Polynomial Decay for Nonmarkov Maps

Huyi Hu, S.V.

July 11, 2011

Let $X \subset \mathbb{R}^m$ be a compact set with positive Lebesgue measure ν . We assume $\nu X = 1$. Let d be the metric induced from \mathbb{R}^m .

The transfer (Perron-Frobenius) operator $\mathscr{P} = \mathscr{P}_{\nu} : L^1(X,\nu) \to L^1(X,\nu)$ is defined by

$$\int \psi \circ T \phi d\nu = \int \psi \mathscr{P} \phi d\nu$$

 $\forall \phi \in L^1(X,\nu), \ \psi \in L^\infty(X,\nu).$

Let $\widehat{X} \subset X$ be a subset of X such that $\bigcup_{n\geq 0} T^n \widehat{X} = X$. First return map of T with respect to $\widehat{X} \subset X$ by $\widehat{T}(x) = T^{\tau(x)}(x)$, where $\tau(x) = \min\{i \geq 1 : T^i x \in \widehat{X}\}$ is the return time. Then we let $\widehat{\mathscr{P}} = \widehat{\mathscr{P}}_{\nu}$ be the transfer operator of \widehat{T} . Put

$$R_n f = 1_{\widehat{X}} \cdot \mathscr{P}^n(f 1_{\{\tau=n\}}) \quad \text{and} \quad T_n f = 1_{\widehat{X}} \cdot \mathscr{P}^n(f 1_{\widehat{X}}) \quad (0.1)$$

for any function f on \widehat{X} . For any $z \in C$, denote $R(z) = \sum_{n=1}^{\infty} z^n R_n$.

It is clear that $\widehat{\mathscr{P}} = R(1) = \sum_{n=1}^{\infty} R_n$. Consider $L^1(\widehat{X}, \nu)$ as a subspace $L^1(X, \nu)$ consisting of functions supported on \widehat{X} .

Let $|\cdot|_{\mathcal{B}}$ a seminorm for functions in $L^1(\widehat{X}, \nu)$. Consider the set $\mathcal{B} = \mathcal{B}(\widehat{X}) = \{f \in L^1(\widehat{X}, \nu) : |f|_{\mathcal{B}} \leq \infty\}$ and define a complet norm on \mathcal{B} by

$$||f||_{\mathcal{B}} = |f|_{\mathcal{B}} + ||f||_1$$

for any $f \in \mathcal{B}$, where $||f||_1$ is the L^1 norm.

- Assumption B. (a) (Compactness) The inclusion $\mathcal{B} \hookrightarrow L^1$ is compact.
- (b) (Boundness) The inclusion $\mathcal{B} \hookrightarrow L^{\infty}$ is bounded; $||f||_{\infty} \leq C_b ||f||_{\mathcal{B}}$.
- (c) (Algebra) \mathcal{B} is an algebra and $||fg||_{\mathcal{B}} \leq C_a ||f||_{\mathcal{B}} ||g||_{\mathcal{B}}$.

Theorem A. Let $X \subset \mathbb{R}^m$ be compact subset with $\nu X = 1$ and $\widehat{X} \subset X$ is a compact subset of X with $\bigcup_{n\geq 0} T^n \widehat{X} = X$. Let $T: M \to M$ be a map whose first return map with respect to \widehat{X} is $\widehat{T} = T^{\tau}$, and \mathcal{B} be a Banach space satisfying Assumption B(a) to (d). We assume the following.

(i) (Lasota-Yorke inequality) There are constants $\eta \in (0, 1)$, D > 0 such that for any $f \in \mathcal{B}$,

$$|\widehat{\mathscr{P}}f|_{\mathcal{B}} \le \eta |f|_{\mathcal{B}} + D ||f||_1.$$
(0.2)

(ii) (Spectral radius) There exist $B > 0, D_1 > 0$ and $\eta_1 \in (0, 1)$ such that

$$\|R(z)^{n}f\|_{\mathcal{B}} \le |z^{n}| (B\eta_{1}^{n} \|f\|_{\mathcal{B}} + D_{1} \|f\|_{1}).$$
(0.3)

(iii) (Mixing) The measure μ given by $\mu(f) = \nu(hf)$ has only one ergodic component, where h is a fixed point of $\widehat{\mathscr{P}}$.

(iv) (Aperiodicity) The function $e^{it\tau}$ given by the return time is aperiodic, that is, the only solutions for $e^{it\tau} = f/f \circ T$ almost everywhere with a measurable function $f : \hat{X} \to S$ are f constant almost everywhere.

