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Nonuniform hyperbolicity

LetM be a compact smooth Riemannian manifold and
f ∈ Diff(M). f is said to be nonuniformly hyperbolic on an
invariant subset R ⊂M if for all x ∈ R,

I TxM = Es(x)⊕ Eu(x) and dx fEσ(x) = Eσ(f (x)), σ = s,u;
I there exist numbers 0 < λ < 1 < µ, ε > 0 and Borel

functions C,K : R → R+ such that

‖dx f nv‖ ≤ C(x)λneεn‖v‖, v ∈ Es(x), n > 0,

‖dx f nv‖ ≤ C(x)µneε|n|‖v‖, v ∈ Eu(x), n < 0,

∠(Es(x),Eu(x)) ≥ K (x).

I C(f n(x)) ≤ C(x)eε|n| and K (f n(x)) ≥ K (x)e−ε|n|, n ∈ Z.
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Hyperbolicity via Lyapunov exponents

Now consider f ∈ Diff(M, µ), i.e., f preserves a smooth
measure µ ( µ ∼ vol ).
We say f is nonuniformly hyperbolic w.r.t. µ if µ(M\R) = 0.

The Lyapunov exponent of f is defined by

λ(x , v) = lim sup
n→∞

1
n

log ‖df n
x v‖, x ∈M, v ∈ TxM.

f is nonuniformly hyperbolic⇐⇒ f has nonzero Lyapunov

exponents µ-a.e.
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Existence and Genericity

Question: Do nonuniformly hyperbolic diffeomorphisms exist on
any manifold? If so, can it be generic in Diff(M, µ)?

Existence: Yes.
I (Katok, 1979) Every compact surface admits a Bernoulli

diffeomorhism with nonzero Lyapunov exponents a.e.;
I (Dolgopyat-Pesin, 2002) Every compact manifold

(dimM≥ 2) carries a hyperbolic Bernoulli diffeomorphism;
I (Hu-Pesin-Talitskaya, 2004) Every compact manifold

(dimM≥ 3) carries a hyperbolic Bernoulli flow.
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Genericity (dimM≥ 3): Negative due to the following discrete
version of KAM theory in the volume-preserving category:

Theorem (Cheng-Sun, Hermann, Xia, Yoccoz (1990’s))
For any compact manifoldM and any sufficiently large r there
is an open set U ⊂ Diffr (M, vol) such that every f ∈ U
possesses a Cantor set of codim-1 invariant tori of positive
volume. Moreover, f is C1 conjugate to a Diophantine
translation on each torus.

Invariant tori (with zero Lyapunov exponents) can not be
destroyed by small perturbations.
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Coexistence of zero and nonzero Lyapunov exponents

What is the dynamical behavior outside those invariant tori?
Is it possible to be nonuniformly hyperbolic?

I (Bunimovich, 2001) Coexistence of "elliptic islands" and
"chaotic sea" (hyperbolic) was shown in billiard dynamics
on a mushroom table.

I (Przytycki, 1982; Liverani, 2004) Birth of an elliptic island in
chaotic sea for a one-parameter family of diffeomorphisms
of T2.
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We construct such examples
I in smooth dynamics;
I with a set of "elliptic islands" of positive measure.

Theorem (Hu-Pesin-Talitskaya)
Given α > 0, there exist a compact manifoldM5 and
P ∈ Diff∞(M, µ) such that
(1) ‖P − Id‖C1 ≤ α and P is homotopic to Id;
(2) there is an open dense subset G ⊂M such that P|G has

nonzero Lyapunov exponents µ-a.e. and is Bernoulli;
(3) the complement Gc =M\G has positive volume and

P|Gc = Id.
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In view of Pesin’s ergodic decomposition theorem, i.e., a
nonuniformly hyperbolic system has at most countably many
ergodic components, we construct

Theorem (Chen)
Given α > 0, there exist a compact manifoldM4 and
P ∈ Diff∞(M, µ) such that
(1) ‖P − Id‖C1 ≤ α and P is homotopic to Id;
(2) there is an open dense subset G ⊂M consisting of

countably infinite many open connected components
G1,G2, . . . . For each k, P|Gk has nonzero Lyapunov
exponents µ-a.e. and is Bernoulli;

(3) the complement Gc =M\G has positive volume and
P|Gc = Id.
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Construction ofM5

Pick an Anosov automorphism A of the 2-torus X = T2.
Consider the action of suspension flow St over A with constant
roof function 1 on the suspension manifold N

N = X × [0,1]/ ∼,

where “∼” is the identification (x ,1) ∼ (Ax ,0).

