Algebraic difference of random Cantor sets

Michel Dekking ${ }^{1}$ Károly Simon ${ }^{2}$ Balázs Székely²

${ }^{1}$ Delft Institute of Applied Mathematics
Technical University of Delft
The Netherlands
http://dutiosc.twi.tudelft.nl/~dekking/
${ }^{2}$ Department of Stochastics
Institute of Mathematics
Technical University of Budapest
www.math.bme.hu/~simonk
July 11, 2011

Outline

Motivation
Algebraic difference of sets
Almost self-similar sets
Larsson's family
Self-similar sets with random translations
Difference of Mandelbrot percolation (with
unequal probabilities)
existence of an interval in the difference set
The Lebesgue measure of the difference set
Palis Conjecture does not hold in this case

Outline

Motivation
Algebraic difference of sets
Almost self-similar sets
Larsson's family
Self-similar sets with random translations
Difference of Mandelbrot percolation (with unequal probabilities)
existence of an interval in the difference set
The Lebesgue measure of the difference set
Palis Conjecture does not hold in this case

Introduction

$F_{1}, F_{2} \subset \mathbb{R}$. The algebraic difference set

$$
F_{2}-F_{1}:=\left\{f_{2}-f_{1}: f_{1} \in F_{1}, f_{2} \in F_{2}\right\} .
$$

Motivation to study it comes from e.g. :

> Palis conjectured: For dynamically defined Cantor sets: "Generically" Either

Introduction

$F_{1}, F_{2} \subset \mathbb{R}$. The algebraic difference set

$$
F_{2}-F_{1}:=\left\{f_{2}-f_{1}: f_{1} \in F_{1}, f_{2} \in F_{2}\right\} .
$$

Motivation to study it comes from e.g. :

> Palis conjectured: For dynamically defined Cantor sets: "Generically" Either

Introduction

$F_{1}, F_{2} \subset \mathbb{R}$. The algebraic difference set

$$
F_{2}-F_{1}:=\left\{f_{2}-f_{1}: f_{1} \in F_{1}, f_{2} \in F_{2}\right\} .
$$

Motivation to study it comes from e.g. :

- Dynamical systems, unfolding of homoclinic tangency (Palis, Takens)

Palis conjectured: For dynamically defined Cantor sets: "Generically" Either

Introduction

$F_{1}, F_{2} \subset \mathbb{R}$. The algebraic difference set

$$
F_{2}-F_{1}:=\left\{f_{2}-f_{1}: f_{1} \in F_{1}, f_{2} \in F_{2}\right\} .
$$

Motivation to study it comes from e.g. :

- Dynamical systems, unfolding of homoclinic tangency (Palis, Takens)

Palis conjectured: For dynamically defined Cantor sets: "Generically" Either

Introduction

$F_{1}, F_{2} \subset \mathbb{R}$. The algebraic difference set

$$
F_{2}-F_{1}:=\left\{f_{2}-f_{1}: f_{1} \in F_{1}, f_{2} \in F_{2}\right\} .
$$

Motivation to study it comes from e.g. :

- Dynamical systems, unfolding of homoclinic tangency (Palis, Takens)
- Diophantine approximation (Moreira, Yoccoz).
Palis conjectured: For dynamically defined
Cantor sets: "Generically" Either

Introduction

$F_{1}, F_{2} \subset \mathbb{R}$. The algebraic difference set

$$
F_{2}-F_{1}:=\left\{f_{2}-f_{1}: f_{1} \in F_{1}, f_{2} \in F_{2}\right\} .
$$

Motivation to study it comes from e.g. :

- Dynamical systems, unfolding of homoclinic tangency (Palis, Takens)
- Diophantine approximation (Moreira, Yoccoz).
Palis conjectured: For dynamically defined
Cantor sets: "Generically" Either

Introduction

$F_{1}, F_{2} \subset \mathbb{R}$. The algebraic difference set

$$
F_{2}-F_{1}:=\left\{f_{2}-f_{1}: f_{1} \in F_{1}, f_{2} \in F_{2}\right\} .
$$

Motivation to study it comes from e.g. :

- Dynamical systems, unfolding of homoclinic tangency (Palis, Takens)
- Diophantine approximation (Moreira, Yoccoz).
Palis conjectured: For dynamically defined Cantor sets: "Generically" Either

Introduction

$F_{1}, F_{2} \subset \mathbb{R}$. The algebraic difference set

$$
F_{2}-F_{1}:=\left\{f_{2}-f_{1}: f_{1} \in F_{1}, f_{2} \in F_{2}\right\} .
$$

Motivation to study it comes from e.g. :

- Dynamical systems, unfolding of homoclinic tangency (Palis, Takens)
- Diophantine approximation (Moreira, Yoccoz).
Palis conjectured: For dynamically defined
Cantor sets: "Generically" Either
- $F_{2}-F_{1}$ is small: $\mathcal{L e b}\left(F_{2}-F_{1}\right)=0$ or

Introduction

$F_{1}, F_{2} \subset \mathbb{R}$. The algebraic difference set

$$
F_{2}-F_{1}:=\left\{f_{2}-f_{1}: f_{1} \in F_{1}, f_{2} \in F_{2}\right\} .
$$

Motivation to study it comes from e.g. :

- Dynamical systems, unfolding of homoclinic tangency (Palis, Takens)
- Diophantine approximation (Moreira, Yoccoz).
Palis conjectured: For dynamically defined
Cantor sets: "Generically" Either
- $F_{2}-F_{1}$ is small: $\mathcal{L e b}\left(F_{2}-F_{1}\right)=0$ or
- $F_{2}-F_{1}$ is big: $F_{2}-F_{1}$ contains some intervals.

