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Let X C R™ be a compact set with positive Lebesgue measure
v. We assume v X = 1. Let d be the metric induced from R™.

The transfer (Perron-Frobenius) operator 22 = &, : L}(X,v) —
LY(X,v) is defined by

/onqde: /@Z)@gbdu
Vo € LNX,v), ¢ € L®(X,v).

Let X C X be a subset of X such that UnZOT")A( = X.
First return map of T' with respect to X C X by T'(z) = T7@) (),
where 7(z) = min{s > 1: Tz € X} is the return time. Then we let

—

P = P, be the transfer operator of T.



Put

Rof =1g- P"(flip—y) and T,f=1g P"(flg) (0.1)

for any function f on X. For any z € C, denote R(z) = Z 2"R,.
n=1

It is clear that 2 = R(1)=>2"°  R,.

Consider Ll()A( ,v) as a subspace L'(X,v) consisting of functions
supported on X.

Let | - |5 a seminorm for functions in Ll()A( ,v). Consider the set
B=B(X)={fecL'(X,v):|f|ls < co}and define a complet norm
on B by

1flls = 1f1s + [1f1lx

for any f € B, where || f]]; is the L' norm.



Assumption B. (a) (Compactness) The inclusion B — L' is com-
pact.

(b) (Boundness) The inclusion B < L is bounded; ||f]le <
Gyl fl5-

(c) (Algebra) B is an algebra and || fg|ls < Cullfll5ll9ll5-

Theorem A. Let X C R™ be compact subset with vX = 1 and
XCcXisa compact subset of X with Unon”)? =X. LetT : M —
M be a map whose first return map with respect to XisT = T,
and B be a Banach space satisfying Assumption B(a) to (d). We
assume the following.

(i) (Lasota-Yorke inequality) There are constants n € (0,1), D >
0 such that for any f € B,

|2 s < nlfls + DIIfh- (0.2)

(ii) (Spectral radius) There exist B > 0,D; > 0 and n; € (0,1)
such that

I1R(z)"flls < |2"[(Bnil| flls + D1l f]l1)- (0.3)

(i) (Mixing) The measure pu given by pu(f) = v(hf) has only one

—~

ergodic component, where h is a fixed point of 2.



(iv) (Aperiodicity) The function €™ given by the return time is
aperiodic, that is, the only solutions for €™ = f/f oT almost
everywhere with a measurable function f : X — S are f con-
stant almost everywhere.

If for any n > 1, R, satisfies > 1o . | Rills < O(n™F) for some
B > 1, then there exists C' > 0 such_that for any function f € B,
g € L*>®(X,v) with supp f,suppg C X,

Covlf.goT") = (Y atr>1)) [ sdu [ gdu] < CEs)lglcl 715600

k=n+1

where Fg(n) = 1/n® if B > 2, (logn)/n? if B = 2, and 1/n*~2 if
2>p3>1.



Further assumptions on the Maps

We put conditions on the map 7' : X — X and its first return
map T : X — X. We denote by B.(I') the ¢ neighborhood of a set
I'cX.

Assumption T. (a) (Piecewise smoothness) There are countably
many disjoint open sets Uy, Us, - - -, with X = U2, U, such that
for each 1, ﬁ = f|U extends to a C** diffeomorphism from
U, to its image, and Tly, is constant.

(b) (Finite images) {fUl 21 =1,2,---} is finite, and vB.(0TU;) =
Ole) Vi=1,2, .

(c) (Expansion) There exists s € (0,1) such that d(Tz,Ty) >
s 'd(x,y) Yo,y € U; Vi > 1.

(d) (Topologically mixing) T": X — X is topologically mixing.
Also we put one more assumption on the Banach space B.
A set U is said to be almost open mod v or with respect to v if

for v almost every point x € U, there is an neighborhood V' (x) with
v(V(z)\U)=0.

Assumption B. (d) (Denseness) The image of the inclusion B —
LY (X, i) is dense.

(e) (Openess) For any nonnegative function f € B, the set {f > 0}
18 almost open with respect to v.



