# Diophantine condition of the interval exchange map 

Dong Han Kim

Department of Mathematics Education, Dongguk University - Seoul, Korea

Warwick, 13 July, 2011

Diophantine condition of the interval exchange map

- Irrational rotations and Diophantine type


## An irrational rotation

$$
T:[0,1) \rightarrow[0,1), \quad T(x)=x+\theta(\bmod 1)
$$




## Diophantine approximation

Theorem (Dirichlet, Hurwitz)
For any irrational $\theta$ there are infinitely many integers $p, q$ such that

$$
\left|\theta-\frac{p}{q}\right|<\frac{1}{\sqrt{5} q^{2}} .
$$

## Diophantine approximation

Theorem (Dirichlet, Hurwitz)
For any irrational $\theta$ there are infinitely many integers $p, q$ such that

$$
\left|\theta-\frac{p}{q}\right|<\frac{1}{\sqrt{5} q^{2}} .
$$

Let an irrational $\theta$ be of Roth type if for any $\varepsilon>0$ there is a constant $C$ such that

$$
\left|\theta-\frac{p}{q}\right|>\frac{C}{q^{2+\varepsilon}}
$$

## Diophantine approximation

Theorem (Dirichlet, Hurwitz)
For any irrational $\theta$ there are infinitely many integers $p, q$ such that

$$
\left|\theta-\frac{p}{q}\right|<\frac{1}{\sqrt{5} q^{2}}
$$

Let an irrational $\theta$ be of Roth type if for any $\varepsilon>0$ there is a constant $C$ such that

$$
\left|\theta-\frac{p}{q}\right|>\frac{C}{q^{2+\varepsilon}} .
$$

The set of Roth type irrationals has full Lebesgue measure.

## Roth type condition and recurrence speed

$T:[0,1) \rightarrow[0,1), \quad T(x)=x+\theta(\bmod 1)$.
recurrence time $\tau_{r}(x)=\min \left\{j \geq 1:\left|T^{j}(x)-x\right|<r\right\}$.
Theorem
An irrational $\theta$ is of Roth type if and only if

$$
\lim _{r \rightarrow 0^{+}} \frac{\log \tau_{r}(x)}{-\log r}=1
$$

## Roth type condition and recurrence speed

$T:[0,1) \rightarrow[0,1), \quad T(x)=x+\theta(\bmod 1)$.
recurrence time $\tau_{r}(x)=\min \left\{j \geq 1:\left|T^{j}(x)-x\right|<r\right\}$.
Theorem
An irrational $\theta$ is of Roth type if and only if

$$
\lim _{r \rightarrow 0^{+}} \frac{\log \tau_{r}(x)}{-\log r}=1
$$

$$
\left|T^{q} x-x\right|<\delta \Leftrightarrow|q \theta-\exists p|<\delta \Leftrightarrow\left|\theta-\frac{p}{q}\right|<\frac{\delta}{q}
$$

## Roth type condition and continued fraction

Continued fraction is the best method of Diophantine approximation.

$$
\theta=\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\frac{1}{\ldots}}}}, \quad \frac{p_{n}}{q_{n}}=\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{\cdots+\frac{1}{a_{n}}}}} .
$$

An irrational $\theta$ is Roth type if and only if for all $\varepsilon>0$ there is a constant $C$ such that

$$
a_{n+1}<C q_{n}^{\varepsilon} \text { for all } n .
$$

## Roth type condition and uniform distribution

An irrational $\theta$ is of Roth type if and only if

$$
\{0, \theta, 2 \theta, \ldots, n \theta\} \quad(\operatorname{in} \bmod 1)
$$

is uniformly distributed in $[0,1)$ in the sense that
(minimal distance between any two points) $>\frac{C}{n^{1+\varepsilon}}$.