Summary

Palis conjecture holds:

- For self-similar sets with random translations.
- For Mandelbrot percolation.

Palis conjecture Does NOT hold:
For more general Mandelbrot percolation when we select the intervals with different probability

Summary

Palis conjecture holds:

- For self-similar sets with random translations.
- For Mandelbrot percolation.

Palis conjecture Does NOT hold:
For more general Mandelbrot percolation when we select the intervals with different probability

Summary

Palis conjecture holds:

- For self-similar sets with random translations.
- For Mandelbrot percolation.

Palis conjecture Does NOT hold:
For more general Mandelbrot percolation when we select the intervals with different probability

Summary

Palis conjecture holds:

- For self-similar sets with random translations.
- For Mandelbrot percolation.

Palis conjecture Does NOT hold:
For more general Mandelbrot percolation when we select the intervals with different probability .

History

- J. Palis and F. Takens. Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations, volume 35 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1993.

History

- J. Palis and F. Takens. Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations, volume 35 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1993.
- Yoccoz and Morreira, Annals of Mathematics (2001): answered Palis conjecture for non-linear Cantor sets

History

- J. Palis and F. Takens. Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations, volume 35 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1993.
- Yoccoz and Morreira, Annals of Mathematics (2001): answered Palis conjecture for non-linear Cantor sets
- K. J. Falconer and G. R. Grimmett, Sets and Fractal Percolation Journal of Theoretical Probability, Vol. 5, No. 3, 1992 On the Geometry of Random Cantor

The algebraic difference from geometric point of view I

The algebraic difference from geometric point of view II

The algebraic difference from geometric point of view II

The algebraic difference from geometric point of view II

The algebraic difference from geometric point of view II

The algebraic difference from geometric point of view II

Definition
Let $A \subset \mathbb{R}^{2}$. We define $\operatorname{Proj}_{45^{\circ}}(A)$ as the projection of A to the y axis along lines having a 45° angle with the x axis.
Then

The algebraic difference from geometric point of view II

Definition
Let $A \subset \mathbb{R}^{2}$. We define $\operatorname{Proj}_{45^{\circ}}(A)$ as the projection of A to the y axis along lines having a 45° angle with the x axis.
Then

The algebraic difference from geometric point of view II

Definition
Let $A \subset \mathbb{R}^{2}$. We define $\operatorname{Proj}_{45^{\circ}}(A)$ as the projection of A to the y axis along lines having a 45° angle with the x axis.
Then

$$
\begin{equation*}
F_{2}-F_{1}=\operatorname{Proj}_{45^{\circ}}\left(F_{1} \times F_{2}\right) \tag{1}
\end{equation*}
$$

The algebraic difference from geometric point of view II

Definition
Let $A \subset \mathbb{R}^{2}$. We define $\operatorname{Proj}_{45^{\circ}}(A)$ as the projection of A to the y axis along lines having a 45° angle with the x axis.
Then

$$
\begin{equation*}
F_{2}-F_{1}=\operatorname{Proj}_{45^{\circ}}\left(F_{1} \times F_{2}\right) . \tag{1}
\end{equation*}
$$

So,
$\operatorname{dim}_{\mathrm{H}} F_{1}, \operatorname{dim}_{\mathrm{H}} F_{2}<\frac{1}{2} \Longrightarrow \operatorname{dim}_{\mathrm{H}}\left(F_{2}-F_{1}\right)<1$

Outline

Motivation

Algebraic difference of sets

Almost self-similar sets
Larsson's family
Self-similar sets with random translations
Difference of Mandelbrot percolation (with
unequal probabilities)
existence of an interval in the difference set
The Lebesgue measure of the difference set
Palis Conjecture does not hold in this case

Larsson's family,

$1 / 4<a, 3 a+2 b<1$

Larsson's family,

$1 / 4<a, 3 a+2 b<1$

Larsson's family,

$1 / 4<a, 3 a+2 b<1$

$b \quad a \quad a \quad a \quad b$

Larsson's family,

$1 / 4<a, 3 a+2 b<1$

$\begin{array}{llll}b & a & a & a\end{array}$

Larsson's family,

$1 / 4<a, 3 a+2 b<1$

Larsson's random Cantor set is what we have after infinitely many steps. Larsson (a student of Karleson) in 1991 stated:

Larsson's random Cantor set is what we have after infinitely many steps. Larsson (a student of Karleson) in 1991 stated:
Theorem
Let C_{1}, C_{2} be two independent realizations of the Larssson's Cantor set. Then $C_{1}-C_{2}$ contains interval almost surely.

Larsson's random Cantor set is what we have after infinitely many steps. Larsson (a student of Karleson) in 1991 stated:
Theorem
Let C_{1}, C_{2} be two independent realizations of the Larssson's Cantor set. Then $C_{1}-C_{2}$ contains interval almost surely.

