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F2_F1 ::{fz—f1:f1€F17 f2EF2}

Motivation to study it comes from e.g. :
» Dynamical systems, unfolding of homoclinic
tangency (Palis, Takens)
» Diophantine approximation (Moreira,
Yoccoz).
Palis conjectured: For dynamically defined
Cantor sets: "Generically" Either
» Fo — Fyissmall: Leb(F, — F1) =0or
» Fo — Fyis big: F» — Fy contains some
intervals.
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Palis conjecture holds:

» For self-similar sets with random
translations.

» For Mandelbrot percolation.

Palis conjecture Does NOT hold:

For more general Mandelbrot percolation when
we select the intervals with

different probability .



History

» J. Palis and F. Takens. Hyperbolicity and
sensitive chaotic dynamics at homocilinic
bifurcations, volume 35 of Cambridge
Studies in Advanced Mathematics.
Cambridge University Press, Cambridge,
1993.



History

» J. Palis and F. Takens. Hyperbolicity and
sensitive chaotic dynamics at homocilinic
bifurcations, volume 35 of Cambridge
Studies in Advanced Mathematics.
Cambridge University Press, Cambridge,
1993.

» Yoccoz and Morreira, Annals of
Mathematics (2001): answered Palis
conjecture for non-linear Cantor sets



History

» J. Palis and F. Takens. Hyperbolicity and
sensitive chaotic dynamics at homocilinic
bifurcations, volume 35 of Cambridge
Studies in Advanced Mathematics.
Cambridge University Press, Cambridge,
1993.

» Yoccoz and Morreira, Annals of
Mathematics (2001): answered Palis
conjecture for non-linear Cantor sets

» K. J. Falconer and G. R. Grimmett, Sets
and Fractal Percolation Journal of
Theoretical Probability, Vol. 5, No. 3, 1992
On the Geometry of Random Cantor
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Definition

Let A C R2. We define Proj,:.(A) as the
projection of A to the y axis along lines having a
45° angle with the x axis.

Then
F2 — F1 = Pr0j450 (F1 X F2) (1)

So,

: : 1 :
dimy F1,dimy Fo < 5= dimy (Fo — F1) < 1
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after infinitely many steps. Larsson (a student of
Karleson) in 1991 stated:

Theorem

Let Cq, Co> be two independent realizations of
the Larssson’s Cantor set. Then C; — Co
contains interval almost surely.

The proof contained many interesting ideas and
but was incorrect. The correct proof was given in

F. M. Dekking, K. Simon, B. Székely, (2010)

The Annals of Probability, Vol 39, No 2
549-586 .
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Contraction ratios ry, ... ry, are fixed. Left
endpoints Ty, ..., T,, are absolute continuous
r.v. so that the random intervals /; := T; + r; are

m
disjoint. T,EK) =Ty+rg- D,(f) , Where {D,(f)}

has the same distribution as { Ty}, and
independent of EVERY THING . So we get

k=1

/(6) = T/Eé) + Ik - Iy.

Similarly, we construct /} for everyic {1,...m}"
and k =1,...m. The attractor A of the random
IFS is

(e.¢]

=N U 4

n=0 |i|=n,k



Palis Conjecture holds in this case

Theorem (Dekking, S., Székely)

Let Cy, C> be two independent realizations. Let
s be the similarity dimension of the system:

4ty =1
Assume that s > 1. Then

C> — Cq contains some intervals .

(If s < 1 thendimy(Cy, — Cy) < 1)
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Radial projection with center O
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Theorem [M. Rams, S.]

We assume that p > 1 ( for having dimi A > 1)
Then the following statements hold for almost all
realization A of the Mandelbrot percolation
conditioned on A # ():

V0 € [0, 7], projy(A) containes an interval .
Further,
VO € R?, projo(A) containes an interval .

