On the real baker map

Maciej P. Wojtkowski

University of Warmia and Mazury in Olsztyn

Ergodic Theory and Dynamical Systems University of Warwick, July 13, 2011

- V. Baladi *Positive Transfer Operators and Decay Of Correlations*. World Scientific, (2000).
- J. Moser Stable and Random Motions in Dynamical Systems, Princeton Univ. Press, (1973).
- C.E. Silva Invitation to Ergodic Theory, AMS, (2008).
- R. Sturman, J.M. Ottino, S. Wiggins The Mathematical Foundations of Mixing, Cambridge Univ. Press, (2006).
- W. Szlenk *Mathematical Model of Mixing in Rumen*. Applicationes Mathematicae **24** (1996), 87–95.

1. Rolling out a box $(a, b, c) \longrightarrow$ box with sides $\alpha a, \beta b, \frac{1}{\alpha \beta} c$ where $\alpha \ge 1$ and $\beta \ge 1$ are *coefficients of rolling*

2. Folding, or stacking \longrightarrow box with dimensions $\alpha a, \frac{1}{2}\beta b, \frac{2}{\alpha\beta}c$

3. Flipping, or rotating \rightarrow box with dimensions $a' = \frac{1}{2}\beta b, b' = \alpha a, c' = \frac{2}{\alpha\beta}c$

4 kneading procedures

1. Rolling out a box $(a, b, c) \rightarrow$ box with sides $\alpha a, \beta b, \frac{1}{\alpha\beta}c$ where $\alpha \ge 1$ and $\beta \ge 1$ are *coefficients* of *rolling*

2. Folding, or stacking \longrightarrow box with dimensions $\alpha a, \frac{1}{2}\beta b, \frac{2}{\alpha\beta}c$

3. Flipping, or rotating \longrightarrow box with dimensions $a' = \frac{1}{2}\beta b, b' = \alpha a, c' = \frac{2}{\alpha\beta}c$

4 kneading procedures

1. Rolling out a box $(a, b, c) \rightarrow$ box with sides $\alpha a, \beta b, \frac{1}{\alpha\beta}c$ where $\alpha \ge 1$ and $\beta \ge 1$ are *coefficients* of *rolling*

2. Folding, or stacking \rightarrow box with dimensions $\alpha a, \frac{1}{2}\beta b, \frac{2}{\alpha\beta}c$

3. Flipping, or rotating \longrightarrow box with dimensions $a' = \frac{1}{2}\beta b, b' = \alpha a, c' = \frac{2}{\alpha\beta}c$

4 kneading procedures

1. Rolling out a box $(a, b, c) \rightarrow$ box with sides $\alpha a, \beta b, \frac{1}{\alpha\beta}c$ where $\alpha \ge 1$ and $\beta \ge 1$ are *coefficients of rolling*

2. Folding, or stacking \rightarrow box with dimensions $\alpha a, \frac{1}{2}\beta b, \frac{2}{\alpha\beta}c$

3. Flipping, or rotating \rightarrow box with dimensions $a' = \frac{1}{2}\beta b, b' = \alpha a, c' = \frac{2}{\alpha\beta}c$

4 kneading procedures

1. Rolling out a box $(a, b, c) \rightarrow$ box with sides $\alpha a, \beta b, \frac{1}{\alpha\beta}c$ where $\alpha \ge 1$ and $\beta \ge 1$ are *coefficients* of *rolling*

2. Folding, or stacking \rightarrow box with dimensions $\alpha a, \frac{1}{2}\beta b, \frac{2}{\alpha\beta}c$

3. Flipping, or rotating \rightarrow box with dimensions $a' = \frac{1}{2}\beta b, b' = \alpha a, c' = \frac{2}{\alpha\beta}c$

4 kneading procedures

1. Rolling out a box $(a, b, c) \rightarrow$ box with sides $\alpha a, \beta b, \frac{1}{\alpha\beta}c$ where $\alpha \ge 1$ and $\beta \ge 1$ are *coefficients* of *rolling*

2. Folding, or stacking \rightarrow box with dimensions $\alpha a, \frac{1}{2}\beta b, \frac{2}{\alpha\beta}c$

3. Flipping, or rotating \rightarrow box with dimensions $a' = \frac{1}{2}\beta b, b' = \alpha a, c' = \frac{2}{\alpha\beta}c$

4 kneading procedures

1. Rolling out a box $(a, b, c) \rightarrow$ box with sides $\alpha a, \beta b, \frac{1}{\alpha\beta}c$ where $\alpha \ge 1$ and $\beta \ge 1$ are *coefficients* of *rolling*

2. Folding, or stacking \rightarrow box with dimensions $\alpha a, \frac{1}{2}\beta b, \frac{2}{\alpha\beta}c$

3. Flipping, or rotating \rightarrow box with dimensions $a' = \frac{1}{2}\beta b, b' = \alpha a, c' = \frac{2}{\alpha\beta}c$

4 kneading procedures

1. Rolling out a box $(a, b, c) \rightarrow$ box with sides $\alpha a, \beta b, \frac{1}{\alpha\beta}c$ where $\alpha \ge 1$ and $\beta \ge 1$ are *coefficients* of *rolling*

2. Folding, or stacking \rightarrow box with dimensions $\alpha a, \frac{1}{2}\beta b, \frac{2}{\alpha\beta}c$

3. Flipping, or rotating \rightarrow box with dimensions $a' = \frac{1}{2}\beta b, b' = \alpha a, c' = \frac{2}{\alpha\beta}c$

4 kneading procedures

1. Rolling out a box $(a, b, c) \rightarrow$ box with sides $\alpha a, \beta b, \frac{1}{\alpha\beta}c$ where $\alpha \ge 1$ and $\beta \ge 1$ are *coefficients* of *rolling*

2. Folding, or stacking \rightarrow box with dimensions $\alpha a, \frac{1}{2}\beta b, \frac{2}{\alpha\beta}c$

3. Flipping, or rotating \rightarrow box with dimensions $a' = \frac{1}{2}\beta b, b' = \alpha a, c' = \frac{2}{\alpha\beta}c$

4 kneading procedures

Do we have anything to say to a sloppy baker who rolls the dough inconsistently, i.e., with varying rolling coefficients?

