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Strange Nonchaotic Attractors

The main concept of a Strange Nonchaotic Attractor is as follows. We

consider a skew product on a space X = B × Y . The space B is the base

and Y is the fiber space; for each ϑ ∈ B the set {ϑ} × Y is the fiber over ϑ.

The skew product F : X → X can be written as

F (ϑ, x) = (R(ϑ), ψ(ϑ, x)). (1)

Here R is a map from the base to itself, and for any ϑ ∈ B the map ψϑ,

given by ψϑ(x) = ψ(ϑ, x) maps the fiber over ϑ to a fiber over R(ϑ). In

most cases Y is a manifold, very often the real line or an interval and the

maps ψϑ are smooth. In fact, we are considering convergence in the fibers,

so the minimal assumption we should make is that Y is a metric space. No

special assumptions on the structures on B or of R are really necessary.



However, if B is just a set without any structure, then we can treat the

whole system as a bunch of nonautonomous systems (fibers over full orbits

of R), not connected with each other. Therefore one usually requires that B

is either a manifold or a topological space (usually compact Hausdorff;

often a circle), or a space with finite measure on it.



Attractor:

The main idea that distinguishes this concept of attractor from the usual

one is that we consider only attraction in the fibers. That is, the distance of

a point p from the attractor is measured as the distance of p from the

intersection of the attractor and the fiber containing p. Consequently,

attraction means that this distance goes to zero. This agrees with the

vision of the system as a bunch of nonautonomous systems.

Further requirements for an attractor can be divided into several categories.



Inside fibers: The intersection of an attractor with a fiber should look like

an attractor for a usual system. The simplest case is when it is one point.

This is the usual case when the fiber is one-dimensional. Then the whole

attractor is a graph of a function ϕ : B → Y . In more complicated cases we

can require that the intersection of the attractor with each fiber is compact.

Across the fibers: How should the intersection of the attractor with a

fiber depend on the fiber? In the most interesting case, when the attractor

is a graph of the function ϕ this translates into a question: what should we

assume about ϕ? We may impose no assumptions; if B is a topological

space, we may require ϕ to be continuous, upper semicontinuous, Borel,

etc. If there is a measure on B, we may require that ϕ is measurable.



Invariance. For the usual dynamical system, an attractor is compact, and

therefore it contains the ω-limit set of every point from its basin. Thus, we

can replace it, if necessary, by its subset defined as the closure of the union

of the ω-limit sets of the points from its basin. This subset is automatically

invariant. Thus, the requirement that the attractor is invariant is natural

and in a sense, is satisfied automatically. In our case (except in the periodic

fibers, which often do not exist or their union has measure zero) the notion

of the ω-limit set makes no sense, because the distance between the points

is measured only in the same fiber, and the trajectory does not visit the

same fiber twice. Thus, there is no special reason to require the attractor to

be invariant. However, such requirement may be included for historical

reasons.



Nonchaoticity. Usually this property is stated as the negative Lyapunov

exponents in the direction of the fiber. When the attractor is a graph of the

function ϕ, this assumption loses its importance. When it is one point (in

each fiber) that is attracting, there is no room for any form of chaos.

Moreover, the Lyapunov exponent, if it can be defined (we do not have to

assume differentiability in the fibers) will be automatically nonpositive.

Strangeness. The only reasonable meaning of this is when there is

topology in B and ϕ is not continuous.



Theorem 1. Assume that for a skew product (1) there is an ergodic

invariant measure µ for R on the base B. Then, if the graphs of measurable

functions ϕ1, ϕ2 : B → Y are both attractors, it follows that ϕ1 = ϕ2

µ-almost everywhere.



α-concavity and nonautonomous systems

Let f be a continuous real-valued function on a closed interval I of the real

line and let α ≥ 0. The function f will be called α-concave if the function

fα, given by

fα(x) = f(x) + αx2

is concave.

Let (fn)∞n=1 be a sequence of maps from the interval [0, a] to itself such that

fn(0) = 0 for every n. Such a sequence will be called pinched when there

exists an n such that fn is identically zero. It will be called equiconcave if

there exists a positive constant β such that each fn is βγn-concave, where

γn is the supremum of fn.



Theorem 2. Let (fn)∞n=1 be a sequence of monotone maps from the

interval [0, a] to itself such that fn(0) = 0 for every n. Assume also that

this sequence is either pinched or equiconcave. Then for every x0, y0 ∈ (0, a]

we have

lim
n→∞

|xn − yn| = 0. (2)

Assumption on monotonicity can be weakened.



Methods of proof:

Given two points u, v > 0 we define

κ(u, v) :=
|v − u|

min{u, v}
.

Lemma 3. Assume that f is α-concave in the interval [0, y] and

f(0) = 0 < f(y). Let x ∈ (0, y) be such that 0 < f(x) < f(y). Then,

κ(f(x), f(y))

κ(x, y)
≤ f(y)

f(y) + αy2
.



Nonchaotic Equiconcave Attractors

If Y = [0, a], the family {ψϑ}ϑ∈B will be called equiconcave if there exists a

positive constant β such that each ψϑ is βγϑ-concave, where γϑ is the

supremum of ψϑ. Note that now we included the pinched case in the

definition of equiconcavity. Indeed, if ψϑ is identically 0 then γϑ = 0 and ψϑ

is 0-concave.

If Y = [0, a] and the family {ψϑ}ϑ∈B satisfies ψϑ(0) = 0 for each ϑ ∈ B and

is equiconcave, then we will call the system (X,F ) an equiconcave skew

product. If additionally all functions ψϑ are monotone, the system will be

called a monotone equiconcave skew product.



