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Diophantine condition of the interval exchange map

Irrational rotations and Diophantine type

An irrational rotation

T : [0, 1)→ [0, 1), T (x) = x+ θ (mod 1).
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Diophantine condition of the interval exchange map

Irrational rotations and Diophantine type

Diophantine approximation

Theorem (Dirichlet, Hurwitz)

For any irrational θ there are infinitely many integers p, q such
that ∣∣∣∣θ − p

q

∣∣∣∣ < 1√
5q2

.

Let an irrational θ be of Roth type if for any ε > 0 there is a
constant C such that ∣∣∣∣θ − p

q

∣∣∣∣ > C

q2+ε
.

The set of Roth type irrationals has full Lebesgue measure.
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Diophantine condition of the interval exchange map

Irrational rotations and Diophantine type

Roth type condition and recurrence speed

T : [0, 1)→ [0, 1), T (x) = x+ θ (mod 1).

recurrence time τr(x) = min{j ≥ 1 : |T j(x)− x| < r}.

Theorem
An irrational θ is of Roth type if and only if

lim
r→0+

log τr(x)

− log r
= 1.

|T qx− x| < δ ⇔ |qθ − ∃p| < δ ⇔
∣∣∣∣θ − p

q

∣∣∣∣ < δ

q
.
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Irrational rotations and Diophantine type

Roth type condition and continued fraction

Continued fraction is the best method of Diophantine
approximation.

θ =
1

a1 +
1

a2 +
1

a3 +
1

. . .

,
pn
qn

=
1

a1 +
1

a2 +
1

· · ·+
1

an

.

An irrational θ is Roth type if and only if for all ε > 0 there is a
constant C such that

an+1 < Cqεn for all n.
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Irrational rotations and Diophantine type

Roth type condition and uniform distribution

An irrational θ is of Roth type if and only if

{0, θ, 2θ, . . . , nθ} ( in mod 1 )

is uniformly distributed in [0, 1) in the sense that

(minimal distance between any two points) >
C

n1+ε
.
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Interval exchange maps

An interval exchange map

Generalization of the irrational rotation
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Diophantine condition of the interval exchange map

Interval exchange maps

The interval exchange map

An interval exchange map (i.e.m.) is determined by

I The combinatorial data: two bijections (π0, π1) from A
(names for the intervals) onto {1, . . . , d}. (d = card (A)).

I The length data (λα)α∈A.

λA λB λC λD

A = {A,B,C,D}.

π0(A) = 1, π0(B) = 2, π0(C) = 3, π0(D) = 4,

π1(A) = 4, π1(B) = 3, π1(C) = 2, π1(D) = 1.
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Interval exchange maps

The Keane property

Consider only combinatorial data (A, πt, πb) which are
admissible, meaning that for all k = 1, 2, . . . , d− 1, we have

π−1
0 ({1, . . . , k}) 6= π−1

1 ({1, . . . , k}) .

The Keane property is the appropriate notion of irrationality
for i.e.m. since, as Keane himself proved,

I An i.e.m. with Keane’s property is minimal (i.e. all orbits
are dense);

I If the length data are rationally independent (and the
combinatorial data are admissible) then T has Keane’s
property.
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Continued fraction algorithm for the i.e.m.

Continued fraction algorithm

0 1

θ

a1

(a1 − 1)θ 1

‖q1θ‖

a2 . . .

θ =
1

a1 +
1

a2 +
1

. . .

Consider the induced map.
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Continued fraction algorithm for the i.e.m.

Invariant measure for the continued fraction algorithm

Farey map for the irrational rotation.

f(x) =


x

1− x
, 0 < x < 1

2 ,

1− x
x

,
1

2
< x < 1

with invariant measure
dx

x
.

Gauss map is a acceleration :

x 7→
{

1

x

}
with invariant measure

dx

1 + x
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Continued fraction algorithm for the i.e.m.

Generalization of continued fractions to i.e.m. (Rauzy,
Veech, Zorich)

A B C D A B C D′

type 0

A B C D A B CD′

type 1
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Continued fraction algorithm for the i.e.m.