Relative positions (x, y, z), $(x', y', z') \in C := [0, 1]^3$

u = ax, v = by, w = cz, K(u, v, w) = (a'x', b'y', c'z')

 $\mathcal{K}_{ff}(ax, by, cz) = \begin{cases} \left(a'2y, b'x, c'(1 - \frac{1}{2}z)\right) & \text{if } 0 \le y \le \frac{1}{2} \\ \left(a'2(1 - y), b'x, c'\frac{1}{2}z\right) & \text{if } \frac{1}{2} < y \le 1 \end{cases}$

$$(x', y', z') = \begin{cases} (2y, x, 1 - \frac{1}{2}z) & \text{if } 0 \le y \le \frac{1}{2} \\ (2(1-y), x, \frac{1}{2}z) & \text{if } \frac{1}{2} < y \le 1 \end{cases}$$

$$\frac{\alpha_1\beta_2}{2}a, \ \frac{\beta_1\alpha_2}{2}b, \ \frac{4}{\alpha_1\alpha_2\beta_1\beta_2}c$$

Do we have anything to say to a sloppy baker who rolls the dough inconsistently, i.e., with varying rolling coefficients?

Relative positions (x, y, z), $(x', y', z') \in C := [0, 1]^3$

$$u = ax, v = by, w = cz, K(u, v, w) = (a'x', b'y', c'z')$$

$$\mathcal{K}_{\rm ff}(ax, by, cz) = \begin{cases} \left(a'2y, b'x, c'(1 - \frac{1}{2}z)\right) & \text{if } 0 \le y \le \frac{1}{2} \\ \left(a'2(1 - y), b'x, c'\frac{1}{2}z\right) & \text{if } \frac{1}{2} < y \le 1 \end{cases}$$

$$(x', y', z') = \begin{cases} (2y, x, 1 - \frac{1}{2}z) & \text{if } 0 \le y \le \frac{1}{2} \\ (2(1 - y), x, \frac{1}{2}z) & \text{if } \frac{1}{2} < y \le 1 \end{cases}$$

$$\frac{\alpha_1\beta_2}{2}a, \ \frac{\beta_1\alpha_2}{2}b, \ \frac{4}{\alpha_1\alpha_2\beta_1\beta_2}c$$

Do we have anything to say to a sloppy baker who rolls the dough inconsistently, i.e., with varying rolling coefficients?

Relative positions (x, y, z), $(x', y', z') \in C := [0, 1]^3$

$$u = ax, v = by, w = cz, K(u, v, w) = (a'x', b'y', c'z')$$

$$\mathcal{K}_{ff}(ax, by, cz) = \begin{cases} \left(a'2y, b'x, c'(1 - \frac{1}{2}z)\right) & \text{if } 0 \le y \le \frac{1}{2} \\ \left(a'2(1 - y), b'x, c'\frac{1}{2}z\right) & \text{if } \frac{1}{2} < y \le 1 \end{cases}$$

$$(x', y', z') = \begin{cases} (2y, x, 1 - \frac{1}{2}z) & \text{if } 0 \le y \le \frac{1}{2} \\ (2(1 - y), x, \frac{1}{2}z) & \text{if } \frac{1}{2} < y \le 1 \end{cases}$$

$$\frac{\alpha_1\beta_2}{2}a, \ \frac{\beta_1\alpha_2}{2}b, \ \frac{4}{\alpha_1\alpha_2\beta_1\beta_2}c$$

Do we have anything to say to a sloppy baker who rolls the dough inconsistently, i.e., with varying rolling coefficients?

Relative positions (x, y, z), $(x', y', z') \in C := [0, 1]^3$

$$u = ax, v = by, w = cz, K(u, v, w) = (a'x', b'y', c'z')$$

 $K_{ff}(ax, by, cz) = \begin{cases} \left(a'2y, b'x, c'(1 - \frac{1}{2}z)\right) & \text{if } 0 \le y \le \frac{1}{2} \\ \left(a'2(1 - y), b'x, c'\frac{1}{2}z\right) & \text{if } \frac{1}{2} < y \le 1 \end{cases}$

$$(x', y', z') = \begin{cases} (2y, x, 1 - \frac{1}{2}z) & \text{if } 0 \le y \le \frac{1}{2} \\ (2(1-y), x, \frac{1}{2}z) & \text{if } \frac{1}{2} < y \le 1 \end{cases}$$

$$\frac{\alpha_1\beta_2}{2}a, \ \frac{\beta_1\alpha_2}{2}b, \ \frac{4}{\alpha_1\alpha_2\beta_1\beta_2}c$$

Do we have anything to say to a sloppy baker who rolls the dough inconsistently, i.e., with varying rolling coefficients?

Relative positions (x, y, z), $(x', y', z') \in C := [0, 1]^3$

$$u = ax, v = by, w = cz, K(u, v, w) = (a'x', b'y', c'z')$$

 $K_{ff}(ax, by, cz) = \begin{cases} \left(a'2y, b'x, c'(1 - \frac{1}{2}z)\right) & \text{if } 0 \le y \le \frac{1}{2} \\ \left(a'2(1 - y), b'x, c'\frac{1}{2}z\right) & \text{if } \frac{1}{2} < y \le 1 \end{cases}$

$$(x', y', z') = \begin{cases} (2y, x, 1 - \frac{1}{2}z) & \text{if } 0 \le y \le \frac{1}{2} \\ (2(1-y), x, \frac{1}{2}z) & \text{if } \frac{1}{2} < y \le 1 \end{cases}$$

$$\frac{\alpha_1\beta_2}{2}a, \ \frac{\beta_1\alpha_2}{2}b, \ \frac{4}{\alpha_1\alpha_2\beta_1\beta_2}c$$

Do we have anything to say to a sloppy baker who rolls the dough inconsistently, i.e., with varying rolling coefficients?

Relative positions (x, y, z), $(x', y', z') \in C := [0, 1]^3$

$$u = ax, v = by, w = cz, K(u, v, w) = (a'x', b'y', c'z')$$

$$\mathcal{K}_{f\!f}(ax, by, cz) = \begin{cases} \left(a'2y, b'x, c'(1 - \frac{1}{2}z)\right) & \text{if } 0 \le y \le \frac{1}{2} \\ \left(a'2(1 - y), b'x, c'\frac{1}{2}z\right) & \text{if } \frac{1}{2} < y \le 1 \end{cases}$$

$$(x', y', z') = \begin{cases} (2y, x, 1 - \frac{1}{2}z) & \text{if } 0 \le y \le \frac{1}{2} \\ (2(1 - y), x, \frac{1}{2}z) & \text{if } \frac{1}{2} < y \le 1 \end{cases}$$

$$\frac{lpha_1eta_2}{2}a, \ \frac{eta_1lpha_2}{2}b, \ \frac{4}{lpha_1lpha_2eta_1eta_2}c$$

Do we have anything to say to a sloppy baker who rolls the dough inconsistently, i.e., with varying rolling coefficients?

