Polynomial Decay for Nonmarkov Maps

Huyi Hu, S.V.

July 11, 2011

Let $X \subset R^{m}$ be a compact set with positive Lebesgue measure ν. We assume $\nu X=1$. Let d be the metric induced from R^{m}.

The transfer (Perron-Frobenius) operator $\mathscr{P}=\mathscr{P}_{\nu}: L^{1}(X, \nu) \rightarrow$ $L^{1}(X, \nu)$ is defined by

$$
\int \psi \circ T \phi d \nu=\int \psi \mathscr{P} \phi d \nu
$$

$\forall \phi \in L^{1}(X, \nu), \psi \in L^{\infty}(X, \nu)$.
Let $\widehat{X} \subset X$ be a subset of X such that $\cup_{n \geq 0} T^{n} \widehat{X}=X$.
First return map of T with respect to $\widehat{X} \subset X$ by $\widehat{T}(x)=T^{\tau(x)}(x)$, where $\tau(x)=\min \left\{i \geq 1: T^{i} x \in \widehat{X}\right\}$ is the return time. Then we let $\widehat{\mathscr{P}}=\widehat{\mathscr{P}}_{\nu}$ be the transfer operator of \widehat{T}.

Put

$$
\begin{equation*}
R_{n} f=1_{\widehat{X}} \cdot \mathscr{P}^{n}\left(f 1_{\{\tau=n\}}\right) \quad \text { and } \quad T_{n} f=1_{\widehat{X}} \cdot \mathscr{P}^{n}\left(f 1_{\widehat{X}}\right) \tag{0.1}
\end{equation*}
$$

for any function f on \widehat{X}. For any $z \in C$, denote $R(z)=\sum_{n=1}^{\infty} z^{n} R_{n}$. It is clear that $\widehat{\mathscr{P}}=R(1)=\sum_{n=1}^{\infty} R_{n}$.

Consider $L^{1}(\widehat{X}, \nu)$ as a subspace $L^{1}(X, \nu)$ consisting of functions supported on \widehat{X}.

Let $|\cdot|_{\mathcal{B}}$ a seminorm for functions in $L^{1}(\widehat{X}, \nu)$. Consider the set $\mathcal{B}=\mathcal{B}(\widehat{X})=\left\{f \in L^{1}(\widehat{X}, \nu):|f|_{\mathcal{B}} \leq \infty\right\}$ and define a complet norm on \mathcal{B} by

$$
\|f\|_{\mathcal{B}}=|f|_{\mathcal{B}}+\|f\|_{1}
$$

for any $f \in \mathcal{B}$, where $\|f\|_{1}$ is the L^{1} norm.

Assumption B. (a) (Compactness) The inclusion $\mathcal{B} \hookrightarrow L^{1}$ is compact.
(b) (Boundness) The inclusion $\mathcal{B} \hookrightarrow L^{\infty}$ is bounded; $\|f\|_{\infty} \leq$ $C_{b}\|f\|_{\mathcal{B}}$.
(c) (Algebra) \mathcal{B} is an algebra and $\|f g\|_{\mathcal{B}} \leq C_{a}\|f\|_{\mathcal{B}}\left\|_{g}\right\|_{\mathcal{B}}$.

Theorem A. Let $X \subset R^{m}$ be compact subset with $\nu X=1$ and $\widehat{X} \subset X$ is a compact subset of X with $\cup_{n \geq 0} T^{n} \widehat{X}=X$. Let $T: M \rightarrow$ M be a map whose first return map with respect to \widehat{X} is $\widehat{T}=T^{\tau}$, and \mathcal{B} be a Banach space satisfying Assumption $B(a)$ to (d). We assume the following.
(i) (Lasota-Yorke inequality) There are constants $\eta \in(0,1), D>$ 0 such that for any $f \in \mathcal{B}$,

$$
\begin{equation*}
|\widehat{\mathscr{P}} f|_{\mathcal{B}} \leq \eta|f|_{\mathcal{B}}+D\|f\|_{1} . \tag{0.2}
\end{equation*}
$$

(ii) (Spectral radius) There exist $B>0, D_{1}>0$ and $\eta_{1} \in(0,1)$ such that

$$
\begin{equation*}
\left\|R(z)^{n} f\right\|_{\mathcal{B}} \leq\left|z^{n}\right|\left(B \eta_{1}^{n}\|f\|_{\mathcal{B}}+D_{1}\|f\|_{1}\right) \tag{0.3}
\end{equation*}
$$

(iii) (Mixing) The measure μ given by $\mu(f)=\nu(h f)$ has only one ergodic component, where h is a fixed point of $\widehat{\mathscr{P}}$.
(iv) (Aperiodicity) The function $e^{i t \tau}$ given by the return time is aperiodic, that is, the only solutions for $e^{i t \tau}=f / f \circ T$ almost everywhere with a measurable function $f: \widehat{X} \rightarrow S$ are f constant almost everywhere.

