Rational weak mixing in infinite measure spaces

Jon. Aaronson (TAU)

ETDS Workshop, Warwick

July 2011
Preprint link: http://arxiv.org/abs/1105.3541

Jon. Aaronson (TAU) Rational weak mixing.



1. Hopf's example

T=RoB:X=R,x[0,1]=[0,1]> x Z; - X where B is the
Baker’s transformation on each box [0,1]2 x {n} and R is

—

—

—t

4
I

—~—t

-

/



1. Hopf's example

T=RoB:X=R,x[0,1]=[0,1]> x Z; - X where B is the
Baker’s transformation on each box [0,1]2 x {n} and R is

—_— — —_ —_—t —_— —

4
I

v e P s S < P3N S, -

/ 2 J 4 J 6

T preserves Lebesgue measure m & is ratio mixing:

%nm(A nT™"B) — m(A)m(B) 0¥)

Y A, B bounded with m(0A) =m(9B) =0.



1. Hopf's example

T=RoB:X=R,x[0,1]=[0,1]> x Z; - X where B is the
Baker’s transformation on each box [0,1]2 x {n} and R is

—_— — —_— —_— —_— —

4
I

v e P s S < P3N S, -

/ 2 J 4 J 6

T preserves Lebesgue measure m & is ratio mixing:

%nm(A nT™"B) — m(A)m(B) 0¥)

Y A, B bounded with m(0A) =m(9B) =0.

e Hopf asked whether: (k) Y A, B bounded measurable sets ?



1. Hopf's example

T=RoB:X=R,x[0,1]=[0,1]> x Z; - X where B is the
Baker’s transformation on each box [0,1]2 x {n} and R is

—_— — —_— —_— —_— —

4
I

v e P s S < P3N S, -

/ 2 J 4 J 6

T preserves Lebesgue measure m & is ratio mixing:

%nm(A nT™"B) — m(A)m(B) 0¥)

Y A, B bounded with m(0A) =m(9B) =0.

e Hopf asked whether: (k) Y A, B bounded measurable sets ?

Implies ergodicity



1. Hopf's example

T=RoB:X=R,x[0,1]=[0,1]> x Z; - X where B is the
Baker’s transformation on each box [0,1]2 x {n} and R is

—_— — —_— —_— —_— —

4
I

—~—— —~— - -~ - -

/ 2 J 4 J 6

T preserves Lebesgue measure m & is ratio mixing:

%nm(Am T"B) — m(A)m(B) OK)
Y A, B bounded with m(0A) =m(9B) =0.

e Hopf asked whether: (k) Y A, B bounded measurable sets ?
Implies ergodicity ((*k) does not!)



1. Hopf's example

T=RoB:X=R,x[0,1]=[0,1]> x Z; - X where B is the
Baker’s transformation on each box [0,1]2 x {n} and R is

—_— — —_— —_— —_— —

4
I

—~—— —~— - -~ - -

/ 2 J 4 J 6

T preserves Lebesgue measure m & is ratio mixing:

%nm(Am T"B) — m(A)m(B) OK)
Y A, B bounded with m(0A) =m(9B) =0.

e Hopf asked whether: (k) Y A, B bounded measurable sets ?

Implies ergodicity ((*&) does not!) & isomorphism invariance of \/n.



1. Hopf's example

T=RoB:X=R,x[0,1]=[0,1]> x Z; - X where B is the
Baker’s transformation on each box [0,1]2 x {n} and R is

—_— B e —_— —_— -—

4
I

—~—— —~— - -~ - -

/ 2 J 4 J 6

T preserves Lebesgue measure m & is ratio mixing:

%nm(Am T"B) — m(A)m(B) OK)
Y A, B bounded with m(0A) =m(9B) =0.

e Hopf asked whether: (k) Y A, B bounded measurable sets ?

Implies ergodicity ((*&) does not!) & isomorphism invariance of \/n.

e Summed (k) OK V A, B bdd. meas. via Markov property.
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WeBs.t. 3n<n<... with {T"W: keN} disjoint.

©  (HK]) (X,B,m,T)MPT w.o0. a.c.i.p. =
VAeF,, €>0, 3 W eB(A) weakly wandering, m(A~ W) <e.

® (X,B,m, T) MPT, u, >0 & W € F, weakly wandering
mWRT W) m(W)2. So no improved ().

== 0=Ilm,, 0

For Hopf ex., 1 /%nm(A NT"B) =5 m(A)m(B) ()

n—oo

V A, B bounded, measurable.