Permutation data

(π0, π1) : an admissible pair, α0, α1 ∈ A, π0(α0) = π1(α1) = d;
Define two new admissible pairs R0(π0, π1), R1(π0, π1) :

R0(π0, π1) = (π0, π̂1), R1(π0, π1) = (π̂0, π1),

π̂0(α) =


π0(α) if π0(α) ≤ π0(α1),

π0(α) + 1 if π0(α1) < π0(α) < d,

π0(α1) + 1 if α = α0, (π0(α0) = d).

π̂1(α) =


π1(α) if π1(α) ≤ π1(α0),

π1(α) + 1 if π1(α0) < π1(α) < d,

π1(α0) + 1 if α = α1, (π1(α1) = d);
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Continued fraction algorithm for the i.e.m.

Rauzy diagram

Each vertex (π0, π1) being the origin of two arrows joining
(π0, π1) to R0(π0, π1), R1(π0, π1).

AB
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BA

Rauzy diagram d = 2

ABC
CBA

ABC
CAB

ACB
CBA

BB

C

C

A

A

Rauzy diagram d = 3
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Continued fraction algorithm for the i.e.m.

ABCD
DCBA
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D

D
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Rauzy diagram d = 4 first case
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Continued fraction algorithm for the i.e.m.

ACB0B1

CB0B1A
AB1CB0

CB0B1A
AB1CB0

CB0AB1

AB1B0C
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Rauzy diagram d = 4 second case
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Continued fraction algorithm for the i.e.m.

Length data

Define a new i.e.m. V(T ) by the admissible pair Rε(π0, π1) and
the lengths (λ̂α)α∈A given by{

λ̂α = λα if α 6= αε,

λ̂αε = λαε − λα1−ε otherwise,

i.e. the length data of T are obtained from those of V(T ) as

λ = V (T )λ̂

where the matrix V (T ) has all diagonal entries equal to 1 and
all off-diagonal entries equal to 0 except the one corresponding
to (αε, α1−ε) which is also equal to 1.
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Continued fraction algorithm for the i.e.m.

Continued fraction matrix

A B C D A B C D′ 
1 0 0 0
0 1 0 0
0 0 1 0
1 0 0 1



A B C D A B CD′ 
1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1
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Continued fraction algorithm for the i.e.m.

Continued fraction matrix

A B C D A B C D′ 
1 0 0 0
0 1 0 0
0 0 1 0
1 0 0 1



A B C D A B CD′ 
1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1
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Continued fraction algorithm for the i.e.m.

For irrational rotations

V (T ) = V (V(T )) = · · · = V (Va1−2(T )) =

(
1 1
0 1

)
V (Va1−1(T )) = V (Va1(T )) = · · · = V (Va1+a2−2(T )) =

(
1 0
1 1

)
V (Va1+a2−1(T )) = · · · = V (Va1+a2+a3−2(T )) =

(
1 1
0 1

)
...(

1 1
0 1

)
· · ·
(

1 1
0 1

)
︸ ︷︷ ︸

a1−1

(
1 0
1 1

)
· · ·
(

1 0
1 1

)
︸ ︷︷ ︸

a2

(
1 1
0 1

)
· · ·
(

1 1
0 1

)
︸ ︷︷ ︸

a3

· · · · · ·
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Continued fraction algorithm for the i.e.m.

Invariant measure and Zorich’s acceleration

Rauzy-Veech operation has a σ-finite invariant measure on the
length data.

For the irrational rotation it is Farey map:

f(x) =

{
x

1−x , 0 < x < 1
2 ,

1−x
x , 1

2 < x < 1
with invariant measure

dx

x
.

Zorich introduced an acceleration algorithm with finite
invariant measure, corresponding to Gauss map in rotation

(Gauss map: x 7→
{

1

x

}
with invariant measure

dx

1 + x
)
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Continued fraction algorithm for the i.e.m.

Accelerated algorithm

Zorich’s acceleration:
nk+1 is taken as the largest integer n > nk such that one name
in A are taken by arrows associated to iterations of V from
T (nk) to Vn(T ).

e.g. AA, B, D, CCCC, B, AAAA, DDDD, . . .

Marmi-Moussa-Yoccoz’s acceleration:
mk+1 is taken as the largest integer n > mk such that not all
names in A are taken by arrows

e.g. AABD, CCCCBAAAA, DDDD · · ·
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Continued fraction algorithm for the i.e.m.