In many standard examples of systems with strange nonchaotic attractors

one defines ψ as a product: ψ(ϑ, x) = f(x)g(ϑ). In those examples, if f is

α-concave for some α > 0 then {ψϑ}ϑ∈B is equiconcave. In particular, if

additionally f is monotone, then we get a monotone equiconcave skew

product.



A graph of a function ϕ : B → [0, a] will be called preinvariant if for every

ϑ ∈ B there exists N such that for every n ≥ N we have

F (Rn(ϑ), ϕ(Rn(ϑ))) = (Rn+1(ϑ), ϕ(Rn+1(ϑ))). (3)

A point ϑ ∈ B will be called pinching if there are infinitely many positive

integers n such that ψRn(ϑ) is identically equal to 0.

First we do not endow B with any extra structure.



Theorem 4. Let the system (X,F ) with base B and fiber space [0, a] be a

monotone equiconcave skew product and let ϕ : B → [0, a] be a preinvariant

function, positive at any point that is not pinching. Then the graph of ϕ is

an attractor with the basin of attraction containing all points whose forward

trajectory does not pass through B × {0}.

Theorem 5. Let the system (X,F ) with base B and fiber space [0, a] be a

monotone equiconcave skew product. Then there exists a preinvariant

function ϕ : B → [0, a], positive at any point that is not pinching.

Corollary 6. Let the system (X,F ) with base B and fiber space [0, a] be a

monotone equiconcave skew product. Then there exists a function

ϕ : B → [0, a], whose graph is an attractor with the basin of attraction

containing all points whose forward trajectory does not pass through

B × {0}.



Observe that we cannot always make an attractor invariant. If ϕ is defined

at R(ϑ), we can try to define ϕ(ϑ) as ψ−1ϑ (ϕ(R(ϑ))), but it may happen

that the image of [0, a] under ψϑ does not contain ϕ(R(ϑ)). It turns out

that the problem is deeper, and an invariant attractor which is a graph may

not exist.

Example 7. Let B = {ϑn}∞n=−∞ ∪ {−1, 1}, where ϑn = 1− 1
n+1 if n ≥ 0

and ϑn = −1− 1
n if n < 0. The map R fixes −1 and 1, and maps ϑn to

ϑn+1. We set a = 1 and define ψϑ(x) to be x(2− x) if ϑ ≥ 0 and x(2− x)/4

if ϑ < 0. Assume that the graph of a function ϕ : B → [0, 1] is an invariant

attractor. Since x(2− x)/4 ≤ x/2, we have ϕ(ϑ0) ≤ ϕ(ϑ−n)/2n ≤ 1/2n for

all positive n. Thus, ϕ(ϑ0) = 0, and consequently, ϕ(ϑn) = 0 for all n > 0.

On the other hand, the trajectory of every x ∈ (0, 1] under the map

x 7→ x(2− x) goes to 1, so ϕ(ϑn)→ 1 as n→∞. This is a contradiction,

and therefore in this case there is no ϕ whose graph is an invariant

attractor.



Example 7 shows that in general, we cannot count on getting an invariant

attractor. However, in this example a preinvariant attracting graph of a

continuous function of course exists; just take ϕ identically equal to 1.



We use the method of constructing of invariant graph described for instance

by Keller. Namely, we set ϕn(ϑ) to be equal to the second component of

Fn(ϑ, a). Since F is monotone in the fibers, the sequence (ϕn)∞n=0 is

decreasing, and therefore convergent pointwise on the whole B. Denote its

limit by ϕK .

Note that Example 7 shows that ϕK (which is 0 at all points ϑn) may be

not an attractor everywhere.

Theorem 8. Let the system (X,F ) with base B and fiber space [0, a] be a

monotone equiconcave skew product, and let the base map R be invertible

and preserve an ergodic invariant probability measure µ on B. If the

function ϕK is positive almost everywhere then its graph is an attractor

with the basin of attraction containing the set Z × (0, a] for some set Z ⊂ B
of full measure µ.



Example showing problems when R is noninvertible:

In the base B we take the full one-sided shift R on 2 symbols (0 and 1). The

fiber space consists of two points (again 0 and 1). We will use the notation

x = (x0, x1, x2, . . . ) ∈ B. The map F : B × {0, 1} → B × {0, 1} is given by

F (x, y) = (R(x), x0).

Theorem 9. For the system described above and an ergodic invariant

probability measure µ on B, if there exists a µ-measurable function

ϕ : B → {0, 1} whose graph is an attractor with the basin of attraction

Z ×{0, 1} for some set Z ⊂ B of µ measure 1, then the entropy of µ is zero.



Idea of the proof:

Set A = {x ∈ B : x0 = ϕ(R(x))}. The graph of a function ϕ : B → {0, 1} is

an attractor if and only if for every (x, y) ∈ B × {0, 1} there is N such that

for every n ≥ N
π2(Fn(x, y)) = ϕ(Rn(x)). (4)

If n ≥ 1 then

π2(Fn(x, y)) = (Rn−1(x))0,

so (4) is equivalent to Rn−1(x) ∈ A. We can show that µ(A) = 1.

Let ξ : B → B be the map that replaces x0 by 1− x0. By the definition, at

most one of the points x, ξ(x) can belong to A. Therefore, A ∩ ξ(A) = ∅.
This means that the shift R is one-to-one µ-almost everywhere. Since R has

a one-sided generator, this implies that hµ(R) = 0.



Corollary 10. For the system described above and an ergodic invariant

probability measure µ on B with positive entropy, there is no Borel function

ϕ : B → {0, 1} whose graph is an attractor.


