On the real baker map

Maciej P. Wojtkowski

University of Warmia and Mazury in Olsztyn
Ergodic Theory and Dynamical Systems University of Warwick, July 13, 2011

囯 V．Baladi Positive Transfer Operators and Decay Of Correlations．World Scientific，（2000）．
景 J．Moser Stable and Random Motions in Dynamical Systems，Princeton Univ．Press，（1973）．
© C．E．Silva Invitation to Ergodic Theory，AMS，（2008）．
Ti R．Sturman，J．M．Ottino，S．Wiggins The Mathematical Foundations of Mixing，Cambridge Univ．Press，（2006）．
回 W．Szlenk Mathematical Model of Mixing in Rumen． Applicationes Mathematicae 24 （1996），87－95．

Kneading dough

1. Rolling out a box $(a, b, c) \longrightarrow$ box with sides $\alpha a, \beta b, \frac{1}{\alpha \beta} c$ where $\alpha \geq 1$ and $\beta \geq 1$ are coefficients of rolling
2. Folding, or stacking \longrightarrow box with dimensions $\alpha a, \frac{1}{2} \beta b, \frac{2}{\alpha \beta} c$
3. Flipping, or rotating \longrightarrow box with dimensions
$a^{\prime}=\frac{1}{2} \beta b, b^{\prime}=\alpha a, c^{\prime}=\frac{2}{\alpha \beta} c$

4 kneading procedures

"roll, fold and flip" $K_{f f}=O \circ F \circ W$
"roll, stack and flip" $K_{\text {sf }}=O \circ S \circ W$
"roll, fold and rotate" $K_{f r}=R \circ F \circ W$,
"roll, stack and rotate" $K_{s r}=R \circ S \circ W$

Kneading dough

1. Rolling out a box $(a, b, c) \longrightarrow$ box with sides $\alpha a, \beta b, \frac{1}{\alpha \beta} c$ where $\alpha \geq 1$ and $\beta \geq 1$ are coefficients of rolling

2. Folding, or stacking \longrightarrow box with dimensions $\alpha a, \frac{1}{2} \beta b, \frac{2}{\alpha \beta} c$

3. Flipping, or rotating \longrightarrow box with dimensions

4 kneading procedures

Kneading dough

1. Rolling out a box $(a, b, c) \longrightarrow$ box with sides $\alpha a, \beta b, \frac{1}{\alpha \beta} c$ where $\alpha \geq 1$ and $\beta \geq 1$ are coefficients of rolling
2. Folding, or stacking \longrightarrow box with dimensions $\alpha a, \frac{1}{2} \beta b, \frac{2}{\alpha \beta} c$
3. Flipping, or rotating \longrightarrow box with dimensions

4 kneading procedures

Kneading dough

1. Rolling out a box $(a, b, c) \longrightarrow$ box with sides $\alpha a, \beta b, \frac{1}{\alpha \beta} c$ where $\alpha \geq 1$ and $\beta \geq 1$ are coefficients of rolling
2. Folding, or stacking \longrightarrow box with dimensions $\alpha a, \frac{1}{2} \beta b, \frac{2}{\alpha \beta} c$
3. Flipping, or rotating \longrightarrow box with dimensions
$a^{\prime}=\frac{1}{2} \beta b, b^{\prime}=\alpha a, c^{\prime}=\frac{2}{\alpha \beta} c$
4 kneading procedures

Kneading dough

1. Rolling out a box $(a, b, c) \longrightarrow$ box with sides $\alpha a, \beta b, \frac{1}{\alpha \beta} c$ where $\alpha \geq 1$ and $\beta \geq 1$ are coefficients of rolling
2. Folding, or stacking \longrightarrow box with dimensions $\alpha a, \frac{1}{2} \beta b, \frac{2}{\alpha \beta} c$
3. Flipping, or rotating \longrightarrow box with dimensions
$a^{\prime}=\frac{1}{2} \beta b, b^{\prime}=\alpha a, c^{\prime}=\frac{2}{\alpha \beta} c$
4 kneading procedures

Kneading dough

1. Rolling out a box $(a, b, c) \longrightarrow$ box with sides $\alpha a, \beta b, \frac{1}{\alpha \beta} c$ where $\alpha \geq 1$ and $\beta \geq 1$ are coefficients of rolling
2. Folding, or stacking \longrightarrow box with dimensions $\alpha a, \frac{1}{2} \beta b, \frac{2}{\alpha \beta} c$
3. Flipping, or rotating \longrightarrow box with dimensions
$a^{\prime}=\frac{1}{2} \beta b, b^{\prime}=\alpha a, c^{\prime}=\frac{2}{\alpha \beta} c$
4 kneading procedures
"roll, fold and flip" $K_{f f}=O \circ F \circ W$

Kneading dough

1. Rolling out a box $(a, b, c) \longrightarrow$ box with sides $\alpha a, \beta b, \frac{1}{\alpha \beta} c$ where $\alpha \geq 1$ and $\beta \geq 1$ are coefficients of rolling
2. Folding, or stacking \longrightarrow box with dimensions $\alpha a, \frac{1}{2} \beta b, \frac{2}{\alpha \beta} c$
3. Flipping, or rotating \longrightarrow box with dimensions
$a^{\prime}=\frac{1}{2} \beta b, b^{\prime}=\alpha a, c^{\prime}=\frac{2}{\alpha \beta} c$
4 kneading procedures
"roll, fold and flip" $K_{f f}=O \circ F \circ W$
"roll, stack and flip" $K_{\text {sf }}=O \circ S \circ W$

Kneading dough

1. Rolling out a box $(a, b, c) \longrightarrow$ box with sides $\alpha a, \beta b, \frac{1}{\alpha \beta} c$ where $\alpha \geq 1$ and $\beta \geq 1$ are coefficients of rolling
2. Folding, or stacking \longrightarrow box with dimensions $\alpha a, \frac{1}{2} \beta b, \frac{2}{\alpha \beta} c$
3. Flipping, or rotating \longrightarrow box with dimensions
$a^{\prime}=\frac{1}{2} \beta b, b^{\prime}=\alpha a, c^{\prime}=\frac{2}{\alpha \beta} c$
4 kneading procedures
"roll, fold and flip" $K_{f f}=O \circ F \circ W$
"roll, stack and flip" $K_{\text {sf }}=O \circ S \circ W$
"roll, fold and rotate" $K_{f r}=R \circ F \circ W$,

Kneading dough

1. Rolling out a box $(a, b, c) \longrightarrow$ box with sides $\alpha a, \beta b, \frac{1}{\alpha \beta} c$ where $\alpha \geq 1$ and $\beta \geq 1$ are coefficients of rolling
2. Folding, or stacking \longrightarrow box with dimensions $\alpha a, \frac{1}{2} \beta b, \frac{2}{\alpha \beta} c$
3. Flipping, or rotating \longrightarrow box with dimensions
$a^{\prime}=\frac{1}{2} \beta b, b^{\prime}=\alpha a, c^{\prime}=\frac{2}{\alpha \beta} c$
4 kneading procedures
"roll, fold and flip" $K_{f f}=O \circ F \circ W$
"roll, stack and flip" $K_{\text {sf }}=O \circ S \circ W$
"roll, fold and rotate" $K_{f r}=R \circ F \circ W$,
"roll, stack and rotate" $K_{s r}=R \circ S \circ W$

After two cycles of kneading with coefficients of rolling α_{1}, β_{1} and $\alpha_{2}, \beta_{2} \longrightarrow$ box with dimensions

Do we have anything to say to a sloppy baker who rolls the dough inconsistently, i.e., with varying rolling coefficients?