If for any $n \geq 1$, R_n satisfies $\sum_{k=n+1}^{\infty} ||R_k||_{\mathcal{B}} < O(n^{-\beta})$ for some $\beta > 1$, then there exists C > 0 such that for any function $f \in \mathcal{B}$, $g \in L^{\infty}(X, \nu)$ with supp f, supp $g \subset \widehat{X}$,

$$\left|\operatorname{Cov}(f,g\circ T^n) - \left(\sum_{k=n+1}^{\infty}\mu(\tau>k)\right)\int fd\mu\int gd\mu\right| \le CF_{\beta}(n)\|g\|_{\infty}\|f\|_{\mathcal{B}}(0.4)$$

where $F_{\beta}(n) = 1/n^{\beta}$ if $\beta > 2$, $(\log n)/n^2$ if $\beta = 2$, and $1/n^{2\beta-2}$ if $2 > \beta > 1$.

Further assumptions on the Maps

We put conditions on the map $T : X \to X$ and its first return map $\widehat{T} : \widehat{X} \to \widehat{X}$. We denote by $B_{\varepsilon}(\Gamma)$ the ε neighborhood of a set $\Gamma \subset X$.

- Assumption T. (a) (Piecewise smoothness) There are countably many disjoint open sets U_1, U_2, \cdots , with $\widehat{X} = \bigcup_{i=1}^{\infty} \overline{U_i}$ such that for each $i, \ \widehat{T_i} := \widehat{T}|_{U_i}$ extends to a $C^{1+\alpha}$ diffeomorphism from $\overline{U_i}$ to its image, and $\tau|_{U_i}$ is constant.
- (b) (Finite images) { $\hat{T}U_i : i = 1, 2, \cdots$ } is finite, and $\nu B_{\varepsilon}(\partial TU_i) = O(\varepsilon) \quad \forall i = 1, 2, \cdots$.
- (c) (Expansion) There exists $s \in (0,1)$ such that $d(\widehat{T}x,\widehat{T}y) \geq s^{-1}d(x,y) \ \forall x, y \in \overline{U}_i \ \forall i \geq 1.$
- (d) (Topologically mixing) $T: X \to X$ is topologically mixing.

Also we put one more **assumption** on the Banach space \mathcal{B} .

A set U is said to be almost open mod ν or with respect to ν if for ν almost every point $x \in U$, there is an neighborhood V(x) with $\nu(V(x) \setminus U) = 0$.

- Assumption B. (d) (Denseness) The image of the inclusion $\mathcal{B} \hookrightarrow L^1(\widehat{X}, \mu)$ is dense.
- (e) (Openess) For any nonnegative function $f \in \mathcal{B}$, the set $\{f > 0\}$ is almost open with respect to ν .

SKEW EXTENSIONS

Take a partition ξ of \hat{X} . Consider the family of skew-products of the form

$$\widetilde{T}_{S}: \widehat{X} \times Y \to \widehat{X} \times Y , \ \widetilde{T}_{S}(x,y) = (\widehat{T}x, S(\xi(x))(y))$$
 (0.5)

where (Y, \mathcal{F}, ρ) is a Lebesgue probability space, $\operatorname{Aut}(Y)$ is the collection of its automorphisms, that is, invertible measure-preserving transformations, and $S : \xi \to \operatorname{Aut}(Y)$ is arbitrary.

For $\widetilde{f} \in L^1_{\nu \times \rho}$, define

$$|\widetilde{f}|_{\widetilde{\mathcal{B}}} = \int_{Y} |\widetilde{f}(\cdot, y)|_{\mathcal{B}} d\rho(y), \qquad \|\widetilde{f}\|_{\widetilde{\mathcal{B}}} = |\widetilde{f}|_{\widetilde{\mathcal{B}}} + \|\widetilde{f}\|_{L^{1}_{\nu \times \rho}}. \tag{0.6}$$

Then we let

$$\widetilde{\mathcal{B}} = \{ \widetilde{f} \in L^1_{\nu \times \rho} : |\widetilde{f}|_{\widetilde{\mathcal{B}}} < \infty \}.$$
(0.7)