I Y (n) : continued fraction matrices for a given T .

I λ(n) : length data after nth iteration.

I T (n) : induced map of T on [0, λ∗(n)), λ∗(n) =
∑

α λα(n).

I Q(n) = Y (1)Y (2) · · ·Y (n).

I Z(k) = Y (nk−1 + 1)Y (nk−1 + 2) · · ·Y (nk)

I A(k) = Y (mk−1 + 1)Y (mk−1 + 2) · · ·Y (mk)

Diophantine condition:

For any ε > 0 there exist Cε > 0 such that

‖A(k + 1)‖ ≤ Cε‖Q(mk)‖ε or ‖Z(k + 1)‖ ≤ Cε‖Q(nk)‖ε.
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Continued fraction algorithm for the i.e.m.

Distance between discontinuities

∆(T ): minimal distance between the discontinuity points of T

We have another Diophantine condition:

For any ε > 0 there exist Dε > 0 such that for all m ≥ 1 we have

∆(Tm) ≥ Dε

m1+ε
.

It has been unclear the relation between Diophantine condition
by the size of Q matrices and condition using the distance
between discontinuities.
(e.g. Marmi-Moussa-Yoccoz JAMS, 2006)
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Continued fraction algorithm for the i.e.m.

Diopahntine conditions

(A) For any ε > 0 there exist Cε > 0 such that

‖A(k + 1)‖ ≤ Cε‖Q(mk)‖ε.

(Z) For any ε > 0 there exist Cε > 0 such that

‖Z(k + 1)‖ ≤ Cε‖Q(nk)‖ε.

(D) For any ε > 0 there exist Cε > 0 such that ∆(Tn) ≥ Cε
n1+ε

.

(R) lim
r→0

log τr(x)

− log r
= 1 for almost every x.

(U) lim
r→0

log τr(x)

− log r
= 1 uniformly.
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Diophantine condition for the interval exchange map

Relation between the Diophantine conditions

I In 2-interval exchange or the irrational rotation, all 5
conditions are equivalent.

I In 3-interval exchange, (A) and (D) are equivalent and (Z),
(U) and (R) are equivalent.

I In general interval exchanges we have

(A)⇔ (D)
⇒
: (U)

⇒
: (Z)

??
: (R)

(U)⇒ (R) by the definition
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Diophantine condition for the interval exchange map

Irrational rotations

Z(1) =

(
1 a1 − 1
0 1

)
, Z(k) = A(k) =



(
1 ak

0 1

)
, odd k,(

1 0

ak 1

)
, even k.

By multiplying them

Q(nk) = Q(mk) =



(
qk−1 − pk−1 qk − pk

pk−1 pk

)
, for odd k,(

qk − pk qk−1 − pk−1

pk pk−1

)
, for even k.
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Diophantine condition for the interval exchange map

Therefore,

‖Z(k + 1)‖ = ‖A(k + 1)‖ = ak+1 + 2,

‖Q(nk)‖ = ‖Q(mk)‖ = qk + qk−1.

Condition (A) and (D) are equivalent to

ak+1 + 2 ≤ Cε(qk + qk−1)ε < 2εCεq
ε
k.

The Roth type condition for the irrational number.
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Diophantine condition for the interval exchange map

3-interval exchange maps

Let T be a 3-interval exchange map with (λA, λB, λC).

Assume

π0(A) = 1, π0(B) = 2, π0(C) = 3,

π1(C) = 3, π1(B) = 2, π1(A) = 1.

ABC
CBA

ABC
CAB

ACB
CBA

B(C)B(A)

C(B)

C(A)

A(B)

A(C)
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Diophantine condition for the interval exchange map

Define an irrational rotation T̄ on Ī = [0, 1 + λB) by

T̄ (x) =

{
x+ λB + λC if x+ λB + λC ∈ Ī ,
x− λB − λA if x+ λB + λC /∈ Ī .

T is the induced map of T̄ on [0, 1) = [0, λA + λB + λC).

Let T̄ be a 2-interval exchange with length data (λĀ, λB̄),
λĀ = λA + λB and λC̄ = λA + λC .