After two cycles of kneading with coefficients of rolling α_{1}, β_{1} and $\alpha_{2}, \beta_{2} \longrightarrow$ box with dimensions

$$
\frac{\alpha_{1} \beta_{2}}{2} a, \frac{\beta_{1} \alpha_{2}}{2} b, \frac{4}{\alpha_{1} \alpha_{2} \beta_{1} \beta_{2}} c
$$

Do we have anything to say to a sloppy baker who rolls the dough inconsistently, i.e., with varying rolling coefficients?

After two cycles of kneading with coefficients of rolling α_{1}, β_{1} and $\alpha_{2}, \beta_{2} \longrightarrow$ box with dimensions

$$
\frac{\alpha_{1} \beta_{2}}{2} a, \frac{\beta_{1} \alpha_{2}}{2} b, \frac{4}{\alpha_{1} \alpha_{2} \beta_{1} \beta_{2}} c
$$

Do we have anything to say to a sloppy baker who rolls the dough inconsistently, i.e., with varying rolling coefficients?

Relative positions $(x, y, z), \quad\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \in C:=[0,1]^{3}$

After two cycles of kneading with coefficients of rolling α_{1}, β_{1} and $\alpha_{2}, \beta_{2} \longrightarrow$ box with dimensions

$$
\frac{\alpha_{1} \beta_{2}}{2} a, \frac{\beta_{1} \alpha_{2}}{2} b, \frac{4}{\alpha_{1} \alpha_{2} \beta_{1} \beta_{2}} c
$$

Do we have anything to say to a sloppy baker who rolls the dough inconsistently, i.e., with varying rolling coefficients?

Relative positions $(x, y, z),\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \in C:=[0,1]^{3}$

After two cycles of kneading with coefficients of rolling α_{1}, β_{1} and $\alpha_{2}, \beta_{2} \longrightarrow$ box with dimensions

$$
\frac{\alpha_{1} \beta_{2}}{2} a, \frac{\beta_{1} \alpha_{2}}{2} b, \frac{4}{\alpha_{1} \alpha_{2} \beta_{1} \beta_{2}} c
$$

Do we have anything to say to a sloppy baker who rolls the dough inconsistently, i.e., with varying rolling coefficients?

Relative positions $(x, y, z),\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \in C:=[0,1]^{3}$

$$
u=a x, v=b y, w=c z, \quad K(u, v, w)=\left(a^{\prime} x^{\prime}, b^{\prime} y^{\prime}, c^{\prime} z^{\prime}\right)
$$

After two cycles of kneading with coefficients of rolling α_{1}, β_{1} and $\alpha_{2}, \beta_{2} \longrightarrow$ box with dimensions

$$
\frac{\alpha_{1} \beta_{2}}{2} a, \frac{\beta_{1} \alpha_{2}}{2} b, \frac{4}{\alpha_{1} \alpha_{2} \beta_{1} \beta_{2}} c
$$

Do we have anything to say to a sloppy baker who rolls the dough inconsistently, i.e., with varying rolling coefficients?

Relative positions $(x, y, z),\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \in C:=[0,1]^{3}$

$$
\begin{aligned}
& u=a x, v=b y, w=c z, \quad K(u, v, w)=\left(a^{\prime} x^{\prime}, b^{\prime} y^{\prime}, c^{\prime} z^{\prime}\right) \\
& K_{f f}(a x, b y, c z)= \begin{cases}\left(a^{\prime} 2 y, b^{\prime} x, c^{\prime}\left(1-\frac{1}{2} z\right)\right) & \text { if } 0 \leq y \leq \frac{1}{2} \\
\left(a^{\prime} 2(1-y), b^{\prime} x, c^{\prime} \frac{1}{2} z\right) & \text { if } \frac{1}{2}<y \leq 1\end{cases}
\end{aligned}
$$

After two cycles of kneading with coefficients of rolling α_{1}, β_{1} and $\alpha_{2}, \beta_{2} \longrightarrow$ box with dimensions

$$
\frac{\alpha_{1} \beta_{2}}{2} a, \frac{\beta_{1} \alpha_{2}}{2} b, \frac{4}{\alpha_{1} \alpha_{2} \beta_{1} \beta_{2}} c
$$

Do we have anything to say to a sloppy baker who rolls the dough inconsistently, i.e., with varying rolling coefficients?

Relative positions $(x, y, z),\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \in C:=[0,1]^{3}$

$$
\begin{aligned}
& u=a x, v=b y, w=c z, \quad K(u, v, w)=\left(a^{\prime} x^{\prime}, b^{\prime} y^{\prime}, c^{\prime} z^{\prime}\right) \\
& K_{f f}(a x, b y, c z)= \begin{cases}\left(a^{\prime} 2 y, b^{\prime} x, c^{\prime}\left(1-\frac{1}{2} z\right)\right) & \text { if } 0 \leq y \leq \frac{1}{2} \\
\left(a^{\prime} 2(1-y), b^{\prime} x, c^{\prime} \frac{1}{2} z\right) & \text { if } \frac{1}{2}<y \leq 1\end{cases} \\
& \left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\left\{\begin{array}{lll}
\left(2 y, x, 1-\frac{1}{2} z\right) & \text { if } 0 \leq y \leq \frac{1}{2} \\
\left(2(1-y), x, \frac{1}{2} z\right) & \text { if } & \frac{1}{2}<y \leq 1
\end{array}\right.
\end{aligned}
$$

Rolling does not matter?

Only folding does?

2N cycles \longrightarrow box with dimensions

 product of coefficients of rolling must average out to 2^{N}, or else the dough would aquire an odd shape.

Rolling does not matter?

Only folding does?

$2 N$ cycles \longrightarrow box with dimensions

 or else the dough would aquire an odd shape.

Rolling does not matter?

Only folding does?

$$
a^{\prime}=a \frac{\alpha_{1} \beta_{2} \alpha_{3} \beta_{4} \ldots \alpha_{2 N-1} \beta_{2 N}}{2^{N}}
$$

$2 N$ cycles \longrightarrow box with dimensions $\quad b^{\prime}=b \frac{\beta_{1} \alpha_{2} \beta_{3} \alpha_{4} \ldots \beta_{2 N-1} \alpha_{2 N}}{2^{N}}$,

$$
c^{\prime}=c \frac{a b}{a^{\prime} b^{\prime}}
$$

or else the dough would aquire an odd shape.

Rolling does not matter?
Only folding does?

$$
a^{\prime}=a \frac{\alpha_{1} \beta_{2} \alpha_{3} \beta_{4} \ldots \alpha_{2 N-1} \beta_{2 N}}{2^{N}}
$$

$2 N$ cycles \longrightarrow box with dimensions $\quad b^{\prime}=b \frac{\beta_{1} \alpha_{2} \beta_{3} \alpha_{4} \ldots \beta_{2 N-1} \alpha_{2 N}}{2^{N}}$,

$$
c^{\prime}=c \frac{a b}{a^{\prime} b^{\prime}}
$$

product of coefficients of rolling must average out to 2^{N},
or else the dough would aquire an odd shape.

