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Let X ⊂ Rm be a compact set with positive Lebesgue measure
ν. We assume νX = 1. Let d be the metric induced from Rm.

The transfer (Perron-Frobenius) operator P = Pν : L1(X, ν)→
L1(X, ν) is defined by∫

ψ ◦ Tφdν =

∫
ψPφdν

∀φ ∈ L1(X, ν), ψ ∈ L∞(X, ν).

Let X̂ ⊂ X be a subset of X such that ∪n≥0T
nX̂ = X.

First return map of T with respect to X̂ ⊂ X by T̂ (x) = T τ(x)(x),
where τ(x) = min{i ≥ 1 : T ix ∈ X̂} is the return time. Then we let

P̂ = P̂ν be the transfer operator of T̂ .
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Put

Rnf = 1X̂ ·P
n(f1{τ=n}) and Tnf = 1X̂ ·P

n(f1X̂) (0.1)

for any function f on X̂. For any z ∈ C, denote R(z) =
∞∑
n=1

znRn.

It is clear that P̂ = R(1) =
∑∞

n=1Rn.

Consider L1(X̂, ν) as a subspace L1(X, ν) consisting of functions
supported on X̂.

Let | · |B a seminorm for functions in L1(X̂, ν). Consider the set
B = B(X̂) = {f ∈ L1(X̂, ν) : |f |B ≤ ∞}and define a complet norm
on B by

‖f‖B = |f |B + ‖f‖1

for any f ∈ B, where ‖f‖1 is the L1 norm.
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Assumption B. (a) (Compactness) The inclusion B ↪→ L1 is com-
pact.

(b) (Boundness) The inclusion B ↪→ L∞ is bounded; ‖f‖∞ ≤
Cb‖f‖B.

(c) (Algebra) B is an algebra and ‖fg‖B ≤ Ca‖f‖B‖g‖B.

Theorem A. Let X ⊂ Rm be compact subset with νX = 1 and
X̂ ⊂ X is a compact subset of X with ∪n≥0T

nX̂ = X. Let T : M →
M be a map whose first return map with respect to X̂ is T̂ = T τ ,
and B be a Banach space satisfying Assumption B(a) to (d). We
assume the following.

(i) (Lasota-Yorke inequality) There are constants η ∈ (0, 1), D >
0 such that for any f ∈ B,

|P̂f |B ≤ η|f |B +D‖f‖1. (0.2)

(ii) (Spectral radius) There exist B > 0, D1 > 0 and η1 ∈ (0, 1)
such that

‖R(z)nf‖B ≤ |zn|
(
Bηn1 ‖f‖B +D1‖f‖1

)
. (0.3)

(iii) (Mixing) The measure µ given by µ(f) = ν(hf) has only one

ergodic component, where h is a fixed point of P̂.
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(iv) (Aperiodicity) The function eitτ given by the return time is
aperiodic, that is, the only solutions for eitτ = f/f ◦ T almost
everywhere with a measurable function f : X̂ → S are f con-
stant almost everywhere.

If for any n ≥ 1, Rn satisfies
∑∞

k=n+1 ‖Rk‖B < O(n−β) for some
β > 1, then there exists C > 0 such that for any function f ∈ B,
g ∈ L∞(X, ν) with supp f, supp g ⊂ X̂,∣∣∣Cov(f, g ◦ T n)−

( ∞∑
k=n+1

µ(τ > k)
)∫

fdµ

∫
gdµ

∣∣∣ ≤ CFβ(n)‖g‖∞‖f‖B,(0.4)

where Fβ(n) = 1/nβ if β > 2, (log n)/n2 if β = 2, and 1/n2β−2 if
2 > β > 1.
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Further assumptions on the Maps

We put conditions on the map T : X → X and its first return
map T̂ : X̂ → X̂. We denote by Bε(Γ) the ε neighborhood of a set
Γ ⊂ X.