SKEW EXTENSIONS

Take a partition & of X. Consider the family of skew-products of
the form

Ts: X xY =5 X xV, Ts(x,y) = (T, S(E())(y)) (0.5)

where (Y] F,p) is a Lebesgue probability space, Aut(Y) is the col-
lection of its automorphisms, that is, invertible measure-preserving
transformations, and S : £ — Aut(Y) is arbitrary.

For f € L, define

UXp)

fls= [ 1FCalesdote). s =1Ts+ 1y, (08)

Then we let B B B
B={feLl,:|fls < oo} (0.7)

Theorem B. Suppose T satisfies Assumption T(a) to (d) and and
B satisfies Assumption B(d) and (e), and & satisfies Lasota-Yorke
inequality . B L

(ZP)ls < lfls+ DIFll:. (03)

for some 1 € (0,1) and D > 0. Then any absolutely continuous
invariant measure p obtained from the Lasota- Yorke inequality (1.3)
is ergodic and €™ is aperiodic. Therefore Conditon (iii) and (iv) in
Theorem A follow.



1 Rates of Decay of Correlations

Theorem A is based on the results of Sarig. Notice that we do not
assume the existence of an invariant measure (which will be by the
way given by the Lasota-Yorke inequality).

Theorem. Let T, be bounded operators on a Banach space B such
that T'(2) = 1+ ,,5, 2"T, converges in Hom(B, B) for every z € D,
where D is the open unit disk. Assume that:

(1) (Renewal equation) for every z € D, T(z) = (I — R(z))7},
where R(z) =), o, 2" Ry, R, € Hom(B,B) and ), ||Ral| <
+00.

(2) (Spectral gap) 1 is a simple isolated eigenvalue of R(1).
(3) (Aperiodicity) for every z € D — {1}, I — R(z) is invertible.

Let P be the eigenprojection of R(1) at 1. If >, || Ri| = O(1/n”)
for some B> 1 and PR'(1)P # 0, then for all n

1 1 &
T,=-P+ — P, + E,,, 1.1
A + A2 kzn;I s (1.1)

where X is given by PR'(1)P = AP, P, = Y, PRiP and E, €
Hom(B, B) satisfies ||E,|| = O(1/n?) if B > 2, O(logn/n?) if b = 2,
and O(1/n*=2) if 2 > 3 > 1.

In our case we apply the theorem by setting, as above,

Rnf - 1)2' ’ ‘@n(fl{’r:n}) and Tnf - 1)? ’ L@n(fl)?) (12>



Theorem A. Let X C R™ be compact subset with vX = 1 and
X C X is a compact subset of X with Unon”)/(\' =X. LetT : M —
M be a map whose first return map with respect to X isT = Tr,
and B be a Banach space satisfying Assumption B(a) to (d). We
assume the following.

(i) (Lasota-Yorke inequality) There are constants n € (0,1), D >
0 such that for any f € B,

|2 fls < nlfls+ DI fll- (1.3)

(ii) (Spectral radius) There exist B > 0,Dy > 0 and n; € (0,1)
such that

1R(2)" flls < |2"[(Bnyl[ flls + Dall £1]1)- (1.4)

(iii) (Mixing) The measure j given by pu(f) = v(hf) has only one

I~

ergodic component, where h is a fived point of Z.

(iv) (Aperiodicity) The function €™ given by the return time is
aperiodic, that is, the only solutions for '™ = f/f oT almost
everywhere with a measurable function f : X — S are f con-
stant almost everywhere.

If for any n > 1, R, satisfies > po . . | Rills < O(n™F) for some
B > 1, then there exists C' > 0 such_that for any function f € B,
g € L>®(X,v) with supp f,suppg C X,

Cov(f.goT") = (3 u(r>0) [ fau [ gdu| < CEsm)lglclf1:15)

k=n+1

where Fg(n) = 1/n® if B > 2, (logn)/n? if B = 2, and 1/n*~2 if
2>p3>1.