Larsson's random Cantor set is what we have after infinitely many steps. Larsson (a student of Karleson) in 1991 stated:
Theorem
Let C_{1}, C_{2} be two independent realizations of the Larssson's Cantor set. Then $C_{1}-C_{2}$ contains interval almost surely.
The proof contained many interesting ideas and but was incorrect. The correct proof was given in

Larsson's random Cantor set is what we have after infinitely many steps. Larsson (a student of Karleson) in 1991 stated:
Theorem
Let C_{1}, C_{2} be two independent realizations of the Larssson's Cantor set. Then $C_{1}-C_{2}$ contains interval almost surely.
The proof contained many interesting ideas and but was incorrect. The correct proof was given in F. M. Dekking, K. Simon, B. Székely, (2010) The algebraic difference of two random Cantor sets: The Larsson family,
The Annals of Probability, Vol 39, No 2 549-586

Self-similar sets with random translations

Self-similar sets with random translations

Self-similar sets with random translations

Self-similar sets with random translations

Contraction ratios $r_{1}, \ldots r_{m}$ are fixed. Left endpoints T_{1}, \ldots, T_{m} are absolute continuous r.v. so that the random intervals $I_{i}:=T_{i}+r_{i}$ are disjoint.
has the sarne distribution as $\left\{T_{k}\right\}_{k=1}^{m}$ and independent of EVERY THING. So we get

Similarly, we construct $l_{k}^{\dot{~}}$ for every $\mathbf{i} \in\{1, \ldots m\}^{n}$ and $k=1, \ldots m$. The attractor \wedge of the random
IFS is

Contraction ratios $r_{1}, \ldots r_{m}$ are fixed. Left endpoints T_{1}, \ldots, T_{m} are absolute continuous r.v. so that the random intervals $I_{i}:=T_{i}+r_{i}$ are disjoint. has the same distribution as $\left\{T_{k}\right\}_{k=1}^{m}$ and

Similarly, we construct I_{k}^{i} for every $\mathbf{i} \in\{1, \ldots m\}^{n}$and $k=1, \ldots m$. The attractor \wedge of the random IFS is

Contraction ratios $r_{1}, \ldots r_{m}$ are fixed. Left endpoints T_{1}, \ldots, T_{m} are absolute continuous r.v. so that the random intervals $l_{i}:=T_{i}+r_{i}$ are disjoint. $T_{k}^{(\ell)}=T_{\ell}+r_{k} \cdot D_{k}^{(\ell)}$, where $\left\{D_{k}^{(\ell)}\right\}_{k=1}^{m}$ has the same distribution as $\left\{T_{k}\right\}_{k=1}^{m}$ and independent of EVERY THING .

Similarly, we construct I_{k}^{i} for every $\mathbf{i} \in\{1, \ldots m\}^{\prime \prime}$ and $k=1, \ldots m$. IFS is

Contraction ratios $r_{1}, \ldots r_{m}$ are fixed. Left endpoints T_{1}, \ldots, T_{m} are absolute continuous r.v. so that the random intervals $I_{i}:=T_{i}+r_{i}$ are disjoint. $T_{k}^{(\ell)}=T_{\ell}+r_{k} \cdot D_{k}^{(\ell)}$, where $\left\{D_{k}^{(\ell)}\right\}_{k=1}^{m}$ has the same distribution as $\left\{T_{k}\right\}_{k=1}^{m}$ and independent of EVERY THING . So we get

$$
l_{k}^{(\ell)}=T_{k}^{(\ell)}+r_{k} \cdot r_{\ell} .
$$

Similarly, we construct $I_{k}^{\dot{i}}$ for every $\mathbf{i} \in\{1, \ldots m\}^{n}$ and $k=1, \ldots m$.
IFS is

Contraction ratios $r_{1}, \ldots r_{m}$ are fixed. Left endpoints T_{1}, \ldots, T_{m} are absolute continuous r.v. so that the random intervals $I_{i}:=T_{i}+r_{i}$ are disjoint. $T_{k}^{(\ell)}=T_{\ell}+r_{k} \cdot D_{k}^{(\ell)}$, where $\left\{D_{k}^{(\ell)}\right\}_{k=1}^{m}$ has the same distribution as $\left\{T_{k}\right\}_{k=1}^{m}$ and independent of EVERY THING. So we get

$$
I_{k}^{(\ell)}=T_{k}^{(\ell)}+r_{k} \cdot r_{\ell} .
$$

Similarly, we construct $I_{k}^{\dot{z}}$ for every $\mathbf{i} \in\{1, \ldots m\}^{n}$ and $k=1, \ldots m$. The attractor \wedge of the random IFS is

$$
\Lambda=\bigcap_{n=0}^{\infty} \bigcup_{|\mathbf{i}|=n, k} I_{k}^{\mathbf{i}}
$$

Palis Conjecture holds in this case

Theorem (Dekking, S., Székely)
Let C_{1}, C_{2} be two independent realizations. Let s be the similarity dimension of the system:

$$
r_{1}^{s}+\cdots+r_{m}^{s}=1
$$

Assume that $s>1$. Then

$C_{2}-C_{1}$ contains some intervals .