Theorem B. Suppose \widehat{T} satisfies Assumption T(a) to (d) and and \mathcal{B} satisfies Assumption B(d) and (e), and \mathscr{P} satisfies Lasota-Yorke inequality

$$|(\widetilde{\mathscr{P}}\widetilde{f})|_{\widetilde{\mathcal{B}}} \le \widetilde{\eta}|\widetilde{f}|_{\widetilde{\mathcal{B}}} + \widetilde{D}||\widetilde{f}||_{L^{1}_{\nu \times \rho}} \tag{0.8}$$

for some $\tilde{\eta} \in (0,1)$ and $\tilde{D} > 0$. Then any absolutely continuous invariant measure μ obtained from the Lasota-Yorke inequality (1.3) is ergodic and $e^{it\tau}$ is aperiodic. Therefore Conditon (iii) and (iv) in Theorem A follow.

1 Rates of Decay of Correlations

Theorem A is based on the results of Sarig. Notice that we do not assume the existence of an invariant measure (which will be by the way given by the Lasota-Yorke inequality).

Theorem. Let T_n be bounded operators on a Banach space \mathcal{B} such that $T(z) = I + \sum_{n \ge 1} z^n T_n$ converges in Hom $(\mathcal{B}, \mathcal{B})$ for every $z \in D$, where D is the open unit disk. Assume that:

- (1) (Renewal equation) for every $z \in D$, $T(z) = (I R(z))^{-1}$, where $R(z) = \sum_{n \ge 1} z^n R_n$, $R_n \in \operatorname{Hom}(\mathcal{B}, \mathcal{B})$ and $\sum_{n \ge 1} ||R_n|| < +\infty$.
- (2) (Spectral gap) 1 is a simple isolated eigenvalue of R(1).
- (3) (Aperiodicity) for every $z \in \overline{D} \{1\}$, I R(z) is invertible.

Let P be the eigenprojection of R(1) at 1. If $\sum_{k>n} ||R_k|| = O(1/n^{\beta})$ for some $\beta > 1$ and $PR'(1)P \neq 0$, then for all n

$$T_{n} = \frac{1}{\lambda}P + \frac{1}{\lambda^{2}}\sum_{k=n+1}^{\infty}P_{k} + E_{n},$$
(1.1)

where λ is given by $PR'(1)P = \lambda P$, $P_n = \sum_{k>n} PR_kP$ and $E_n \in \text{Hom}(\mathcal{B}, \mathcal{B})$ satisfies $||E_n|| = O(1/n^{\beta})$ if $\beta > 2$, $O(\log n/n^2)$ if b = 2, and $O(1/n^{2\beta-2})$ if $2 > \beta > 1$.

In our case we apply the theorem by setting, as above,

$$R_n f = 1_{\widehat{X}} \cdot \mathscr{P}^n(f 1_{\{\tau=n\}}) \quad \text{and} \quad T_n f = 1_{\widehat{X}} \cdot \mathscr{P}^n(f 1_{\widehat{X}}) \qquad (1.2)$$

Theorem A. Let $X \subset \mathbb{R}^m$ be compact subset with $\nu X = 1$ and $\widehat{X} \subset X$ is a compact subset of X with $\bigcup_{n\geq 0}T^n\widehat{X} = X$. Let $T: M \to M$ be a map whose first return map with respect to \widehat{X} is $\widehat{T} = T^{\tau}$, and \mathcal{B} be a Banach space satisfying Assumption B(a) to (d). We assume the following.

(i) (Lasota-Yorke inequality) There are constants $\eta \in (0, 1)$, D > 0 such that for any $f \in \mathcal{B}$,

$$|\widehat{\mathscr{P}}f|_{\mathcal{B}} \le \eta |f|_{\mathcal{B}} + D ||f||_1.$$
(1.3)

(ii) (Spectral radius) There exist $B > 0, D_1 > 0$ and $\eta_1 \in (0, 1)$ such that

$$||R(z)^{n}f||_{\mathcal{B}} \leq |z^{n}| (B\eta_{1}^{n} ||f||_{\mathcal{B}} + D_{1} ||f||_{1}).$$
(1.4)

- (iii) (Mixing) The measure μ given by $\mu(f) = \nu(hf)$ has only one ergodic component, where h is a fixed point of $\widehat{\mathscr{P}}$.
- (iv) (Aperiodicity) The function $e^{it\tau}$ given by the return time is aperiodic, that is, the only solutions for $e^{it\tau} = f/f \circ T$ almost everywhere with a measurable function $f: \widehat{X} \to S$ are f constant almost everywhere.