2 Aperiodicity
The proof of Theorem B is based on a result in [?].

A fibred system is a quintuple (55, A, v, f, €), where ()Z, A, v, T)
is a nonsingular transformation on a o-finite measure space and
¢ C A is a finite or countable partition (mod v) such that:

(1) & = \/fio T"f generates A;
(2) every A € ¢ has positive measure;

(3) for every A €&, f| 4 A — TA is bimeasurable invertible with
nonsingular inverse.

The transformation given in (0.5) is called the skew products over
£ Put P = Py, A fibred system (X, A, v, T,¢) with v finite is
called skew-product rigid if for every invariant function h(z,y) of

P of an arbitrary skew product T, the set {h(-,y) > 0} is almost
open mod v for almost every y € Y.

A cylinder C of length ng is called a cylinder of full returns, if for
almost all x € C' there exist ny * oo such that T *™¢, ., (x) = C.

In this case we say that 770(C) is a recurrent image set.



Theorem (ADSZ). Let (X, A, u, T,§) be a skew-product rigid mea-
sure preserving fibred system whose image sets are almost open. Let
G be a locally compact Abelian polish group. If vo ¢ = Nf/foT
holds almost everywhere, where ¢ : X — G, & measurable, v € @,
A €S, then f is constant on every recurrent image set.

WE CAN PROVE
Skew product rigidity

Lemma 2.1. For any L'(u x p) function hon X xS that satisfies
Puxph = h, the set {h(-,y) > 0} is almost open with respect to p.

Existence of a recurrence set

Lemma 2.2. There is a recurrent image set J contained in X with
wJ > 0.

10



3 Systems on the multidimensional space

The main difficulty in higher dimensional space comes from un-
bounded distortion in the following sense: there are uncountably
many points z such that for any neighborhood V' of z, we can find
z € V with the ratio

| det DT (2)|/| det DT (2)]

unbounded as n — oo.

EXAMPLE

11



We let M C R? and near the fixed point p = (0,0), the map T'
has the form

T(z,y) = (z(1+ 2>+ ¢, y(1+2° +¢*)?) (3.1)

up to order O(|z]*), where z = (z,y) and |z| = /22 + 12.
It is easy to see that

DT(zy) = ( ixzzfzohj;; oD f%g)ﬂﬁﬁqum )(3'2)
and

det DT(z,y) = 14 52 + 7> + O(|z|h), (3.3)
Take 2/ = (z,0) and denote 2, = T~ "2'. One can show that

/

1 D
o and |det DT"(2")| < i for some D’ > 0. On
the other hand if we take z” = (0,yp) and denote 2] = T "2"
"

!/
~
2]

1 D ’
and |det DT"(2")| > — for some D" > 0. So
n n/4

| det DT (2")]
| det DT—(2)|

We take a curve from 2’ to z” that does not contain the origin. If
for every z on the curve, there is a neighborhood V' such that for all
z € V, the ratio of the determinants is bounded for all n > 0, then
the ratio |det DT"(2")|/| det DT~"(Z")| should be bounded. This
contradicts the above fact. So we know that there are some points
on the curve at which distortion is unbounded.

then |2)/] ~

— 00 as n — OQ.
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Let X C R™, m > 1, be a compact subset with int X = X, d the
Euclidean distance, and v the Lebesgue measure on X with v.X = 1.

Assume taht T' : X — X is a map satisfying the following as-
sumptions.

Assumption T”. (a) (Piecewise smoothness) There are finitely many
disjoint open sets Uy, --- , Uk with piesewise smooth boundary
such that X = X, U; and for each i, T; := T|y, can be ex-
tended to a C** diffeomorphism T; : U; — B.,(T;U;), where
U DU, a€(0,1) and e, > 0.

(b) (Fized point) There is a fized point p € Uy and a neighborhood
V' of p such that T-"V ¢ 0U; for any j = 1,..., K and for any
n > 0.

For any ¢y > 0, denote

Gu(z,e,e0) —22

1B aTU)ﬂB(l s)e0(2))
Ba- 5)50(33))

i
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Remark 3.1. For smooth boundaries

S€

GU(&EQ) S QNUYA/T”lil

Ym (1= 5)o (1 " 0(1))

, where Ny is the mazimal number of smooth components of the
boundary of all U; that meet in one point and ~,, is the volume of
the unit ball in R™.

