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Introduction
F1,F2 ⊂ R. The algebraic difference set

F2 − F1 := {f2 − f1 : f1 ∈ F1, f2 ∈ F2} .

Motivation to study it comes from e.g. :
I Dynamical systems, unfolding of homoclinic

tangency (Palis, Takens)
I Diophantine approximation (Moreira,

Yoccoz).
Palis conjectured: For dynamically defined

Cantor sets: "Generically" Either
I F2 − F1 is small: Leb(F2 − F1) = 0 or
I F2 − F1 is big: F2 − F1 contains some

intervals.
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Summary

Palis conjecture holds:

I For self-similar sets with random
translations.

I For Mandelbrot percolation.

Palis conjecture Does NOT hold:
For more general Mandelbrot percolation when
we select the intervals with
different probability .
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History
I J. Palis and F. Takens. Hyperbolicity and

sensitive chaotic dynamics at homoclinic
bifurcations, volume 35 of Cambridge
Studies in Advanced Mathematics.
Cambridge University Press, Cambridge,
1993.

I Yoccoz and Morreira, Annals of
Mathematics (2001): answered Palis
conjecture for non-linear Cantor sets

I K. J. Falconer and G. R. Grimmett, Sets
and Fractal Percolation Journal of
Theoretical Probability, Vol. 5, No. 3, 1992
On the Geometry of Random Cantor
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The algebraic difference from
geometric point of view II

Definition
Let A ⊂ R2. We define Proj45◦(A) as the
projection of A to the y axis along lines having a
45◦ angle with the x axis.
Then

F2 − F1 = Proj45◦ (F1 × F2) . (1)

So,

dimH F1,dimH F2 <
1
2

=⇒ dimH (F2 − F1) < 1
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Larsson’s random Cantor set is what we have
after infinitely many steps. Larsson (a student of
Karleson) in 1991 stated:

Theorem
Let C1,C2 be two independent realizations of
the Larssson’s Cantor set. Then C1 − C2
contains interval almost surely.
The proof contained many interesting ideas and
but was incorrect. The correct proof was given in

F. M. Dekking, K. Simon, B. Székely, (2010)
The algebraic difference of two random Cantor
sets: The Larsson family,
The Annals of Probability, Vol 39, No 2
549-586 .
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Contraction ratios r1, . . . rm are fixed. Left
endpoints T1, . . . ,Tm are absolute continuous
r.v. so that the random intervals Ii := Ti + ri are

disjoint. T (`)
k = T` + rk · D(`)

k , where
{

D(`)
k

}m

k=1

has the same distribution as {Tk}m
k=1 and

independent of EVERY THING . So we get

I(`)k = T (`)
k + rk · r`.

Similarly, we construct I i
k for every i ∈ {1, . . .m}n

and k = 1, . . .m. The attractor Λ of the random
IFS is

Λ =
∞⋂

n=0

⋃

|i|=n,k

I i
k
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Palis Conjecture holds in this case

Theorem (Dekking, S., Székely)
Let C1, C2 be two independent realizations. Let
s be the similarity dimension of the system:

r s
1 + · · ·+ r s

m = 1

Assume that s > 1. Then

C2 − C1 contains some intervals .

(If s < 1 then dimH(C2 − C1) < 1)



Mandelbrot percolation, introduced by
Mandelbrot early 1970’s:

We partition the unit square into M2 congruent
sub squares each of them are independently
retained with probability p and discarded with
probability 1− p. We repeat the same process
into those of these squares which were kept
after the previous step. Then repeat this at
infinitum.
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Radial projection with center O
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Theorem [M. Rams, S.]
We assume that p > 1

M ( for having dimH Λ > 1 )
Then the following statements hold for almost all
realization Λ of the Mandelbrot percolation
conditioned on Λ 6= ∅:

∀θ ∈ [0, π], projθ(Λ) containes an interval .

Further,

∀O ∈ R2, projO(Λ) containes an interval .

That is: if p > 1/M then all orthogonal
projections and all radial projections contain
some intervals almost surely, conditioned on
Λ 6= ∅.



Theorem [M. Rams, S.]
We assume that p > 1

M ( for having dimH Λ > 1 )
Then the following statements hold for almost all
realization Λ of the Mandelbrot percolation
conditioned on Λ 6= ∅:

∀θ ∈ [0, π], projθ(Λ) containes an interval .

Further,

∀O ∈ R2, projO(Λ) containes an interval .

That is: if p > 1/M then all orthogonal
projections and all radial projections contain
some intervals almost surely, conditioned on
Λ 6= ∅.



Theorem [M. Rams, S.]
We assume that p > 1

M ( for having dimH Λ > 1 )
Then the following statements hold for almost all
realization Λ of the Mandelbrot percolation
conditioned on Λ 6= ∅:

∀θ ∈ [0, π], projθ(Λ) containes an interval .

Further,

∀O ∈ R2, projO(Λ) containes an interval .