(If $s<1$ then $\operatorname{dim}_{\mathrm{H}}\left(C_{2}-C_{1}\right)<1$)

Mandelbrot percolation, introduced by

 Mandelbrot early 1970's:We partition the unit square into M^{2} congruent sub squares each of them are independently retained with probability p and discarded with probability $1-p$. We repeat the same process into those of these squares which were kept after the previous step. Then repeat this at infinitum.

Mandelbrot percolation, introduced by

 Mandelbrot early 1970's:We partition the unit square into M^{2} congruent sub squares each of them are independently retained with probability p and discarded with probability $1-p$. We repeat the same process into those of these squares which were kept after the previous step. Then repeat this at infinitum.

Mandelbrot percolation, introduced by

 Mandelbrot early 1970's:We partition the unit square into M^{2} congruent sub squares each of them are independently retained with probability p and discarded with probability $1-p$. We repeat the same process into those of these squares which were kept after the previous step. Then repeat this at infinitum.

Mandelbrot percolation, introduced by

 Mandelbrot early 1970's:We partition the unit square into M^{2} congruent sub squares each of them are independently retained with probability p and discarded with probability $1-p$. We repeat the same process into those of these squares which were kept after the previous step. Then repeat this at infinitum.

Orthogonal projection to ℓ_{θ}

Radial projection with center O

Theorem [M. Rams, S.]

We assume that $p>\frac{1}{M}$ (for having $\operatorname{dim}_{H} \Lambda>1$) Then the following statements hold for almost all realization Λ of the Mandelbrot percolation conditioned on $\Lambda \neq \emptyset$:

$\forall \theta \in[0, \pi], \operatorname{proj}_{\theta}(\Lambda)$ containes an interval

Further,

$\forall O \in \mathbb{R}^{2}, \operatorname{projo}(\Lambda)$ containes an interval

That is: if $p>1 / M$ then all orthogonal projections and all radial projections contain some intervals almost surely, conditioned on $\Lambda \neq \emptyset$.

Theorem [M. Rams, S.]

We assume that $p>\frac{1}{M}$ (for having $\operatorname{dim}_{H} \Lambda>1$)
Then the following statements hold for almost all realization Λ of the Mandelbrot percolation conditioned on $\Lambda \neq \emptyset$:

Theorem [M. Rams, S.]

We assume that $p>\frac{1}{M}$ (for having $\operatorname{dim}_{H} \Lambda>1$)
Then the following statements hold for almost all realization Λ of the Mandelbrot percolation conditioned on $\Lambda \neq \emptyset$:

$\forall \theta \in[0, \pi], \operatorname{proj}_{\theta}(\Lambda)$ containes an interval.

Further,
$\forall O \in \mathbb{R}^{2}, \operatorname{proj}_{O}(\Lambda)$ containes an interval
That is: if $p>1 / M$ then all orthogonal
projections and all radial projections contain some intervals almost surely, conditioned on

Theorem [M. Rams, S.]

We assume that $p>\frac{1}{M}$ (for having $\operatorname{dim}_{H} \wedge>1$) Then the following statements hold for almost all realization Λ of the Mandelbrot percolation conditioned on $\Lambda \neq \emptyset$:
$\forall \theta \in[0, \pi], \operatorname{proj}_{\theta}(\Lambda)$ containes an interval.
Further,
$\forall O \in \mathbb{R}^{2}, \operatorname{proj}_{o}(\Lambda)$ containes an interval.
That is: if $p>1 / M$ then all orthogonal

Theorem [M. Rams, S.]

We assume that $p>\frac{1}{M}$ (for having $\operatorname{dim}_{H} \Lambda>1$) Then the following statements hold for almost all realization Λ of the Mandelbrot percolation conditioned on $\Lambda \neq \emptyset$:

$\forall \theta \in[0, \pi], \operatorname{proj}_{\theta}(\Lambda)$ containes an interval.

Further,

$$
\forall O \in \mathbb{R}^{2}, \operatorname{proj}_{O}(\Lambda) \text { containes an interval }
$$

That is: if $p>1 / M$ then all orthogonal projections and all radial projections contain some intervals almost surely, conditioned on $\Lambda \neq \emptyset$.

Definition of $r \in \mathbb{N}$

Fix α. On the picture $\alpha=45^{\circ}$. Go down to level r squares. On the picture right hand side $r=2$.

Definition of $r \in \mathbb{N}$

Fix α. On the picture $\alpha=45^{\circ}$. Go down to level r squares. On the picture right hand side $r=2$.

Definition of $r \in \mathbb{N}$

Fix α. On the picture $\alpha=45^{\circ}$. Go down to level r squares. On the picture right hand side $r=2$.

$K=[0,1]^{2}$

Definition of $r \in \mathbb{N}$

Fix α. On the picture $\alpha=45^{\circ}$. Go down to level r squares. On the picture right hand side $r=2$.

$K=[0,1]^{2}$

Definition of $r \in \mathbb{N}$

Fix α. On the picture $\alpha=45^{\circ}$. Go down to level r squares. On the picture right hand side $r=2$.

Definition of $r \in \mathbb{N}$

Fix α. On the picture $\alpha=45^{\circ}$. Go down to level r squares. On the picture right hand side $r=2$.