If for any $n \geq 1, R_{n}$ satisfies $\sum_{k=n+1}^{\infty}\left\|R_{k}\right\|_{\mathcal{B}}<O\left(n^{-\beta}\right)$ for some $\beta>1$, then there exists $C>0$ such that for any function $f \in \mathcal{B}$, $g \in L^{\infty}(X, \nu)$ with $\operatorname{supp} f, \operatorname{supp} g \subset \widehat{X}$,
$\left|\operatorname{Cov}\left(f, g \circ T^{n}\right)-\left(\sum_{k=n+1}^{\infty} \mu(\tau>k)\right) \int f d \mu \int g d \mu\right| \leq C F_{\beta}(n)\|g\|_{\infty}\|f\|_{\mathcal{B} \ell}(0.4)$
where $F_{\beta}(n)=1 / n^{\beta}$ if $\beta>2$, $(\log n) / n^{2}$ if $\beta=2$, and $1 / n^{2 \beta-2}$ if $2>\beta>1$.

Further assumptions on the Maps

We put conditions on the map $T: X \rightarrow X$ and its first return $\operatorname{map} \widehat{T}: \widehat{X} \rightarrow \widehat{X}$. We denote by $B_{\varepsilon}(\Gamma)$ the ε neighborhood of a set $\Gamma \subset X$.

Assumption T. (a) (Piecewise smoothness) There are countably many disjoint open sets U_{1}, U_{2}, \cdots, with $\widehat{X}=\bigcup_{i=1}^{\infty} \overline{U_{i}}$ such that for each $i, \widehat{T}_{i}:=\left.\widehat{T}\right|_{U_{i}}$ extends to a $C^{1+\alpha}$ diffeomorphism from \bar{U}_{i} to its image, and $\left.\tau\right|_{U_{i}}$ is constant.
(b) (Finite images) $\left\{\widehat{T} U_{i}: i=1,2, \cdots\right\}$ is finite, and $\nu B_{\varepsilon}\left(\partial T U_{i}\right)=$ $O(\varepsilon) \forall i=1,2, \cdots$.
(c) (Expansion) There exists $s \in(0,1)$ such that $d(\widehat{T} x, \widehat{T} y) \geq$ $s^{-1} d(x, y) \forall x, y \in \bar{U}_{i} \forall i \geq 1$.
(d) (Topologically mixing) $T: X \rightarrow X$ is topologically mixing.

Also we put one more assumption on the Banach space \mathcal{B}.
A set U is said to be almost open $\bmod \nu$ or with respect to ν if for ν almost every point $x \in U$, there is an neighborhood $V(x)$ with $\nu(V(x) \backslash U)=0$.

Assumption B. (d) (Denseness) The image of the inclusion $\mathcal{B} \hookrightarrow$ $L^{1}(\widehat{X}, \mu)$ is dense.
(e) (Openess) For any nonnegative function $f \in \mathcal{B}$, the set $\{f>0\}$ is almost open with respect to ν.

SKEW EXTENSIONS

Take a partition ξ of \widehat{X}. Consider the family of skew-products of the form

$$
\begin{equation*}
\widetilde{T_{S}}: \widehat{X} \times Y \rightarrow \widehat{X} \times Y, \widetilde{T}_{S}(x, y)=(\hat{T} x, S(\xi(x))(y)) \tag{0.5}
\end{equation*}
$$

where (Y, \mathcal{F}, ρ) is a Lebesgue probability space, $\operatorname{Aut}(Y)$ is the collection of its automorphisms, that is, invertible measure-preserving transformations, and $S: \xi \rightarrow \operatorname{Aut}(Y)$ is arbitrary.

For $\widetilde{f} \in L_{\nu \times \rho}^{1}$, define

$$
\begin{equation*}
|\widetilde{f}|_{\widetilde{\mathcal{B}}}=\int_{Y}|\widetilde{f}(\cdot, y)|_{\mathcal{B}} d \rho(y), \quad\|\widetilde{f}\|_{\widetilde{\mathcal{B}}}=|\widetilde{f}|_{\widetilde{\mathcal{B}}}+\|\widetilde{f}\|_{L_{\nu \times \rho}^{1}} \tag{0.6}
\end{equation*}
$$

Then we let

$$
\begin{equation*}
\widetilde{\mathcal{B}}=\left\{\widetilde{f} \in L_{\nu \times \rho}^{1}:|\widetilde{f}|_{\widetilde{\mathcal{B}}}<\infty\right\} . \tag{0.7}
\end{equation*}
$$

Theorem B. Suppose \widehat{T} satisfies Assumption $T(a)$ to (d) and and \mathcal{B} satisfies Assumption $B(d)$ and (e), and \mathscr{P} satisfies Lasota-Yorke inequality

$$
\begin{equation*}
|(\widetilde{\mathscr{P}} \tilde{f})|_{\tilde{\mathcal{B}}} \leq \widetilde{\eta}|\widetilde{f}|_{\widetilde{\mathcal{B}}}+\widetilde{D}\|\widetilde{f}\|_{L_{\nu \times \rho}^{1}} \tag{0.8}
\end{equation*}
$$

for some $\widetilde{\eta} \in(0,1)$ and $\widetilde{D}>0$. Then any absolutely continuous invariant measure μ obtained from the Lasota-Yorke inequality (1.3) is ergodic and $e^{i t \tau}$ is aperiodic. Therefore Conditon (iii) and (iv) in Theorem A follow.

