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Kneading dough

1. Rolling out a box (a, b, c) −→ box with sides αa, βb, 1
αβ

c
where α ≥ 1 and β ≥ 1 are coefficients of rolling

2. Folding, or stacking −→ box with dimensions αa, 1
2βb, 2

αβ
c

3. Flipping, or rotating −→ box with dimensions
a′ = 1

2βb, b′ = αa, c′ = 2
αβ

c

4 kneading procedures

“roll, fold and flip” Kff = O ◦ F ◦ W
“roll, stack and flip” Ksf = O ◦ S ◦ W
“roll, fold and rotate” Kfr = R ◦ F ◦ W ,
“roll, stack and rotate” Ksr = R ◦ S ◦ W
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After two cycles of kneading with coefficients of rolling
α1, β1 and α2, β2 −→ box with dimensions

α1β2

2
a,

β1α2

2
b,

4
α1α2β1β2

c

Do we have anything to say to a sloppy baker who rolls the
dough inconsistently, i.e., with varying rolling coefficients?

Relative positions (x , y , z), (x ′, y ′, z ′) ∈ C := [0, 1]3

u = ax , v = by , w = cz, K (u, v , w) = (a′x ′, b′y ′, c′z ′)

Kff (ax , by , cz) =

{(
a′2y , b′x , c′(1 − 1

2z)
)

if 0 ≤ y ≤ 1
2(

a′2(1 − y), b′x , c′ 1
2z

)
if 1

2 < y ≤ 1

(x ′, y ′, z ′) =

{(
2y , x , 1 − 1

2z
)

if 0 ≤ y ≤ 1
2(

2(1 − y), x , 1
2z

)
if 1

2 < y ≤ 1
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Rolling does not matter?

Only folding does?

2N cycles −→ box with dimensions

a′ = a
α1β2α3β4 . . . α2N−1β2N

2N ,

b′ = b
β1α2β3α4 . . . β2N−1α2N

2N ,

c′ = c
ab
a′b′ .

product of coefficients of rolling must average out to 2N ,

or else the dough would aquire an odd shape.
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Kneading map(s)

Kff (x , y , z) = Ksf (x , y , z) =

(
2y , x , 1 − 1

2
z
)

, if 0 ≤ y ≤ 1
2
,

Kff (x , y , z) =

(
2(1 − y), x ,

1
2

z
)

, if
1
2

< y ≤ 1,

Ksf (x , y , z) =

(
2y − 1, x ,

1
2
(1 − z)

)
, if

1
2

< y ≤ 1,

Kfr (x , y , z) = Ksr (x , y , z) =

(
1 − 2y , x ,

1
2

z
)

, if 0 ≤ y ≤ 1
2
,

Kfr (x , y , z) =

(
2y − 1, x , 1 − 1

2
z
)

, if
1
2

< y ≤ 1,

Ksr (x , y , z) =

(
2(1 − y), x ,

1
2
(z + 1)

)
, if

1
2

< y ≤ 1.
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symbolic space Σ = {0, 1}Z, left shift σ : Σ → Σ

geometric coding map h : Σ → C = [0, 1]3

xi , yi , zi , i = 1, 2, . . . , binary digits of coordinates
(x , y , z) ∈ C = [0, 1]3

h(. . . z3, z2, z1 . y1, x1, y2, x2, . . . ) = (x , y , z)

Σ
bK−→ Σ

h
y

yh

C K−→ C

δx , δy , δz : Σ → Σ maps which exchange 0 and 1
in xi -s for δx , yi -s for δy , zi -s for δz

(. . . z3, z2, z1 . y1, x1, y2, x2, . . . )
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K̂ff =

{
δz ◦ σ, if η0 = y1 = 0,

σ ◦ δy , if η0 = y1 = 1

K̂sf = δz ◦ σ

K̂fr =

{
δx ◦ σ, if η0 = y1 = 0,

σ ◦ δz , if η0 = y1 = 1

K̂sr = δx ◦ σ

left shift σ orientation reversing
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cylinders W0 = {η0 = 0}, W1 = {η0 = 1}, Σ = W0 ∪ W1