For any x € U;, we define s(z) as the inverse of the slowest
expansion near z, that is,

s(z) =min{s : d(z,y) < sd(Tz, Ty).

when z,y are close.
Take a neighborhood @ of p such that T'QQ C Uy, and denote

Qo =TQ \ Q. Then let
s =s(Q) = max{s(z) : x € X\Q}. (3.4)

Let T = TQ be the first return map with respect to X = )/(\'Q =
X\ Q. Then for any z € U;, we have T'(x) = T;(z) it Tj(x) ¢ Q,
and T'(x) = T{T;(x) for some i > 0 if Tj(z) € Q. Denote T;; = T{T;
for ¢ > 0. Further, we denote U01 = U1 \ Q, U()j = Uj \ Y‘Ij_lQo if
j> 1, and Uy = T;'Q for i > 0.

For 0 < ¢ < gy, we denote

X, v(T;;' B-(0Go) N Bi_s)s ()

GQ($,5750) = QZ V(B(1fs)so(x)) 7

j=1 i=0
and then denote
G(e,e0) = sup{Gu(z,e,e0) + Go(x,¢e,20)} (3.5)
reX

14



Assumption T”. (c) (Ezpansion) T satisfies 0 < s(z) < 1 Vx €

X\ {p}.

Moreover, there exists an open region Q with p € Q C Q C
TQ C TQ C U, and a constants a € (0,1), no € (0,1), such
that all ey small,

s*+ A< <1,

where s is defined in (3.4) and

A = 2sup G, 60)63.

e<eo e«

(d) (Distortion) For any b > 0, there exist J > 0 such that for any
small gy and € € (0,e0), we can find 0 < N = N(e) < oo with

| det DT\ "(y)|
<1+Je* Vye€ B.(x), v € B, , n € (0,N],
|deJE DT{"(SEH s 1+Je Y (:L‘) r O(QO) n ( ]

and

o0

sup |det DT, ™(y)| < be™™™ Va € B.,(Qo).

n=N YEBe(z)

15



LOCAL BEHAVIORS

To estimate the decay rates, we also assume that there are con-
stants 7' > v > 0, C;,C! > 0,7 = 0,1, 2, such that in a neighborhood

of the indifferent fixed point p = 0,

2](1 — Gyl + O(2")) < [Ty "] < [l (1 — Cola" + O(|«"(3.6)

1= Cil=[" <[ DT (@)l < 1= Cafal”,
Cola ™! <[ID*T (@) < Cola™

Take f € L'(X,v) function f; define the oscillation

osc(f,Q) = Esup f — Egi)nff.
Q
For 0 < a < 1 and g9 > 0, we define a seminorm of f as

lflv = |f]ygo = sup ea/mosc(f, B(z))dv(x),

0<e<eg

and take the space of the functions as
Y=V = {feLl()?,y) : |f|y<oo}
and then equip Vg with the norm

Ity =11+ 1 v

16
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For an open set O, let H = H2 = H (O, H) be the set of Holder
functions f over O that satisfies |f(x) — f(y)| < Hd(z,y)* for any
z,y € O with d(z,y) < e;.

Let h be a fixed point of the transfer operator 3/3\, which will

be unique under the assumption of the theorem below. We define
B =B _ by

B={feV::3H>0s.t (f/h)|, e H(V,H) VI €T},
and for any f € B, let
[f 1 = |flae, = mf{H - (f/B)]v, € HE,(Vi, H) VI € I}

Let us assume that A > 0 on all V;;. then we define the norm in B

R
by
- Als= {1l 4 v+ 1 e (3.10)
Clearly, BS . C V2 and |||z > | fllv if f € B.

€0,€1

Let s, = max |det DT™(T"(x)|™' : x € B.(Qy),j = 2,--- K}.