If for any $n \geq 1$, R_n satisfies $\sum_{k=n+1}^{\infty} ||R_k||_{\mathcal{B}} < O(n^{-\beta})$ for some $\beta > 1$, then there exists C > 0 such that for any function $f \in \mathcal{B}$, $g \in L^{\infty}(X, \nu)$ with supp f, supp $g \subset \widehat{X}$,

$$\left|\operatorname{Cov}(f,g\circ T^n) - \left(\sum_{k=n+1}^{\infty}\mu(\tau>k)\right)\int fd\mu\int gd\mu\right| \le CF_{\beta}(n)\|g\|_{\infty}\|f\|_{\mathcal{B}}(1.5)$$

where $F_{\beta}(n) = 1/n^{\beta}$ if $\beta > 2$, $(\log n)/n^2$ if $\beta = 2$, and $1/n^{2\beta-2}$ if $2 > \beta > 1$.

2 Aperiodicity

The proof of Theorem B is based on a result in [?].

A fibred system is a quintuple $(\widetilde{X}, \mathcal{A}, \nu, \widetilde{T}, \xi)$, where $(\widetilde{X}, \mathcal{A}, \nu, \widetilde{T})$ is a nonsingular transformation on a σ -finite measure space and $\xi \subset \mathcal{A}$ is a finite or countable partition (mod ν) such that:

- (1) $\xi_{\infty} = \bigvee_{i=0}^{\infty} \widetilde{T}^{-i} \xi$ generates \mathcal{A} ;
- (2) every $A \in \xi$ has positive measure;
- (3) for every $A \in \xi$, $\widetilde{T}|_A : A \to \widetilde{T}A$ is bimeasurable invertible with nonsingular inverse.

The transformation given in (0.5) is called the skew products over $\boldsymbol{\xi}$. Put $\widetilde{\mathscr{P}} = \widetilde{\mathscr{P}}_{\nu \times \rho}$. A fibred system $(X, \mathcal{A}, \nu, T, \boldsymbol{\xi})$ with ν finite is called skew-product rigid if for every invariant function h(x, y) of $\widetilde{\mathscr{P}}$ of an arbitrary skew product \widetilde{T}_S , the set $\{h(\cdot, y) > 0\}$ is almost open mod ν for almost every $y \in Y$.

A cylinder C of length n_0 is called a cylinder of full returns, if for almost all $x \in C$ there exist $n_k \nearrow \infty$ such that $\widehat{T}^{n_i+n_0}\xi_{n_i+n_0}(x) = C$.

In this case we say that $\widehat{T}^{n_0}(C)$ is a recurrent image set.

Theorem (ADSZ). Let $(X, \mathcal{A}, \mu, T, \xi)$ be a skew-product rigid measure preserving fibred system whose image sets are almost open. Let G be a locally compact Abelian polish group. If $\gamma \circ \phi = \lambda f/f \circ T$ holds almost everywhere, where $\phi : X \to G$, ξ measurable, $\gamma \in \widehat{G}$, $\lambda \in S$, then f is constant on every recurrent image set.

WE CAN PROVE

Skew product rigidity

Lemma 2.1. For any $L^1(\mu \times \rho)$ function \tilde{h} on $\hat{X} \times S$ that satisfies $\widetilde{\mathscr{P}}_{\mu \times \rho} \tilde{h} = \tilde{h}$, the set $\{\tilde{h}(\cdot, y) > 0\}$ is almost open with respect to μ .

Existence of a recurrence set

Lemma 2.2. There is a recurrent image set J contained in \hat{X} with $\mu J > 0$.

3 Systems on the multidimensional space

The main difficulty in higher dimensional space comes from unbounded distortion in the following sense: there are uncountably many points z such that for any neighborhood V of z, we can find $\hat{z} \in V$ with the ratio

$$|\det DT_1^{-n}(z)|/|\det DT_1^{-n}(\hat{z})|$$

unbounded as $n \to \infty$.