Markov partition

symbolic dynamics for K̂ , g : Σ → Σ

(g(η))m =
(

K̂ mη
)

0

Σ
bK−→ Σ

g
y

yg

Σ
σ−→ σ
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g(η) = η̃

for any k ≥ 0, l ≥ 0
block (η̃−l , . . . , η̃−1, η̃0, η̃1, . . . , η̃k−1)

depends only on (η−l , . . . , η−1, η0, η1, . . . , ηk−1)

this dependence is permutation of all 2l+k blocks

• g is 1 − 1 and onto

• g takes any Bernoulli measure into itself

(for K̂ff and K̂fr coding g does not map cylinders into cylinders,
unless they are “centered”)

K is measurably conjugate to σ with {1
2 , 1

2} measure
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Quantifying mixing

Definition

For a map K : C → C, and a finite σ-algebra B of subsets of C,
we say that a family A of subsets of C has the decay rate
r0 < 1, with the resolution B, if for every r > r0 and every A ∈ A
there is a constant d > 0 such that

|µ(K n(A)∩B)−µ(A)µ(B)| ≤ d rn for every B ∈ B, n = 1, 2, . . . .

If r0 = 0 then we say that the decay rate is super-exponential.
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for natural N, partition ΠN of C into 23N cubes,
with sides equal to 1

2N

partition Π̂N of Σ is partition into cylinders of length 3N

for η̄ = (η̄i)i∈Z ∈ Σ let Π̂N(η̄) is element of Π̂N containing η̄

Π̂N(η̄) = {η ∈ Σ|ηi = η̄i ,−N ≤ i ≤ 2N − 1}

δx , δy , δz and g act naturally on these partitions
as (involutive) permutations
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B(ΠN),B(Π̂N),
σ-algebra of subsets generated by respective partition
for any A ∈ B(ΠM), B ∈ B(ΠN)

µ(K n(A) ∩ B) = µ(A)µ(B) for n ≥ 2M + N

Theorem

For the kneading map K and any natural N, M, the family
B(ΠM) has the super-exponential decay rate with the resolution
B(ΠN).
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wider family of subsets with common decay rate?

Definition

A subset A ⊂ C has finite surface area if there is a constant
s > 0 such that the Lebesgue measure of the ǫ-neighborhood
of its boundary ∂A does not exceed s ǫ, for any ǫ > 0.

Theorem

The family of subsets of C with finite surface area has the
decay rate r = 1√

2
with the resolution B(ΠN), for any natural N.
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Proof
A ⊂ C, M ≥ 1
approximating sets A1, A2 ∈ B(ΠM)
A1 ⊂ A ⊂ A2

A2 \ A1 equal to union of all elements of partition ΠM with
nonempty intersection with the boundary ∂A.
A has finite surface area, cubes in ΠN have diameter 2−M

√
3

=⇒ there is s > 0 such that

µ(A2 \ A1) ≤ s2−M
√

3. (1)

µ(K n(A1) ∩ B) ≤ µ(K n(A) ∩ B) ≤ µ(K n(A2) ∩ B). (2)

if n = 2M + N then (1),(2) =⇒
|µ(K n(A) ∩ B) − µ(A)µ(B)| ≤
(µ(A2) − µ(A1))µ(B) ≤ s

√
3µ(B)2−M = s

√
3µ(B)2

N
2 2− n

2 .

�
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what is the decay rate for K−1?

faster decay rate r = 1
2

need to take n = M + 2N

|µ(K n(A) ∩ B) − µ(A)µ(B)| ≤ s
√

3µ(B)22N2−n

K−1 is not a workable kneading procedure
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mixing rate for two sets of finite surface area?

Theorem

If A and B have finite surface area then there is a constant d
such that for all n ≥ 1

|µ(K n(A) ∩ B) − µ(A)µ(B)| ≤ 2− n
3 d

rate of decay for correlations of observables?
Lipschitz functions (observables) f , g : C → R

Theorem

There is a constant d = d(f , g) such that for all n ≥ 1

|c(f , g, n)| := |
∫

C
f ◦ K ngdµ −

∫

C
fdµ

∫

C
gdµ| ≤ 2− n

3 d .
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