AB CB
CB AB

AB C
C AB

A CB
CB A ABCB

CBAB
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Diophantine condition for the interval exchange map

Let α =
λB + λC
1 + λB

be the rotation angle of T̄ and an and
pn
qn

be

the partial quotient and partial convergent of α.

T̄ satisfies condition (A) or (D): for any ε > 0 there exist
Cε > 0 such that

an+1 ≤ Cεqnε.

For the irrational rotation

lim
r→0

log τ̄r(x)

− log r
= 1,

if α is of Roth type.
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Diophantine condition for the interval exchange map

Proposition

For a 3-interval exchange map T ,

lim
r→0

log τr(x)

− log r
= 1

if and only if

lim
r→0

log τ̄r(x)

− log r
= 1,

where τ̄r is the first return time of T̄ .

T satisfies (R) or (U) if and only if T̄ satisfies (A) (or (Z)).
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Diophantine condition for the interval exchange map

ABC
CBA

ABC
CAB

ACB
CBA

B(C)B(A)

C(B)

C(A)

A(B)

A(C)

AB CB
CB AB

AB C
C AB

A CB
CB A ABCB

CBAB

No long sequence of A implies no long sequence of AB (center).

No long sequence of AB implies no long sequence BnCAm.

Proposition

The 3-interval exchange map T satisfies Condition (Z) if and
only if the T̄ satisfies (A) (or equivalently (Z)).
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Diophantine condition for the interval exchange map

(A) implies (D)

I ∆((T (k))2) ≤ ∆(Tm) for minQα(k − 1) < m ≤ minQα(k)

I If k′ > k satisfies λ∗(k′) < λα(k), π
(k)
0 (α) = 1, then

min
α
λα(k′) ≤ ∆((T (k))2).

I (A(k + 1)A(k + 2) · · ·A(k + r))αβ > 0, r = max(2d− 3, 2)

I (Marmi-Moussa-Yoccoz) If T satisfies Condition (A), then

max
α∈A

λα(k) ≤ Cε min
α∈A

λα(k)‖Q(k)‖ε.

Theorem
If T satisfies condition (A), then it also satisfies Condition (D).
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Diophantine condition for the interval exchange map

(D) implies (A)

I Suppose that T does not satisfy (A). Then for some δ > 0
there are infinitely many k such that

min
α∈A

λα(k) < λ∗(k)1+δ.

I If λα(k) < λ∗(k)1+δ, then for some integer s, 1 ≤ s < d, we
have

∆(T b2/λ
∗(k)1+sδ/dc) < (d− 1)λ∗(k)1+(s+1)δ/d.

Theorem
If T does not satisfy (A), then T does not satisfy (D).



Diophantine condition of the interval exchange map

Diophantine condition for the interval exchange map

The first return time of the interval exchange map

Let Pn be the partition of I = [0, 1) consists of

T i(Iα(n)), 0 ≤ i < Qα(n)

Define Rn(x) by the first return time to the element of Pn
which contains x.

Proposition

min
β∈A

Qβ(n) ≤ Rn(x) < 2 max
β∈A

Qβ(n+m(d)) + max
β∈A

Qβ(n).

Condition (A) ⇒ for all ε > 0 there is C ′ε > 0 such that

max
α∈A

λα(n) ≤ C ′ε‖Q(n)‖ε min
α∈A

λα(n).
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Diophantine condition for the interval exchange map

(A) and (D) imply (U)

Theorem
For an interval exchange map with condition (A)

lim
n→∞

logRn(x)

− log |Pn(x)|
≤ lim sup

r→0+

log τr(x)

− log r
= 1 uniformly.

Lemma
If τr(x) = n for some x, then we have ∆(T 2n) < r.

Theorem
Condition (D) implies Condition (U)
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Diophantine condition for the interval exchange map

(U) implies (Z)

Assume there is a sequence ki and r > 0 and C such that

‖Z(ki + 1)‖ ≥ C‖Q(mki)‖
ρ. (1)

Let αi be the first name. Each β ∈ Ai appeared hi or hi + 1
times as the second name between mki + 1 and mki+1.

