrow$  MET. e.g. u(F) for  $F \in R(T)$ , T RWM.
- (ii) For T WRE & WM, u(F) is MET  $\forall F \in R(T)$ .
- (iii)  $u \in \mathfrak{W}$  MET  $\Rightarrow u$  smooth. Qn. for renewal sequences.
- (iv)  $u \in \mathfrak{W}$  MET,  $(\Omega, \mathcal{A}, P, S)$  weakly mixing PPT.

$$\implies P(A \cap S^{-n}B) \xrightarrow[n \to \infty]{u-\text{density}} P(A)P(B) \quad \forall \ A, B \in \mathcal{A}.$$

Use these to prove T RWM  $\Longrightarrow T \times S$  ergodic  $\forall$  ergodic PPT S & RWM  $\forall$  weakly mixing PPT S.



¶4  $(X, \mathcal{B}, m, T)$  WRE, MPT & ∃ cble gen. ptn  $\alpha \subset R(T)$  &  $\Omega \in \mathcal{C}_{\alpha}$  such that

$$\frac{m(A\cap T^{-n}B)}{u_n} \xrightarrow[n\to\infty]{u(\Omega)-\text{density}} m(A)m(B) \quad \forall \ A, \ B\in\mathcal{C}_{\alpha} \qquad \textcircled{\scriptsize{$\mathfrak{D}$}}$$

then  $(X, \mathcal{B}, m, T)$  is RWM.

**Proof** that  $\Omega$  satisfies  $(\bigstar)$ .

§1 WLOG  $X = \alpha^{\mathbb{Z}}$ ,  $T = \text{shift } \& C_{\alpha}$  clopen base Polish top. on X.

 $\P 4 \quad (X,\mathcal{B},m,T) \text{ WRE, MPT \& } \exists \text{ cble gen. ptn } \alpha \subset R(T) \& \Omega \in \mathcal{C}_\alpha \text{ such that }$ 

$$\frac{m(A \cap T^{-n}B)}{\underset{n \to \infty}{\longleftarrow}} \quad \underset{n \to \infty}{\overset{u(\Omega)-\text{density}}{\longrightarrow}} \quad m(A)m(B) \quad \forall \ A, \ B \in \mathcal{C}_{\alpha} \qquad (\mathfrak{D})$$

then  $(X, \mathcal{B}, m, T)$  is RWM.

**Proof** that  $\Omega$  satisfies  $(\bigstar)$ .

§1 WLOG  $X = \alpha^{\mathbb{Z}}$ ,  $T = \text{shift } \& C_{\alpha}$  clopen base Polish top. on X.

§2  $(\mathfrak{D}) \ \forall \ A, \ B \in \mathcal{U}_{\alpha} \coloneqq \{ \text{finite unions of cylinders} \}.$ 

 $\P 4 \quad (X,\mathcal{B},m,T) \text{ WRE, MPT \& } \exists \text{ cble gen. ptn } \alpha \subset R(T) \& \Omega \in \mathcal{C}_{\alpha} \text{ such that }$ 

$$\frac{m(A \cap T^{-n}B)}{u_n} \xrightarrow[n \to \infty]{\text{density}} m(A)m(B) \quad \forall A, B \in \mathcal{C}_{\alpha} \qquad (\mathfrak{D})$$

then  $(X, \mathcal{B}, m, T)$  is RWM.

**Proof** that  $\Omega$  satisfies  $(\bigstar)$ .

§1 WLOG  $X = \alpha^{\mathbb{Z}}$ ,  $T = \text{shift } \& C_{\alpha}$  clopen base Polish top. on X.

§2 (③) 
$$\forall A, B \in \mathcal{U}_{\alpha} := \{\text{finite unions of cylinders}\}.$$

§3 
$$u - \text{density} - \overline{\lim_{k \to \infty}} \frac{m(A \cap T^{-k}B)}{u_k} \le m(A)m(B) \ \forall \ A, \ B \subset X$$
 compact.