That is: if p > 1/M then all orthogonal
projections and all radial projections contain
some intervals almost surely, conditioned on
Λ 6= ∅.



Theorem [M. Rams, S.]
We assume that p > 1

M ( for having dimH Λ > 1 )
Then the following statements hold for almost all
realization Λ of the Mandelbrot percolation
conditioned on Λ 6= ∅:

∀θ ∈ [0, π], projθ(Λ) containes an interval .

Further,

∀O ∈ R2, projO(Λ) containes an interval .

That is: if p > 1/M then all orthogonal
projections and all radial projections contain
some intervals almost surely, conditioned on
Λ 6= ∅.



Theorem [M. Rams, S.]
We assume that p > 1

M ( for having dimH Λ > 1 )
Then the following statements hold for almost all
realization Λ of the Mandelbrot percolation
conditioned on Λ 6= ∅:

∀θ ∈ [0, π], projθ(Λ) containes an interval .

Further,

∀O ∈ R2, projO(Λ) containes an interval .

That is: if p > 1/M then all orthogonal
projections and all radial projections contain
some intervals almost surely, conditioned on
Λ 6= ∅.



Definition of r ∈ N
Fix α. On the picture α = 45◦. Go down to level
r squares. On the picture right hand side
r = 2.
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Definition of r = r (α)

Lemma (Very Important Lemma)

∀α 6= 0,90, ∃ r ,∆α
1 ,∆

α
2

(all depends on α) such that

for every x ∈ ∆α
2

E [# { level r ,∆α
1 whose αprojection covers x}] > 2.



Definition of r.v. Y1, . . . ,YR
Let r be as above. Let lefti r ,j r , righti r ,j r be the left
and right end points of the red sub diagonal
∆1

i r ,j r
. {

lefti r ,j r , righti r ,j r

}
i r ,j r

gives a partition of ∆2 into R intervals
I1, . . . , IR ⊂ ∆2 (left closed right open say). Pick
an arbitrary xk ∈ Ik , k = 1, . . . ,R. The r.v. Yk is
defined as the random number of those level r
squares call them Ki r ,j r

which are
I retained and
I for which xk ∈ Πα(∆1

i r ,j r
).
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Some ideas related to the proof I.
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Some ideas related to the proof II.

By assumption

dimH > 1.

So, the number of selected M−n squares is Mq·n,
q > 1. So, ∃J s.t. for ∀x ∈ J the the green line
intersects exponentially (say vn) many selected
(yellow) squares.



Some ideas related to the proof II.

By assumption

dimH > 1.

So, the number of selected M−n squares is Mq·n,
q > 1. So, ∃J s.t. for ∀x ∈ J the the green line
intersects exponentially (say vn) many selected
(yellow) squares.
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Difference of Mandelbrot percolation (with
unequal probabilities)

existence of an interval in the difference set
The Lebesgue measure of the difference set
Palis Conjecture does not hold in this case



The outline of the construction I
Given an integer M ≥ 2 and a vector of
probabilities

(po,p1, . . . ,pM−1) ∈ [0,1]M .

Which is in general NOT a probability vector.
We divide the unit interval I = [0,1] into the M
subintervals Ik =

[k−1
M , k

M

]
, k = 0, . . . ,M − 1. We

keep Ik with probability pk . For all intervals
kept, repeat this algorithm infinitely many times
in each step independently from each other and
from the past. Whatever remains it is our
random Cantor set F .
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Some properties of the Random
Cantor Sets I

Let Z0 := 1 and let Zn be the (random) number
of level n intervals selected.
Then

I {Zn}n∈N is a branching process.
I The expected value of Z1:

E(Z1) =
M−1∑

i=0

pi .



Some properties of the Random
Cantor Sets I

Let Z0 := 1 and let Zn be the (random) number
of level n intervals selected.
Then

I {Zn}n∈N is a branching process.
I The expected value of Z1:

E(Z1) =
M−1∑

i=0

pi .



Some properties of the Random
Cantor Sets I

Let Z0 := 1 and let Zn be the (random) number
of level n intervals selected.
Then

I {Zn}n∈N is a branching process.
I The expected value of Z1:

E(Z1) =
M−1∑

i=0

pi .



The Hausdorff dimension

The next fact is well known. Falconer (1986)
and Mauldin, Williams (1986)

Theorem
Assuming that F 6= ∅ we have:

dimB F = dimH F =

log
(

M−1∑
i=0

pi

)

log M
. (2)

almost surely.
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The algebraic difference from
geometric point of view III

dimH F <
1
2

=⇒ F2 − F1

does not contain any interval. Using (2):

dimH F <
1
2
⇐⇒

M−1∑

i=0

pi <
√

M.