EXAMPLE

We let $M \subset \mathbb{R}^2$ and near the fixed point p = (0, 0), the map T has the form

$$T(x,y) = \left(x(1+x^2+y^2), \ y(1+x^2+y^2)^2\right)$$
(3.1)

up to order $O(|z|^4)$, where z = (x, y) and $|z| = \sqrt{x^2 + y^2}$. It is easy to see that

$$DT(x,y) = \begin{pmatrix} 1+3x^2+y^2+O(|z|^4) & 2xy+O(|z|^4) \\ 4xy+O(|z|^4) & 1+2x^2+6y^2+O(|z|^4) \end{pmatrix} (3.2)$$

and

$$\det DT(x,y) = 1 + 5x^2 + 7y^2 + O(|z|^4), \tag{3.3}$$

Take $z' = (x_0, 0)$ and denote $z'_n = T^{-n}z'$. One can show that $|z'_n| \sim \frac{1}{\sqrt{2n}}$ and $|\det DT^{-n}(z')| \leq \frac{D'}{n^{5/2}}$ for some D' > 0. On the other hand if we take $z'' = (0, y_0)$ and denote $z''_n = T^{-n}z''$, then $|z''_n| \sim \frac{1}{\sqrt{4n}}$ and $|\det DT^{-n}(z'')| \geq \frac{D''}{n^{7/4}}$ for some D'' > 0. So $\frac{|\det DT^{-n}(z'')|}{|\det DT^{-n}(z')|} \to \infty$ as $n \to \infty$.

We take a curve from z' to z'' that does not contain the origin. If for every z on the curve, there is a neighborhood V such that for all $\hat{z} \in V$, the ratio of the determinants is bounded for all n > 0, then the ratio $|\det DT^{-n}(z'')|/|\det DT^{-n}(z')|$ should be bounded. This contradicts the above fact. So we know that there are some points on the curve at which distortion is unbounded. Let $X \subset \mathbb{R}^m$, $m \ge 1$, be a compact subset with $\overline{\operatorname{int} X} = X$, d the Euclidean distance, and ν the Lebesgue measure on X with $\nu X = 1$.

Assume taht $T: X \to X$ is a map satisfying the following assumptions.

- Assumption T". (a) (*Piecewise smoothness*) There are finitely many disjoint open sets U_1, \dots, U_K with piesewise smooth boundary such that $X = \bigcup_{i=1}^{K} \overline{U_i}$ and for each $i, T_i := T|_{U_i}$ can be extended to a $C^{1+\alpha}$ diffeomorphism $T_i : \tilde{U_i} \to B_{\varepsilon_1}(T_iU_i)$, where $\tilde{U_i} \supset U_i, \alpha \in (0, 1)$ and $\varepsilon_1 > 0$.
- (b) (Fixed point) There is a fixed point $p \in U_1$ and a neighborhood V of p such that $T^{-n}V \notin \partial U_j$ for any $j = 1, \ldots, K$ and for any $n \ge 0$.

For any $\varepsilon_0 > 0$, denote

$$G_U(x,\varepsilon,\varepsilon_0) = 2\sum_{j=1}^K \frac{\nu(T_j^{-1}B_{\varepsilon}(\partial TU_j) \cap B_{(1-s)\varepsilon_0}(x))}{\nu(B_{(1-s)\varepsilon_0}(x))};$$

Remark 3.1. For smooth boundaries

$$G_U(\varepsilon,\varepsilon_0) \le 2N_U Y \frac{\gamma_{m-1}}{\gamma_m} \frac{s\varepsilon}{(1-s)\varepsilon_0} (1+o(1))$$

, where N_U is the maximal number of smooth components of the boundary of all U_i that meet in one point and γ_m is the volume of the unit ball in \mathbb{R}^m .

For any $x \in U_i$, we define s(x) as the inverse of the slowest expansion near x, that is,

$$s(x) = \min\{s : d(x, y) \le sd(Tx, Ty).$$

when x, y are close.

Take a neighborhood Q of p such that $TQ \subset U_1$, and denote $Q_0 = TQ \setminus Q$. Then let

$$s = s(Q) = \max\{s(x) : x \in X \setminus Q\}.$$
(3.4)

Let $\widehat{T} = \widetilde{T}_Q$ be the first return map with respect to $\widehat{X} = \widehat{X}_Q =$ $X \setminus Q$. Then for any $x \in U_j$, we have $\widehat{T}(x) = T_j(x)$ if $T_j(x) \notin Q$, and $\hat{T}(x) = T_1^i T_j(x)$ for some i > 0 if $T_j(x) \in Q$. Denote $\hat{T}_{ij} = T_1^i T_j$ for $i \geq 0$. Further, we denote $U_{01} = U_1 \setminus Q$, $U_{0j} = U_j \setminus T_j^{-1}Q_0$ if j > 1, and $U_{ij} = \widehat{T}_{ij}^{-1}Q$ for i > 0. For $0 < \varepsilon \le \varepsilon_0$, we denote