Definition of $r \in \mathbb{N}$

Fix α. On the picture $\alpha=45^{\circ}$. Go down to level r squares. On the picture right hand side $r=2$.

Definition of $r \in \mathbb{N}$

Fix α. On the picture $\alpha=45^{\circ}$. Go down to level r squares. On the picture right hand side $r=2$.

$$
K=[0,1]^{2}
$$

$K=[0,1]^{2}$

Definition of $r=r(\alpha)$

Lemma (Very Important Lemma)

$$
\forall \alpha \neq 0,90, \quad \exists r, \Delta_{1}^{\alpha}, \Delta_{2}^{\alpha}
$$

(all depends on α) such that
for every $x \in \Delta_{2}^{\alpha}$
$\mathbb{E}\left[\#\left\{\right.\right.$ level r, Δ_{1}^{α} whose α projection covers $\left.\left.x\right\}\right]>2$.

Definition of r.v. Y_{1}, \ldots, Y_{R}

Let r be as above. Let left $i_{i_{r}, j_{r}}$, right $t_{i_{r}, j_{-}}$be the left and right end points of the red sub diagonal $\Delta_{i_{r}, I_{i}}^{1}$.

$$
\left\{\text { left }_{i_{r-j_{r}}}, \text { right }_{i_{r-j} j_{r}}\right\}_{I_{r}, j_{r}}
$$

gives a partition of Δ^{2} into R intervals $I_{1}, \ldots, I_{R} \subset \Delta^{2}$ (left closed right open say).
 squares call them $K_{i r, J_{r}}$ which are

Definition of r.v. Y_{1}, \ldots, Y_{R}

 and right end points of the red sub diagonal
$\Delta_{i_{r}, j_{r}}^{1}$.

$$
\left\{\operatorname{left}_{\underline{i}_{r}, \underline{-}_{r}}, \text { right }_{i_{r}, \underline{j}_{r}}\right\}_{\underline{i}_{r}, \underline{I}_{r}}
$$

gives a partition of Δ^{2} into R intervals $I_{1}, \ldots, I_{R} \subset \Delta^{2}$ (left closed right open say). Pick an arbitrary $x_{k} \in I_{k}, k=1, \ldots, R$. The r.v. Y_{k} is defined as the random number of those level r squares call them $K_{i_{r}, I_{r}}$ which are

- retained and

Definition of r.v. Y_{1}, \ldots, Y_{R}

Let r be as above. Let left $t_{i_{r}, j_{r}}$, right $t_{i_{r}, j_{-}}$be the left and right end points of the red sub diagonal

$$
\left\{\text { left }_{i_{r-j}, j_{r}}, \text { right }_{i_{r \cdot j} j_{r}}\right\}_{I_{r, j}, j_{r}}
$$

gives a partition of Δ^{2} into R intervals $I_{1}, \ldots, I_{R} \subset \Delta^{2}$ (left closed right open say). Pick an arbitrary $x_{k} \in I_{k}, k=1, \ldots, R$. The r.v. Y_{k} is defined as the random number of those level r squares call them $K_{I r \cdot, J_{r}}$ which are

- retained and
- for which $x_{k} \in \Pi_{\alpha}\left(\Delta_{i_{r}, J_{N}}^{1}\right)$.

Some ideas related to the proof I.

Some ideas related to the proof II.

By assumption
$\operatorname{dim}_{H}>1$.
So, the number of selected M^{-n} squares is $M^{q \cdot n}$, $q>1$. So, $\exists J$ s.t. for $\forall x \in J$ the the green line intersects exponentially (say v^{n}) many selected (yellow) squares.

Some ideas related to the proof II.

By assumption

$$
\operatorname{dim}_{H}>1
$$

So, the number of selected M^{-n} squares is $M^{q \cdot n}$, $q>1$. So, $\exists J$ s.t. for $\forall x \in J$ the the green line intersects exponentially (say v^{n}) many selected (yellow) squares.

$$
\mathbb{P}\left(\sum_{k=1}^{c_{1} v^{n}} Z_{i(k)}<\frac{3}{2} N\right)<\tau^{c_{1} v^{n}}
$$

Outline

Motivation

Algebraic difference of sets

Almost self-similar sets
Larsson's family
Self-similar sets with random translations
Difference of Mandelbrot percolation (with unequal probabilities) existence of an interval in the difference set The Lebesgue measure of the difference set Palis Conjecture does not hold in this case

The outline of the construction I

Given an integer $M \geq 2$ and a vector of probabilities

$$
\left(p_{o}, p_{1}, \ldots, p_{M-1}\right) \in[0,1]^{M}
$$

Which is in general NOT a probability vector.

The outline of the construction I

Given an integer $M \geq 2$ and a vector of probabilities

$$
\left(p_{o}, p_{1}, \ldots, p_{M-1}\right) \in[0,1]^{M}
$$

Which is in general NOT a probability vector. We divide the unit interval $I=[0,1]$ into the M subintervals $I_{k}=\left[\frac{k-1}{M}, \frac{k}{M}\right], k=0, \ldots, M-1$. We keep I_{k} with probability p_{k}. For all intervals kept, repeat this algorithm infinitely many times in each step independently from each other and from the past. Whatever remains it is our random Cantor set F.