So, we may hope to find an interval in F2 − F1
only if the following condition holds:

dimH F1 +dimH F2 > 1, that is
M−1∑

i=0

pi >
√

M. (3)
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The crosscorrelations

For i ∈ {0, . . . ,M − 1} let

γi :=
M−1∑

k=0

pkpk+i mod M ,

where pi was the probability that we choose the
interval i-th interval Ii =

[ i−1
M , i

M

]
.



γi :=
M−1∑
k=0

pkpk+i mod M

Theorem (Dekking, S.)
Assuming that F1,F2 6= ∅, we have

(a) If ∀i = 0, . . . ,M − 1 : γi > 1 then
almost surely

F2 − F1 contains an interval .

(b) If ∃i ∈ {0, . . . ,M − 1} :
γi , γi+1 mod M < 1 then almost surely

F2 − F1 does not contain any interval .
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Remark I

In the case of the Mandelbrot percolation all
pi = p for some 0 ≤ p ≤ 1. In this case for all i ,

γi = Mp2 > 1⇐⇒ p >
1√
M
.

I For p > 1√
M
∃ an interval in F1 − F2 almost

surely, assuming that F1,F2 6= ∅
I For p < 1√

M
there is no interval in the

difference set.
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The case of M = 2

M. Dekking, B. Kuijvenhoven gave the following
full characterization:

If M = 2 then γ0 = p2
0 + p2

1, γ1 = 2p0p1

If γ0γ1 > 1 F2 − F1 contains some interval
conditioned on {F2 − F1 6= ∅}.

If γ0γ1 < 1 F2 − F1 contains no interval.
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Figure 7. Classification of the 2-adic symmetric algebraic difference in the
(p0, p1) plane: (1) Below ‖p‖1 = 1 a.s F1 = F2 = ∅. (2) Below ‖p‖1 =

√
2

there are no intervals because dimH(F1 − F2) < 1. (3) Below γ0 = 1 the ‘no
intervals’ part of Theorem 4.1 holds. (4) Above γ1 = 1 the ‘intervals’ part
holds. (5) The line C = 1 is the separating boundary of Theorem 7.3. The
area where the Palis conjecture fails is shaded grey.

This might be of independent interest: we have shown that for max{2b, 1 −
2b} ≤ a ≤ 1 + b2 the lower spectral radius of the collection consisting of

M (0) =

[
a b
0 b

]
, M (1) =

[
b 0
b a

]
,(48)

is equal to 1
2
b + 1

2

√
4ab + b2.

Figure 7 gives an overview of boundaries in the space of vectors of marginal
probabilities p that separate areas where different sets of conditions imply the
absence or presence of intervals. The figure also indicates the area where the
Palis conjecture fails, i.e., the area where (1) does not imply that F1 − F2

contains an interval (on {F1 − F2 6= ∅}).

8. A proof for the basic result

In the following we will give a proof for part (a) of Theorem 4.1 (we already
mentioned that the proof of part (b) is much simpler, and follows closely
the proof in [DS08]). The proof of Theorem 4.1 is based on the following
observations. The process of n-th level M-adic squares that are surviving
in the level n approximations Λn inherits the self-similarity property of the
individual random Cantor sets F1 and F2: conditional on the survival of an
n-th level M-adic square Qi1...in,j1...jn, the (scaled) process starting at this
surviving square has the same distribution as the whole process, which starts
at [0, 1]2. Moreover, conditional on the survival of a set of n-th level M-adic
squares that are pairwise unaligned, the processes in each of these squares
are independent.

Gray region: no intervals in F1 − F2 but
dimH F1 + dimH F2 > 1.



Remark II

γ0 ≥ γ1 = γ2.

That is the following holds almost surely:

γ1 > 1 =⇒ there is interval in F2 − F1

γ1 < 1 =⇒ no interval in F2 − F1

So, for M = 3 our theorem is essentially
complete.
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The Lebesgue measure of F2 − F1

We remind: γi :=
M−1∑
k=0

pkpk+i mod M

Theorem (Mora, S., Solomyak)
We assume that p0, . . . ,pM−1 > 0 Moreover, we
require that

Γ := γ0 · · · γM−1 > 1. (A2)

Then conditional on F1,F2 6= ∅, we have

Leb(F2 − F1) > 0. (4)

holds almost surely.
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By formulae (2) which was

dimB F = dimH F =

log
(

M−1∑
i=0

pi

)

log M
.

F2 − F1 = proj45◦(F1 × F2) MAY contain an
interval only if

M−1∑
i=0

pi

√
M

> 1.

Easy calculation shows that
M−1∑
i=0

γi

M
=




M−1∑
i=0

pi

√
M




2



Positive Lebesgue measure with no
intervals

Let M = 3 and

(p0,p1,p2) = (0.52,0.5,0.72).

In this case we have

γ0 = p2
0 + p2

1 + p2
2 = 1.0388,

γ1 = γ2 = p0p1 + p1p2 + p2p0 = 0.9944,

So, there is no interval.

γ0γ1γ2 = 1.0272 > 1

So, Leb(F2 − F1) > 0.
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