17



Theorem D. Let )?, T and B are defined as above. Suppose T
satisfies Assumption T (a) to (d) and Assumption T" (a) to (d).
Then there exist g > €1 > 0 such that Assumption B(a) to (e)
and Condition (i) to (iv) in Theorem A are satisfied and ||R,| <
O(s;n/(era)). Hence, if sp/™™ < O(n=Y8) for some 3 > 1, then
there exists C' > 0 such that for any functions f € B, g € L>(X,v)
with supp f,suppg C )A(, (1.5) holds.

o0

In particular, if T satisfies (3.6) to (3.8) near p, then Z p(r >
k=n+1
k) has the order n=™/7=Y_ In this case, if s, = O(n™?") for some
B >1 and

m m
" > — 11
L (311
then
Cov(f,goT") ~ Z p(r > k;)/fd,u/gd,u = O(1/n™"(3.12)
k=n+1

18



3.1 Examples

Example 1. Assume m = 3, and near the fized point p = (0,0,0),
the map T has the form

T(w) = (z(1+[w*+O0(lw*), y(+wl+O(jwl*)), 2(1+2lw*+O(jw|*))

where w = (.T,y,Z) and ’w’ =\ x? +y2 + 22,

Denote w, = T; "w. Clearly, |w| + |w|®> + O(Jw|*) < |T(w)| <
|w| + 2|w]* + O(Jw|*). By standard arguments we know that

1 1 1 n O( 1 >
Vian vn? V2n vn3
. Since it is in three dimensional space, it follows that v(r > k) =

O<#), and therefore i (it > k) = O(ﬁ)

k=n-+1
It is easy to see that DT'(w) has the form

+0(—=) < lwal <

1+ 322 4+ 92 + 22 2zy 2xz
2xy 1+ 2% + 3y? + 22 2yz + O(Jw]?)
dxz dyz 1+ 222 + 2y + 622
and hence

det DT (w) = 1+ 62% + 6y + 82% + O(Jw]?).

We have ||R,|| ~ -7 and a decay rates of order O(1//n).
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Example 2. Assume m = 2, and near the fixved point p = (0,0),
the map T has the form

T(2) = ((1+ |2 + O(l2[), y(1+ 2]z + O(|2[")))

where z = (z,y), |2| = /22 +y2, 7€ (0,1) and v > 7.

Denote z, = Ty "z. Since |z| + [2|'**7 + O(|]2]") < |T(2)] <
|2 + 2|2 + O(l2),

W—FO(%) <z < W +O(%)

for some § > 1/ (see also Lemma 3.1 in [?]). It follows that v(7 >

k) = O(#), and therefore i v(t > k) = O(#)

k=n-+1
Also,
L+ (1+7y)2* + ¢ vy
DT(z) = 2> 21> +O(")
2y L+ 222 4+ 2(1 + 7)y?
||~ |22~
and hence
3+7)x? 4 (3+29)y? ,
teDT(:) = 1+ EX T 4 o(er),

We have ||R,|| ~ 7)2 and a decay rates of order O(l/nv h.

(1+
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Example 3. Assume m = 2, and near the fixed point p = (0,0),
the map T has the form

T(z,y) = (z(1+2°+9%), y(1+2° +y°)?) (3.13)

up to order O(|z|*), where z = (z,y) and |z| = /22 + 2.

The map allows an infinite absolutely continuous invariant mea-
sure. However, the map can be arranged in a way that there is an
invariant component that supports a finite absolutely continuous in-
variant measure . Near the fived point, the region of the component
is of the form

{z=(,9) : [y| <2’}

Since |z,| = O(1/y/n) and for z = (x,y), |y| < 2%, we have
1
V(T>k:)=0<m>,and Z (1> k) <n1/2>'

k=n+1

On the other hand, a similar computation gives det DT'(z) =
1+ 522 + Ty* + O(|z|4). Since |y| < 22, |z| = |z| + O(]2]?). Hence
det DT(2) = 1+ 5|z[*> + O(|2]*), and therefore |det DT} "(z)| =
O(1/n?).

We have ||R,|| ~ =7 and a decay rates of order O(1//n).
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