 $\P 4 \quad (X,\mathcal{B},m,T) \text{ WRE, MPT \& } \exists \text{ cble gen. ptn } \alpha \subset R(T) \& \Omega \in \mathcal{C}_\alpha \text{ such that }$ 

$$\frac{m(A\cap T^{-n}B)}{u_n} \xrightarrow[n\to\infty]{u(\Omega)-\text{density}} m(A)m(B) \quad \forall \ A, \ B\in\mathcal{C}_{\alpha} \qquad \textcircled{\scriptsize{$\mathfrak{D}$}}$$

then  $(X, \mathcal{B}, m, T)$  is RWM.

**Proof** that  $\Omega$  satisfies  $(\bigstar)$ .

§1 WLOG  $X = \alpha^{\mathbb{Z}}$ ,  $T = \text{shift } \& C_{\alpha}$  clopen base Polish top. on X.

§2  $(\mathfrak{D}) \ \forall \ A, \ B \in \mathcal{U}_{\alpha} \coloneqq \{ \text{finite unions of cylinders} \}.$ 

§3 
$$u - \text{density} - \overline{\lim_{k \to \infty}} \frac{m(A \cap T^{-k}B)}{u_k} \le m(A)m(B) \ \forall \ A, \ B \subset X$$
 compact.

§4  $(\mathfrak{D})$  holds  $\forall A, B \subset \Omega$  compact.

 $\P 4 \quad (X,\mathcal{B},m,T) \text{ WRE, MPT \& } \exists \text{ cble gen. ptn } \alpha \subset R(T) \& \Omega \in \mathcal{C}_{\alpha} \text{ such that }$ 

$$\frac{m(A\cap T^{-n}B)}{u_n} \quad \xrightarrow[n\to\infty]{u(\Omega)-\text{density}} \quad m(A)m(B) \quad \forall \ A, \ B\in\mathcal{C}_{\alpha} \qquad (\mathfrak{D})$$

then  $(X, \mathcal{B}, m, T)$  is RWM.

**Proof** that  $\Omega$  satisfies  $(\bigstar)$ .

§1 WLOG  $X = \alpha^{\mathbb{Z}}$ ,  $T = \text{shift } \& C_{\alpha}$  clopen base Polish top. on X.

 $\S 2 \ (\mathfrak{D}) \ \forall \ A, \ B \in \mathcal{U}_{\alpha} \coloneqq \{ \text{finite unions of cylinders} \}.$ 

§3 
$$u - \text{density} - \overline{\lim_{k \to \infty}} \frac{m(A \cap T^{-k}B)}{u_k} \le m(A)m(B) \ \forall \ A, \ B \subset X$$
 compact.

§4  $(\mathfrak{D})$  holds  $\forall A, B \subset \Omega$  compact.

§5 
$$u$$
 - density -  $\lim_{k \to \infty} \frac{m(A \cap T^{-k}B)}{u_k} \ge m(A)m(B) \quad \forall A, B \in \mathcal{B} \cap \Omega.$ 

 $\P 4 \quad (X,\mathcal{B},m,T) \text{ WRE, MPT \& } \exists \text{ cble gen. ptn } \alpha \subset R(T) \& \Omega \in \mathcal{C}_{\alpha} \text{ such that }$ 

$$\frac{m(A\cap T^{-n}B)}{u_n} \xrightarrow[n\to\infty]{u(\Omega)-\text{density}} m(A)m(B) \quad \forall \ A, \ B\in\mathcal{C}_{\alpha} \qquad \textcircled{\scriptsize{$\mathfrak{D}$}}$$

then  $(X, \mathcal{B}, m, T)$  is RWM.

**Proof** that  $\Omega$  satisfies  $(\bigstar)$ .

§1 WLOG  $X = \alpha^{\mathbb{Z}}$ ,  $T = \text{shift } \& C_{\alpha}$  clopen base Polish top. on X.

 $\S 2 \ (\mathfrak{D}) \ \forall \ A, \ B \in \mathcal{U}_{\alpha} \coloneqq \{ \text{finite unions of cylinders} \}.$ 

§3 
$$u - \text{density} - \overline{\lim}_{k \to \infty} \frac{m(A \cap T^{-k}B)}{u_k} \le m(A)m(B) \ \forall \ A, \ B \subset X$$
 compact.