Rolling does not matter?
Only folding does?

$$
a^{\prime}=a \frac{\alpha_{1} \beta_{2} \alpha_{3} \beta_{4} \ldots \alpha_{2 N-1} \beta_{2 N}}{2^{N}}
$$

$2 N$ cycles \longrightarrow box with dimensions $\quad b^{\prime}=b \frac{\beta_{1} \alpha_{2} \beta_{3} \alpha_{4} \ldots \beta_{2 N-1} \alpha_{2 N}}{2^{N}}$,

$$
c^{\prime}=c \frac{a b}{a^{\prime} b^{\prime}}
$$

product of coefficients of rolling must average out to 2^{N},
or else the dough would aquire an odd shape.

Kneading map(s)

$$
\begin{aligned}
K_{f f}(x, y, z)=K_{s f}(x, y, z) & =\left(2 y, x, 1-\frac{1}{2} z\right), \quad \text { if } 0 \leq y \leq \frac{1}{2}, \\
K_{f f}(x, y, z) & =\left(2(1-y), x, \frac{1}{2} z\right), \quad \text { if } \frac{1}{2}<y \leq 1, \\
K_{s f}(x, y, z) & =\left(2 y-1, x, \frac{1}{2}(1-z)\right), \quad \text { if } \frac{1}{2}<y \leq 1, \\
K_{f r}(x, y, z)=K_{s r}(x, y, z) & =\left(1-2 y, x, \frac{1}{2} z\right), \quad \text { if } 0 \leq y \leq \frac{1}{2}, \\
K_{f r}(x, y, z) & =\left(2 y-1, x, 1-\frac{1}{2} z\right), \quad \text { if } \frac{1}{2}<y \leq 1, \\
K_{s r}(x, y, z) & =\left(2(1-y), x, \frac{1}{2}(z+1)\right), \quad \text { if } \frac{1}{2}<y \leq 1 .
\end{aligned}
$$

Kneading map(s)

$$
\begin{aligned}
K_{f f}(x, y, z)=K_{s f}(x, y, z)=\left(2 y, x, 1-\frac{1}{2} z\right), \quad \text { if } 0 \leq y \leq \frac{1}{2}, \\
K_{f f}(x, y, z)=\left(2(1-y), x, \frac{1}{2} z\right), \quad \text { if } \frac{1}{2}<y \leq 1, \\
K_{s f}(x, y, z)=\left(2 y-1, x, \frac{1}{2}(1-z)\right), \quad \text { if } \frac{1}{2}<y \leq 1,
\end{aligned}
$$

Kneading map(s)

$$
\begin{aligned}
K_{f f}(x, y, z)=K_{s f}(x, y, z)=\left(2 y, x, 1-\frac{1}{2} z\right), \quad \text { if } 0 \leq y \leq \frac{1}{2}, \\
K_{f f}(x, y, z)=\left(2(1-y), x, \frac{1}{2} z\right), \quad \text { if } \frac{1}{2}<y \leq 1, \\
K_{s f}(x, y, z)=\left(2 y-1, x, \frac{1}{2}(1-z)\right), \quad \text { if } \frac{1}{2}<y \leq 1, \\
K_{\text {fr }}(x, y, z)=K_{s r}(x, y, z)=\left(1-2 y, x, \frac{1}{2} z\right), \quad \text { if } 0 \leq y \leq \frac{1}{2}, \\
K_{f r}(x, y, z)=\left(2 y-1, x, 1-\frac{1}{2} z\right), \quad \text { if } \frac{1}{2}<y \leq 1, \\
K_{s r}(x, y, z)=\left(2(1-y), x, \frac{1}{2}(z+1)\right), \text { if } \frac{1}{2}<y \leq 1 .
\end{aligned}
$$

symbolic space $\Sigma=\{0,1\}^{\mathbb{Z}}, \quad$ left shift $\sigma: \Sigma \rightarrow \Sigma$

geometric coding map $h: \Sigma \rightarrow C=[0,1]^{3}$

$h\left(\ldots z_{3}, z_{2}, z_{1} \cdot y_{1}, x_{1}, y_{2}, x_{2}, \ldots\right)=(x, y, z)$

$\delta_{x}, \delta_{y}, \delta_{z}: \Sigma \rightarrow \Sigma$ maps which exchange 0 and 1 in x_{i}-s for δ_{x}, y_{i}-s for δ_{y}, z_{i}-s for δ_{z}
symbolic space $\Sigma=\{0,1\}^{\mathbb{Z}}, \quad$ left shift $\sigma: \Sigma \rightarrow \Sigma$
geometric coding map $h: \Sigma \rightarrow C=[0,1]^{3}$

$x_{i}, y_{i}, z_{i}, i=1,2, \ldots$, binary digits of coordinates

$(x, y, z) \in C=[0,1]^{3}$
$h\left(\ldots, z_{3}, z_{2}, z_{1}, y_{1}, x_{1}, y_{2}, x_{2}, \ldots\right)=(x, y, z)$

$\delta_{x}, \delta_{y}, \delta_{z}: \Sigma \rightarrow \Sigma$ maps which exchange 0 and 1
in x_{i}-s for δ_{x}, y_{i}-s for δ_{y}, z_{i}-s for δ_{z}
symbolic space $\Sigma=\{0,1\}^{\mathbb{Z}}$, left shift $\sigma: \Sigma \rightarrow \Sigma$
geometric coding map $h: \Sigma \rightarrow C=[0,1]^{3}$
$x_{i}, y_{i}, z_{i}, i=1,2, \ldots$, binary digits of coordinates $(x, y, z) \in C=[0,1]^{3}$
$\delta_{x}, \delta_{y}, \delta_{z}: \Sigma \rightarrow \Sigma$ maps which exchange 0 and 1 in x_{i}-s for δ_{x}, y_{i}-s for δ_{y}, z_{i}-s for δ_{z}
symbolic space $\Sigma=\{0,1\}^{\mathbb{Z}}$, left shift $\sigma: \Sigma \rightarrow \Sigma$
geometric coding map $h: \Sigma \rightarrow C=[0,1]^{3}$
$x_{i}, y_{i}, z_{i}, i=1,2, \ldots$, binary digits of coordinates $(x, y, z) \in C=[0,1]^{3}$
$h\left(\ldots z_{3}, z_{2}, z_{1} \cdot y_{1}, x_{1}, y_{2}, x_{2}, \ldots\right)=(x, y, z)$

$\delta_{x}, \delta_{y}, \delta_{z}: \Sigma \rightarrow \Sigma$ maps which exchange 0 and 1
in x_{i}-s for δ_{x}, y_{i}-s for δ_{y}, z_{i}-s for δ_{z}
symbolic space $\Sigma=\{0,1\}^{\mathbb{Z}}, \quad$ left shift $\sigma: \Sigma \rightarrow \Sigma$
geometric coding map $h: \Sigma \rightarrow C=[0,1]^{3}$
$x_{i}, y_{i}, z_{i}, i=1,2, \ldots$, binary digits of coordinates $(x, y, z) \in C=[0,1]^{3}$
$h\left(\ldots z_{3}, z_{2}, z_{1} \cdot y_{1}, x_{1}, y_{2}, x_{2}, \ldots\right)=(x, y, z)$