C‖Qαi(mki)‖
ρ < C‖Q(mki)‖

ρ ≤ ‖Z(ki + 1)‖ < d+ |Ai| · (hi + 1)

|T (mki)(x)− x| =
∑
β∈Ai

λβ(mki) <
λαi(mki)

hi
= ri, x ∈ Iαi(mki)

log τri(x)

− log ri
<

log ‖Qαi(mki)‖
log hi − log λαi(mki)

<
log ‖Qαi(mki)‖

(1 + ρ) log ‖Qαi(mki)‖+ C̃
.



Diophantine condition of the interval exchange map

Diophantine condition for the interval exchange map

Example with (R) without (Z)

Permutation data

(
A B D C
D A C B

)
and sequence of names of

Cm1B
(
D2A3D

)n1 B · Cm2B
(
D2A3D

)n2 B · · ·

Let `k =

k∑
i=1

(mi + 6ni + 2), `0 = 0.

Q(`k−1, `k) =


F2nk+1 F2nk+1 − 1 F2nk+1 − 1 F2nk+2 − 1

0 1 1 1
0 mk mk + 1 mk

F2nk F2nk F2nk F2nk+1

 ,

where Fn = gn−(−1/g)n√
5

, g =
√

5+1
2 is the Fibonacci sequence.



Diophantine condition of the interval exchange map

Diophantine condition for the interval exchange map

Choose mk = F (2k+1) and nk = 2k + k. Then

‖Q(`k−1, `k)‖ < g2k+1+2k+4, ‖Q(`k)‖ < g2k+2+k(k+1)+4k

For large k

‖Q(`k)‖1/2 < g2k+1+k(k+1)/2+2k ≤ g2k+2

√
5

< ‖Q(`k, `k +mk+1)‖

which implies that this i.e.m. does not satisfy Condition (Z).

We have
λA & λD >> λC >> λB.



Diophantine condition of the interval exchange map

Diophantine condition for the interval exchange map

Only to show

lim inf
r→0

log τr(x)

− log r
≥ 1, a.e. x.

I On IA(`k) and ID(`k), T (`k) is very close to the rotation by
the golden mean. There is no “quick” return.

I On IC(`k), τr(x) can be very small, but

∑
k

µ

QC(`k)⋃
i=0

T i(IC(`k))

 <
∑
k

1

gk
<∞

a.e. x belongs to
⋃QC(`k)
i=0 T i(IC(`k)) finitely many k’s.



Diophantine condition of the interval exchange map

Diophantine condition for the interval exchange map

Example with (Z) without (U)

Permutation data

(
A B D C
D A C B

)
and sequence of names

CB3
(
D2A3D

)21
B·CB3

(
D2A3D

)22
B · · ·CB3

(
D2A3D

)2k
B · · · .

Let `k =

k∑
i=1

(
5 + 6 · 2i

)
= 5k + 12 · (2k − 1), `0 = 0.

Q(`k−1, `k) =


F2k+1+1 F2k+1+1 − 1 F2k+1+1 − 1 F2k+1+2 − 1
F2k+1 F2k+1 + 1 F2k+1 + 2 F2k+1+1 + 1
F2k+1 F2k+1 + 1 F2k+1 + 3 F2k+1+1 + 1
F2k+1 F2k+1 F2k+1 F2k+1+1

 ,

‖Q(`k−1, `k)‖ < g2k+1+5, λ∗(`k) <
λ∗(`k−1)

F2k+1+3

.



Diophantine condition of the interval exchange map

Diophantine condition for the interval exchange map

T (`k + 3) has the same permutation data:

(
A B D C
D A C B

)
.

Q(`k+3, `k+1) =


F2k+2+1 F2k+2+1 − 1 F2k+2+1 − 1 F2k+2+2 − 1

0 1 1 1
0 0 1 0

F2k+2 F2k+2 F2k+2 F2k+2+1

 .

Put r = λB(`k + 3). Then if k ≥ 4, for x ∈ IC(`k + 3)

log τr(x)

− log r
≤ logQC(`k + 3)

− log λB(`k + 3)
<

(2k+2 + 5k) log g + log 2

(2k+3 + k − 4) log g
<

3

4
.

Hence,
log τr(x)

− log r
does not converges to 1 uniformly.
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