## An interval exchange map

Generalization of the irrational rotation


## The interval exchange map

An interval exchange map (i.e.m.) is determined by

- The combinatorial data: two bijection $\left(\pi_{0}, \pi_{1}\right)$ from $\mathcal{A}$ (names for the intervals) onto $\{1, \ldots, d\} .(d=\operatorname{card}(\mathcal{A}))$.
- The length data $\left(\lambda_{\alpha}\right)_{\alpha \in \mathcal{A}}$.


$$
\mathcal{A}=\{A, B, C, D\} .
$$

$$
\begin{aligned}
& \pi_{0}(A)=1, \pi_{0}(B)=2, \pi_{0}(C)=3, \pi_{0}(D)=4 \\
& \pi_{1}(A)=4, \pi_{1}(B)=3, \pi_{1}(C)=2, \pi_{1}(D)=1
\end{aligned}
$$

## The Keane property

Consider only combinatorial data $\left(\mathcal{A}, \pi_{t}, \pi_{b}\right)$ which are admissible, meaning that for all $k=1,2, \ldots, d-1$, we have

$$
\pi_{0}^{-1}(\{1, \ldots, k\}) \neq \pi_{1}^{-1}(\{1, \ldots, k\}) .
$$

The Keane property is the appropriate notion of irrationality for i.e.m. since, as Keane himself proved,

- An i.e.m. with Keane's property is minimal (i.e. all orbits are dense);
- If the length data are rationally independent (and the combinatorial data are admissible) then $T$ has Keane's property.


## Continued fraction algorithm



$$
\theta=\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{\ldots}}}
$$

Consider the induced map.

## Invariant measure for the continued fraction algorithm

Farey map for the irrational rotation.

$$
f(x)= \begin{cases}\frac{x}{1-x}, & 0<x<\frac{1}{2} \\ \frac{1-x}{x}, & \frac{1}{2}<x<1\end{cases}
$$

with invariant measure $\frac{d x}{x}$.
Gauss map is a acceleration :

$$
x \mapsto\left\{\frac{1}{x}\right\} \text { with invariant measure } \frac{d x}{1+x}
$$

## Generalization of continued fractions to i.e.m. (Rauzy, Veech, Zorich)


type 0

## Generalization of continued fractions to i.e.m. (Rauzy, Veech, Zorich)



## Permutation data

$\left(\pi_{0}, \pi_{1}\right)$ : an admissible pair, $\alpha_{0}, \alpha_{1} \in \mathcal{A}, \pi_{0}\left(\alpha_{0}\right)=\pi_{1}\left(\alpha_{1}\right)=d$; Define two new admissible pairs $\mathcal{R}_{0}\left(\pi_{0}, \pi_{1}\right), \mathcal{R}_{1}\left(\pi_{0}, \pi_{1}\right)$ :

$$
\begin{gathered}
\mathcal{R}_{0}\left(\pi_{0}, \pi_{1}\right)=\left(\pi_{0}, \hat{\pi}_{1}\right), \\
\mathcal{R}_{1}\left(\pi_{0}, \pi_{1}\right)=\left(\hat{\pi}_{0}, \pi_{1}\right), \\
\hat{\pi}_{0}(\alpha)= \begin{cases}\pi_{0}(\alpha) & \text { if } \pi_{0}(\alpha) \leq \pi_{0}\left(\alpha_{1}\right), \\
\pi_{0}(\alpha)+1 & \text { if } \pi_{0}\left(\alpha_{1}\right)<\pi_{0}(\alpha)<d, \\
\pi_{0}\left(\alpha_{1}\right)+1 & \text { if } \alpha=\alpha_{0},\left(\pi_{0}\left(\alpha_{0}\right)=d\right)\end{cases} \\
\hat{\pi}_{1}(\alpha)= \begin{cases}\pi_{1}(\alpha) & \text { if } \pi_{1}(\alpha) \leq \pi_{1}\left(\alpha_{0}\right), \\
\pi_{1}(\alpha)+1 & \text { if } \pi_{1}\left(\alpha_{0}\right)<\pi_{1}(\alpha)<d, \\
\pi_{1}\left(\alpha_{0}\right)+1 & \text { if } \alpha=\alpha_{1},\left(\pi_{1}\left(\alpha_{1}\right)=d\right)\end{cases}
\end{gathered}
$$

## Rauzy diagram

Each vertex $\left(\pi_{0}, \pi_{1}\right)$ being the origin of two arrows joining $\left(\pi_{0}, \pi_{1}\right)$ to $\mathcal{R}_{0}\left(\pi_{0}, \pi_{1}\right), \mathcal{R}_{1}\left(\pi_{0}, \pi_{1}\right)$.