Relative positions (x, y, z), $(x', y', z') \in C := [0, 1]^3$

$$u = ax, v = by, w = cz, K(u, v, w) = (a'x', b'y', c'z')$$

$$\mathcal{K}_{\rm ff}(ax, by, cz) = \begin{cases} \left(a'2y, b'x, c'(1 - \frac{1}{2}z)\right) & \text{if } 0 \le y \le \frac{1}{2} \\ \left(a'2(1 - y), b'x, c'\frac{1}{2}z\right) & \text{if } \frac{1}{2} < y \le 1 \end{cases}$$

$$(x', y', z') = \begin{cases} (2y, x, 1 - \frac{1}{2}z) & \text{if } 0 \le y \le \frac{1}{2} \\ (2(1 - y), x, \frac{1}{2}z) & \text{if } \frac{1}{2} < y \le 1 \end{cases}$$

Only folding does?

 $a' = a \frac{\alpha_1 \beta_2 \alpha_3 \beta_4 \dots \alpha_{2N-1} \beta_{2N}}{2^N},$ 2N cycles — box with dimensions $b' = b \frac{\beta_1 \alpha_2 \beta_3 \alpha_4 \dots \beta_{2N-1} \alpha_{2N}}{2^N},$ $c' = c \frac{ab}{a'b'}.$

product of coefficients of rolling must average out to 2^N ,

Only folding does?

 $a' = a \frac{\alpha_1 \beta_2 \alpha_3 \beta_4 \dots \alpha_{2N-1} \beta_{2N}}{2^N},$ 2N cycles — box with dimensions $b' = b \frac{\beta_1 \alpha_2 \beta_3 \alpha_4 \dots \beta_{2N-1} \alpha_{2N}}{2^N},$ $c' = c \frac{ab}{a'b'}.$

product of coefficients of rolling must average out to 2^N ,

Only folding does?

 $a' = a \frac{\alpha_1 \beta_2 \alpha_3 \beta_4 \dots \alpha_{2N-1} \beta_{2N}}{2^N},$ 2N cycles \longrightarrow box with dimensions $b' = b \frac{\beta_1 \alpha_2 \beta_3 \alpha_4 \dots \beta_{2N-1} \alpha_{2N}}{2^N},$ $c' = c \frac{ab}{a'b'}.$

product of coefficients of rolling must average out to 2^N ,

Only folding does?

 $a' = a \frac{\alpha_1 \beta_2 \alpha_3 \beta_4 \dots \alpha_{2N-1} \beta_{2N}}{2^N},$ 2N cycles \longrightarrow box with dimensions $b' = b \frac{\beta_1 \alpha_2 \beta_3 \alpha_4 \dots \beta_{2N-1} \alpha_{2N}}{2^N},$ $c' = c \frac{ab}{a'b'}.$

product of coefficients of rolling must average out to 2^N ,

Only folding does?

 $a' = a \frac{\alpha_1 \beta_2 \alpha_3 \beta_4 \dots \alpha_{2N-1} \beta_{2N}}{2^N},$ 2N cycles \longrightarrow box with dimensions $b' = b \frac{\beta_1 \alpha_2 \beta_3 \alpha_4 \dots \beta_{2N-1} \alpha_{2N}}{2^N},$ $c' = c \frac{ab}{a'b'}.$

product of coefficients of rolling must average out to 2^N ,

Kneading map(s)

$$\begin{split} \mathcal{K}_{ff}(x,y,z) &= \mathcal{K}_{sf}(x,y,z) = \left(2y,x,1-\frac{1}{2}z\right), & \text{if } 0 \leq y \leq \frac{1}{2}, \\ \mathcal{K}_{ff}(x,y,z) &= \left(2(1-y),x,\frac{1}{2}z\right), & \text{if } \frac{1}{2} < y \leq 1, \\ \mathcal{K}_{sf}(x,y,z) &= \left(2y-1,x,\frac{1}{2}(1-z)\right), & \text{if } \frac{1}{2} < y \leq 1, \\ \mathcal{K}_{fr}(x,y,z) &= \mathcal{K}_{sr}(x,y,z) = \left(1-2y,x,\frac{1}{2}z\right), & \text{if } 0 \leq y \leq \frac{1}{2}, \\ \mathcal{K}_{fr}(x,y,z) &= \left(2y-1,x,1-\frac{1}{2}z\right), & \text{if } \frac{1}{2} < y \leq 1, \\ \mathcal{K}_{sr}(x,y,z) &= \left(2(1-y),x,\frac{1}{2}(z+1)\right), & \text{if } \frac{1}{2} < y \leq 1, \\ \end{split}$$

Kneading map(s)

$$\begin{split} \mathcal{K}_{ff}(x,y,z) &= \mathcal{K}_{Sf}(x,y,z) = \left(2y,x,1-\frac{1}{2}z\right), & \text{if } 0 \leq y \leq \frac{1}{2}, \\ \mathcal{K}_{ff}(x,y,z) &= \left(2(1-y),x,\frac{1}{2}z\right), & \text{if } \frac{1}{2} < y \leq 1, \\ \mathcal{K}_{Sf}(x,y,z) &= \left(2y-1,x,\frac{1}{2}(1-z)\right), & \text{if } \frac{1}{2} < y \leq 1, \end{split}$$

$$\begin{split} \mathcal{K}_{fr}(x,y,z) &= \mathcal{K}_{sr}(x,y,z) = \left(1-2y,x,\frac{1}{2}z\right), & \text{if } 0 \leq y \leq \frac{1}{2}, \\ \mathcal{K}_{fr}(x,y,z) &= \left(2y-1,x,1-\frac{1}{2}z\right), & \text{if } \frac{1}{2} < y \leq 1, \\ \mathcal{K}_{sr}(x,y,z) &= \left(2(1-y),x,\frac{1}{2}(z+1)\right), & \text{if } \frac{1}{2} < y \leq 1. \end{split}$$

Kneading map(s)

$$\begin{split} \mathcal{K}_{ff}(x,y,z) &= \mathcal{K}_{sf}(x,y,z) = \left(2y,x,1-\frac{1}{2}z\right), & \text{if } 0 \le y \le \frac{1}{2}, \\ \mathcal{K}_{ff}(x,y,z) &= \left(2(1-y),x,\frac{1}{2}z\right), & \text{if } \frac{1}{2} < y \le 1, \\ \mathcal{K}_{sf}(x,y,z) &= \left(2y-1,x,\frac{1}{2}(1-z)\right), & \text{if } \frac{1}{2} < y \le 1, \end{split}$$

$$\begin{split} \mathcal{K}_{fr}(x,y,z) &= \mathcal{K}_{sr}(x,y,z) = \left(1-2y,x,\frac{1}{2}z\right), & \text{if } 0 \le y \le \frac{1}{2}, \\ \mathcal{K}_{fr}(x,y,z) &= \left(2y-1,x,1-\frac{1}{2}z\right), & \text{if } \frac{1}{2} < y \le 1, \\ \mathcal{K}_{sr}(x,y,z) &= \left(2(1-y),x,\frac{1}{2}(z+1)\right), & \text{if } \frac{1}{2} < y \le 1. \end{split}$$

geometric coding map $h: \Sigma \rightarrow C = [0, 1]^3$

 $x_i, y_i, z_i, i = 1, 2, \dots$, binary digits of coordinates $(x, y, z) \in C = [0, 1]^3$