$$G_Q(x,\varepsilon,\varepsilon_0) = 2\sum_{j=1}^K \sum_{i=0}^\infty \frac{\nu(\hat{T}_{ij}^{-1}B_\varepsilon(\partial G_0) \cap B_{(1-s)\varepsilon_0}(x))}{\nu(B_{(1-s)\varepsilon_0}(x))},$$

and then denote

$$G(\varepsilon,\varepsilon_0) = \sup_{x \in X} \{ G_U(x,\varepsilon,\varepsilon_0) + G_Q(x,\varepsilon,\varepsilon_0) \}.$$
 (3.5)

Assumption T". (c) (Expansion) T satisfies $0 < s(x) < 1 \ \forall x \in X \setminus \{p\}$.

Moreover, there exists an open region Q with $p \in Q \subset \overline{Q} \subset TQ \subset \overline{TQ} \subset U_1$ and a constants $\alpha \in (0, 1)$, $\eta_0 \in (0, 1)$, such that all ε_0 small,

$$s^{\alpha} + \lambda \le \eta_0 < 1,$$

where s is defined in (3.4) and

$$\lambda = 2 \sup_{\varepsilon \le \varepsilon_0} \frac{G(\varepsilon, \varepsilon_0)}{\varepsilon^{\alpha}} \varepsilon_0^{\alpha}.$$

(d) (Distortion) For any b > 0, there exist J > 0 such that for any small ε_0 and $\varepsilon \in (0, \varepsilon_0)$, we can find $0 < N = N(\varepsilon) \le \infty$ with

$$\frac{|\det DT_1^{-n}(y)|}{|\det DT_1^{-n}(x)|} \le 1 + J\varepsilon^{\alpha} \quad \forall y \in B_{\varepsilon}(x), \ x \in B_{\varepsilon_0}(Q_0), \ n \in (0, N],$$

and

$$\sum_{n=N}^{\infty} \sup_{y \in B_{\varepsilon}(x)} |\det DT_1^{-n}(y)| \le b\varepsilon^{m+\alpha} \quad \forall x \in B_{\varepsilon_4}(Q_0).$$

LOCAL BEHAVIORS

To estimate the decay rates, we also assume that there are constants $\gamma' > \gamma > 0$, $C_i, C'_i > 0$, i = 0, 1, 2, such that in a neighborhood of the indifferent fixed point p = 0,

$$\begin{aligned} |x| (1 - C_0'|x|^{\gamma} + O(|x|^{\gamma'})) &\leq |T_1^{-1}x| \leq |x| (1 - C_0|x|^{\gamma} + O(|x|^{\gamma'})), \\ 1 - C_1'|x|^{\gamma} \leq ||DT_1^{-1}(x)|| \leq 1 - C_1|x|^{\gamma}, \quad (3.7) \\ C_2'|x|^{\gamma - 1} \leq ||D^2T_1^{-1}(x)|| \leq C_2|x|^{\gamma - 1}. \quad (3.8) \end{aligned}$$

FUNCTIONAL SPACES

Take $f \in L^1(\widehat{X}, \nu)$ function f; define the oscillation

$$\operatorname{osc}(f,\Omega) = \operatorname{Esup}_{\Omega} f - \operatorname{Einf}_{\Omega} f.$$

For $0 < \alpha < 1$ and $\varepsilon_0 > 0$, we define a seminorm of f as

$$|f|_{\mathcal{V}} = |f|_{\mathcal{V}^{\alpha}_{\varepsilon_0}} = \sup_{0 < \epsilon \le \epsilon_0} \epsilon^{-\alpha} \int_{R^m} \operatorname{osc}(f, B_{\epsilon}(x)) d\nu(x), \qquad (3.9)$$

and take the space of the functions as

$$\mathcal{V} = \mathcal{V}^{\alpha}_{\varepsilon_0} = \left\{ f \in L^1(\widehat{X}, \nu) : |f|_{\mathcal{V}} < \infty \right\}$$

and then equip $\mathcal{V}^{\alpha}_{\varepsilon_0}$ with the norm

$$\|\cdot\|_{\mathcal{V}} = \|\cdot\|_1 + |\cdot|_{\mathcal{V}}.$$

For an open set O, let $\mathcal{H} = \mathcal{H}_{\varepsilon_1}^{\alpha} = \mathcal{H}_{\varepsilon_1}^{\alpha}(O, H)$ be the set of Hölder functions f over O that satisfies $|f(x) - f(y)| \leq Hd(x, y)^{\alpha}$ for any $x, y \in O$ with $d(x, y) \leq \varepsilon_1$.