Rauzy diagram $d=2$



Rauzy diagram $d=4$ first case


## Length data

Define a new i.e.m. $\mathcal{V}(T)$ by the admissible pair $\mathcal{R}_{\varepsilon}\left(\pi_{0}, \pi_{1}\right)$ and the lengths $\left(\hat{\lambda}_{\alpha}\right)_{\alpha \in \mathcal{A}}$ given by

$$
\begin{cases}\hat{\lambda}_{\alpha}=\lambda_{\alpha} & \text { if } \alpha \neq \alpha_{\varepsilon} \\ \hat{\lambda}_{\alpha_{\varepsilon}}=\lambda_{\alpha_{\varepsilon}}-\lambda_{\alpha_{1-\varepsilon}} & \text { otherwise }\end{cases}
$$

i.e. the length data of $T$ are obtained from those of $\mathcal{V}(T)$ as

$$
\lambda=V(T) \hat{\lambda}
$$

where the matrix $V(T)$ has all diagonal entries equal to 1 and all off-diagonal entries equal to 0 except the one corresponding to ( $\alpha_{\varepsilon}, \alpha_{1-\varepsilon}$ ) which is also equal to 1 .

Diophantine condition of the interval exchange map
$\left\llcorner_{\text {Continued fraction algorithm for the i.e.m. }}\right.$

## Continued fraction matrix



Diophantine condition of the interval exchange map
$\left\llcorner_{\text {Continued fraction algorithm for the i.e.m. }}\right.$

## Continued fraction matrix



$$
\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right)
$$



$$
\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

## For irrational rotations

$$
\begin{gathered}
V(T)=V(\mathcal{V}(T))=\cdots=V\left(\mathcal{V}^{a_{1}-2}(T)\right)=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \\
V\left(\mathcal{V}^{a_{1}-1}(T)\right)=V\left(\mathcal{V}^{a_{1}}(T)\right)=\cdots=V\left(\mathcal{V}^{a_{1}+a_{2}-2}(T)\right)=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right) \\
V\left(\mathcal{V}^{a_{1}+a_{2}-1}(T)\right)=\cdots=V\left(\mathcal{V}^{a_{1}+a_{2}+a_{3}-2}(T)\right)=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \\
\vdots \\
\underbrace{\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \cdots\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)}_{a_{1}-1} \underbrace{\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right) \cdots\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)}_{a_{2}} \underbrace{\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \cdots\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)}_{a_{3}} \cdots \cdots
\end{gathered}
$$

## Invariant measure and Zorich's acceleration

Rauzy-Veech operation has a $\sigma$-finite invariant measure on the length data.

For the irrational rotation it is Farey map:
$f(x)=\left\{\begin{array}{ll}\frac{x}{1-x}, & 0<x<\frac{1}{2}, \\ \frac{1-x}{x}, & \frac{1}{2}<x<1\end{array}\right.$ with invariant measure $\frac{d x}{x}$.

## Invariant measure and Zorich's acceleration

Rauzy-Veech operation has a $\sigma$-finite invariant measure on the length data.

For the irrational rotation it is Farey map:
$f(x)=\left\{\begin{array}{ll}\frac{x}{1-x}, & 0<x<\frac{1}{2}, \\ \frac{1-x}{x}, & \frac{1}{2}<x<1\end{array}\right.$ with invariant measure $\frac{d x}{x}$.
Zorich introduced an acceleration algorithm with finite invariant measure, corresponding to Gauss map in rotation
(Gauss map: $x \mapsto\left\{\frac{1}{x}\right\}$ with invariant measure $\frac{d x}{1+x}$ )

## Accelerated algorithm

Zorich's acceleration:
$n_{k+1}$ is taken as the largest integer $n>n_{k}$ such that one name in $\mathcal{A}$ are taken by arrows associated to iterations of $\mathcal{V}$ from $T\left(n_{k}\right)$ to $\mathcal{V}^{n}(T)$.
e.g. $\quad A A, B, D, C C C C, B, A A A A, D D D D, \ldots$

## Accelerated algorithm

Zorich's acceleration:
$n_{k+1}$ is taken as the largest integer $n>n_{k}$ such that one name in $\mathcal{A}$ are taken by arrows associated to iterations of $\mathcal{V}$ from $T\left(n_{k}\right)$ to $\mathcal{V}^{n}(T)$.
e.g. $\quad A A, B, D, C C C C, B, A A A A, D D D D, \ldots$

Marmi-Moussa-Yoccoz's acceleration:
$m_{k+1}$ is taken as the largest integer $n>m_{k}$ such that not all names in $\mathcal{A}$ are taken by arrows
e.g. $A A B D, C C C C B A A A A, D D D D \cdots$