 $h(\ldots z_3, z_2, z_1 \cdot y_1, x_1, y_2, x_2, \ldots) = (x, y, z)$

 $\delta_x, \delta_y, \delta_z : \Sigma \to \Sigma$ maps which exchange 0 and 1 in x_i -s for δ_x , y_i -s for δ_y , z_i -s for δ_z

geometric coding map $h: \Sigma \rightarrow C = [0, 1]^3$

 $x_i, y_i, z_i, i = 1, 2, \dots$, binary digits of coordinates $(x, y, z) \in C = [0, 1]^3$

 $h(\ldots z_3, z_2, z_1 \cdot y_1, x_1, y_2, x_2, \ldots) = (x, y, z)$

 $\delta_x, \delta_y, \delta_z : \Sigma \to \Sigma$ maps which exchange 0 and 1 in x_i -s for δ_x , y_i -s for δ_y , z_i -s for δ_z

geometric coding map $h: \Sigma \rightarrow C = [0, 1]^3$

 $x_i, y_i, z_i, i = 1, 2, \dots$, binary digits of coordinates $(x, y, z) \in C = [0, 1]^3$

 $h(\ldots z_3, z_2, z_1 \cdot y_1, x_1, y_2, x_2, \ldots) = (x, y, z)$

 $\delta_x, \delta_y, \delta_z : \Sigma \to \Sigma$ maps which exchange 0 and 1 in x_i -s for δ_x , y_i -s for δ_y , z_i -s for δ_z

geometric coding map $h: \Sigma \rightarrow C = [0, 1]^3$

 $x_i, y_i, z_i, i = 1, 2, \dots$, binary digits of coordinates $(x, y, z) \in C = [0, 1]^3$

 $h(\ldots z_3, z_2, z_1 \cdot y_1, x_1, y_2, x_2, \ldots) = (x, y, z)$

 $\delta_x, \delta_y, \delta_z : \Sigma \to \Sigma$ maps which exchange 0 and 1 in x_i -s for δ_x , y_i -s for δ_y , z_i -s for δ_z

geometric coding map $h: \Sigma \rightarrow C = [0, 1]^3$

 $x_i, y_i, z_i, i = 1, 2, \dots$, binary digits of coordinates $(x, y, z) \in C = [0, 1]^3$

 $h(\ldots z_3, z_2, z_1, y_1, x_1, y_2, x_2, \ldots) = (x, y, z)$

 $\delta_x, \delta_y, \delta_z : \Sigma \to \Sigma$ maps which exchange 0 and 1 in x_i -s for δ_x , y_i -s for δ_y , z_i -s for δ_z

geometric coding map $h: \Sigma \rightarrow C = [0, 1]^3$

 $x_i, y_i, z_i, i = 1, 2, \dots$, binary digits of coordinates $(x, y, z) \in C = [0, 1]^3$

 $h(\ldots z_3, z_2, z_1 \cdot y_1, x_1, y_2, x_2, \ldots) = (x, y, z)$

 $\delta_x, \delta_y, \delta_z : \Sigma \to \Sigma$ maps which exchange 0 and 1 in x_i -s for δ_x , y_i -s for δ_y , z_i -s for δ_z

geometric coding map $h: \Sigma \rightarrow C = [0, 1]^3$

 $x_i, y_i, z_i, i = 1, 2, \dots$, binary digits of coordinates $(x, y, z) \in C = [0, 1]^3$

 $h(\ldots z_3, z_2, z_1 \cdot y_1, x_1, y_2, x_2, \ldots) = (x, y, z)$

 $\delta_x, \delta_y, \delta_z : \Sigma \to \Sigma$ maps which exchange 0 and 1 in x_i -s for δ_x , y_i -s for δ_y , z_i -s for δ_z

$$\widehat{K}_{ff} = \begin{cases} \delta_{z} \circ \sigma, & \text{if } \eta_{0} = y_{1} = 0, \\ \sigma \circ \delta_{y}, & \text{if } \eta_{0} = y_{1} = 1 \end{cases}$$

$$\widehat{K}_{\rm sf} = \delta_{\rm z} \circ \sigma$$

$$\widehat{K}_{fr} = \begin{cases} \delta_{\mathbf{X}} \circ \sigma, & \text{if } \eta_0 = y_1 = 0, \\ \sigma \circ \delta_{\mathbf{Z}}, & \text{if } \eta_0 = y_1 = 1 \end{cases}$$

$$\widehat{K}_{sr} = \delta_{\mathbf{X}} \circ \sigma$$

left shift σ orientation reversing

Maciej P. Wojtkowski On the real baker map

$$\widehat{K}_{\rm ff} = \begin{cases} \delta_{\rm z} \circ \sigma, & \text{if } \eta_0 = y_1 = 0, \\ \sigma \circ \delta_{\rm y}, & \text{if } \eta_0 = y_1 = 1 \end{cases}$$

$$\widehat{K}_{sf} = \delta_{z} \circ \sigma$$

$$\widehat{K}_{fr} = \begin{cases} \delta_X \circ \sigma, & \text{if } \eta_0 = y_1 = 0, \\ \sigma \circ \delta_Z, & \text{if } \eta_0 = y_1 = 1 \end{cases}$$

$$\widehat{K}_{sr} = \delta_{\mathbf{X}} \circ \sigma$$

left shift σ orientation reversing

Maciej P. Wojtkowski On the real baker map

$$\widehat{K}_{\rm ff} = \begin{cases} \delta_{\rm z} \circ \sigma, & \text{if } \eta_0 = y_1 = 0, \\ \sigma \circ \delta_{\rm y}, & \text{if } \eta_0 = y_1 = 1 \end{cases}$$

$$\widehat{K}_{\rm sf} = \delta_{\rm z} \circ \sigma$$

$$\widehat{K}_{fr} = \begin{cases} \delta_{\mathbf{x}} \circ \sigma, & \text{if } \eta_0 = y_1 = 0, \\ \sigma \circ \delta_{\mathbf{z}}, & \text{if } \eta_0 = y_1 = 1 \end{cases}$$

$$\hat{K}_{sr} = \delta_{X} \circ \sigma$$

left shift σ orientation reversing

Maciej P. Wojtkowski On the real baker map

$$\widehat{K}_{\rm ff} = \begin{cases} \delta_{\rm z} \circ \sigma, & \text{if } \eta_0 = y_1 = 0, \\ \sigma \circ \delta_{\rm y}, & \text{if } \eta_0 = y_1 = 1 \end{cases}$$