1 Rates of Decay of Correlations

Theorem A is based on the results of Sarig. Notice that we do not assume the existence of an invariant measure (which will be by the way given by the Lasota-Yorke inequality).

Theorem. Let T_{n} be bounded operators on a Banach space \mathcal{B} such that $T(z)=I+\sum_{n \geq 1} z^{n} T_{n}$ converges in $\operatorname{Hom}(\mathcal{B}, \mathcal{B})$ for every $z \in D$, where D is the open unit disk. Assume that:
(1) (Renewal equation) for every $z \in D, T(z)=(I-R(z))^{-1}$, where $R(z)=\sum_{n \geq 1} z^{n} R_{n}, R_{n} \in \operatorname{Hom}(\mathcal{B}, \mathcal{B})$ and $\sum_{n \geq 1}\left\|R_{n}\right\|<$ $+\infty$.
(2) (Spectral gap) 1 is a simple isolated eigenvalue of $R(1)$.
(3) (Aperiodicity) for every $z \in \bar{D}-\{1\}, I-R(z)$ is invertible.

Let P be the eigenprojection of $R(1)$ at 1 . If $\sum_{k>n}\left\|R_{k}\right\|=O\left(1 / n^{\beta}\right)$ for some $\beta>1$ and $P R^{\prime}(1) P \neq 0$, then for all n

$$
\begin{equation*}
T_{n}=\frac{1}{\lambda} P+\frac{1}{\lambda^{2}} \sum_{k=n+1}^{\infty} P_{k}+E_{n} \tag{1.1}
\end{equation*}
$$

where λ is given by $P R^{\prime}(1) P=\lambda P, P_{n}=\sum_{k>n} P R_{k} P$ and $E_{n} \in$ $\operatorname{Hom}(\mathcal{B}, \mathcal{B})$ satisfies $\left\|E_{n}\right\|=O\left(1 / n^{\beta}\right)$ if $\beta>2, O\left(\log n / n^{2}\right)$ if $b=2$, and $O\left(1 / n^{2 \beta-2}\right)$ if $2>\beta>1$.

In our case we apply the theorem by setting, as above,

$$
\begin{equation*}
R_{n} f=1_{\widehat{X}} \cdot \mathscr{P}^{n}\left(f 1_{\{\tau=n\}}\right) \quad \text { and } \quad T_{n} f=1_{\widehat{X}} \cdot \mathscr{P}^{n}\left(f 1_{\widehat{X}}\right) \tag{1.2}
\end{equation*}
$$

Theorem A. Let $X \subset R^{m}$ be compact subset with $\nu X=1$ and $\widehat{X} \subset X$ is a compact subset of X with $\cup_{n \geq 0} T^{n} \widehat{X}=X$. Let $T: M \rightarrow$ M be a map whose first return map with respect to \widehat{X} is $\widehat{T}=T^{\tau}$, and \mathcal{B} be a Banach space satisfying Assumption $B(a)$ to (d). We assume the following.
(i) (Lasota-Yorke inequality) There are constants $\eta \in(0,1), D>$ 0 such that for any $f \in \mathcal{B}$,

$$
\begin{equation*}
|\widehat{\mathscr{P}} f|_{\mathcal{B}} \leq \eta|f|_{\mathcal{B}}+D\|f\|_{1} . \tag{1.3}
\end{equation*}
$$

(ii) (Spectral radius) There exist $B>0, D_{1}>0$ and $\eta_{1} \in(0,1)$ such that

$$
\begin{equation*}
\left\|R(z)^{n} f\right\|_{\mathcal{B}} \leq\left|z^{n}\right|\left(B \eta_{1}^{n}\|f\|_{\mathcal{B}}+D_{1}\|f\|_{1}\right) . \tag{1.4}
\end{equation*}
$$

(iii) (Mixing) The measure μ given by $\mu(f)=\nu(h f)$ has only one ergodic component, where h is a fixed point of $\widehat{\mathscr{P}}$.
(iv) (Aperiodicity) The function $e^{i t \tau}$ given by the return time is aperiodic, that is, the only solutions for $e^{i t \tau}=f / f \circ T$ almost everywhere with a measurable function $f: \widehat{X} \rightarrow S$ are f constant almost everywhere.
If for any $n \geq 1, R_{n}$ satisfies $\sum_{k=n+1}^{\infty}\left\|R_{k}\right\|_{\mathcal{B}}<O\left(n^{-\beta}\right)$ for some $\beta>1$, then there exists $C>0$ such that for any function $f \in \mathcal{B}$, $g \in L^{\infty}(X, \nu)$ with $\operatorname{supp} f, \operatorname{supp} g \subset \widehat{X}$,

$$
\left|\operatorname{Cov}\left(f, g \circ T^{n}\right)-\left(\sum_{k=n+1}^{\infty} \mu(\tau>k)\right) \int f d \mu \int g d \mu\right| \leq C F_{\beta}(n)\|g\|_{\infty}\|f\|_{\mathcal{B}}(1.5)
$$

where $F_{\beta}(n)=1 / n^{\beta}$ if $\beta>2$, $(\log n) / n^{2}$ if $\beta=2$, and $1 / n^{2 \beta-2}$ if $2>\beta>1$.