- $Y(n)$ : continued fraction matrices for a given $T$.
- $\lambda(n)$ : length data after $n$th iteration.
- $T^{(n)}$ : induced map of $T$ on $\left[0, \lambda^{*}(n)\right), \lambda^{*}(n)=\sum_{\alpha} \lambda_{\alpha}(n)$.
- $Q(n)=Y(1) Y(2) \cdots Y(n)$.
- $Z(k)=Y\left(n_{k-1}+1\right) Y\left(n_{k-1}+2\right) \cdots Y\left(n_{k}\right)$
- $A(k)=Y\left(m_{k-1}+1\right) Y\left(m_{k-1}+2\right) \cdots Y\left(m_{k}\right)$
- $Y(n)$ : continued fraction matrices for a given $T$.
- $\lambda(n)$ : length data after $n$th iteration.
- $T^{(n)}$ : induced map of $T$ on $\left[0, \lambda^{*}(n)\right), \lambda^{*}(n)=\sum_{\alpha} \lambda_{\alpha}(n)$.
- $Q(n)=Y(1) Y(2) \cdots Y(n)$.
- $Z(k)=Y\left(n_{k-1}+1\right) Y\left(n_{k-1}+2\right) \cdots Y\left(n_{k}\right)$
- $A(k)=Y\left(m_{k-1}+1\right) Y\left(m_{k-1}+2\right) \cdots Y\left(m_{k}\right)$

Diophantine condition:
For any $\varepsilon>0$ there exist $C_{\varepsilon}>0$ such that

$$
\|A(k+1)\| \leq C_{\varepsilon}\left\|Q\left(m_{k}\right)\right\|^{\varepsilon} \quad \text { or } \quad\|Z(k+1)\| \leq C_{\varepsilon}\left\|Q\left(n_{k}\right)\right\|^{\varepsilon} .
$$

## Distance between discontinuities

$\Delta(T)$ : minimal distance between the discontinuity points of $T$
We have another Diophantine condition:
For any $\varepsilon>0$ there exist $D_{\varepsilon}>0$ such that for all $m \geq 1$ we have

$$
\Delta\left(T^{m}\right) \geq \frac{D_{\varepsilon}}{m^{1+\varepsilon}} .
$$

## Distance between discontinuities

$\Delta(T)$ : minimal distance between the discontinuity points of $T$
We have another Diophantine condition:
For any $\varepsilon>0$ there exist $D_{\varepsilon}>0$ such that for all $m \geq 1$ we have

$$
\Delta\left(T^{m}\right) \geq \frac{D_{\varepsilon}}{m^{1+\varepsilon}} .
$$

It has been unclear the relation between Diophantine condition by the size of $Q$ matrices and condition using the distance between discontinuities.
(e.g. Marmi-Moussa-Yoccoz JAMS, 2006)

## Diopahntine conditions

(A) For any $\varepsilon>0$ there exist $C_{\varepsilon}>0$ such that

$$
\|A(k+1)\| \leq C_{\varepsilon}\left\|Q\left(m_{k}\right)\right\|^{\varepsilon} .
$$

(Z) For any $\varepsilon>0$ there exist $C_{\varepsilon}>0$ such that

$$
\|Z(k+1)\| \leq C_{\varepsilon}\left\|Q\left(n_{k}\right)\right\|^{\varepsilon} .
$$

(D) For any $\varepsilon>0$ there exist $C_{\varepsilon}>0$ such that $\Delta\left(T^{n}\right) \geq \frac{C_{\varepsilon}}{n^{1+\varepsilon}}$.
$\lim _{r \rightarrow 0} \frac{\log \tau_{r}(x)}{-\log r}=1$ for almost every $x$.
(U)

$$
\begin{equation*}
\lim _{r \rightarrow 0} \frac{\log \tau_{r}(x)}{-\log r}=1 \text { uniformly. } \tag{R}
\end{equation*}
$$

## Relation between the Diophantine conditions

- In 2-interval exchange or the irrational rotation, all 5 conditions are equivalent.


## Relation between the Diophantine conditions

- In 2-interval exchange or the irrational rotation, all 5 conditions are equivalent.
- In 3-interval exchange, (A) and (D) are equivalent and (Z), $(\mathrm{U})$ and $(\mathrm{R})$ are equivalent.