§4 ( $\mathfrak{D}$ ) holds  $\forall A, B \subset \Omega$  compact.

$$\S 5 \ \mathit{u} - \mathtt{density} - \underline{\lim_{k \to \infty}} \ \frac{\mathit{m}(A \cap T^{-k}B)}{\mathit{u}_k} \ge \mathit{m}(A) \mathit{m}(B) \quad \forall \ A, \ B \in \mathcal{B} \cap \Omega.$$

§6 ( $\textcircled{\bullet}$ ) holds  $\forall A, B \in \mathcal{B} \cap \Omega$ .



$$(X, \mathcal{B}, m, T)$$
 WRE MPT,  $a(n) = a_n(T) \gamma$ -reg. var.  $(\gamma \in (0, 1))$ .

$$\begin{split} &(X,\mathcal{B},m,T) \text{ WRE MPT, } a(n) = a_n(T) \text{ $\gamma$-reg. var. } \big(\gamma \in (0,1)\big). \\ &\Omega \in R(T), \ m(\Omega) = 1 \text{ LLT set if } \exists \text{ cble, ptn } \beta \subset \mathcal{B}(\Omega) \text{ s.t.} \\ &\varphi_{\Omega}^{-1}\{n\} \in \sigma(\beta) \ \forall \ n \geq 1 \text{ \& s.t. } \forall \ A,B \in \mathcal{C}_{\beta}(T_{\Omega}), \\ &a^{-1}(n)m(A \cap T_{\Omega}^{-n}B \cap [\varphi_n = k_n]) \underset{n \to \infty, \ \frac{k_n}{n} \to X}{\longrightarrow} f_{Z_{\gamma}}(x)m(A)m(B) \\ &\text{uniformly in } x \in E \ \forall \ E \subset (0,\infty) \text{ compact} \end{split}$$

$$\begin{split} &(X,\mathcal{B},m,T) \text{ WRE MPT, } a(n) = a_n(T) \text{ $\gamma$-reg. var. } (\gamma \in (0,1)). \\ &\Omega \in R(T), \ m(\Omega) = 1 \text{ LLT set if } \exists \text{ cble, ptn } \beta \subset \mathcal{B}(\Omega) \text{ s.t.} \\ &\varphi_{\Omega}^{-1}\{n\} \in \sigma(\beta) \ \forall \ n \geq 1 \text{ \& s.t. } \forall \ A,B \in \mathcal{C}_{\beta}(T_{\Omega}), \end{split}$$

$$a^{-1}(n)m(A\cap T_{\Omega}^{-n}B\cap [\varphi_n=k_n]) \underset{n\to\infty, \frac{k_n}{n}\to x}{\longrightarrow} f_{Z_{\gamma}}(x)m(A)m(B)$$

uniformly in  $x \in E \ \forall \ E \subset (0, \infty)$  compact where  $f = f_{Z_{\gamma}} = \text{p.d.f.}$  of +-ive,  $\gamma$ -stable RV  $Z_{\gamma}$ , a normalized s.t.  $E(Z_{\gamma}^{-\gamma}) = 1$ .

$$\begin{split} &(X,\mathcal{B},m,T) \text{ WRE MPT, } a(n) = a_n(T) \text{ } \gamma\text{-reg. var. } (\gamma \in (0,1)). \\ &\Omega \in R(T), \text{ } m(\Omega) = 1 \text{ LLT set if } \exists \text{ cble, ptn } \beta \subset \mathcal{B}(\Omega) \text{ s.t.} \\ &\varphi_{\Omega}^{-1}\{n\} \in \sigma(\beta) \text{ } \forall \text{ } n \geq 1 \text{ \& s.t. } \forall \text{ } A,B \in \mathcal{C}_{\beta}(T_{\Omega}), \end{split}$$

$$a^{-1}(n)m(A \cap T_{\Omega}^{-n}B \cap [\varphi_n = k_n]) \xrightarrow[n \to \infty, \frac{k_n}{n} \to x]{} f_{Z_{\gamma}}(x)m(A)m(B)$$

uniformly in  $x \in E \ \forall \ E \subset (0, \infty)$  compact where  $f = f_{Z_{\alpha}} = \text{p.d.f.}$  of +-ive,  $\gamma\text{-stable RV } Z_{\gamma}$ , a nor

where  $f = f_{Z_{\gamma}} = \text{p.d.f.}$  of +-ive,  $\gamma$ -stable RV  $Z_{\gamma}$ , a normalized s.t.  $E(Z_{\gamma}^{-\gamma}) = 1$ .