2 Aperiodicity

The proof of Theorem B is based on a result in [?].
A fibred system is a quintuple $(\widetilde{X}, \mathcal{A}, \nu, \widetilde{T}, \xi)$, where $(\widetilde{X}, \mathcal{A}, \nu, \widetilde{T})$ is a nonsingular transformation on a σ-finite measure space and $\xi \subset \mathcal{A}$ is a finite or countable partition $(\bmod \nu)$ such that:
(1) $\xi_{\infty}=\bigvee_{i=0}^{\infty} \widetilde{T}^{-i} \xi$ generates \mathcal{A};
(2) every $A \in \xi$ has positive measure;
(3) for every $A \in \xi,\left.\widetilde{T}\right|_{A}: A \rightarrow \widetilde{T} A$ is bimeasurable invertible with nonsingular inverse.

The transformation given in (0.5) is called the skew products over ξ. Put $\widetilde{\mathscr{P}}=\widetilde{\mathscr{P}}_{\nu \times \rho}$. A fibred system $(X, \mathcal{A}, \nu, T, \xi)$ with ν finite is called skew-product rigid if for every invariant function $h(x, y)$ of $\widetilde{\mathscr{P}}$ of an arbitrary skew product \widetilde{T}_{S}, the set $\{h(\cdot, y)>0\}$ is almost open $\bmod \nu$ for almost every $y \in Y$.

A cylinder C of length n_{0} is called a cylinder of full returns, if for almost all $x \in C$ there exist $n_{k} \nearrow \infty$ such that $\widehat{T}^{n_{i}+n_{0}} \xi_{n_{i}+n_{0}}(x)=C$.

In this case we say that $\widehat{T}^{n_{0}}(C)$ is a recurrent image set.

Theorem (ADSZ). Let $(X, \mathcal{A}, \mu, T, \xi)$ be a skew-product rigid measure preserving fibred system whose image sets are almost open. Let G be a locally compact Abelian polish group. If $\gamma \circ \phi=\lambda f / f \circ T$ holds almost everywhere, where $\phi: X \rightarrow G$, ξ measurable, $\gamma \in \widehat{G}$, $\lambda \in S$, then f is constant on every recurrent image set.

WE CAN PROVE

Skew product rigidity

Lemma 2.1. For any $L^{1}(\mu \times \rho)$ function \widetilde{h} on $\widehat{X} \times S$ that satisfies $\widetilde{\mathscr{P}}_{\mu \times \rho} \widetilde{h}=\widetilde{h}$, the set $\{\widetilde{h}(\cdot, y)>0\}$ is almost open with respect to μ.

Existence of a recurrence set

Lemma 2.2. There is a recurrent image set J contained in \widehat{X} with $\mu J>0$.

3 Systems on the multidimensional space

The main difficulty in higher dimensional space comes from unbounded distortion in the following sense: there are uncountably many points z such that for any neighborhood V of z, we can find $\hat{z} \in V$ with the ratio

$$
\left|\operatorname{det} D T_{1}^{-n}(z)\right| /\left|\operatorname{det} D T_{1}^{-n}(\hat{z})\right|
$$

unbounded as $n \rightarrow \infty$.

EXAMPLE

We let $M \subset R^{2}$ and near the fixed point $p=(0,0)$, the map T has the form

$$
\begin{equation*}
T(x, y)=\left(x\left(1+x^{2}+y^{2}\right), y\left(1+x^{2}+y^{2}\right)^{2}\right) \tag{3.1}
\end{equation*}
$$

up to order $O\left(|z|^{4}\right)$, where $z=(x, y)$ and $|z|=\sqrt{x^{2}+y^{2}}$.
It is easy to see that

$$
D T(x, y)=\left(\begin{array}{ll}
1+3 x^{2}+y^{2}+O\left(|z|^{4}\right) & 2 x y+O\left(|z|^{4}\right) \tag{3.2}\\
4 x y+O\left(|z|^{4}\right) & 1+2 x^{2}+6 y^{2}+O\left(|z|^{4}\right)
\end{array}\right)
$$

and

$$
\begin{equation*}
\operatorname{det} D T(x, y)=1+5 x^{2}+7 y^{2}+O\left(|z|^{4}\right) \tag{3.3}
\end{equation*}
$$