## Relation between the Diophantine conditions

- In 2-interval exchange or the irrational rotation, all 5 conditions are equivalent.
- In 3-interval exchange, (A) and (D) are equivalent and (Z), $(\mathrm{U})$ and (R) are equivalent.
- In general interval exchanges we have

$$
(A) \Leftrightarrow(D) \underset{\nLeftarrow}{\Rightarrow}(U) \underset{\nLeftarrow}{\Rightarrow}(Z) \stackrel{? ?}{\nLeftarrow}(R)
$$

$(U) \Rightarrow(R)$ by the definition

## Irrational rotations

$$
Z(1)=\left(\begin{array}{cc}
1 & a_{1}-1 \\
0 & 1
\end{array}\right), Z(k)=A(k)=\left\{\begin{array}{cc}
\left(\begin{array}{cc}
1 & a_{k} \\
0 & 1
\end{array}\right), & \text { odd } k, \\
\left(\begin{array}{cc}
1 & 0 \\
a_{k} & 1
\end{array}\right), & \text { even } k
\end{array}\right.
$$

By multiplying them

$$
Q\left(n_{k}\right)=Q\left(m_{k}\right)=\left\{\begin{array}{cl}
\left(\begin{array}{cc}
q_{k-1}-p_{k-1} & q_{k}-p_{k} \\
p_{k-1} & p_{k}
\end{array}\right), & \text { for odd } k, \\
\left(\begin{array}{cc}
q_{k}-p_{k} & q_{k-1}-p_{k-1} \\
p_{k} & p_{k-1}
\end{array}\right), & \text { for even } k .
\end{array}\right.
$$

Therefore,

$$
\begin{aligned}
\|Z(k+1)\| & =\|A(k+1)\|=a_{k+1}+2 \\
\left\|Q\left(n_{k}\right)\right\| & =\left\|Q\left(m_{k}\right)\right\|=q_{k}+q_{k-1} .
\end{aligned}
$$

Condition (A) and (D) are equivalent to

$$
a_{k+1}+2 \leq C_{\varepsilon}\left(q_{k}+q_{k-1}\right)^{\varepsilon}<2^{\varepsilon} C_{\varepsilon} q_{k}^{\varepsilon} .
$$

The Roth type condition for the irrational number.

## 3-interval exchange maps

Let $T$ be a 3-interval exchange map with $\left(\lambda_{A}, \lambda_{B}, \lambda_{C}\right)$.
Assume

$$
\begin{aligned}
& \pi_{0}(A)=1, \pi_{0}(B)=2, \pi_{0}(C)=3, \\
& \pi_{1}(C)=3, \pi_{1}(B)=2, \pi_{1}(A)=1 .
\end{aligned}
$$



Define an irrational rotation $\bar{T}$ on $\bar{I}=\left[0,1+\lambda_{B}\right)$ by

$$
\bar{T}(x)= \begin{cases}x+\lambda_{B}+\lambda_{C} & \text { if } x+\lambda_{B}+\lambda_{C} \in \bar{I} \\ x-\lambda_{B}-\lambda_{A} & \text { if } x+\lambda_{B}+\lambda_{C} \notin \bar{I}\end{cases}
$$

$T$ is the induced map of $\bar{T}$ on $[0,1)=\left[0, \lambda_{A}+\lambda_{B}+\lambda_{C}\right)$.
Let $\bar{T}$ be a 2-interval exchange with length data $\left(\lambda_{\bar{A}}, \lambda_{\bar{B}}\right)$, $\lambda_{\bar{A}}=\lambda_{A}+\lambda_{B}$ and $\lambda_{\bar{C}}=\lambda_{A}+\lambda_{C}$.


Let $\alpha=\frac{\lambda_{B}+\lambda_{C}}{1+\lambda_{B}}$ be the rotation angle of $\bar{T}$ and $a_{n}$ and $\frac{p_{n}}{q_{n}}$ be the partial quotient and partial convergent of $\alpha$.
$\bar{T}$ satisfies condition (A) or (D): for any $\varepsilon>0$ there exist $C_{\varepsilon}>0$ such that

$$
a_{n+1} \leq C_{\varepsilon} q_{n}{ }^{\varepsilon} .
$$

For the irrational rotation

$$
\lim _{r \rightarrow 0} \frac{\log \bar{\tau}_{r}(x)}{-\log r}=1
$$

if $\alpha$ is of Roth type.