$$\widehat{K}_{sf} = \delta_{z} \circ \sigma$$

$$\widehat{K}_{fr} = \begin{cases} \delta_{\mathbf{x}} \circ \sigma, & \text{if } \eta_0 = y_1 = 0, \\ \sigma \circ \delta_{\mathbf{z}}, & \text{if } \eta_0 = y_1 = 1 \end{cases}$$

$$\widehat{\mathcal{K}}_{sr} = \delta_{\mathsf{X}} \circ \sigma$$

left shift σ orientation reversing

$$\widehat{K}_{ff} = \begin{cases} \delta_{z} \circ \sigma, & \text{if } \eta_{0} = y_{1} = 0, \\ \sigma \circ \delta_{y}, & \text{if } \eta_{0} = y_{1} = 1 \end{cases}$$

$$\widehat{\mathsf{K}}_{\mathsf{sf}} = \delta_{\mathsf{z}} \circ \sigma$$

$$\widehat{K}_{fr} = \begin{cases} \delta_{\mathbf{X}} \circ \sigma, & \text{if } \eta_0 = y_1 = 0, \\ \sigma \circ \delta_{\mathbf{Z}}, & \text{if } \eta_0 = y_1 = 1 \end{cases}$$

$$\widehat{\mathcal{K}}_{\mathsf{sr}} = \delta_{\mathsf{x}} \circ \sigma$$

left shift σ orientation reversing

cylinders $W_0 = \{\eta_0 = 0\}, W_1 = \{\eta_0 = 1\}, \Sigma = W_0 \cup W_1$

Markov partition

symbolic dynamics for \widehat{K} , $g: \Sigma \to \Sigma$

 $(g(\eta))_m = \left(\widehat{\kappa}^m \eta\right)_0$

 $\begin{array}{cccc} \Sigma & \xrightarrow{\widehat{K}} & \Sigma \\ g \\ \downarrow & & \downarrow g \\ \Sigma & \xrightarrow{\sigma} & \sigma \end{array}$

cylinders $W_0 = \{\eta_0 = 0\}, W_1 = \{\eta_0 = 1\}, \ \Sigma = W_0 \cup W_1$

Markov partition

symbolic dynamics for \widehat{K} , $g: \Sigma \to \Sigma$

 $(g(\eta))_m = \left(\widehat{\kappa}^m \eta\right)_0$

cylinders $W_0 = \{\eta_0 = 0\}, W_1 = \{\eta_0 = 1\}, \ \Sigma = W_0 \cup W_1$

Markov partition

symbolic dynamics for \widehat{K} , $g: \Sigma \to \Sigma$

$$(g(\eta))_m = \left(\widehat{\kappa}^m \eta\right)_0$$

cylinders $W_0 = \{\eta_0 = 0\}, W_1 = \{\eta_0 = 1\}, \ \Sigma = W_0 \cup W_1$

Markov partition

symbolic dynamics for \widehat{K} , $g: \Sigma \to \Sigma$

$\boldsymbol{g}(\boldsymbol{\eta}) = \widetilde{\boldsymbol{\eta}}$

for any $k \ge 0, l \ge 0$ block $(\widetilde{\eta}_{-l}, \dots, \widetilde{\eta}_{-1}, \widetilde{\eta}_0, \widetilde{\eta}_1, \dots, \widetilde{\eta}_{k-1})$

depends only on $(\eta_{-1}, \ldots, \eta_{-1}, \eta_0, \eta_1, \ldots, \eta_{k-1})$

this dependence is permutation of all 2^{l+k} blocks

- *g* is 1 1 and onto
- g takes any Bernoulli measure into itself

(for \hat{K}_{ff} and \hat{K}_{fr} coding *g* does not map cylinders into cylinders, unless they are "centered")

for any $k \ge 0, l \ge 0$ block $(\tilde{\eta}_{-l}, \dots, \tilde{\eta}_{-1}, \tilde{\eta}_0, \tilde{\eta}_1, \dots, \tilde{\eta}_{k-1})$

depends only on $(\eta_{-1}, \ldots, \eta_{-1}, \eta_0, \eta_1, \ldots, \eta_{k-1})$

this dependence is permutation of all 2^{1+k} blocks

- *g* is 1 1 and onto
- g takes any Bernoulli measure into itself

(for \hat{K}_{ff} and \hat{K}_{fr} coding *g* does not map cylinders into cylinders, unless they are "centered")

for any $k \ge 0, l \ge 0$ block $(\tilde{\eta}_{-l}, \dots, \tilde{\eta}_{-1}, \tilde{\eta}_0, \tilde{\eta}_1, \dots, \tilde{\eta}_{k-1})$

depends only on $(\eta_{-1}, \ldots, \eta_{-1}, \eta_0, \eta_1, \ldots, \eta_{k-1})$

this dependence is permutation of all 2^{1+k} blocks

- *g* is 1 1 and onto
- g takes any Bernoulli measure into itself

(for \hat{K}_{ff} and \hat{K}_{fr} coding *g* does not map cylinders into cylinders, unless they are "centered")

for any $k \ge 0, l \ge 0$ block $(\tilde{\eta}_{-l}, \dots, \tilde{\eta}_{-1}, \tilde{\eta}_0, \tilde{\eta}_1, \dots, \tilde{\eta}_{k-1})$

depends only on $(\eta_{-1}, \ldots, \eta_{-1}, \eta_0, \eta_1, \ldots, \eta_{k-1})$

this dependence is permutation of all 2^{l+k} blocks

- g is 1 1 and onto
- g takes any Bernoulli measure into itself

(for \hat{K}_{ff} and \hat{K}_{fr} coding *g* does not map cylinders into cylinders, unless they are "centered")

for any $k \ge 0, l \ge 0$ block $(\tilde{\eta}_{-l}, \dots, \tilde{\eta}_{-1}, \tilde{\eta}_0, \tilde{\eta}_1, \dots, \tilde{\eta}_{k-1})$

depends only on $(\eta_{-1}, \ldots, \eta_{-1}, \eta_0, \eta_1, \ldots, \eta_{k-1})$

this dependence is permutation of all 2^{l+k} blocks

- *g* is 1 1 and onto
- g takes any Bernoulli measure into itself

(for \hat{K}_{ff} and \hat{K}_{fr} coding *g* does not map cylinders into cylinders, unless they are "centered")

for any $k \ge 0, l \ge 0$ block $(\tilde{\eta}_{-l}, \dots, \tilde{\eta}_{-1}, \tilde{\eta}_0, \tilde{\eta}_1, \dots, \tilde{\eta}_{k-1})$

depends only on $(\eta_{-1}, \ldots, \eta_{-1}, \eta_0, \eta_1, \ldots, \eta_{k-1})$

this dependence is permutation of all 2^{l+k} blocks

- *g* is 1 1 and onto
- g takes any Bernoulli measure into itself

(for \hat{K}_{ff} and \hat{K}_{fr} coding *g* does not map cylinders into cylinders, unless they are "centered")