Take $z^{\prime}=\left(x_{0}, 0\right)$ and denote $z_{n}^{\prime}=T^{-n} z^{\prime}$. One can show that $\left|z_{n}^{\prime}\right| \sim \frac{1}{\sqrt{2 n}}$ and $\left|\operatorname{det} D T^{-n}\left(z^{\prime}\right)\right| \leq \frac{D^{\prime}}{n^{5 / 2}}$ for some $D^{\prime}>0$. On the other hand if we take $z^{\prime \prime}=\left(0, y_{0}\right)$ and denote $z_{n}^{\prime \prime}=T^{-n} z^{\prime \prime}$, then $\left|z_{n}^{\prime \prime}\right| \sim \frac{1}{\sqrt{4 n}}$ and $\left|\operatorname{det} D T^{-n}\left(z^{\prime \prime}\right)\right| \geq \frac{D^{\prime \prime}}{n^{7 / 4}}$ for some $D^{\prime \prime}>0$. So $\frac{\left|\operatorname{det} D T^{-n}\left(z^{\prime \prime}\right)\right|}{\left|\operatorname{det} D T^{-n}\left(z^{\prime}\right)\right|} \rightarrow \infty$ as $n \rightarrow \infty$.

We take a curve from z^{\prime} to $z^{\prime \prime}$ that does not contain the origin. If for every z on the curve, there is a neighborhood V such that for all $\hat{z} \in V$, the ratio of the determinants is bounded for all $n>0$, then the ratio $\left|\operatorname{det} D T^{-n}\left(z^{\prime \prime}\right)\right| /\left|\operatorname{det} D T^{-n}\left(z^{\prime}\right)\right|$ should be bounded. This contradicts the above fact. So we know that there are some points on the curve at which distortion is unbounded.

Let $X \subset R^{m}, m \geq 1$, be a compact subset with $\overline{\operatorname{int} X}=X, d$ the Euclidean distance, and ν the Lebesgue measure on X with $\nu X=1$.

Assume taht $T: X \rightarrow X$ is a map satisfying the following assumptions.

Assumption T". (a) (Piecewise smoothness) There are finitely many disjoint open sets U_{1}, \cdots, U_{K} with piesewise smooth boundary such that $X=\bigcup_{i=1}^{K} \overline{U_{i}}$ and for each $i, T_{i}:=\left.T\right|_{U_{i}}$ can be extended to a $C^{1+\alpha}$ diffeomorphism $T_{i}: \tilde{U}_{i} \rightarrow B_{\varepsilon_{1}}\left(T_{i} U_{i}\right)$, where $\tilde{U}_{i} \supset U_{i}, \alpha \in(0,1)$ and $\varepsilon_{1}>0$.
(b) (Fixed point) There is a fixed point $p \in U_{1}$ and a neighborhood V of p such that $T^{-n} V \notin \partial U_{j}$ for any $j=1, \ldots, K$ and for any $n \geq 0$.

For any $\varepsilon_{0}>0$, denote

$$
G_{U}\left(x, \varepsilon, \varepsilon_{0}\right)=2 \sum_{j=1}^{K} \frac{\nu\left(T_{j}^{-1} B_{\varepsilon}\left(\partial T U_{j}\right) \cap B_{(1-s) \varepsilon_{0}}(x)\right)}{\nu\left(B_{(1-s) \varepsilon_{0}}(x)\right)}
$$

Remark 3.1. For smooth boundaries

$$
G_{U}\left(\varepsilon, \varepsilon_{0}\right) \leq 2 N_{U} Y \frac{\gamma_{m-1}}{\gamma_{m}} \frac{s \varepsilon}{(1-s) \varepsilon_{0}}(1+o(1))
$$

, where N_{U} is the maximal number of smooth components of the boundary of all U_{i} that meet in one point and γ_{m} is the volume of the unit ball in R^{m}.

For any $x \in U_{i}$, we define $s(x)$ as the inverse of the slowest expansion near x, that is,

$$
s(x)=\min \{s: d(x, y) \leq s d(T x, T y)
$$

when x, y are close.
Take a neighborhood Q of p such that $T Q \subset U_{1}$, and denote $Q_{0}=T Q \backslash Q$. Then let

$$
\begin{equation*}
s=s(Q)=\max \{s(x): x \in X \backslash Q\} . \tag{3.4}
\end{equation*}
$$

Let $\widehat{T}=\widetilde{T}_{Q}$ be the first return map with respect to $\widehat{X}=\widehat{X}_{Q}=$ $X \backslash Q$. Then for any $x \in U_{j}$, we have $\widehat{T}(x)=T_{j}(x)$ if $T_{j}(x) \notin Q$, and $\widehat{T}(x)=T_{1}^{i} T_{j}(x)$ for some $i>0$ if $T_{j}(x) \in Q$. Denote $\widehat{T}_{i j}=T_{1}^{i} T_{j}$ for $i \geq 0$. Further, we denote $U_{01}=U_{1} \backslash Q, U_{0 j}=U_{j} \backslash T_{j}^{-1} Q_{0}$ if $j>1$, and $U_{i j}=\widehat{T}_{i j}^{-1} Q$ for $i>0$.