That is: if p > 1/M then all orthogonal
projections and all radial projections contain
some intervals almost surely, conditioned on

A0,



Definition of r € N
Fix a. On the picture o = 45°. Go down to level
r squares. On the picture right hand side
r=2.

AO&




Definition of r ¢ N
Fix a. On the picture o = 45°. Go down to level
r squares. On the picture right hand side
r=2.

AO&




Definition of r ¢ N
Fix a. On the picture o = 45°. Go down to level
r squares. On the picture right hand side
r=2.

AO&




Definition of r ¢ N
Fix a. On the picture o = 45°. Go down to level
r squares. On the picture right hand side
r=2.

AO&
Tt
e R
o ——————
1 INEN AN N AN B
AZ R
T
T
K=[0,1 K=]0,1



]

|I_|I_||

avav

1 1 ||—|I—||

|I_|I_||

avav

faviratan

|I_|I_||

Ay

AO&

2.

Fix a. On the picture o = 45°. Go down to level

r squares. On the picture right hand side

r

Definition of r ¢ N

[0> 1]2

K

0,1]°

K —




Fix a. On the picture o = 45°. Go down to level
r squares. On the picture right hand side

Definition of r ¢ N

= 2.

r

AO&

22Va Vaava v
-|_||_||||_||_||||_||_||
22V V22V
.\|_|\|_|\| |\|_|\|_|\| ‘W
aava vava
-1+ |||_||_||
V2V VaV¥2 VA2V
.\|_|\|_|\| NWT“ |\|_|\|_|\|
AV VAVaVa VAWV
VH |_|\| VH\H\l VH\H\l
222 222 2

[0> 1]2

S —

0,12 K

K



Fix a. On the picture o = 45°. Go down to level
r squares. On the picture right hand side

Definition of r ¢ N

= 2.

r

AO&

[0> 1]2

22Va Vaava v
-|_||_||||_||_||||_||_||
22V V22V
.\|_|\|_|\| |\|_|\|_|\| ‘W
aava vava
-1+ |||_||_||
V2V VaV¥2 VA2V
.\|_|\|_|\| NWT“ |\|_|\|_|\|
AV VAVaVa VAWV
VH\ ||\H\H\| VH\H\l
222 222 2
3 —
o\

0,12 K

K



Fix a. On the picture o = 45°. Go down to level
r squares. On the picture right hand side

Definition of r ¢ N

= 2.

r

AO&

22Va Vaava v
HEN e e
avava Vavavs
.\|_|\|_|\| |\|_|\|_|\| ‘W
.\lmu\lmu\l

[0> 1]2

0,12 K

K



Definition of r = r(«)

Lemma (Very Important Lemma)

Va # 0,90, Jr, A A5
(all depends on «) such that

for every x ¢ A5

E [# { level r, A{ whose aprojection covers x}| > 2.
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Definition of r.v. Yy, ..., YR
Let r be as above. Let Icf1; ; ,rlght be the
and rlght end points of the red sub dlagonal

A1
{ ,/,rlght }
r /j

gives a partition of A? into R intervals

l,..., Igr C A? (left closed right open say). Pick
an arbitrary xx € Iy, k=1,...,R. Ther.v. Yk is
defined as the random number of those level r
squares call them K; ; which are

» retained and
» for which xi € I'Ia(A}ﬂj ).
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Some ideas related to the proof Il.

By assumption
dimg > 1.

So, the number of selected M~" squares is M97",
g > 1. So, 3J s.t. for Vx € J the the green line
intersects exponentially (say v"") many selected
(yellow) squares.
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The outline of the construction |

Given an integer M > 2 and a vector of
probabilities

(p07p17"'7pM—1) € [071]M

Which is in general NOT a probability vector.
We divide the unit interval / = [0, 1] into the M
subintervals fx = [51. £], k=0,...,M—1. We
keep I, with probability px. For all intervals
kept, repeat this algorithm infinitely many times
in each step independently from each other and
from the past. Whatever remains it is our

random Cantor set F.