E.G. Natural extensions of towers over Gibbs Markov fibred systems or AFU maps  $(\Omega, \mathcal{S}, \alpha)$  with  $\alpha$ -meas. height fn. and  $\gamma$ -rv return sequences.

$$\begin{split} &(X,\mathcal{B},m,T) \text{ WRE MPT, } a(n) = a_n(T) \text{ $\gamma$-reg. var. } (\gamma \in (0,1)). \\ &\Omega \in R(T), \ m(\Omega) = 1 \text{ LLT set if } \exists \text{ cble, ptn } \beta \subset \mathcal{B}(\Omega) \text{ s.t.} \\ &\varphi_{\Omega}^{-1}\{n\} \in \sigma(\beta) \ \forall \ n \geq 1 \text{ \& s.t. } \forall \ A,B \in \mathcal{C}_{\beta}(T_{\Omega}), \end{split}$$

$$a^{-1}(n)m(A\cap T_{\Omega}^{-n}B\cap [\varphi_n=k_n]) \underset{n\to\infty, \frac{k_n}{n}\to x}{\longrightarrow} f_{Z_{\gamma}}(x)m(A)m(B)$$

uniformly in  $x \in E \ \forall \ E \subset (0, \infty)$  compact

where  $f = f_{Z_{\gamma}} = \text{p.d.f.}$  of +-ive,  $\gamma$ -stable RV  $Z_{\gamma}$ , a normalized s.t.  $E(Z_{\gamma}^{-\gamma}) = 1$ .

E.G. Natural extensions of towers over Gibbs Markov fibred systems or AFU maps  $(\Omega, \mathcal{S}, \alpha)$  with  $\alpha$ -meas. height fn. and  $\gamma$ -rv return sequences.

Refs. A & Denker; A, Denker, Sarig & Zweimüller & ...

$$\begin{split} &(X,\mathcal{B},m,T) \text{ WRE MPT, } a(n) = a_n(T) \text{ $\gamma$-reg. var. } (\gamma \in (0,1)). \\ &\Omega \in R(T), \ m(\Omega) = 1 \text{ LLT set if } \exists \text{ cble, ptn } \beta \subset \mathcal{B}(\Omega) \text{ s.t.} \\ &\varphi_{\Omega}^{-1}\{n\} \in \sigma(\beta) \ \forall \ n \geq 1 \text{ \& s.t. } \forall \ A,B \in \mathcal{C}_{\beta}(T_{\Omega}), \end{split}$$

$$a^{-1}(n)m(A\cap T_{\Omega}^{-n}B\cap [\varphi_n=k_n]) \xrightarrow[n\to\infty, \frac{k_n}{n}\to x]{} f_{Z_{\gamma}}(x)m(A)m(B)$$

uniformly in  $x \in E \ \forall \ E \subset (0, \infty)$  compact

where  $f = f_{Z_{\gamma}} = \text{p.d.f.}$  of +-ive,  $\gamma$ -stable RV  $Z_{\gamma}$ , a normalized s.t.  $E(Z_{\gamma}^{-\gamma}) = 1$ .

E.G. Natural extensions of towers over Gibbs Markov fibred systems or AFU maps  $(\Omega, \mathcal{S}, \alpha)$  with  $\alpha$ -meas. height fn. and  $\gamma$ -rv return sequences.

Refs. A & Denker; A, Denker, Sarig & Zweimüller & ...

 $\bigcirc$  In this situation,  $(X, \mathcal{B}, m, T)$  is RWM.