For $0<\varepsilon \leq \varepsilon_{0}$, we denote

$$
G_{Q}\left(x, \varepsilon, \varepsilon_{0}\right)=2 \sum_{j=1}^{K} \sum_{i=0}^{\infty} \frac{\nu\left(\hat{T}_{i j}^{-1} B_{\varepsilon}\left(\partial G_{0}\right) \cap B_{(1-s) \varepsilon_{0}}(x)\right)}{\nu\left(B_{(1-s) \varepsilon_{0}}(x)\right)},
$$

and then denote

$$
\begin{equation*}
G\left(\varepsilon, \varepsilon_{0}\right)=\sup _{x \in X}\left\{G_{U}\left(x, \varepsilon, \varepsilon_{0}\right)+G_{Q}\left(x, \varepsilon, \varepsilon_{0}\right)\right\} . \tag{3.5}
\end{equation*}
$$

Assumption $\mathbf{T}^{\prime \prime}$. (c) (Expansion) T satisfies $0<s(x)<1 \forall x \in$ $X \backslash\{p\}$.
Moreover, there exists an open region Q with $p \in Q \subset \bar{Q} \subset$ $T Q \subset \overline{T Q} \subset U_{1}$ and a constants $\alpha \in(0,1), \eta_{0} \in(0,1)$, such that all ε_{0} small,

$$
s^{\alpha}+\lambda \leq \eta_{0}<1,
$$

where s is defined in (3.4) and

$$
\lambda=2 \sup _{\varepsilon \leq \varepsilon_{0}} \frac{G\left(\varepsilon, \varepsilon_{0}\right)}{\varepsilon^{\alpha}} \varepsilon_{0}^{\alpha} .
$$

(d) (Distortion) For any $b>0$, there exist $J>0$ such that for any small ε_{0} and $\varepsilon \in\left(0, \varepsilon_{0}\right)$, we can find $0<N=N(\varepsilon) \leq \infty$ with $\frac{\left|\operatorname{det} D T_{1}^{-n}(y)\right|}{\left|\operatorname{det} D T_{1}^{-n}(x)\right|} \leq 1+J \varepsilon^{\alpha} \quad \forall y \in B_{\varepsilon}(x), x \in B_{\varepsilon_{0}}\left(Q_{0}\right), n \in(0, N]$, and

$$
\sum_{n=N}^{\infty} \sup _{y \in B_{\varepsilon}(x)}\left|\operatorname{det} D T_{1}^{-n}(y)\right| \leq b \varepsilon^{m+\alpha} \quad \forall x \in B_{\varepsilon_{4}}\left(Q_{0}\right)
$$

LOCAL BEHAVIORS

To estimate the decay rates, we also assume that there are constants $\gamma^{\prime}>\gamma>0, C_{i}, C_{i}^{\prime}>0, i=0,1,2$, such that in a neighborhood of the indifferent fixed point $p=0$,

$$
\begin{align*}
|x|\left(1-C_{0}^{\prime}|x|^{\gamma}+O\left(|x|^{\gamma^{\prime}}\right)\right) & \leq\left|T_{1}^{-1} x\right| \leq|x|\left(1-C_{0}|x|^{\gamma}+O\left(|x|^{\gamma^{\prime}}()\right) . .6\right) \\
1-C_{1}^{\prime}|x|^{\gamma} & \leq\left\|D T_{1}^{-1}(x)\right\| \leq 1-C_{1}|x|^{\gamma}, \tag{3.7}\\
C_{2}^{\prime}|x|^{\gamma-1} & \leq\left\|D^{2} T_{1}^{-1}(x)\right\| \leq C_{2}|x|^{\gamma-1} . \tag{3.8}
\end{align*}
$$

FUNCTIONAL SPACES

Take $f \in L^{1}(\widehat{X}, \nu)$ function f; define the oscillation

$$
\operatorname{osc}(f, \Omega)=\operatorname{Esup}_{\Omega} f-\operatorname{Einf}_{\Omega} f
$$

For $0<\alpha<1$ and $\varepsilon_{0}>0$, we define a seminorm of f as

$$
\begin{equation*}
|f|_{\mathcal{V}}=|f|_{\mathcal{E}_{0}}^{\alpha}=\sup _{0<\epsilon \leq \epsilon_{0}} \epsilon^{-\alpha} \int_{R^{m}} \operatorname{osc}\left(f, B_{\epsilon}(x)\right) d \nu(x) \tag{3.9}
\end{equation*}
$$

and take the space of the functions as

$$
\mathcal{V}=\mathcal{V}_{\varepsilon_{0}}^{\alpha}=\left\{f \in L^{1}(\widehat{X}, \nu):|f|_{\mathcal{V}}<\infty\right\}
$$

and then equip $\mathcal{V}_{\varepsilon_{0}}^{\alpha}$ with the norm

$$
\|\cdot\|_{\mathcal{V}}=\|\cdot\|_{1}+|\cdot|_{\mathcal{V}}
$$

For an open set O, let $\mathcal{H}=\mathcal{H}_{\varepsilon_{1}}^{\alpha}=\mathcal{H}_{\varepsilon_{1}}^{\alpha}(O, H)$ be the set of Hölder functions f over O that satisfies $|f(x)-f(y)| \leq H d(x, y)^{\alpha}$ for any $x, y \in O$ with $d(x, y) \leq \varepsilon_{1}$.