for any $k \ge 0, l \ge 0$ block $(\tilde{\eta}_{-l}, \dots, \tilde{\eta}_{-1}, \tilde{\eta}_0, \tilde{\eta}_1, \dots, \tilde{\eta}_{k-1})$

depends only on $(\eta_{-1}, \ldots, \eta_{-1}, \eta_0, \eta_1, \ldots, \eta_{k-1})$

this dependence is permutation of all 2^{l+k} blocks

- *g* is 1 1 and onto
- g takes any Bernoulli measure into itself

(for \hat{K}_{ff} and \hat{K}_{fr} coding *g* does not map cylinders into cylinders, unless they are "centered")

for any $k \ge 0, l \ge 0$ block $(\tilde{\eta}_{-l}, \dots, \tilde{\eta}_{-1}, \tilde{\eta}_0, \tilde{\eta}_1, \dots, \tilde{\eta}_{k-1})$

depends only on $(\eta_{-1}, \ldots, \eta_{-1}, \eta_0, \eta_1, \ldots, \eta_{k-1})$

this dependence is permutation of all 2^{l+k} blocks

- *g* is 1 1 and onto
- g takes any Bernoulli measure into itself

(for \hat{K}_{ff} and \hat{K}_{fr} coding *g* does not map cylinders into cylinders, unless they are "centered")

Quantifying mixing

Definition

For a map $K : C \to C$, and a finite σ -algebra \mathcal{B} of subsets of C, we say that a family \mathcal{A} of subsets of C has *the decay rate* $r_0 < 1$, with the resolution \mathcal{B} , if for every $r > r_0$ and every $A \in \mathcal{A}$ there is a constant d > 0 such that

 $|\mu(K^n(A) \cap B) - \mu(A)\mu(B)| \le d r^n$ for every $B \in \mathcal{B}, n = 1, 2, \dots$

If $r_0 = 0$ then we say that the decay rate is super-exponential.

Quantifying mixing

Definition

For a map $K : C \to C$, and a finite σ -algebra \mathcal{B} of subsets of C, we say that a family \mathcal{A} of subsets of C has *the decay rate* $r_0 < 1$, *with the resolution* \mathcal{B} , if for every $r > r_0$ and every $A \in \mathcal{A}$ there is a constant d > 0 such that

 $|\mu(K^n(A)\cap B)-\mu(A)\mu(B)| \le d r^n$ for every $B \in \mathcal{B}, n = 1, 2, ...$

If $r_0 = 0$ then we say that the decay rate is super-exponential.

partition $\widehat{\Pi}_N$ of Σ is partition into cylinders of length 3N

for $ar\eta=(ar\eta_i)_{i\in\mathbb{Z}}\in\Sigma$ let $\widehat{\sf \Pi}_N(ar\eta)$ is element of $\widehat{\sf \Pi}_N$ containing $ar\eta$

 $\widehat{\Pi}_{N}(\overline{\eta}) = \{\eta \in \Sigma | \eta_{i} = \overline{\eta}_{i}, -N \leq i \leq 2N - 1\}$

partition $\widehat{\Pi}_N$ of Σ is partition into cylinders of length 3N

for $ar\eta=(ar\eta_i)_{i\in\mathbb{Z}}\in\Sigma$ let $\widehat{\sf \Pi}_N(ar\eta)$ is element of $\widehat{\sf \Pi}_N$ containing $ar\eta$

 $\widehat{\Pi}_{N}(\overline{\eta}) = \{\eta \in \Sigma | \eta_{i} = \overline{\eta}_{i}, -N \leq i \leq 2N - 1\}$

partition $\widehat{\Pi}_N$ of Σ is partition into cylinders of length 3N

for $ar\eta=(ar\eta_i)_{i\in\mathbb{Z}}\in\Sigma$ let $\widehat{\sf \Pi}_N(ar\eta)$ is element of $\widehat{\sf \Pi}_N$ containing $ar\eta$

 $\widehat{\Pi}_{N}(\overline{\eta}) = \{\eta \in \Sigma | \eta_{i} = \overline{\eta}_{i}, -N \leq i \leq 2N - 1\}$

partition $\widehat{\Pi}_N$ of Σ is partition into cylinders of length 3N

for $\bar{\eta} = (\bar{\eta}_i)_{i \in \mathbb{Z}} \in \Sigma$ let $\widehat{\Pi}_N(\bar{\eta})$ is element of $\widehat{\Pi}_N$ containing $\bar{\eta}$ $\widehat{\Pi}_N(\bar{\eta}) = \{\eta \in \Sigma | \eta_i = \bar{\eta}_i, -N \le i \le 2N - 1\}$

partition $\widehat{\Pi}_N$ of Σ is partition into cylinders of length 3N

for $\bar{\eta} = (\bar{\eta}_i)_{i \in \mathbb{Z}} \in \Sigma$ let $\widehat{\Pi}_N(\bar{\eta})$ is element of $\widehat{\Pi}_N$ containing $\bar{\eta}$

 $\widehat{\Pi}_{N}(\overline{\eta}) = \{\eta \in \Sigma | \eta_{i} = \overline{\eta}_{i}, -N \leq i \leq 2N-1\}$

partition $\widehat{\Pi}_N$ of Σ is partition into cylinders of length 3N

for $\bar{\eta} = (\bar{\eta}_i)_{i \in \mathbb{Z}} \in \Sigma$ let $\widehat{\Pi}_N(\bar{\eta})$ is element of $\widehat{\Pi}_N$ containing $\bar{\eta}$

 $\widehat{\Pi}_{N}(\overline{\eta}) = \{\eta \in \Sigma | \eta_{i} = \overline{\eta}_{i}, -N \leq i \leq 2N - 1\}$

partition $\widehat{\Pi}_N$ of Σ is partition into cylinders of length 3N

for $\bar{\eta} = (\bar{\eta}_i)_{i \in \mathbb{Z}} \in \Sigma$ let $\widehat{\Pi}_N(\bar{\eta})$ is element of $\widehat{\Pi}_N$ containing $\bar{\eta}$

 $\widehat{\Pi}_{N}(\overline{\eta}) = \{\eta \in \Sigma | \eta_{i} = \overline{\eta}_{i}, -N \leq i \leq 2N - 1\}$

$\mathcal{B}(\Pi_N), \mathcal{B}(\widehat{\Pi}_N),$ σ -algebra of subsets generated by respective partition for any $A \in \mathcal{B}(\Pi_M), B \in \mathcal{B}(\Pi_N)$

 $\mu(K^n(A) \cap B) = \mu(A)\mu(B)$ for $n \ge 2M + N$

Theorem

For the kneading map K and any natural N, M, the family $\mathcal{B}(\Pi_M)$ has the super-exponential decay rate with the resolution $\mathcal{B}(\Pi_N)$.