Set Y = T2. Choose a Cantor set C ⊂ Y of positive but not full
measure, and let G =M\C be open connected.

Finally takeM = N × Y and G = N ×G.
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Step 1: Slow down

Consider the partially hyperbolic flow

St × IdY :M = N × Y →M
(n, y) 7→ (St(n), y)

Choose a C∞ bump function κ : Y → R+ ∪ {0} such that
κ ≡ 0 on C, κ > 0 on G = Y\C and ‖κ‖C1 is small.

Replace the speed by κ(y) on each fiber N × {y}, and take the
time-1 map of the new flow:

T (n, y) = (Sκ(y)(n), y).

J. Chen Coexistence of Zero and Nonzero Lyapunov Exponents
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One can verify that
I T |Gc = Id ;
I T is homotopic to Id and C1-close to Id provided ‖κ‖C1 is

small;
I T |G is pointwisely partially hyperbolic with 1-dim stable,

1-dim unstable and 3-dim central;
I T |A is uniformly partially hyperbolic for any compact

invariant subset A ⊂ G.
The we only need to do perturbations on T |G.
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Step 2: Removing zero exponents

1. Produce positive exponent in t-direction by a "surgery":
take a small ball B ⊂ G with coordinate (n, y) = (u, s, t ,a,b),
and construct g1 ∈ Diff∞(G, µ) such that g1 is a rotation along
ut-plane inside B and g1 = Id outside B. Set Q1 = T ◦ g1.
There is a closed invariant subset A ⊂ G of positive volume
such that Q1|A has positive Lyapunov exponents along
ut-directions.

2. The invariant set A can be of extremely bad shape. we need
to use Rokhlin-Halmos tower to construct a new
diffeomorphism Q with positive Lyapunov exponent in
y -directions on a set of positive volume.
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Step 3: Obtain accessibility

Theorem (Burns-Dolgopyat-Pesin, 2002)
Let f ∈ Diff2(G, µ) be pointwise partially hyperbolic such that
(1) f has strongly stable and unstable (δ, q)-foliations W s and

W u where δ and q are continuous functions on G, and W s

and W u are absolutely continuous;
(2) f has positive central exponents on a set of positive volume;
(3) f has the accessibility property via W s and W u;
Then f has positive central exponents almost everywhere. f |G
is ergodic and indeed, Bernoulli.

Q and its small perturbations will satisfy (1) and (2).
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Two points p,q ∈ G are accessible if there exists a collection of
points z1, . . . , zn ∈ G such that p = z1, q = zn and
zk ∈W i(zk−1) for i = s or u and k = 2, . . . ,n. The accessibility
class of q under f ∈ Diff∞(G, µ) is denoted by Af (q).

Decompose G as G =
⊎∞

i=0 Gi , where Gi is a nested sequence
of compact sets, and pick qi ∈ Gi . We shall perturb Q to P as
follows:

Q −→ P0 −→ P1 −→ P2 −→ . . . −→ P

such that Pn 6= Pn−1 only on Gn, and APn(qn) ⊃ Gn. Therefore,

APn(q0) ⊃
n⊎

i=0
Gi .

Moreover, we can guarantee that Pn is stably accessible, then
taking n→∞, we get AP(q0) ⊃ G.

J. Chen Coexistence of Zero and Nonzero Lyapunov Exponents
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Construction ofM4

Take the same suspension manifold N .

Set Y = S1 = [0,1]/{0 ∼ 1}. Construct a "fat" Cantor set
C ⊂ Y by consecutively removing disjoint open subintervals
I1, I2, . . . from Y , then set I =

⊎∞
n=1 In and C = Y\I. Moreover,

let
∑∞

n=1 |In| < 1 so that C is of positive Lebesgue measure.

Finally takeM = N × Y , G = N × I and Gn = N × In,
n = 1,2, . . . . Clearly {Gn}∞n=1 are open connected components
of G. Also the complement Gc = N × C is of positive
Riemannian volume.
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Reduction

After several simplifications, it suffices to do perturbation Hn on
each Gn.

Proposition
Set Z = N × (−2,2) and Ẑ = N × [−3,3]. Given δ > 0, r ≥ 1,
there exists H ∈ Diffr (Ẑ, µ) such that
(1) ‖H − Id‖Cr ≤ δ;
(2) H is homotopic to Id, and H = Id on Ẑ\Z;
(3) H|Z has nonzero Lyapunov exponents µ-a.e. and is

ergodic, indeed Bernoulli.
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The End

Thank you very much
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