$\delta_{x}, \delta_{y}, \delta_{z}: \Sigma \rightarrow \Sigma$ maps which exchange 0 and 1
in x_{i}-s for δ_{x}, y_{i}-s for δ_{y}, z_{i}-s for δ_{z}
symbolic space $\Sigma=\{0,1\}^{\mathbb{Z}}, \quad$ left shift $\sigma: \Sigma \rightarrow \Sigma$
geometric coding map $h: \Sigma \rightarrow C=[0,1]^{3}$
$x_{i}, y_{i}, z_{i}, i=1,2, \ldots$, binary digits of coordinates
$(x, y, z) \in C=[0,1]^{3}$
$h\left(\ldots z_{3}, z_{2}, z_{1} \cdot y_{1}, x_{1}, y_{2}, x_{2}, \ldots\right)=(x, y, z)$

$\delta_{x}, \delta_{y}, \delta_{z}: \Sigma \rightarrow \Sigma$ maps which exchange 0 and 1
in x_{i}-s for δ_{x}, y_{i}-s for δ_{y}, z_{i}-s for δ_{z}
symbolic space $\Sigma=\{0,1\}^{\mathbb{Z}}, \quad$ left shift $\sigma: \Sigma \rightarrow \Sigma$
geometric coding map $h: \Sigma \rightarrow C=[0,1]^{3}$
$x_{i}, y_{i}, z_{i}, i=1,2, \ldots$, binary digits of coordinates $(x, y, z) \in C=[0,1]^{3}$
$h\left(\ldots z_{3}, z_{2}, z_{1} \cdot y_{1}, x_{1}, y_{2}, x_{2}, \ldots\right)=(x, y, z)$

$\delta_{x}, \delta_{y}, \delta_{z}: \Sigma \rightarrow \Sigma$ maps which exchange 0 and 1 in x_{i}-s for δ_{x}, y_{i}-s for δ_{y}, z_{i}-s for δ_{z}

$$
\left(\ldots z_{3}, z_{2}, z_{1} \cdot y_{1}, x_{1}, y_{2}, x_{2}, \ldots\right)
$$

$$
\widehat{K}_{f f}=\left\{\begin{array}{lll}
\delta_{z} \circ \sigma, & \text { if } \eta_{0}=y_{1}=0 \\
\sigma \circ \delta_{y}, & \text { if } \eta_{0}=y_{1}=1
\end{array}\right.
$$

$$
\widehat{K}_{f f}= \begin{cases}\delta_{z} \circ \sigma, & \text { if } \eta_{0}=y_{1}=0, \\ \sigma \circ \delta_{y}, & \text { if } \eta_{0}=y_{1}=1\end{cases}
$$

$$
\widehat{K}_{s f}=\delta_{z} \circ \sigma
$$

$$
\begin{gathered}
\widehat{K}_{f f}= \begin{cases}\delta_{z} \circ \sigma, & \text { if } \eta_{0}=y_{1}=0 \\
\sigma \circ \delta_{y}, & \text { if } \eta_{0}=y_{1}=1\end{cases} \\
\widehat{K}_{s f}=\delta_{z} \circ \sigma \\
\widehat{K}_{f r}= \begin{cases}\delta_{x} \circ \sigma, & \text { if } \eta_{0}=y_{1}=0 \\
\sigma \circ \delta_{z}, & \text { if } \eta_{0}=y_{1}=1\end{cases}
\end{gathered}
$$

$$
\begin{gathered}
\widehat{K}_{f f}= \begin{cases}\delta_{z} \circ \sigma, & \text { if } \eta_{0}=y_{1}=0, \\
\sigma \circ \delta_{y}, & \text { if } \eta_{0}=y_{1}=1\end{cases} \\
\widehat{K}_{s f}=\delta_{z} \circ \sigma \\
\widehat{K}_{f r}= \begin{cases}\delta_{x} \circ \sigma, & \text { if } \eta_{0}=y_{1}=0, \\
\sigma \circ \delta_{z}, & \text { if } \eta_{0}=y_{1}=1\end{cases}
\end{gathered}
$$

$$
\widehat{K}_{s r}=\delta_{x} \circ \sigma
$$

$$
\begin{gathered}
\widehat{K}_{f f}= \begin{cases}\delta_{z} \circ \sigma, & \text { if } \eta_{0}=y_{1}=0, \\
\sigma \circ \delta_{y}, & \text { if } \eta_{0}=y_{1}=1\end{cases} \\
\widehat{K}_{s f}=\delta_{z} \circ \sigma \\
\widehat{K}_{f r}= \begin{cases}\delta_{x} \circ \sigma, & \text { if } \eta_{0}=y_{1}=0, \\
\sigma \circ \delta_{z}, & \text { if } \eta_{0}=y_{1}=1\end{cases}
\end{gathered}
$$

$$
\widehat{K}_{s r}=\delta_{x} \circ \sigma
$$

cylinders $W_{0}=\left\{\eta_{0}=0\right\}, W_{1}=\left\{\eta_{0}=1\right\}, \quad \Sigma=W_{0} \cup W_{1}$

Markov partition

symbolic dynamics for $\widehat{K}, \quad g: \Sigma \rightarrow \Sigma$

$$
\text { cylinders } W_{0}=\left\{\eta_{0}=0\right\}, W_{1}=\left\{\eta_{0}=1\right\}, \quad \Sigma=W_{0} \cup W_{1}
$$

Markov partition

symbolic dynamics for $\widehat{K}, \quad g: \Sigma \rightarrow \Sigma$

cylinders $W_{0}=\left\{\eta_{0}=0\right\}, W_{1}=\left\{\eta_{0}=1\right\}, \quad \Sigma=W_{0} \cup W_{1}$

Markov partition

symbolic dynamics for $\widehat{K}, \quad g: \Sigma \rightarrow \Sigma$

$$
(g(\eta))_{m}=\left(\widehat{K}^{m} \eta\right)_{0}
$$

cylinders $W_{0}=\left\{\eta_{0}=0\right\}, W_{1}=\left\{\eta_{0}=1\right\}, \quad \Sigma=W_{0} \cup W_{1}$

Markov partition

symbolic dynamics for $\widehat{K}, \quad g: \Sigma \rightarrow \Sigma$

$$
\left.\begin{array}{rll}
(g(\eta))_{m} & =\left(\widehat{K}^{m} \eta\right)_{0} \\
\Sigma & \xrightarrow{\widehat{K}} & \Sigma \\
g \downarrow & & \downarrow g \\
\Sigma & & \sigma
\end{array}\right) \sigma
$$

$g(\eta)=\widetilde{\eta}$
for any $k \geq 0, I \geq 0$
block $\left(\widetilde{\eta}_{-1}, \ldots, \widetilde{\eta}_{-1}, \widetilde{\eta}_{0}, \widetilde{\eta}_{1}, \ldots, \widetilde{\eta}_{k-1}\right)$
depends only on ($\eta_{-1}, \ldots, \eta_{-1}, \eta_{0}, \eta_{1}, \ldots, \eta_{k-1}$)
this dependence is permutation of all 2^{1+k} blocks