$\mathcal{B}(\Pi_N), \mathcal{B}(\widehat{\Pi}_N),$

 σ -algebra of subsets generated by respective partition for any $A \in \mathcal{B}(\Pi_M), B \in \mathcal{B}(\Pi_N)$

 $\mu(K^n(A) \cap B) = \mu(A)\mu(B)$ for $n \ge 2M + N$

Theorem

For the kneading map K and any natural N, M, the family $\mathcal{B}(\Pi_M)$ has the super-exponential decay rate with the resolution $\mathcal{B}(\Pi_N)$.

$\mathcal{B}(\Pi_N), \mathcal{B}(\widehat{\Pi}_N),$

 σ -algebra of subsets generated by respective partition for any $A \in \mathcal{B}(\Pi_M), B \in \mathcal{B}(\Pi_N)$

 $\mu(K^n(A) \cap B) = \mu(A)\mu(B)$ for $n \ge 2M + N$

Theorem

For the kneading map K and any natural N, M, the family $\mathcal{B}(\Pi_M)$ has the super-exponential decay rate with the resolution $\mathcal{B}(\Pi_N)$.

wider family of subsets with common decay rate?

Definition

A subset $A \subset C$ has *finite surface area* if there is a constant s > 0 such that the Lebesgue measure of the ϵ -neighborhood of its boundary ∂A does not exceed $s \epsilon$, for any $\epsilon > 0$.

Theorem

The family of subsets of *C* with finite surface area has the decay rate $r = \frac{1}{\sqrt{2}}$ with the resolution $\mathcal{B}(\Pi_N)$, for any natural *N*.

wider family of subsets with common decay rate?

Definition

A subset $A \subset C$ has *finite surface area* if there is a constant s > 0 such that the Lebesgue measure of the ϵ -neighborhood of its boundary ∂A does not exceed $s \epsilon$, for any $\epsilon > 0$.

Theorem

The family of subsets of *C* with finite surface area has the decay rate $r = \frac{1}{\sqrt{2}}$ with the resolution $\mathcal{B}(\Pi_N)$, for any natural *N*.

wider family of subsets with common decay rate?

Definition

A subset $A \subset C$ has *finite surface area* if there is a constant s > 0 such that the Lebesgue measure of the ϵ -neighborhood of its boundary ∂A does not exceed $s \epsilon$, for any $\epsilon > 0$.

Theorem

The family of subsets of C with finite surface area has the decay rate $r = \frac{1}{\sqrt{2}}$ with the resolution $\mathcal{B}(\Pi_N)$, for any natural N.

$A \subset C$, $M \ge 1$

approximating sets $A_1, A_2 \in \mathcal{B}(\Pi_M)$

 $A_1 \subset A \subset A_2$

 $A_2 \setminus A_1$ equal to union of all elements of partition Π_M with nonempty intersection with the boundary ∂A .

A has finite surface area, cubes in Π_N have diameter $2^{-M}\sqrt{3}$

 \implies there is s > 0 such that

$$\mu(A_2 \setminus A_1) \le s 2^{-M} \sqrt{3}. \tag{1}$$

 $\mu(K^n(A_1) \cap B) \le \mu(K^n(A) \cap B) \le \mu(K^n(A_2) \cap B).$ (2)

$A \subset C$, $M \ge 1$ approximating sets $A_1, A_2 \in \mathcal{B}(\Pi_M)$

 $A_1 \subset A \subset A_2$

 $A_2 \setminus A_1$ equal to union of all elements of partition Π_M with nonempty intersection with the boundary ∂A .

A has finite surface area, cubes in Π_N have diameter $2^{-M}\sqrt{3}$

 \implies there is s > 0 such that

$$\mu(A_2 \setminus A_1) \le s 2^{-M} \sqrt{3}. \tag{1}$$

 $\mu(K^n(A_1) \cap B) \le \mu(K^n(A) \cap B) \le \mu(K^n(A_2) \cap B).$ (2)

 $\begin{array}{l} \text{if } n = 2M + N \text{ then (1),(2)} \implies \\ |\mu(K^n(A) \cap B) - \mu(A)\mu(B)| \leq \\ (\mu(A_2) - \mu(A_1))\mu(B) \leq s\sqrt{3}\mu(B)2^{-M} = s\sqrt{3}\mu(B)2^{\frac{N}{2}}2^{-\frac{n}{2}}. \end{array}$

$A \subset C$, $M \ge 1$ approximating sets $A_1, A_2 \in \mathcal{B}(\Pi_M)$ $A_1 \subset A \subset A_2$

 $A_2 \setminus A_1$ equal to union of all elements of partition Π_M with nonempty intersection with the boundary ∂A .

A has finite surface area, cubes in Π_N have diameter $2^{-M}\sqrt{3}$

 \implies there is s > 0 such that

$$\mu(A_2 \setminus A_1) \le s 2^{-M} \sqrt{3}. \tag{1}$$

 $\mu(K^n(A_1) \cap B) \le \mu(K^n(A) \cap B) \le \mu(K^n(A_2) \cap B).$ (2)

 $A \subset C$, $M \ge 1$ approximating sets $A_1, A_2 \in \mathcal{B}(\Pi_M)$ $A_1 \subset A \subset A_2$ $A_2 \setminus A_1$ equal to union of all elements of partition Π_M with nonempty intersection with the boundary ∂A .

A has finite surface area, cubes in Π_N have diameter $2^{-M}\sqrt{3}$

 \implies there is s > 0 such that

$$\mu(A_2 \setminus A_1) \le s 2^{-M} \sqrt{3}. \tag{1}$$

 $\mu(K^n(A_1) \cap B) \le \mu(K^n(A) \cap B) \le \mu(K^n(A_2) \cap B).$ (2)

 $A \subset C$, $M \ge 1$ approximating sets $A_1, A_2 \in \mathcal{B}(\Pi_M)$ $A_1 \subset A \subset A_2$ $A_2 \setminus A_1$ equal to union of all elements of partition Π_M with nonempty intersection with the boundary ∂A . A has finite surface area, cubes in Π_N have diameter $2^{-M}\sqrt{3}$ \implies there is s > 0 such that

 $\mu(A_2 \setminus A_1) \le s 2^{-M} \sqrt{3}. \tag{1}$

 $\mu(K^n(A_1) \cap B) \le \mu(K^n(A) \cap B) \le \mu(K^n(A_2) \cap B).$ (2)

 $A \subset C$, $M \ge 1$ approximating sets $A_1, A_2 \in \mathcal{B}(\Pi_M)$ $A_1 \subset A \subset A_2$

 $A_2 \setminus A_1$ equal to union of all elements of partition Π_M with nonempty intersection with the boundary ∂A .