Some properties of the Random
Cantor Sets |

Let Zy := 1 and let Z, be the (random) number
of level n intervals selected.



Some properties of the Random
Cantor Sets |

Let Zy := 1 and let Z, be the (random) number
of level n intervals selected.
Then

» {Zn} hen 18 @ branching process.



Some properties of the Random
Cantor Sets |

Let Zy := 1 and let Z, be the (random) number
of level n intervals selected.
Then

» {Zn} hen 18 @ branching process.
» The expected value of Zj:

M—1

E(Z)=>_p:

i=0
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The Hausdorff dimension

The next fact is well known. Falconer (1986)
and Mauldin, Williams (1986)

Theorem
Assuming that F +# () we have:
M-1
log (Z Pi)
: . B i=0
dimg F = dimy F = ogM (2)

almost surely.
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dimHF<%:>F2—F1

does not contain any interval. Using (2):
1 M—1
dimy F < 5 <= iZ;p,- <VM.

So, we may hope to find an interval in F, — F;
only if the following condition holds:
M—1
dimy Fy+dimy F2 > 1, thatis ) p; >vVM. (3)
i=0



The crosscorrelations

Forie{0,...,M—1} let

M—1

Vi ‘= Z Pk Pk+i mod M,
k=0

where p; was the probability that we choose the

interval i-th interval I, = [, 4]
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M—A1
Z PkPk+i mod M

Theorem (Dekking, S.)

Assuming that Fy, F> # (), we have
(@) Ifvi=0,.... M—1: ~i > 1 then
almost surely

F> — F; contains an interval .

(b) If 3ie{0,.... M—1}:
Vi, Vi1 mod M < 1 then almost surely

F> — F1 does not contain any interval .
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Remark |

In the case of the Mandelbrot percolation all
p; = p for some 0 < p < 1. In this case for all /,

’
vi=Mp? > 1= p>—.

VM

» Forp > JLM d an interval in F1 — F> almost
surely, assuming that Fy, Fo # ()

> Fpr p < %m there is no interval in the
difference set.
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The case of M =2

M. Dekking, B. Kuijvenhoven gave the following
full characterization:

If M = 2then vo = p§ + P7. 71 = 2pop;

If vo1 > 1 Fo — F1 contains some interval
conditioned on {F, — Fy # (}.
If vov1 <1 Fo — F4 contains no interval.



0.8}
0.7¢
Q0.6

5:0.57
0.4r
030 | Ipll,=1

0.2 |
0.1}

Gray region: no intervals in F; — F» but
dlmHF1 +d|mHF2 > 1.
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Remark Il

Yo = V1 = Y2
That is the following holds almost surely:

v1 > 1 = thereisintervalin Fo — F;

71 < 1= nointervalin F;, — F;

So, for M = 3 our theorem is essentially
complete.
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The Lebesgue measure of F> — F;
M—1
We remind: 7; := kz Pk Pk-+i mod M
=0

Theorem (Mora, S., Solomyak)

We assume that pq, . .., py—1 > 0 Moreover, we
require that

=y >1. (A2)
Then conditional on F;, F> # (), we have
Leb(F, — Fy) > 0. (4)

holds almost surely.



By formulae (2) which was

M1
log (Z Pi)
i=0
logM

F> — F1 = projus.(F1 < F2) MAY contain an
interval only if

M—1

Easy calculation shows that

M—1
> i e
= ;, pi

M VM
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Positive Lebesgue measure with no

intervals
Let M =3 and

(,OQ, P1, ,02) = (0.52, 0.5, 0.72).
In this case we have
Yo = ps + P2 + p5 = 1.0388,

Y1 = Y2 = PoP1 + P1P2 + P2po = 0.9944,
So, there is no interval.

YoV17Y2 = 1.0272 > 1
SO, [,eb(Fg — F1) > 0.
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