- g is $1-1$ and onto
- g takes any Bernoulli measure into itself
(for $\widehat{K}_{f f}$ and $\widehat{K}_{f r}$ coding g does not map cylinders into cylinders, unless they are "centered")
K is measurably conjugate to σ with $\left\{\frac{1}{2}, \frac{1}{2}\right\}$ measure
$g(\eta)=\widetilde{\eta}$
for any $k \geq 0, I \geq 0$
block $\left(\widetilde{\eta}_{-1}, \ldots, \widetilde{\eta}_{-1}, \widetilde{\eta}_{0}, \widetilde{\eta}_{1}, \ldots, \widetilde{\eta}_{k-1}\right)$
depends only on ($\left.\eta_{-1}, \ldots, \eta_{-1}, \eta_{0}, \eta_{1}, \ldots, \eta_{k-1}\right)$
this dependence is permutation of all 2^{1+k} blocks
- g is $1-1$ and onto
- g takes any Bernoulli measure into itself
(for $\widehat{K}_{f f}$ and $\widehat{K}_{f f}$ coding g does not map cylinders into cylinders, unless they are "centered")
K is measurably conjugate to σ with $\left\{\frac{1}{2}, \frac{1}{2}\right\}$ measure
$g(\eta)=\widetilde{\eta}$
for any $k \geq 0, I \geq 0$
block $\left(\widetilde{\eta}_{-1}, \ldots, \widetilde{\eta}_{-1}, \widetilde{\eta}_{0}, \widetilde{\eta}_{1}, \ldots, \widetilde{\eta}_{k-1}\right)$
depends only on $\left(\eta_{-1}, \ldots, \eta_{-1}, \eta_{0}, \eta_{1}, \ldots, \eta_{k-1}\right)$
this dependence is permutation of all 2^{1+k} blocks
- g is $1-1$ and onto
- g takes any Bernoulli measure into itself
(for $\widehat{K}_{f f}$ and $\widehat{K}_{f r}$ coding g does not map cylinders into cylinders, unless they are "centered")
K is measurably conjugate to σ with $\left\{\frac{1}{2}, \frac{1}{2}\right\}$ measure
$g(\eta)=\widetilde{\eta}$
for any $k \geq 0, I \geq 0$
block $\left(\widetilde{\eta}_{-1}, \ldots, \widetilde{\eta}_{-1}, \widetilde{\eta}_{0}, \widetilde{\eta}_{1}, \ldots, \widetilde{\eta}_{k-1}\right)$
depends only on $\left(\eta_{-1}, \ldots, \eta_{-1}, \eta_{0}, \eta_{1}, \ldots, \eta_{k-1}\right)$
this dependence is permutation of all 2^{1+k} blocks
- g is $1-1$ and onto
- g takes any Bernoulli measure into itself
(for $\widehat{K}_{f f}$ and $\widehat{K}_{f r}$ coding g does not map cylinders into cylinders, unless they are "centered")
K is measurably conjugate to σ with $\left\{\frac{1}{2}, \frac{1}{2}\right\}$ measure
$g(\eta)=\widetilde{\eta}$
for any $k \geq 0, I \geq 0$
block $\left(\widetilde{\eta}_{-1}, \ldots, \widetilde{\eta}_{-1}, \widetilde{\eta}_{0}, \widetilde{\eta}_{1}, \ldots, \widetilde{\eta}_{k-1}\right)$
depends only on $\left(\eta_{-1}, \ldots, \eta_{-1}, \eta_{0}, \eta_{1}, \ldots, \eta_{k-1}\right)$
this dependence is permutation of all 2^{1+k} blocks
- g is $1-1$ and onto
- g takes any Bernoulli measure into itself
(for $\widehat{K}_{f f}$ and $\widehat{K}_{f f}$ coding g does not map cylinders into cylinders, unless they are "centered")
K is measurably conjugate to σ with $\left\{\frac{1}{2}, \frac{1}{2}\right\}$ measure
$g(\eta)=\widetilde{\eta}$
for any $k \geq 0, I \geq 0$
block $\left(\widetilde{\eta}_{-1}, \ldots, \widetilde{\eta}_{-1}, \widetilde{\eta}_{0}, \widetilde{\eta}_{1}, \ldots, \widetilde{\eta}_{k-1}\right)$
depends only on $\left(\eta_{-1}, \ldots, \eta_{-1}, \eta_{0}, \eta_{1}, \ldots, \eta_{k-1}\right)$
this dependence is permutation of all 2^{1+k} blocks
- g is $1-1$ and onto
- g takes any Bernoulli measure into itself
(for $\widehat{K}_{f f}$ and $\widehat{K}_{f r}$ coding g does not map cylinders into cylinders, unless they are "centered")
K is measurably conjugate to σ with $\left\{\frac{1}{2}, \frac{1}{2}\right\}$ measure
$g(\eta)=\widetilde{\eta}$
for any $k \geq 0, I \geq 0$
block $\left(\widetilde{\eta}_{-1}, \ldots, \widetilde{\eta}_{-1}, \widetilde{\eta}_{0}, \widetilde{\eta}_{1}, \ldots, \widetilde{\eta}_{k-1}\right)$
depends only on $\left(\eta_{-1}, \ldots, \eta_{-1}, \eta_{0}, \eta_{1}, \ldots, \eta_{k-1}\right)$
this dependence is permutation of all 2^{1+k} blocks
- g is $1-1$ and onto
- g takes any Bernoulli measure into itself
(for $\widehat{K}_{f f}$ and $\widehat{K}_{f r}$ coding g does not map cylinders into cylinders, unless they are "centered")
K is measurably conjugate to σ with $\left\{\frac{1}{2}, \frac{1}{2}\right\}$ measure
$g(\eta)=\widetilde{\eta}$
for any $k \geq 0, I \geq 0$
block $\left(\widetilde{\eta}_{-1}, \ldots, \widetilde{\eta}_{-1}, \widetilde{\eta}_{0}, \widetilde{\eta}_{1}, \ldots, \widetilde{\eta}_{k-1}\right)$
depends only on $\left(\eta_{-1}, \ldots, \eta_{-1}, \eta_{0}, \eta_{1}, \ldots, \eta_{k-1}\right)$
this dependence is permutation of all 2^{1+k} blocks
- g is $1-1$ and onto
- g takes any Bernoulli measure into itself
(for $\widehat{K}_{f f}$ and $\widehat{K}_{f r}$ coding g does not map cylinders into cylinders, unless they are "centered")
K is measurably conjugate to σ with $\left\{\frac{1}{2}, \frac{1}{2}\right\}$ measure

Quantifying mixing

Definition

For a map $K: C \rightarrow C$, and a finite σ-algebra \mathcal{B} of subsets of C, we say that a family \mathcal{A} of subsets of C has the decay rate $r_{0}<1$, with the resolution \mathcal{B}, if for every $r>r_{0}$ and every $A \in \mathcal{A}$ there is a constant $d>0$ such that

$$
\begin{aligned}
& \left|\mu\left(K^{n}(A) \cap B\right)-\mu(A) \mu(B)\right| \leq d r^{n} \text { for every } B \in \mathcal{B}, n=1,2, \ldots \\
& \text { If } r_{0}=0 \text { then we say that the decay rate is super-exponential. }
\end{aligned}
$$