For 
$$u_n := \frac{\gamma a(n)}{n}, \quad \varliminf_{n \to \infty} \frac{m(A \cap T^{-n}B)}{u_n} \ge m(A)m(B) \quad \forall \ A, \ B \in \mathcal{C}_\beta(T_\Omega).$$

For 
$$u_n := \frac{\gamma a(n)}{n}$$
,  $\lim_{n \to \infty} \frac{m(A \cap T^{-n}B)}{u_n} \ge m(A)m(B) \quad \forall A, B \in \mathcal{C}_{\beta}(T_{\Omega}).$ 

Proof Fix  $A, B \in \mathcal{C}_{\beta}(T_{\Omega}), \ 0 < c < d < \infty \& \text{ set } x_{k,n} := \frac{n}{B(k)}, \text{ then}$ 

For 
$$u_n := \frac{\gamma_a(n)}{n}$$
,  $\lim_{n \to \infty} \frac{m(A \cap T^{-n}B)}{u_n} \ge m(A)m(B) \quad \forall A, B \in \mathcal{C}_{\beta}(T_{\Omega}).$ 

Proof Fix  $A, B \in \mathcal{C}_{\beta}(T_{\Omega}), \ 0 < c < d < \infty \& \text{set } x_{k,n} := \frac{n}{B(k)}, \text{ then}$ 

$$m(A \cap T^{-n}B) = \sum_{k=1}^{n} m(A \cap T_{\Omega}^{-k}B \cap [\varphi_{k} = n])$$

$$\geq \sum_{1 \leq k \leq n, \ x_{k,n} \in [c,d]} m(A \cap T_{\Omega}^{-k}B \cap [\varphi_{k} = x_{k,n}B(k)])$$

$$\sim \sum_{1 \leq k \leq n, \ x_{k,n} \in [c,d]} \frac{f(x_{k,n})}{B(k)} m(A) m(B)$$

For 
$$u_n := \frac{\gamma a(n)}{n}$$
,  $\lim_{n \to \infty} \frac{m(A \cap T^{-n}B)}{u_n} \ge m(A)m(B) \quad \forall A, B \in \mathcal{C}_{\beta}(T_{\Omega}).$ 

Proof Fix  $A, B \in \mathcal{C}_{\beta}(T_{\Omega}), \ 0 < c < d < \infty \& \text{set } x_{k,n} := \frac{n}{B(k)}, \text{ then}$ 

$$m(A \cap T^{-n}B) = \sum_{k=1}^{n} m(A \cap T_{\Omega}^{-k}B \cap [\varphi_{k} = n])$$

$$\geq \sum_{1 \leq k \leq n, \ x_{k,n} \in [c,d]} m(A \cap T_{\Omega}^{-k}B \cap [\varphi_{k} = x_{k,n}B(k)])$$

$$\sim \sum_{1 \leq k \leq n, \ x_{k,n} \in [c,d]} \frac{f(x_{k,n})}{B(k)} m(A) m(B)$$

$$\begin{split} \sum_{1 \leq k \leq n, \ x_{k,n} \in [c,d]} \frac{f(x_{k,n})}{B(k)} &\sim \frac{\gamma a(n)}{n} \sum_{1 \leq k \leq n, \ x_{k,n} \in (c,d)} \frac{(x_{k,n} - x_{k+1,n})}{x_{k,n}^{\gamma}} f(x_{k,n}) \\ &\sim \frac{\gamma a(n)}{n} \int_{[c,d]} \frac{f(x) dx}{x^{\gamma}} = \frac{\gamma a(n)}{n} \mathbb{E}(1_{[c,d]}(Z_{\gamma}) Z_{\gamma}^{-\gamma}). \quad \Box \end{split}$$

For 
$$u_n := \frac{\gamma a(n)}{n}, \quad \varliminf_{u_n} \frac{m(A \cap T^{-n}B)}{u_n} \ge m(A)m(B) \quad \forall \ A, \ B \in \mathcal{C}_\beta(T_\Omega).$$