## Proposition

For a 3-interval exchange map $T$,

$$
\lim _{r \rightarrow 0} \frac{\log \tau_{r}(x)}{-\log r}=1
$$

if and only if

$$
\lim _{r \rightarrow 0} \frac{\log \bar{\tau}_{r}(x)}{-\log r}=1
$$

where $\bar{\tau}_{r}$ is the first return time of $\bar{T}$.
$T$ satisfies (R) or (U) if and only if $\bar{T}$ satisfies (A) (or (Z)).


No long sequence of $A$ implies no long sequence of $\overline{A B}$ (center).
No long sequence of $\overline{A B}$ implies no long sequence $B^{n} C A^{m}$.
Proposition
The 3-interval exchange map $T$ satisfies Condition ( $Z$ ) if and only if the $\bar{T}$ satisfies (A) (or equivalently (Z)).

## (A) implies (D)

- $\Delta\left(\left(T^{(k)}\right)^{2}\right) \leq \Delta\left(T^{m}\right)$ for $\min Q_{\alpha}(k-1)<m \leq \min Q_{\alpha}(k)$
- If $k^{\prime}>k$ satisfies $\lambda^{*}\left(k^{\prime}\right)<\lambda_{\alpha}(k), \pi_{0}^{(k)}(\alpha)=1$, then

$$
\min _{\alpha} \lambda_{\alpha}\left(k^{\prime}\right) \leq \Delta\left(\left(T^{(k)}\right)^{2}\right)
$$

- $(A(k+1) A(k+2) \cdots A(k+r))_{\alpha \beta}>0, r=\max (2 d-3,2)$
- (Marmi-Moussa-Yoccoz) If $T$ satisfies Condition (A), then

$$
\max _{\alpha \in \mathcal{A}} \lambda_{\alpha}(k) \leq C_{\varepsilon} \min _{\alpha \in \mathcal{A}} \lambda_{\alpha}(k)\|Q(k)\|^{\varepsilon} .
$$

Theorem
If $T$ satisfies condition ( $A$ ), then it also satisfies Condition ( $D$ ).

## (D) implies (A)

- Suppose that $T$ does not satisfy (A). Then for some $\delta>0$ there are infinitely many $k$ such that

$$
\min _{\alpha \in \mathcal{A}} \lambda_{\alpha}(k)<\lambda^{*}(k)^{1+\delta} .
$$

- If $\lambda_{\alpha}(k)<\lambda^{*}(k)^{1+\delta}$, then for some integer $s, 1 \leq s<d$, we have

$$
\Delta\left(T^{\left\lfloor 2 / \lambda^{*}(k)^{1+s \delta / d}\right\rfloor}\right)<(d-1) \lambda^{*}(k)^{1+(s+1) \delta / d} .
$$

Theorem
If $T$ does not satisfy ( $A$ ), then $T$ does not satisfy ( $D$ ).

## The first return time of the interval exchange map

Let $\mathcal{P}_{n}$ be the partition of $I=[0,1)$ consists of

$$
T^{i}\left(I_{\alpha}(n)\right), \quad 0 \leq i<Q_{\alpha}(n)
$$

Define $R_{n}(x)$ by the first return time to the element of $\mathcal{P}_{n}$ which contains $x$.

Proposition

$$
\min _{\beta \in \mathcal{A}} Q_{\beta}(n) \leq R_{n}(x)<2 \max _{\beta \in \mathcal{A}} Q_{\beta}(n+m(d))+\max _{\beta \in \mathcal{A}} Q_{\beta}(n) .
$$

## The first return time of the interval exchange map

Let $\mathcal{P}_{n}$ be the partition of $I=[0,1)$ consists of

$$
T^{i}\left(I_{\alpha}(n)\right), \quad 0 \leq i<Q_{\alpha}(n)
$$

Define $R_{n}(x)$ by the first return time to the element of $\mathcal{P}_{n}$ which contains $x$.