Quantifying mixing

Definition

For a map $K: C \rightarrow C$, and a finite σ-algebra \mathcal{B} of subsets of C, we say that a family \mathcal{A} of subsets of C has the decay rate $r_{0}<1$, with the resolution \mathcal{B}, if for every $r>r_{0}$ and every $A \in \mathcal{A}$ there is a constant $d>0$ such that
$\left|\mu\left(K^{n}(A) \cap B\right)-\mu(A) \mu(B)\right| \leq d r^{n}$ for every $B \in \mathcal{B}, n=1,2, \ldots$.
If $r_{0}=0$ then we say that the decay rate is super-exponential.
for natural N, partition Π_{N} of C into $2^{3 N}$ cubes, with sides equal to $\frac{1}{2^{N}}$
partition $\widehat{\Pi}_{N}$ of Σ is partition into cylinders of length $3 N$
for $\bar{\eta}=\left(\bar{\eta}_{i}\right)_{i \in \mathbb{Z}} \in \Sigma$ let $\Pi_{N}(\bar{\eta})$ is element of Π_{N} containing $\bar{\eta}$
$\widehat{\Pi}_{N}(\bar{\eta})=\left\{\eta \in \Sigma \mid \eta_{i}=\bar{\eta}_{i},-N \leq i \leq 2 N-1\right\}$
$\delta_{x}, \delta_{y}, \delta_{z}$ and g act naturally on these partitions
as (involutive) permutations
for natural N, partition Π_{N} of C into $2^{3 N}$ cubes, with sides equal to $\frac{1}{2^{N}}$
partition $\widehat{\Pi}_{N}$ of Σ is partition into cylinders of length $3 N$
for $\bar{\eta}=\left(\bar{\eta}_{i}\right)_{i \in \mathbb{Z}} \in \Sigma$ let $\Pi_{N}(\bar{\eta})$ is element of Π_{N} containing $\bar{\eta}$
$\widehat{\Pi}_{N}(\bar{\eta})=\left\{\eta \in \Sigma \mid \eta_{i}=\bar{\eta}_{i},-N \leq i \leq 2 N-1\right\}$
$\delta_{x}, \delta_{y}, \delta_{z}$ and g act naturally on these partitions
as (involutive) permutations
for natural N, partition Π_{N} of C into $2^{3 N}$ cubes, with sides equal to $\frac{1}{2^{N}}$
partition $\widehat{\Pi}_{N}$ of Σ is partition into cylinders of length $3 N$
for $\bar{\eta}=\left(\bar{\eta}_{i}\right)_{i \in \mathbb{Z}} \in \Sigma$ let $\Pi_{N}(\bar{\eta})$ is element of Π_{N} containing $\bar{\eta}$
$\widehat{\Pi}_{N}(\bar{\eta})=\left\{\eta \in \Sigma \mid \eta_{i}=\bar{\eta}_{i},-N \leq i \leq 2 N-1\right\}$
$\delta_{x}, \delta_{y}, \delta_{z}$ and g act naturally on these partitions
as (involutive) permutations
for natural N, partition Π_{N} of C into $2^{3 N}$ cubes, with sides equal to $\frac{1}{2^{N}}$
partition $\widehat{\Pi}_{N}$ of Σ is partition into cylinders of length $3 N$
for $\bar{\eta}=\left(\bar{\eta}_{i}\right)_{i \in \mathbb{Z}} \in \Sigma$ let $\Pi_{N}(\bar{\eta})$ is element of Π_{N} containing $\bar{\eta}$ $\widehat{\Pi}_{N}(\bar{\eta})=\left\{\eta \in \Sigma \mid \eta_{i}=\bar{\eta}_{i},-N \leq i \leq 2 N-1\right\}$
$\delta_{x}, \delta_{y}, \delta_{z}$ and g act naturally on these partitions as (involutive) permutations
for natural N, partition Π_{N} of C into $2^{3 N}$ cubes, with sides equal to $\frac{1}{2^{N}}$
partition $\hat{\Pi}_{N}$ of Σ is partition into cylinders of length $3 N$
for $\bar{\eta}=\left(\bar{\eta}_{i}\right)_{i \in \mathbb{Z}} \in \Sigma$ let $\hat{\Pi}_{N}(\bar{\eta})$ is element of $\hat{\Pi}_{N}$ containing $\bar{\eta}$
$\widehat{\Pi}_{N}(\bar{\eta})=\left\{\eta \in \Sigma \mid \eta_{i}=\bar{\eta}_{i},-N \leq i \leq 2 N-1\right\}$
$\delta_{x}, \delta_{y}, \delta_{z}$ and g act naturally on these partitions
as (involutive) permutations
for natural N, partition Π_{N} of C into $2^{3 N}$ cubes, with sides equal to $\frac{1}{2^{N}}$
partition $\hat{\Pi}_{N}$ of Σ is partition into cylinders of length $3 N$
for $\bar{\eta}=\left(\bar{\eta}_{i}\right)_{i \in \mathbb{Z}} \in \Sigma$ let $\hat{\Pi}_{N}(\bar{\eta})$ is element of $\hat{\Pi}_{N}$ containing $\bar{\eta}$
$\hat{\Pi}_{N}(\bar{\eta})=\left\{\eta \in \Sigma \mid \eta_{i}=\bar{\eta}_{i},-N \leq i \leq 2 N-1\right\}$

$\delta_{x}, \delta_{y}, \delta_{z}$ and g act naturally on these partitions
 as (involutive) permutations

for natural N, partition Π_{N} of C into $2^{3 N}$ cubes, with sides equal to $\frac{1}{2^{N}}$
partition $\widehat{\Pi}_{N}$ of Σ is partition into cylinders of length $3 N$
for $\bar{\eta}=\left(\bar{\eta}_{i}\right)_{i \in \mathbb{Z}} \in \Sigma$ let $\widehat{\Pi}_{N}(\bar{\eta})$ is element of $\widehat{\Pi}_{N}$ containing $\bar{\eta}$
$\widehat{\Pi}_{N}(\bar{\eta})=\left\{\eta \in \Sigma \mid \eta_{i}=\bar{\eta}_{i},-N \leq i \leq 2 N-1\right\}$
$\delta_{x}, \delta_{y}, \delta_{z}$ and g act naturally on these partitions
as (involutive) permutations
$\mathcal{B}\left(\Pi_{N}\right), \mathcal{B}\left(\widehat{\Pi}_{N}\right)$,
σ-algebra of subsets generated by respective partition
for any $A \in \mathcal{B}\left(\Pi_{M}\right), B \in \mathcal{B}\left(\Pi_{N}\right)$

Theorem

For the kneading map K and any natural N, M, the family $\mathcal{B}\left(\Pi_{M}\right)$ has the super-exponential decay rate with the resolution
$\mathcal{B}\left(\Pi_{N}\right), \mathcal{B}\left(\hat{\Pi}_{N}\right)$,
σ-algebra of subsets generated by respective partition for any $A \in \mathcal{B}\left(\Pi_{M}\right), B \in \mathcal{B}\left(\Pi_{N}\right)$
$\mu\left(K^{n}(A) \cap B\right)=\mu(A) \mu(B) \quad$ for $\quad n \geq 2 M+N$
Theorem
$\mathcal{B}\left(\Pi_{M}\right)$ has the super-exponential decay rate with the resolution
$\mathcal{B}\left(\Pi_{N}\right), \mathcal{B}\left(\hat{\Pi}_{N}\right)$,
σ-algebra of subsets generated by respective partition for any $A \in \mathcal{B}\left(\Pi_{M}\right), B \in \mathcal{B}\left(\Pi_{N}\right)$
$\mu\left(K^{n}(A) \cap B\right)=\mu(A) \mu(B) \quad$ for $\quad n \geq 2 M+N$

Theorem

For the kneading map K and any natural N, M, the family $\mathcal{B}\left(\Pi_{M}\right)$ has the super-exponential decay rate with the resolution $\mathcal{B}\left(\Pi_{N}\right)$.