Some properties of the Random Cantor Sets I

Let $Z_{0}:=1$ and let Z_{n} be the (random) number of level n intervals selected.

Some properties of the Random Cantor Sets I

Let $Z_{0}:=1$ and let Z_{n} be the (random) number of level n intervals selected.
Then

- $\left\{Z_{n}\right\}_{n \in \mathbb{N}}$ is a branching process.

Some properties of the Random Cantor Sets I

Let $Z_{0}:=1$ and let Z_{n} be the (random) number of level n intervals selected.
Then

- $\left\{Z_{n}\right\}_{n \in \mathbb{N}}$ is a branching process.
- The expected value of Z_{1} :

$$
\mathbb{E}\left(Z_{1}\right)=\sum_{i=0}^{M-1} p_{i} .
$$

The Hausdorff dimension

The next fact is well known. Falconer (1986) and Mauldin, Williams (1986)

The Hausdorff dimension

The next fact is well known. Falconer (1986) and Mauldin, Williams (1986)
Theorem
Assuming that $F \neq \emptyset$ we have:

$$
\begin{equation*}
\operatorname{dim}_{\mathrm{B}} F=\operatorname{dim}_{\mathrm{H}} F=\frac{\log \left(\sum_{i=0}^{M-1} p_{i}\right)}{\log M} . \tag{2}
\end{equation*}
$$

almost surely.

The algebraic difference from geometric point of view III

$$
\operatorname{dim}_{H} F<\frac{1}{2} \Longrightarrow F_{2}-F_{1}
$$

does not contain any interval. Using (2):

> So, we may hope to find an interval in $F_{2}-F_{1}$ only if the following condition holds:

The algebraic difference from geometric point of view III

$$
\operatorname{dim}_{H} F<\frac{1}{2} \Longrightarrow F_{2}-F_{1}
$$

does not contain any interval. Using (2):

$$
\operatorname{dim}_{\mathrm{H}} F<\frac{1}{2} \Longleftrightarrow \sum_{i=0}^{M-1} p_{i}<\sqrt{M}
$$

So, we may hope to find an interval in $F_{2}-F_{1}$ only if the following condition holds:

The algebraic difference from geometric point of view III

$$
\operatorname{dim}_{\mathrm{H}} F<\frac{1}{2} \Longrightarrow F_{2}-F_{1}
$$

does not contain any interval. Using (2):

$$
\operatorname{dim}_{\mathrm{H}} F<\frac{1}{2} \Longleftrightarrow \sum_{i=0}^{M-1} p_{i}<\sqrt{M}
$$

So, we may hope to find an interval in $F_{2}-F_{1}$ only if the following condition holds:
$\operatorname{dim}_{\mathrm{H}} F_{1}+\operatorname{dim}_{\mathrm{H}} F_{2}>1$, that is $\sum_{i=0}^{M-1} p_{i}>\sqrt{M}$. (3)

The crosscorrelations

For $i \in\{0, \ldots, M-1\}$ let

$$
\gamma_{i}:=\sum_{k=0}^{M-1} p_{k} p_{k+i \bmod M}
$$

where p_{i} was the probability that we choose the interval i-th interval $I_{i}=\left[\frac{i-1}{M}, \frac{i}{M}\right]$.
$M-1$
$\gamma_{i}:=\sum_{k=0} p_{k} \rho_{k+i \bmod M}$
Theorem (Dekking, S.)
Assuming that $F_{1}, F_{2} \neq \emptyset$, we have

$$
\gamma_{i}:=\sum_{k=0}^{M-1} p_{k} p_{k+i \bmod M}
$$

Theorem (Dekking, S.)
Assuming that $F_{1}, F_{2} \neq \emptyset$, we have
(a) If $\forall i=0, \ldots, M-1$: $\quad \gamma_{i}>1$ then almost surely
$F_{2}-F_{1}$ contains an interval

$$
\gamma_{i}:=\sum_{k=0}^{M-1} p_{k} p_{k+i \bmod M}
$$

Theorem (Dekking, S.)
Assuming that $F_{1}, F_{2} \neq \emptyset$, we have
(a) If $\forall i=0, \ldots, M-1$: $\quad \gamma_{i}>1$ then almost surely
$F_{2}-F_{1}$ contains an interval

$$
\begin{aligned}
& \gamma_{i}:=\sum_{k=0}^{M-1} p_{k} p_{k+i \bmod M} \\
& \text { Theorem (Dekking, S.) } \\
& \text { Assuming that } F_{1}, F_{2} \neq \emptyset \text {, we have } \\
& \text { (a) If } \forall i=0, \ldots, M-1: \quad \gamma_{i}>1 \text { then } \\
& \text { almost surely }
\end{aligned}
$$

$F_{2}-F_{1}$ contains an interval .

$M-1$
 $\gamma_{i}:=\sum_{k=0} p_{k} p_{k+i \bmod M}$

Theorem (Dekking, S.)
Assuming that $F_{1}, F_{2} \neq \emptyset$, we have
(a) If $\forall i=0, \ldots, M-1$: $\quad \gamma_{i}>1$ then almost surely
$F_{2}-F_{1}$ contains an interval .
(b) If $\exists i \in\{0, \ldots, M-1\}$:
$\gamma_{i}, \gamma_{i+1} \bmod M<1$ then almost surely
$F_{2}-F_{1}$ does not contain any interval .