Let *h* be a fixed point of the transfer operator $\widehat{\mathscr{P}}$, which will be unique under the assumption of the theorem below. We define $\mathcal{B} = \mathcal{B}^{\alpha}_{\varepsilon_{0},\varepsilon_{1}}$ by

$$\mathcal{B} = \left\{ f \in \mathcal{V}^{\alpha}_{\varepsilon_0} : \exists H > 0 \ s.t. \ (f/h)|_{V_I} \in \mathcal{H}^{\alpha}_{\varepsilon_1}(V_I, H) \ \forall I \in \mathcal{I} \right\},\$$

and for any $f \in \mathcal{B}$, let

$$|f|_{\mathcal{H}} = |f|_{\mathcal{H}_{\varepsilon_1}} = \inf\{H : (f/h)|_{V_I} \in \mathcal{H}_{\varepsilon_1}^{\alpha}(V_I, H) \ \forall I \in \mathcal{I}\}.$$

Let us assume that h > 0 on all V_{ij} , then we define the norm in \mathcal{B} by

$$\|\cdot\|_{\mathcal{B}} = \|\cdot\|_1 + |\cdot|_{\mathcal{V}} + |\cdot|_{\mathcal{H}}.$$
(3.10)

Clearly, $\mathcal{B}^{\alpha}_{\varepsilon_{0},\varepsilon_{1}} \subset \mathcal{V}^{\alpha}_{\varepsilon_{0}}$ and $||f||_{\mathcal{B}} \geq ||f||_{\mathcal{V}}$ if $f \in \mathcal{B}$.

Let
$$s_n = \max |\det DT^n(T^{-n}(x))|^{-1} : x \in B_{\varepsilon}(Q_0), j = 2, \dots K \}.$$

Theorem D. Let \widehat{X} , \widehat{T} and \mathcal{B} are defined as above. Suppose T satisfies Assumption T (a) to (d) and Assumption T'' (a) to (d). Then there exist $\varepsilon_0 \geq \varepsilon_1 > 0$ such that Assumption B(a) to (e) and Condition (i) to (iv) in Theorem A are satisfied and $||R_n|| \leq O(s_n^{m/(m+\alpha)})$. Hence, if $s_n^{m/(m+\alpha)} \leq O(n^{-1/\beta})$ for some $\beta > 1$, then there exists C > 0 such that for any functions $f \in \mathcal{B}$, $g \in L^{\infty}(X, \nu)$ with supp f, supp $g \subset \widehat{X}$, (1.5) holds.

In particular, if T satisfies (3.6) to (3.8) near p, then $\sum_{k=n+1}^{\infty} \mu(\tau > k)$ has the order $n^{-(m/\gamma-1)}$. In this case, if $s_n = O(n^{-\beta'})$ for some $\beta' > 1$ and

$$\beta' \cdot \frac{m}{m+\alpha} \ge \frac{m}{\gamma},\tag{3.11}$$

then

$$\operatorname{Cov}(f, g \circ T^n) \approx \sum_{k=n+1}^{\infty} \mu(\tau > k) \int f d\mu \int g d\mu = O(1/n^{m/\gamma - 1}) (3.12)$$

3.1Examples

Example 1. Assume m = 3, and near the fixed point p = (0, 0, 0), the map T has the form

$$\begin{split} T(w) &= \left(x(1+|w|^2+O(|w|^3)), \; y(1+|w|^2+O(|w|^3)), z(1+2|w|^2+O(|w|^3)\right) \\ where \; w &= (x,y,z) \; and \; |w| = \sqrt{x^2+y^2+z^2}. \end{split}$$

Denote $w_n = T_1^{-n}w$. Clearly, $|w| + |w|^3 + O(|w|^4) \le |T(w)| \le |w| + 2|w|^3 + O(|w|^4)$. By standard arguments we know that

$$\frac{1}{\sqrt{4n}} + O\left(\frac{1}{\sqrt{n^3}}\right) \le |w_n| \le \frac{1}{\sqrt{2n}} + O\left(\frac{1}{\sqrt{n^3}}\right)$$

. Since it is in three dimensional space, it follows that $\nu(\tau > k) =$ $O\left(\frac{1}{k^{3/2}}\right)$, and therefore $\sum_{k=n+1}^{\infty} \nu(\tau > k) = O\left(\frac{1}{n^{1/2}}\right)$.