Proposition

$$
\min _{\beta \in \mathcal{A}} Q_{\beta}(n) \leq R_{n}(x)<2 \max _{\beta \in \mathcal{A}} Q_{\beta}(n+m(d))+\max _{\beta \in \mathcal{A}} Q_{\beta}(n)
$$

Condition (A) $\Rightarrow$ for all $\varepsilon>0$ there is $C_{\varepsilon}^{\prime}>0$ such that

$$
\max _{\alpha \in \mathcal{A}} \lambda_{\alpha}(n) \leq C_{\varepsilon}^{\prime}\|Q(n)\|^{\varepsilon} \min _{\alpha \in \mathcal{A}} \lambda_{\alpha}(n)
$$

## (A) and (D) imply (U)

Theorem
For an interval exchange map with condition (A)

$$
\lim _{n \rightarrow \infty} \frac{\log R_{n}(x)}{-\log \left|P_{n}(x)\right|} \leq \limsup _{r \rightarrow 0^{+}} \frac{\log \tau_{r}(x)}{-\log r}=1 \text { uniformly. }
$$

Lemma
If $\tau_{r}(x)=n$ for some $x$, then we have $\Delta\left(T^{2 n}\right)<r$.

Theorem
Condition (D) implies Condition (U)

## (U) implies (Z)

Assume there is a sequence $k_{i}$ and $r>0$ and $C$ such that

$$
\begin{equation*}
\left\|Z\left(k_{i}+1\right)\right\| \geq C\left\|Q\left(m_{k_{i}}\right)\right\|^{\rho} . \tag{1}
\end{equation*}
$$

Let $\alpha_{i}$ be the first name. Each $\beta \in \mathcal{A}_{i}$ appeared $h_{i}$ or $h_{i}+1$ times as the second name between $m_{k_{i}}+1$ and $m_{k_{i}+1}$.

$$
\begin{aligned}
& C\left\|Q_{\alpha_{i}}\left(m_{k_{i}}\right)\right\|^{\rho}<C\left\|Q\left(m_{k_{i}}\right)\right\|^{\rho} \leq\left\|Z\left(k_{i}+1\right)\right\|<d+\left|\mathcal{A}_{i}\right| \cdot\left(h_{i}+1\right) \\
& \left|T\left(m_{k_{i}}\right)(x)-x\right|=\sum_{\beta \in \mathcal{A}_{i}} \lambda_{\beta}\left(m_{k_{i}}\right)<\frac{\lambda_{\alpha_{i}}\left(m_{k_{i}}\right)}{h_{i}}=r_{i}, x \in I_{\alpha_{i}}\left(m_{k_{i}}\right) \\
& \frac{\log \tau_{r_{i}}(x)}{-\log r_{i}}<\frac{\log \left\|Q_{\alpha_{i}}\left(m_{k_{i}}\right)\right\|}{\log h_{i}-\log \lambda_{\alpha_{i}}\left(m_{k_{i}}\right)}<\frac{\log \left\|Q_{\alpha_{i}}\left(m_{k_{i}}\right)\right\|}{(1+\rho) \log \left\|Q_{\alpha_{i}}\left(m_{k_{i}}\right)\right\|+\tilde{C}}
\end{aligned}
$$

## Example with (R) without (Z)

Permutation data $\left(\begin{array}{llll}A & B & D & C \\ D & A & C & B\end{array}\right)$ and sequence of names of

$$
C^{m_{1}} B\left(D^{2} A^{3} D\right)^{n_{1}} B \cdot C^{m_{2}} B\left(D^{2} A^{3} D\right)^{n_{2}} B \cdots
$$

Let $\ell_{k}=\sum_{i=1}^{k}\left(m_{i}+6 n_{i}+2\right), \quad \ell_{0}=0$.
$Q\left(\ell_{k-1}, \ell_{k}\right)=\left(\begin{array}{cccc}F_{2 n_{k}+1} & F_{2 n_{k}+1}-1 & F_{2 n_{k}+1}-1 & F_{2 n_{k}+2}-1 \\ 0 & 1 & 1 & 1 \\ 0 & m_{k} & m_{k}+1 & m_{k} \\ F_{2 n_{k}} & F_{2 n_{k}} & F_{2 n_{k}} & F_{2 n_{k}+1}\end{array}\right)$,
where $F_{n}=\frac{g^{n}-(-1 / g)^{n}}{\sqrt{5}}, g=\frac{\sqrt{5}+1}{2}$ is the Fibonacci sequence.

Choose $m_{k}=F\left(2^{k+1}\right)$ and $n_{k}=2^{k}+k$. Then

$$
\left\|Q\left(\ell_{k-1}, \ell_{k}\right)\right\|<g^{2^{k+1}+2 k+4}, \quad\left\|Q\left(\ell_{k}\right)\right\|<g^{2^{k+2}+k(k+1)+4 k}
$$

For large $k$

$$
\left\|Q\left(\ell_{k}\right)\right\|^{1 / 2}<g^{2^{k+1}+k(k+1) / 2+2 k} \leq \frac{g^{2^{k+2}}}{\sqrt{5}}<\left\|Q\left(\ell_{k}, \ell_{k}+m_{k+1}\right)\right\|
$$

which implies that this i.e.m. does not satisfy Condition (Z).