Definition

A subset $A \subset C$ has finite surface area if there is a constant $s>0$ such that the Lebesgue measure of the ϵ-neighborhood of its boundary ∂A does not exceed $s \epsilon$, for any $\epsilon>0$.

Theorem
The family of subsets of C with finite surface area has the decay rate $r=\frac{1}{\sqrt{2}}$ with the resolution $\mathcal{B}\left(\Pi_{N}\right)$, for any natural N.
wider family of subsets with common decay rate?

Definition

A subset $A \subset C$ has finite surface area if there is a constant $s>0$ such that the Lebesgue measure of the ϵ-neighborhood of its boundary ∂A does not exceed $s \epsilon$, for any $\epsilon>0$.

Theorem
The familv of subsets of C with finite surface area has the decay rate $r=\frac{1}{\sqrt{2}}$ with the resolution $\mathcal{B}\left(\Pi_{N}\right)$, for any natural N.
wider family of subsets with common decay rate?

Definition

A subset $A \subset C$ has finite surface area if there is a constant $s>0$ such that the Lebesgue measure of the ϵ-neighborhood of its boundary ∂A does not exceed $s \epsilon$, for any $\epsilon>0$.

Theorem

The family of subsets of C with finite surface area has the decay rate $r=\frac{1}{\sqrt{2}}$ with the resolution $\mathcal{B}\left(\Pi_{N}\right)$, for any natural N.

Proof

$A \subset C, \quad M \geq 1$
approximating sets $A_{1}, A_{2} \in \mathcal{B}\left(\Pi_{M}\right)$
$A_{1} \subset A \subset A_{2}$
$A_{2} \backslash A_{1}$ equal to union of all elements of partition Π_{M} with nonempty intersection with the boundary ∂A.
A has finite surface area, cubes in Π_{N} have diameter $2^{-M} \sqrt{3}$
\Longrightarrow there is $s>0$ such that

$$
\begin{equation*}
\mu\left(A_{2} \backslash A_{1}\right) \leq s 2^{-M} \sqrt{3} . \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\mu\left(K^{n}\left(A_{1}\right) \cap B\right) \leq \mu\left(K^{n}(A) \cap B\right) \leq \mu\left(K^{n}\left(A_{2}\right) \cap B\right) . \tag{2}
\end{equation*}
$$

if $n=2 M+N$ then (1),(2)

$$
\begin{aligned}
& \left|\mu\left(K^{n}(A) \cap B\right)-\mu(A) \mu(B)\right| \leq \\
& \left(\mu\left(A_{2}\right)-\mu\left(A_{1}\right)\right) \mu(B) \leq s \sqrt{3} \mu(B) 2^{-M}=s \sqrt{3} \mu(B) 2^{\frac{N}{2}} 2^{-\frac{n}{2}} .
\end{aligned}
$$

Proof

$A \subset C, \quad M \geq 1$ approximating sets $A_{1}, A_{2} \in \mathcal{B}\left(\Pi_{M}\right)$
$A_{2} \backslash A_{1}$ equal to union of all elements of partition Π_{M} with nonempty intersection with the boundary ∂A.
A has finite surface area, cubes in Π_{N} have diameter $2^{-M} \sqrt{3}$ \Longrightarrow there is $s>0$ such that

$$
\begin{equation*}
\mu\left(A_{2} \backslash A_{1}\right) \leq s 2^{-M} \sqrt{3} . \tag{1}
\end{equation*}
$$

$$
\mu\left(K^{n}\left(A_{1}\right) \cap B\right) \leq \mu\left(K^{n}(A) \cap B\right) \leq \mu\left(K^{n}\left(A_{2}\right) \cap B\right)
$$

if $n=2 M+N$ then (1),(2)

$$
\begin{aligned}
& \left|\mu\left(K^{n}(A) \cap B\right)-\mu(A) \mu(B)\right| \leq \\
& \left(\mu\left(A_{2}\right)-\mu\left(A_{1}\right)\right) \mu(B) \leq s \sqrt{3} \mu(B) 2^{-M}=s \sqrt{3} \mu(B) 2^{\frac{N}{2}} 2^{-\frac{n}{2}} .
\end{aligned}
$$

Proof

$A \subset C, \quad M \geq 1$ approximating sets $A_{1}, A_{2} \in \mathcal{B}\left(\Pi_{M}\right)$
$A_{1} \subset A \subset A_{2}$
$A_{2} \backslash A_{1}$ equal to union of all elements of partition Π_{M} with nonempty intersection with the boundary ∂A.
A has finite surface area, cubes in Π_{N} have diameter $2^{-M} \sqrt{3}$
\Longrightarrow there is $s>0$ such that

$$
\begin{equation*}
\mu\left(A_{2} \backslash A_{1}\right) \leq s 2^{-M} \sqrt{3} . \tag{1}
\end{equation*}
$$

$$
\mu\left(K^{n}\left(A_{1}\right) \cap B\right) \leq \mu\left(K^{n}(A) \cap B\right) \leq \mu\left(K^{n}\left(A_{2}\right) \cap B\right) .
$$

if $n=2 M+N$ then (1),(2)

$$
\begin{aligned}
& \left|\mu\left(K^{n}(A) \cap B\right)-\mu(A) \mu(B)\right| \leq \\
& \left(\mu\left(A_{2}\right)-\mu\left(A_{1}\right)\right) \mu(B) \leq s \sqrt{3} \mu(B) 2^{-M}=s \sqrt{3} \mu(B) 2^{\frac{N}{2}} 2^{-\frac{n}{2}} .
\end{aligned}
$$

Proof

$A \subset C, \quad M \geq 1$
approximating sets $A_{1}, A_{2} \in \mathcal{B}\left(\Pi_{M}\right)$
$A_{1} \subset A \subset A_{2}$
$A_{2} \backslash A_{1}$ equal to union of all elements of partition Π_{M} with nonempty intersection with the boundary ∂A.
A has finite surface area, cubes in Π_{N} have diameter $2^{-M} \sqrt{3}$ there is $s>0$ such that

if $n=2 M+N$ then (1),(2)

Proof
$A \subset C, \quad M \geq 1$
approximating sets $A_{1}, A_{2} \in \mathcal{B}\left(\Pi_{M}\right)$
$A_{1} \subset A \subset A_{2}$
$A_{2} \backslash A_{1}$ equal to union of all elements of partition Π_{M} with nonempty intersection with the boundary ∂A.
A has finite surface area, cubes in Π_{N} have diameter $2^{-M} \sqrt{3}$
there is $s>0$ such that

$$
\mu\left(K^{n}\left(A_{1}\right) \cap B\right) \leq \mu\left(K^{n}(A) \cap B\right) \leq \mu\left(K^{n}\left(A_{2}\right) \cap B\right) .
$$

if $n=2 M+N$ then (1),(2)