Proof Fix  $A, B \in \mathcal{C}_{\beta}(T_{\Omega}), \ 0 < c < d < \infty \& \text{set } x_{k,n} := \frac{n}{B(k)}, \text{ then}$ 

$$m(A \cap T^{-n}B) = \sum_{k=1}^{n} m(A \cap T_{\Omega}^{-k}B \cap [\varphi_{k} = n])$$

$$\geq \sum_{1 \leq k \leq n, \ x_{k,n} \in [c,d]} m(A \cap T_{\Omega}^{-k}B \cap [\varphi_{k} = x_{k,n}B(k)])$$

$$\sim \sum_{1 \leq k \leq n, \ x_{k,n} \in [c,d]} \frac{f(x_{k,n})}{B(k)} m(A) m(B)$$

$$\begin{split} \sum_{1 \leq k \leq n, \ x_{k,n} \in [c,d]} \frac{f(x_{k,n})}{B(k)} &\sim \frac{\gamma a(n)}{n} \sum_{1 \leq k \leq n, \ x_{k,n} \in (c,d)} \frac{(x_{k,n} - x_{k+1,n})}{x_{k,n}^{\gamma}} f(x_{k,n}) \\ &\sim \frac{\gamma a(n)}{n} \int_{[c,d]} \frac{f(x) dx}{x^{\gamma}} &= \frac{\gamma a(n)}{n} \mathbb{E}(1_{[c,d]}(Z_{\gamma}) Z_{\gamma}^{-\gamma}). \quad \text{$\mu$} \end{split}$$

Above ex's H-K mix.  $\forall \gamma \in (\frac{1}{2}, 1)$ . Refs: Thaler; Melbourne & Terhesiu



Spectral and rational weak mixing

#### Spectral and rational weak mixing

 $WM \Rightarrow RWM$ 

#### Spectral and rational weak mixing

 $WM \Rightarrow RWM$ 

∃ squashable, WM MPTs , not WRE or RWM.

#### Spectral and rational weak mixing

 $WM \Rightarrow RWM$ 

∃ squashable, WM MPTs , not WRE or RWM.

**Question** Does weak rational ergodicity and spectral weak mixing imply rational weak mixing?

#### Spectral and rational weak mixing

 $WM \Rightarrow RWM$ 

∃ squashable, WM MPTs , not WRE or RWM.

**Question** Does weak rational ergodicity and spectral weak mixing imply rational weak mixing?

 $L^2$  spectrum and rational weak mixing

#### Spectral and rational weak mixing

 $WM \Rightarrow RWM$ 

 $\exists$  squashable, WM MPTs , not WRE or RWM.

**Question** Does weak rational ergodicity and spectral weak mixing imply rational weak mixing?

L<sup>2</sup> spectrum and rational weak mixing

All RWM examples here of form  $T \times S$  where T is an infinite K-automorphism and S WM PPT

#### Spectral and rational weak mixing

 $WM \Rightarrow RWM$ 

∃ squashable, WM MPTs , not WRE or RWM.

**Question** Does weak rational ergodicity and spectral weak mixing imply rational weak mixing?

L<sup>2</sup> spectrum and rational weak mixing

All RWM examples here of form  $T \times S$  where T is an infinite K-automorphism and S WM PPT

Koopman operators have countable Lebesgue spectrum.

#### Spectral and rational weak mixing

 $WM \Rightarrow RWM$ 

∃ squashable, WM MPTs , not WRE or RWM.

**Question** Does weak rational ergodicity and spectral weak mixing imply rational weak mixing?

L<sup>2</sup> spectrum and rational weak mixing

All RWM examples here of form  $T \times S$  where T is an infinite K-automorphism and S WM PPT

Koopman operators have countable Lebesgue spectrum.

**Sample question** Does the Koopman operator of a rationally weakly mixing measure preserving transformation necessarily have countable Lebesgue spectrum?

#### Spectral and rational weak mixing

 $WM \Rightarrow RWM$ 

∃ squashable, WM MPTs , not WRE or RWM.

**Question** Does weak rational ergodicity and spectral weak mixing imply rational weak mixing?

L<sup>2</sup> spectrum and rational weak mixing

All RWM examples here of form  $T \times S$  where T is an infinite K-automorphism and S WM PPT

Koopman operators have countable Lebesgue spectrum.

**Sample question** Does the Koopman operator of a rationally weakly mixing measure preserving transformation necessarily have countable Lebesgue spectrum?