We have

$$
\lambda_{A} \gtrsim \lambda_{D} \gg \lambda_{C} \gg \lambda_{B}
$$

Only to show

$$
\liminf _{r \rightarrow 0} \frac{\log \tau_{r}(x)}{-\log r} \geq 1, \text { a.e. } x
$$

- On $I_{A}\left(\ell_{k}\right)$ and $I_{D}\left(\ell_{k}\right), T\left(\ell_{k}\right)$ is very close to the rotation by the golden mean. There is no "quick" return.
- On $I_{C}\left(\ell_{k}\right), \tau_{r}(x)$ can be very small, but

$$
\sum_{k} \mu\left(\bigcup_{i=0}^{Q_{C}\left(\ell_{k}\right)} T^{i}\left(I_{C}\left(\ell_{k}\right)\right)\right)<\sum_{k} \frac{1}{g^{k}}<\infty
$$

a.e. $x$ belongs to $\bigcup_{i=0}^{Q_{C}\left(\ell_{k}\right)} T^{i}\left(I_{C}\left(\ell_{k}\right)\right)$ finitely many $k$ 's.

## Example with (Z) without (U)

Permutation data $\left(\begin{array}{llll}A & B & D & C \\ D & A & C & B\end{array}\right)$ and sequence of names $C B^{3}\left(D^{2} A^{3} D\right)^{2^{1}} B \cdot C B^{3}\left(D^{2} A^{3} D\right)^{2^{2}} B \cdots C B^{3}\left(D^{2} A^{3} D\right)^{2^{k}} B \cdots$.

Let $\ell_{k}=\sum_{i=1}^{k}\left(5+6 \cdot 2^{i}\right)=5 k+12 \cdot\left(2^{k}-1\right), \quad \ell_{0}=0$.

$$
Q\left(\ell_{k-1}, \ell_{k}\right)=\left(\begin{array}{cccc}
F_{2^{k+1}+1} & F_{2^{k+1}+1}-1 & F_{2^{k+1}+1}-1 & F_{2^{k+1}+2}-1 \\
F_{2^{k+1}} & F_{2^{k+1}}+1 & F_{2^{k+1}}+2 & F_{2^{k+1}+1}+1 \\
F_{2^{k+1}} & F_{2^{k+1}}+1 & F_{2^{k+1}}+3 & F_{2^{k+1}+1}+1 \\
F_{2^{k+1}} & F_{2^{k+1}} & F_{2^{k+1}} & F_{2^{k+1}+1}
\end{array}\right),
$$

$$
\left\|Q\left(\ell_{k-1}, \ell_{k}\right)\right\|<g^{2^{k+1}+5}, \quad \lambda^{*}\left(\ell_{k}\right)<\frac{\lambda^{*}\left(\ell_{k-1}\right)}{F_{2^{k+1}+3}} .
$$

$T\left(\ell_{k}+3\right)$ has the same permutation data: $\left(\begin{array}{cccc}A & B & D & C \\ D & A & C & B\end{array}\right)$.
$Q\left(\ell_{k}+3, \ell_{k+1}\right)=\left(\begin{array}{cccc}F_{2^{k+2}+1} & F_{2^{k+2}+1}-1 & F_{2^{k+2}+1}-1 & F_{2^{k+2}+2}-1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ F_{2^{k+2}} & F_{2^{k+2}} & F_{2^{k+2}} & F_{2^{k+2}+1}\end{array}\right)$
Put $r=\lambda_{B}\left(\ell_{k}+3\right)$. Then if $k \geq 4$, for $x \in I_{C}\left(\ell_{k}+3\right)$

$$
\frac{\log \tau_{r}(x)}{-\log r} \leq \frac{\log Q_{C}\left(\ell_{k}+3\right)}{-\log \lambda_{B}\left(\ell_{k}+3\right)}<\frac{\left(2^{k+2}+5 k\right) \log g+\log 2}{\left(2^{k+3}+k-4\right) \log g}<\frac{3}{4}
$$

Hence, $\frac{\log \tau_{r}(x)}{-\log r}$ does not converges to 1 uniformly.