It is easy to see that DT(w) has the form

$$\begin{pmatrix} 1+3x^2+y^2+z^2 & 2xy & 2xz \\ 2xy & 1+x^2+3y^2+z^2 & 2yz \\ 4xz & 4yz & 1+2x^2+2y^2+6z^2 \end{pmatrix} + O(|w|^3)$$

and hence

$$\det DT(w) = 1 + 6x^2 + 6y^2 + 8z^2 + O(|w|^3).$$

We have $||R_n|| \sim \frac{1}{n^{9/4}}$ and a decay rates of order $O(1/\sqrt{n})$.

Example 2. Assume m = 2, and near the fixed point p = (0,0), the map T has the form

$$T(z) = \left(x(1+|z|^{\gamma}+O(|z|^{\gamma'})), \ y(1+2|z|^{\gamma}+O(|z|^{\gamma'}))\right)$$

where $z = (x, y), |z| = \sqrt{x^2 + y^2}, \gamma \in (0, 1)$ and $\gamma' > \gamma$.

Denote $z_n = T_1^{-n} z$. Since $|z| + |z|^{1+\gamma} + O(|z|^{\gamma'}) \le |T(z)| \le |z| + 2|z|^{\gamma} + O(|z|^{\gamma'})$,

$$\frac{1}{(2\gamma n)^{1/\gamma}} + O\left(\frac{1}{n^{\delta}}\right) \le |z_n| \le \frac{1}{(\gamma n)^{1/\gamma}} + O\left(\frac{1}{n^{\delta}}\right)$$

for some $\delta > 1/\gamma$ (see also Lemma 3.1 in [?]). It follows that $\nu(\tau >$ $k) = O\left(\frac{1}{k^{2/\gamma}}\right)$, and therefore $\sum_{k=n+1}^{\infty} \nu(\tau > k) = O\left(\frac{1}{n^{2/\gamma-1}}\right)$. Also,

$$DT(z) = \begin{pmatrix} 1 + \frac{(1+\gamma)x^2 + y^2}{|z|^{2-\gamma}} & \frac{\gamma xy}{|z|^{2-\gamma}} \\ \frac{2\gamma xy}{|z|^{2-\gamma}} & 1 + \frac{2x^2 + 2(1+\gamma)y^2}{|z|^{2-\gamma}} \end{pmatrix} + O(|z|^{\gamma'})$$

and hence

$$\det DT(z) = 1 + \frac{(3+\gamma)x^2 + (3+2\gamma)y^2}{|z|^{2-\gamma}} + O(|z|^{\gamma'}).$$

We have $||R_n|| \sim \frac{1}{n^{(1+\frac{3}{\gamma})\frac{2}{3}}}$ and a decay rates of order $O(1/n^{\frac{2}{\gamma}-1})$.

Example 3. Assume m = 2, and near the fixed point p = (0,0), the map T has the form

$$T(x,y) = \left(x(1+x^2+y^2), \ y(1+x^2+y^2)^2\right)$$
(3.13)

up to order $O(|z|^4)$, where z = (x, y) and $|z| = \sqrt{x^2 + y^2}$.

The map allows an infinite absolutely continuous invariant measure. However, the map can be arranged in a way that there is an invariant component that supports a finite absolutely continuous invariant measure μ . Near the fixed point, the region of the component is of the form

$$\{z = (x, y) : |y| < x^2\}.$$

Since $|z_n| = O(1/\sqrt{n})$ and for z = (x, y), $|y| \le x^2$, we have $\nu(\tau > k) = O\left(\frac{1}{k^{3/2}}\right)$, and $\sum_{k=n+1}^{\infty} \nu(\tau > k) = O\left(\frac{1}{n^{1/2}}\right)$.

On the other hand, a similar computation gives det $DT(z) = 1 + 5x^2 + 7y^2 + O(|z|^4)$. Since $|y| \le x^2$, $|z| = |x| + O(|z|^2)$. Hence det $DT(z) = 1 + 5|z|^2 + O(|z|^4)$, and therefore $|\det DT_1^{-n}(z)| = O(1/n^{5/2})$.

We have $||R_n|| \sim \frac{1}{n^{5/3}}$ and a decay rates of order $O(1/\sqrt{n})$.