Proof

$A \subset C, \quad M \geq 1$
approximating sets $A_{1}, A_{2} \in \mathcal{B}\left(\Pi_{M}\right)$
$A_{1} \subset A \subset A_{2}$
$A_{2} \backslash A_{1}$ equal to union of all elements of partition Π_{M} with nonempty intersection with the boundary ∂A.
A has finite surface area, cubes in Π_{N} have diameter $2^{-M} \sqrt{3}$
\Longrightarrow there is $s>0$ such that

$$
\begin{equation*}
\mu\left(A_{2} \backslash A_{1}\right) \leq s 2^{-M} \sqrt{3} \tag{1}
\end{equation*}
$$

$$
\mu\left(K^{n}\left(A_{1}\right) \cap B\right) \leq \mu\left(K^{n}(A) \cap B\right) \leq \mu\left(K^{n}\left(A_{2}\right) \cap B\right)
$$

Proof

$A \subset C, \quad M \geq 1$
approximating sets $A_{1}, A_{2} \in \mathcal{B}\left(\Pi_{M}\right)$
$A_{1} \subset A \subset A_{2}$
$A_{2} \backslash A_{1}$ equal to union of all elements of partition Π_{M} with nonempty intersection with the boundary ∂A.
A has finite surface area, cubes in Π_{N} have diameter $2^{-M} \sqrt{3}$
\Longrightarrow there is $s>0$ such that

$$
\begin{equation*}
\mu\left(A_{2} \backslash \boldsymbol{A}_{1}\right) \leq s 2^{-M} \sqrt{3} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\mu\left(K^{n}\left(A_{1}\right) \cap B\right) \leq \mu\left(K^{n}(A) \cap B\right) \leq \mu\left(K^{n}\left(A_{2}\right) \cap B\right) \tag{2}
\end{equation*}
$$

if $n=2 M+N$ then (1),(2)

Proof

$A \subset C, \quad M \geq 1$
approximating sets $A_{1}, A_{2} \in \mathcal{B}\left(\Pi_{M}\right)$
$A_{1} \subset A \subset A_{2}$
$A_{2} \backslash A_{1}$ equal to union of all elements of partition Π_{M} with nonempty intersection with the boundary ∂A.
A has finite surface area, cubes in Π_{N} have diameter $2^{-M} \sqrt{3}$
\Longrightarrow there is $s>0$ such that

$$
\begin{equation*}
\mu\left(A_{2} \backslash A_{1}\right) \leq s 2^{-M} \sqrt{3} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\mu\left(K^{n}\left(A_{1}\right) \cap B\right) \leq \mu\left(K^{n}(A) \cap B\right) \leq \mu\left(K^{n}\left(A_{2}\right) \cap B\right) \tag{2}
\end{equation*}
$$

if $n=2 M+N$ then (1),(2) \Longrightarrow

$$
\begin{aligned}
& \left|\mu\left(K^{n}(A) \cap B\right)-\mu(A) \mu(B)\right| \leq \\
& \left(\mu\left(A_{2}\right)-\mu\left(A_{1}\right)\right) \mu(B) \leq s \sqrt{3} \mu(B) 2^{-M}=s \sqrt{3} \mu(B) 2^{\frac{N}{2}} 2^{-\frac{n}{2}} .
\end{aligned}
$$

what is the decay rate for K^{-1} ?

faster decay rate $r=\frac{1}{2}$
need to take $n=M+2 N$

$$
\left|\mu\left(K^{n}(A) \cap B\right)-\mu(A) \mu(B)\right| \leq s \sqrt{3} \mu(B) 2^{2 N_{2}-n}
$$

K^{-1} is not a workable kneading procedure

what is the decay rate for K^{-1} ?
faster decay rate $r=\frac{1}{2}$
need to take $n=M+2 N$
$\left|\mu\left(K^{n}(A) \cap B\right)-\mu(A) \mu(B)\right| \leq s \sqrt{3} \mu(B) 2^{2 N_{2}} 2^{-n}$

K^{-1} is not a workable kneading procedure

what is the decay rate for K^{-1} ?
faster decay rate $r=\frac{1}{2}$
need to take $n=M+2 N$

$$
\left|\mu\left(K^{n}(A) \cap B\right)-\mu(A) \mu(B)\right| \leq s \sqrt{3} \mu(B) 2^{2 N_{2}}{ }^{-n}
$$

what is the decay rate for K^{-1} ?
faster decay rate $r=\frac{1}{2}$
need to take $n=M+2 N$

$$
\left|\mu\left(K^{n}(A) \cap B\right)-\mu(A) \mu(B)\right| \leq s \sqrt{3} \mu(B) 2^{2 N_{2}}{ }^{-n}
$$

K^{-1} is not a workable kneading procedure
mixing rate for two sets of finite surface area?

Theorem

If A and B have finite surface area then there is a constant d such that for all $n>1$

$$
\left|\mu\left(K^{n}(A) \cap B\right)-\mu(A) \mu(B)\right| \leq 2^{-\frac{n}{3}} d
$$

rate of decay for correlations of observables? Lipschitz functions (observables) $f, g: C \rightarrow \mathbb{R}$

Theorem

There is a constant $d=d(f, g)$ such that for all $n \geq 1$

mixing rate for two sets of finite surface area?

Theorem

If A and B have finite surface area then there is a constant d such that for all $n \geq 1$

$$
\left|\mu\left(K^{n}(A) \cap B\right)-\mu(A) \mu(B)\right| \leq 2^{-\frac{n}{3}} d
$$

rate of decay for correlations of observables? Lipschitz functions (observables) $f, g: C \rightarrow \mathbb{R}$

Theorem
There is a constant $d=d(f, g)$ such that for all $n \geq 1$
mixing rate for two sets of finite surface area?

Theorem

If A and B have finite surface area then there is a constant d such that for all $n \geq 1$

$$
\left|\mu\left(K^{n}(A) \cap B\right)-\mu(A) \mu(B)\right| \leq 2^{-\frac{n}{3}} d
$$

rate of decay for correlations of observables?
Lipschitz functions (observables)
Theorem
There is a constant $d=d(f, g)$ such that for all $n \geq 1$
mixing rate for two sets of finite surface area?

Theorem

If A and B have finite surface area then there is a constant d such that for all $n \geq 1$

$$
\left|\mu\left(K^{n}(A) \cap B\right)-\mu(A) \mu(B)\right| \leq 2^{-\frac{n}{3}} d
$$

rate of decay for correlations of observables? Lipschitz functions (observables) $f, g: C \rightarrow \mathbb{R}$

Theorem
There is a constant $d=d(f, g)$ such that for all $n \geq 1$
mixing rate for two sets of finite surface area?

Theorem

If A and B have finite surface area then there is a constant d such that for all $n \geq 1$

$$
\left|\mu\left(K^{n}(A) \cap B\right)-\mu(A) \mu(B)\right| \leq 2^{-\frac{n}{3}} d
$$

rate of decay for correlations of observables?
Lipschitz functions (observables) $f, g: C \rightarrow \mathbb{R}$

Theorem

There is a constant $d=d(f, g)$ such that for all $n \geq 1$

$$
|c(f, g, n)|:=\left|\int_{C} f \circ K^{n} g d \mu-\int_{C} f d \mu \int_{C} g d \mu\right| \leq 2^{-\frac{n}{3}} d
$$