A has finite surface area, cubes in Π_N have diameter $2^{-M}\sqrt{3}$

 \implies there is s > 0 such that

$$\mu(A_2 \setminus A_1) \le s 2^{-M} \sqrt{3}. \tag{1}$$

 $\mu(K^n(A_1) \cap B) \le \mu(K^n(A) \cap B) \le \mu(K^n(A_2) \cap B).$ (2)

 $A \subset C$, $M \ge 1$ approximating sets $A_1, A_2 \in \mathcal{B}(\Pi_M)$ $A_1 \subset A \subset A_2$

 $A_2 \setminus A_1$ equal to union of all elements of partition Π_M with nonempty intersection with the boundary ∂A .

A has finite surface area, cubes in Π_N have diameter $2^{-M}\sqrt{3}$

 \implies there is s > 0 such that

$$\mu(A_2 \setminus A_1) \le s 2^{-M} \sqrt{3}. \tag{1}$$

 $\mu(\mathcal{K}^n(\mathcal{A}_1)\cap \mathcal{B}) \leq \mu(\mathcal{K}^n(\mathcal{A})\cap \mathcal{B}) \leq \mu(\mathcal{K}^n(\mathcal{A}_2)\cap \mathcal{B}).$ (2)

 $A \subset C$, $M \ge 1$ approximating sets $A_1, A_2 \in \mathcal{B}(\Pi_M)$ $A_1 \subset A \subset A_2$

 $A_2 \setminus A_1$ equal to union of all elements of partition Π_M with nonempty intersection with the boundary ∂A .

A has finite surface area, cubes in Π_N have diameter $2^{-M}\sqrt{3}$

 \implies there is s > 0 such that

$$\mu(A_2 \setminus A_1) \le s 2^{-M} \sqrt{3}. \tag{1}$$

$$\mu(\mathcal{K}^n(\mathcal{A}_1)\cap \mathcal{B})\leq \mu(\mathcal{K}^n(\mathcal{A})\cap \mathcal{B})\leq \mu(\mathcal{K}^n(\mathcal{A}_2)\cap \mathcal{B}).$$
(2)

if
$$n = 2M + N$$
 then (1),(2) \Longrightarrow
 $|\mu(\mathcal{K}^n(\mathcal{A}) \cap \mathcal{B}) - \mu(\mathcal{A})\mu(\mathcal{B})| \le (\mu(\mathcal{A}_2) - \mu(\mathcal{A}_1))\mu(\mathcal{B}) \le s\sqrt{3}\mu(\mathcal{B})2^{-M} = s\sqrt{3}\mu(\mathcal{B})2^{\frac{N}{2}}2^{-\frac{n}{2}}.$

faster decay rate $r = \frac{1}{2}$

need to take n = M + 2N

$$|\mu(K^n(A) \cap B) - \mu(A)\mu(B)| \le s\sqrt{3}\mu(B)2^{2N}2^{-n}$$

faster decay rate $r = \frac{1}{2}$

need to take n = M + 2N

 $|\mu(K^n(A) \cap B) - \mu(A)\mu(B)| \le s\sqrt{3}\mu(B)2^{2N}2^{-n}$

faster decay rate $r = \frac{1}{2}$

need to take n = M + 2N

$$|\mu(\mathcal{K}^n(\mathcal{A}) \cap \mathcal{B}) - \mu(\mathcal{A})\mu(\mathcal{B})| \le s\sqrt{3}\mu(\mathcal{B})2^{2N}2^{-n}$$

faster decay rate $r = \frac{1}{2}$

need to take n = M + 2N

$$|\mu(\mathcal{K}^n(\mathcal{A}) \cap \mathcal{B}) - \mu(\mathcal{A})\mu(\mathcal{B})| \le s\sqrt{3}\mu(\mathcal{B})2^{2N}2^{-n}$$

Theorem

If A and B have finite surface area then there is a constant d such that for all $n \ge 1$

$$|\mu(\mathsf{K}^n(\mathsf{A})\cap \mathsf{B})-\mu(\mathsf{A})\mu(\mathsf{B})|\leq 2^{-\frac{n}{3}}d$$

rate of decay for correlations of observables? Lipschitz functions (observables) $f, g : C \rightarrow \mathbb{R}$

Theorem

$$|c(f,g,n)|:=|\int_C f\circ K^n g d\mu - \int_C f d\mu \int_C g d\mu| \leq 2^{-rac{n}{3}} d.$$

Theorem

If A and B have finite surface area then there is a constant d such that for all $n \ge 1$

$$|\mu(\mathcal{K}^n(\mathcal{A})\cap \mathcal{B})-\mu(\mathcal{A})\mu(\mathcal{B})|\leq 2^{-rac{n}{3}}d$$

rate of decay for correlations of observables? Lipschitz functions (observables) $f, g: C \to \mathbb{R}$

Theorem

$$|c(f,g,n)|:=|\int_C f\circ K^n g d\mu - \int_C f d\mu \int_C g d\mu| \leq 2^{-rac{n}{3}} d.$$

Theorem

If A and B have finite surface area then there is a constant d such that for all $n \ge 1$

$$|\mu(\mathcal{K}^n(\mathcal{A})\cap \mathcal{B})-\mu(\mathcal{A})\mu(\mathcal{B})|\leq 2^{-rac{n}{3}}d$$

rate of decay for correlations of observables? Lipschitz functions (observables) $f, g: C \to \mathbb{R}$

Theorem

$$|c(f,g,n)|:=|\int_C f\circ K^n g d\mu - \int_C f d\mu \int_C g d\mu| \leq 2^{-\frac{n}{3}} d.$$

Theorem

If A and B have finite surface area then there is a constant d such that for all $n \ge 1$

$$|\mu(\mathcal{K}^n(\mathcal{A})\cap \mathcal{B})-\mu(\mathcal{A})\mu(\mathcal{B})|\leq 2^{-\frac{n}{3}}d$$

rate of decay for correlations of observables? Lipschitz functions (observables) $f, g : C \to \mathbb{R}$

Theorem

$$|c(f,g,n)|:=|\int_C f\circ K^n g d\mu - \int_C f d\mu \int_C g d\mu| \leq 2^{-\frac{n}{3}} d.$$

Theorem

If A and B have finite surface area then there is a constant d such that for all $n \ge 1$

$$|\mu(\mathsf{K}^n(\mathsf{A})\cap\mathsf{B})-\mu(\mathsf{A})\mu(\mathsf{B})|\leq 2^{-\frac{n}{3}}d$$

rate of decay for correlations of observables? Lipschitz functions (observables) $f, g: C \rightarrow \mathbb{R}$

Theorem

$$|c(f,g,n)|:=|\int_C f\circ K^n g d\mu - \int_C f d\mu \int_C g d\mu|\leq 2^{-rac{n}{3}} d.$$