Let h be a fixed point of the transfer operator $\widehat{\mathscr{P}}$, which will be unique under the assumption of the theorem below. We define $\mathcal{B}=\mathcal{B}_{\varepsilon_{0}, \varepsilon_{1}}^{\alpha}$ by

$$
\mathcal{B}=\left\{f \in \mathcal{V}_{\varepsilon_{0}}^{\alpha}: \exists H>0 \text { s.t. }\left.(f / h)\right|_{V_{I}} \in \mathcal{H}_{\varepsilon_{1}}^{\alpha}\left(V_{I}, H\right) \forall I \in \mathcal{I}\right\},
$$

and for any $f \in \mathcal{B}$, let

$$
|f|_{\mathcal{H}}=|f|_{\mathcal{H}_{\varepsilon_{1}}^{\alpha}}=\inf \left\{H:\left.(f / h)\right|_{V_{I}} \in \mathcal{H}_{\varepsilon_{1}}^{\alpha}\left(V_{I}, H\right) \forall I \in \mathcal{I}\right\} .
$$

Let us assume that $h>0$ on all $V_{i j}$, then we define the norm in \mathcal{B} by

$$
\begin{equation*}
\|\cdot\|_{\mathcal{B}}=\|\cdot\|_{1}+|\cdot|_{\mathcal{V}}+|\cdot|_{\mathcal{H}} . \tag{3.10}
\end{equation*}
$$

Clearly, $\mathcal{B}_{\varepsilon_{0}, \varepsilon_{1}}^{\alpha} \subset \mathcal{V}_{\varepsilon_{0}}^{\alpha}$ and $\|f\|_{\mathcal{B}} \geq\|f\|_{\mathcal{V}}$ if $f \in \mathcal{B}$.
Let $s_{n}=\max \mid \operatorname{det} D T^{n}\left(\left.T^{-n}(x)\right|^{-1}: x \in B_{\varepsilon}\left(Q_{0}\right), j=2, \cdots K\right\}$.

Theorem D. Let \widehat{X}, \widehat{T} and \mathcal{B} are defined as above. Suppose T satisfies Assumption T (a) to (d) and Assumption $T^{\prime \prime}$ (a) to (d). Then there exist $\varepsilon_{0} \geq \varepsilon_{1}>0$ such that Assumption $B(a)$ to (e) and Condition (i) to (iv) in Theorem A are satisfied and $\left\|R_{n}\right\| \leq$ $O\left(s_{n}^{m /(m+\alpha)}\right)$. Hence, if $s_{n}^{m /(m+\alpha)} \leq O\left(n^{-1 / \beta}\right)$ for some $\beta>1$, then there exists $C>0$ such that for any functions $f \in \mathcal{B}, g \in L^{\infty}(X, \nu)$ with supp $f, \operatorname{supp} g \subset \widehat{X}$, (1.5) holds.

In particular, if T satisfies (3.6) to (3.8) near p, then $\sum_{k=n+1}^{\infty} \mu(\tau>$ k) has the order $n^{-(m / \gamma-1)}$. In this case, if $s_{n}=O\left(n^{-\beta^{\prime}}\right)$ for some $\beta^{\prime}>1$ and

$$
\begin{equation*}
\beta^{\prime} \cdot \frac{m}{m+\alpha} \geq \frac{m}{\gamma} \tag{3.11}
\end{equation*}
$$

then
$\operatorname{Cov}\left(f, g \circ T^{n}\right) \approx \sum_{k=n+1}^{\infty} \mu(\tau>k) \int f d \mu \int g d \mu=O\left(1 / n^{m / \gamma-1}(3.12)\right.$

3.1 Examples

Example 1. Assume $m=3$, and near the fixed point $p=(0,0,0)$, the map T has the form
$T(w)=\left(x\left(1+|w|^{2}+O\left(|w|^{3}\right)\right), y\left(1+|w|^{2}+O\left(|w|^{3}\right)\right), z\left(1+2|w|^{2}+O\left(|w|^{3}\right)\right)\right.$
where $w=(x, y, z)$ and $|w|=\sqrt{x^{2}+y^{2}+z^{2}}$.
Denote $w_{n}=T_{1}^{-n} w$. Clearly, $|w|+|w|^{3}+O\left(|w|^{4}\right) \leq|T(w)| \leq$ $|w|+2|w|^{3}+O\left(|w|^{4}\right)$. By standard arguments we know that

$$
\frac{1}{\sqrt{4 n}}+O\left(\frac{1}{\sqrt{n^{3}}}\right) \leq\left|w_{n}\right| \leq \frac{1}{\sqrt{2 n}}+O\left(\frac{1}{\sqrt{n^{3}}}\right)
$$

. Since it is in three dimensional space, it follows that $\nu(\tau>k)=$ $O\left(\frac{1}{k^{3 / 2}}\right)$, and therefore $\sum_{k=n+1}^{\infty} \nu(\tau>k)=O\left(\frac{1}{n^{1 / 2}}\right)$.