Question about Hopf example 37 exhaustive weakly wandering
set of finite measure?
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MPT (X,B,m, T) is rationally weakly mixing (RWM) if
1 FeF, st

-n u —densit;
% (Flegses L (AYym(B) ¥ A, BeBnF (%)
Up n—oo

where u(F) = (up(F))nso := (M;?—W)nzo &

U—density
S, — L means s, — L

n—oo

where K c N is u-small i.e. w —s 0.
ke[1,n] Uk  p—oo
e For uy, y-regularly varying with v € (-1,0), Kc N

is u-small <= it has density zero.

So RWM of Hopf's example & box in R(T) = ().
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4. Consequences

g
Suppose that (X,B,m, T) is a RWM, MPT, then

1 T isweakly rationally ergodic (WRE)i.e. 3 F € F, s.t.

an(lF):g:m(Aﬂ T“B)— m(A)m(B) ¥V A, BeBnF (Yr)

where a,(F) := Y725 ux (F). Moreover

R(T):={FeF,: (J%) holds}={FeF,: (%) holds}.

(T) —densi
91'Isomorphism: T2T RWM =— <~ piaira

€2 T isweakly mixing (WM): T xS is ergodic VY EPPT S.
§3 T xS isRWM V WM, PPT S.

n—oo
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5. Sufficient condition: Krickeberg mixing

Given (X,B,m, T) a MPT & « c B a countable generating
partition, say that T is a-ratio mixing («a-RM) if
3 pp,>0 (n>1) such that

pnm(AnT "By — m(A)ym(B) ¥V A, BeC(,. (x)

n—oo

where

N
Ca::{[al,,,,,aN]k: ﬂTJkaj: NEN, kEZ, 31,...,3/\/604}.
j=1

94 Suppose (X,B,m, T) WRE, MPT & 3 a countable generating
partition v ¢ R(T) and Q € C, such that

MANTTB) wemses L AVm(B) VA, BeC,

Unp n—oo

where u = u(Q), then (X,B,m, T) is RWM.
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6. Markov Chains

Irreducible, recurrent Markov shifts with the strong ratio
limit property (SRLP) pﬁ"s) P§ns+1) V states s) are a—RM with
a = {state occupied at time 0}.
e.g. Hopf’'s example isom. to the symm RW on Z, with
reflecting barrier at 0. Transition matrix has SRLP:

(n) 2
Poo ~ \/;
95 The irreducible, recurrent Markov shift is RWM iff for some and
hence all states s, the renewal sequence u = (p§g))n20 is smooth:

n n
Z |uk — ugs1| = O(Z uk) as n— oo.
k=0 k=0

®  Smoothness of ap. rec. u= (uo, uy,...) with lifetime dist.
FeP(N)ifeg IN2L T2y iy <00 (V(t) = Sicnee 1) &
Yi=1 f([k,00)) = o(/n).
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7. Modes of convergence
For ue W = {weights}:= {u e (*(Z).: ay(n):= ) ux —> oo},

Sn Y™ ] if 3K cN u-small such that s, — L;

n—soo n—oo, n¢K

n
U—s. Cesaro . 1
Sn —> L if mZUlek—Lln_)—o)o 0.
k=0

n—oo

. U—s. Cesaro U—density
Evidently — = —
n—oo n—oo

46 Smoothing Lemma: u €20, x = (x1,x0,...) € RN bdd. below:
g

n
Z ugxey — L& 3 KycN, u-small s.t.
— n—oo

U—s. Cesaro
Xy > L = x, — L.

n—oo

n—oo, n¢Kp
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A weight u € 20 is (good for the) mean ergodic theorem (MET) if
V ergodic PPT (Q, A4, P,S):

n-1 2
! > uyf oSk B E(f) Y fel?(P). (MET)
ay(n) (= n—oo
Known that

(i) u €2 smooth = MET. e.g. u(F) for Fe R(T), T RWM.
(i) For T WRE & WM, u(F) is MET V F e R(T).

(iii) u € MET # u smooth. Qn. for renewal sequences.

(iv) u e 0 MET, (,.A, P,S) weakly mixing PPT.

— P(AnS"B) =5V P(A)P(B) V A,Be A.

n—oo

Use these to prove T RWM == T x S ergodic V ergodic PPT S &
RWM YV weakly mixing PPT S.
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§2 (B) V A, Bel, :={finite unions of cylinders}.
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®©  In this situation, (X, B, m, T) is RWM.
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Above ex's H-K mix. V v ¢ (%, 1). Refs: Thaler; Melbourne & Terhesiu.
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Thank you for listening.