Remark I

In the case of the Mandelbrot percolation all $p_{i}=p$ for some $0 \leq p \leq 1$.

Remark I

In the case of the Mandelbrot percolation all $p_{i}=p$ for some $0 \leq p \leq 1$. In this case for all i,

$$
\gamma_{i}=M p^{2}>1 \Longleftrightarrow p>\frac{1}{\sqrt{M}}
$$

Remark I

In the case of the Mandelbrot percolation all $p_{i}=p$ for some $0 \leq p \leq 1$. In this case for all i,

$$
\gamma_{i}=M p^{2}>1 \Longleftrightarrow p>\frac{1}{\sqrt{M}}
$$

- For $p>\frac{1}{\sqrt{M}} \exists$ an interval in $F_{1}-F_{2}$ almost surely, assuming that $F_{1}, F_{2} \neq \emptyset$
- For $p<\frac{1}{\sqrt{M}}$ there is no interval in the difference set.

Remark I

In the case of the Mandelbrot percolation all $p_{i}=p$ for some $0 \leq p \leq 1$. In this case for all i,

$$
\gamma_{i}=M p^{2}>1 \Longleftrightarrow p>\frac{1}{\sqrt{M}}
$$

- For $p>\frac{1}{\sqrt{M}} \exists$ an interval in $F_{1}-F_{2}$ almost surely, assuming that $F_{1}, F_{2} \neq \emptyset$
- For $p<\frac{1}{\sqrt{M}}$ there is no interval in the difference set.

The case of $M=2$

M. Dekking, B. Kuijvenhoven gave the following full characterization:

$$
\text { If } M=2 \text { then } \gamma_{0}=p_{0}^{2}+p_{1}^{2}, \gamma_{1}=2 p_{0} p_{1}
$$

If $\gamma_{0} \gamma_{1}>1 \boldsymbol{F}_{2}-F_{1}$ contains some interval conditioned on $\left\{F_{2}-F_{1} \neq \emptyset\right\}$.

The case of $M=2$

M. Dekking, B. Kuijvenhoven gave the following full characterization:

$$
\text { If } M=2 \text { then } \gamma_{0}=p_{0}^{2}+p_{1}^{2}, \gamma_{1}=2 p_{0} p_{1}
$$

If $\gamma_{0} \gamma_{1}>1 \boldsymbol{F}_{2}-F_{1}$ contains some interval conditioned on $\left\{F_{2}-F_{1} \neq \emptyset\right\}$.
If $\gamma_{0} \gamma_{1}<1 F_{2}-F_{1}$ contains no interval.

Gray region: no intervals in $F_{1}-F_{2}$ but $\operatorname{dim}_{H} F_{1}+\operatorname{dim}_{H} F_{2}>1$.

Remark II

$$
\begin{aligned}
& \qquad \gamma_{0} \geq \gamma_{1}=\gamma_{2} \text {. } \\
& \text { That is the following holds almost surely: } \\
& \gamma_{1}>1 \Longrightarrow \text { there is interval in } F_{2}-F_{1} \\
& \qquad \gamma_{1}<1 \Longrightarrow \text { no interval in } F_{2}-F_{1} \\
& \text { So, for } M=3 \text { our theorem is essentially } \\
& \text { complete. }
\end{aligned}
$$

Remark II

$$
\gamma_{0} \geq \gamma_{1}=\gamma_{2}
$$

That is the following holds almost surely:

$$
\gamma_{1}>1 \Longrightarrow \text { there is interval in } F_{2}-F_{1}
$$

Remark II

$$
\gamma_{0} \geq \gamma_{1}=\gamma_{2}
$$

That is the following holds almost surely:

$$
\begin{gathered}
\gamma_{1}>1 \Longrightarrow \text { there is interval in } F_{2}-F_{1} \\
\gamma_{1}<1 \Longrightarrow \text { no interval in } F_{2}-F_{1}
\end{gathered}
$$

So, for $M=3$ our theorem is essentially complete.

Remark II

$$
\gamma_{0} \geq \gamma_{1}=\gamma_{2}
$$

That is the following holds almost surely:

$$
\gamma_{1}>1 \Longrightarrow \text { there is interval in } F_{2}-F_{1}
$$

$$
\gamma_{1}<1 \Longrightarrow \text { no interval in } F_{2}-F_{1}
$$

So, for $M=3$ our theorem is essentially complete.