It is easy to see that $D T(w)$ has the form

$$
\left(\begin{array}{ccc}
1+3 x^{2}+y^{2}+z^{2} & 2 x y & 2 x z \\
2 x y & 1+x^{2}+3 y^{2}+z^{2} & 2 y z \\
4 x z & 4 y z & 1+2 x^{2}+2 y^{2}+6 z^{2}
\end{array}\right)+O\left(|w|^{3}\right)
$$

and hence

$$
\operatorname{det} D T(w)=1+6 x^{2}+6 y^{2}+8 z^{2}+O\left(|w|^{3}\right)
$$

We have $\left\|R_{n}\right\| \sim \frac{1}{n^{9 / 4}}$ and a decay rates of order $O(1 / \sqrt{n})$.

Example 2. Assume $m=2$, and near the fixed point $p=(0,0)$, the map T has the form

$$
T(z)=\left(x\left(1+|z|^{\gamma}+O\left(\mid z \gamma^{\gamma^{\prime}}\right)\right), y\left(1+2|z|^{\gamma}+O\left(|z|^{\gamma^{\prime}}\right)\right)\right)
$$

where $z=(x, y),|z|=\sqrt{x^{2}+y^{2}}, \gamma \in(0,1)$ and $\gamma^{\prime}>\gamma$.
Denote $z_{n}=T_{1}^{-n} z$. Since $|z|+|z|^{1+\gamma}+O\left(|z|^{\gamma^{\prime}}\right) \leq|T(z)| \leq$ $|z|+2|z|^{\gamma}+O\left(|z|^{\gamma^{\prime}}\right)$,

$$
\frac{1}{(2 \gamma n)^{1 / \gamma}}+O\left(\frac{1}{n^{\delta}}\right) \leq\left|z_{n}\right| \leq \frac{1}{(\gamma n)^{1 / \gamma}}+O\left(\frac{1}{n^{\delta}}\right)
$$

for some $\delta>1 / \gamma$ (see also Lemma 3.1 in [?]). It follows that $\nu(\tau>$ $k)=O\left(\frac{1}{k^{2 / \gamma}}\right)$, and therefore $\sum_{k=n+1}^{\infty} \nu(\tau>k)=O\left(\frac{1}{n^{2 / \gamma-1}}\right)$.

Also,

$$
D T(z)=\left(\begin{array}{cc}
1+\frac{(1+\gamma) x^{2}+y^{2}}{|z|^{2-\gamma}} & \frac{\gamma x y}{\left||z|^{2-\gamma}\right.} \\
\frac{2 \gamma x y}{|z|^{2-\gamma}} & 1+\frac{2 x^{2}+2(1+\gamma) y^{2}}{|z|^{2-\gamma}}
\end{array}\right)+O\left(|z| \gamma^{\gamma^{\prime}}\right)
$$

and hence

$$
\operatorname{det} D T(z)=1+\frac{(3+\gamma) x^{2}+(3+2 \gamma) y^{2}}{|z|^{2-\gamma}}+O\left(|z|^{\gamma^{\prime}}\right)
$$

We have $\left\|R_{n}\right\| \sim \frac{1}{n^{\left(1+\frac{3}{\gamma}\right) \frac{2}{3}}}$ and a decay rates of order $O\left(1 / n^{\frac{2}{\gamma}-1}\right)$.

Example 3. Assume $m=2$, and near the fixed point $p=(0,0)$, the map T has the form

$$
\begin{equation*}
T(x, y)=\left(x\left(1+x^{2}+y^{2}\right), y\left(1+x^{2}+y^{2}\right)^{2}\right) \tag{3.13}
\end{equation*}
$$

up to order $O\left(|z|^{4}\right)$, where $z=(x, y)$ and $|z|=\sqrt{x^{2}+y^{2}}$.
The map allows an infinite absolutely continuous invariant measure. However, the map can be arranged in a way that there is an invariant component that supports a finite absolutely continuous invariant measure μ. Near the fixed point, the region of the component is of the form

$$
\left\{z=(x, y):|y|<x^{2}\right\} .
$$

Since $\left|z_{n}\right|=O(1 / \sqrt{n})$ and for $z=(x, y),|y| \leq x^{2}$, we have $\nu(\tau>k)=O\left(\frac{1}{k^{3 / 2}}\right)$, and $\sum_{k=n+1}^{\infty} \nu(\tau>k)=O\left(\frac{1}{n^{1 / 2}}\right)$.

On the other hand, a similar computation gives $\operatorname{det} D T(z)=$ $1+5 x^{2}+7 y^{2}+O\left(|z|^{4}\right)$. Since $|y| \leq x^{2},|z|=|x|+O\left(|z|^{2}\right)$. Hence $\operatorname{det} D T(z)=1+5|z|^{2}+O\left(|z|^{4}\right)$, and therefore $\left|\operatorname{det} D T_{1}^{-n}(z)\right|=$ $O\left(1 / n^{5 / 2}\right)$.

We have $\left\|R_{n}\right\| \sim \frac{1}{n^{5 / 3}}$ and a decay rates of order $O(1 / \sqrt{n})$.