The Lebesgue measure of $F_{2}-F_{1}$

We remind: $\gamma_{i}:=\sum_{k=0} p_{k} p_{k+i \bmod M}$

The Lebesgue measure of $F_{2}-F_{1}$

$$
\sum_{k=0}^{M-1} p_{k} p_{k+i \bmod M}
$$

Theorem (Mora, S., Solomyak) We assume that $p_{0}, \ldots, p_{M-1}>0$ Moreover, we require that

Then conditional on $F_{1}, F_{2} \neq \emptyset$, we have

The Lebesgue measure of $F_{2}-F_{1}$

$$
\sum_{k=0}^{M-1} p_{k} p_{k+i \bmod M}
$$

Theorem (Mora, S., Solomyak) We assume that $p_{0}, \ldots, p_{M-1}>0$ Moreover, we require that

Then conditional on $F_{1}, F_{2} \neq \emptyset$, we have

The Lebesgue measure of $F_{2}-F_{1}$

We remind: $\gamma_{i}:=\sum_{k=0}^{M-1} p_{k} p_{k+i \bmod M}$
Theorem (Mora, S., Solomyak) We assume that $p_{0}, \ldots, p_{M-1}>0$ Moreover, we require that

$$
\begin{equation*}
\Gamma:=\gamma_{0} \cdots \gamma_{M-1}>1 \tag{A2}
\end{equation*}
$$

Then conditional on $F_{1}, F_{2} \neq \emptyset$, we have

The Lebesgue measure of $F_{2}-F_{1}$

We remind: $\gamma_{i}:=\sum_{k=0}^{M-1} p_{k} p_{k+i \bmod M}$
Theorem (Mora, S., Solomyak) We assume that $p_{0}, \ldots, p_{M-1}>0$ Moreover, we require that

$$
\begin{equation*}
\Gamma:=\gamma_{0} \cdots \gamma_{M-1}>1 . \tag{A2}
\end{equation*}
$$

Then conditional on $F_{1}, F_{2} \neq \emptyset$, we have

The Lebesgue measure of $F_{2}-F_{1}$

We remind: $\gamma_{i}:=\sum_{k=0}^{M-1} p_{k} p_{k+i \bmod M}$
Theorem (Mora, S., Solomyak) We assume that $p_{0}, \ldots, p_{M-1}>0$ Moreover, we require that

$$
\begin{equation*}
\Gamma:=\gamma_{0} \cdots \gamma_{M-1}>1 . \tag{A2}
\end{equation*}
$$

Then conditional on $F_{1}, F_{2} \neq \emptyset$, we have

$$
\begin{equation*}
\mathcal{L e b}\left(F_{2}-F_{1}\right)>0 . \tag{4}
\end{equation*}
$$

holds almost surely.

By formulae (2) which was

$$
\operatorname{dim}_{\mathrm{B}} F=\operatorname{dim}_{\mathrm{H}} F=\frac{\log \left(\sum_{i=0}^{M-1} p_{i}\right)}{\log M}
$$

$F_{2}-F_{1}=\operatorname{proj}_{45^{\circ}}\left(F_{1} \times F_{2}\right)$ MAY contain an interval only if

$$
\frac{\sum_{i=0}^{M-1} p_{i}}{\sqrt{M}}>1 .
$$

Easy calculation shows that

$$
\frac{\sum_{i=0}^{M-1} \gamma_{i}}{M}=\left(\frac{\sum_{i=0}^{M-1} p_{i}}{\sqrt{M}}\right)^{2}
$$

Positive Lebesgue measure with no

 intervalsLet $M=3$ and

$$
\left(p_{0}, p_{1}, p_{2}\right)=(0.52,0.5,0.72) .
$$

In this case we have $=p_{0}^{2}+p_{1}^{2}+p_{2}^{2}=1.0388$,

So, there is no interval.

Positive Lebesgue measure with no intervals

Let $M=3$ and

$$
\left(p_{0}, p_{1}, p_{2}\right)=(0.52,0.5,0.72) .
$$

In this case we have

$$
\begin{gathered}
\gamma_{0}=p_{0}^{2}+p_{1}^{2}+p_{2}^{2}=1.0388 \\
\gamma_{1}=\gamma_{2}=p_{0} p_{1}+p_{1} p_{2}+p_{2} p_{0}=0.9944
\end{gathered}
$$

So, there is no interval.

So, $\mathcal{L} e b\left(F_{2}-F_{1}\right)>0$.

Positive Lebesgue measure with no

 intervalsLet $M=3$ and

$$
\left(p_{0}, p_{1}, p_{2}\right)=(0.52,0.5,0.72)
$$

In this case we have

$$
\begin{gathered}
\gamma_{0}=p_{0}^{2}+p_{1}^{2}+p_{2}^{2}=1.0388 \\
\gamma_{1}=\gamma_{2}=p_{0} p_{1}+p_{1} p_{2}+p_{2} p_{0}=0.9944
\end{gathered}
$$

So, there is no interval.

$$
\gamma_{0} \gamma_{1} \gamma_{2}=1.0272>1
$$

So, $\mathcal{L e b}\left(F_{2}\right.$

Positive Lebesgue measure with no

 intervalsLet $M=3$ and

$$
\left(p_{0}, p_{1}, p_{2}\right)=(0.52,0.5,0.72)
$$

In this case we have

$$
\begin{gathered}
\gamma_{0}=p_{0}^{2}+p_{1}^{2}+p_{2}^{2}=1.0388 \\
\gamma_{1}=\gamma_{2}=p_{0} p_{1}+p_{1} p_{2}+p_{2} p_{0}=0.9944
\end{gathered}
$$

So, there is no interval.

$$
\gamma_{0} \gamma_{1} \gamma_{2}=1.0272>1
$$

So, $\mathcal{L e b}\left(F_{2}-F_{1}\right)>0$.