Assumption T. (a) (Piecewise smoothness) There are countably
many disjoint open sets U1, U2, · · · , with X̂ =

⋃∞
i=1 Ui such that

for each i, T̂i := T̂ |Ui extends to a C1+α diffeomorphism from
U i to its image, and τ |Ui is constant.

(b) (Finite images) {T̂Ui : i = 1, 2, · · · } is finite, and νBε(∂TUi) =
O(ε) ∀i = 1, 2, · · · .

(c) (Expansion) There exists s ∈ (0, 1) such that d(T̂ x, T̂ y) ≥
s−1d(x, y) ∀x, y ∈ U i ∀i ≥ 1.

(d) (Topologically mixing) T : X → X is topologically mixing.

Also we put one more assumption on the Banach space B.

A set U is said to be almost open mod ν or with respect to ν if
for ν almost every point x ∈ U , there is an neighborhood V (x) with
ν(V (x) \ U) = 0.

Assumption B. (d) (Denseness) The image of the inclusion B ↪→
L1(X̂, µ) is dense.

(e) (Openess) For any nonnegative function f ∈ B, the set {f > 0}
is almost open with respect to ν.
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SKEW EXTENSIONS

Take a partition ξ of X̂. Consider the family of skew-products of
the form

T̃S : X̂ × Y → X̂ × Y , T̃S(x, y) = (T̂ x, S(ξ(x))(y)) (0.5)

where (Y,F , ρ) is a Lebesgue probability space, Aut(Y ) is the col-
lection of its automorphisms, that is, invertible measure-preserving
transformations, and S : ξ → Aut(Y ) is arbitrary.

For f̃ ∈ L1
ν×ρ, define

|f̃ |B̃ =

∫
Y

|f̃(·, y)|Bdρ(y), ‖f̃‖B̃ = |f̃ |B̃ + ‖f̃‖L1
ν×ρ
. (0.6)

Then we let
B̃ = {f̃ ∈ L1

ν×ρ : |f̃ |B̃ <∞}. (0.7)

Theorem B. Suppose T̂ satisfies Assumption T(a) to (d) and and
B satisfies Assumption B(d) and (e), and P satisfies Lasota-Yorke
inequality

|(P̃ f̃)|B̃ ≤ η̃|f̃ |B̃ + D̃‖f̃‖L1
ν×ρ

(0.8)

for some η̃ ∈ (0, 1) and D̃ > 0. Then any absolutely continuous
invariant measure µ obtained from the Lasota-Yorke inequality (1.3)
is ergodic and eitτ is aperiodic. Therefore Conditon (iii) and (iv) in
Theorem A follow.
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1 Rates of Decay of Correlations

Theorem A is based on the results of Sarig. Notice that we do not
assume the existence of an invariant measure (which will be by the
way given by the Lasota-Yorke inequality).

Theorem. Let Tn be bounded operators on a Banach space B such
that T (z) = I+

∑
n≥1 z

nTn converges in Hom(B,B) for every z ∈ D,
where D is the open unit disk. Assume that:

(1) (Renewal equation) for every z ∈ D, T (z) = (I − R(z))−1,
where R(z) =

∑
n≥1 z

nRn, Rn ∈ Hom(B,B) and
∑

n≥1 ‖Rn‖ <
+∞.

(2) (Spectral gap) 1 is a simple isolated eigenvalue of R(1).

(3) (Aperiodicity) for every z ∈ D − {1}, I −R(z) is invertible.

Let P be the eigenprojection of R(1) at 1. If
∑

k>n ‖Rk‖ = O(1/nβ)
for some β > 1 and PR′(1)P 6= 0, then for all n

Tn =
1

λ
P +

1

λ2

∞∑
k=n+1

Pk + En, (1.1)

where λ is given by PR′(1)P = λP , Pn =
∑

k>n PRkP and En ∈
Hom(B,B) satisfies ‖En‖ = O(1/nβ) if β > 2, O(log n/n2) if b = 2,
and O(1/n2β−2) if 2 > β > 1.

In our case we apply the theorem by setting, as above,

Rnf = 1X̂ ·P
n(f1{τ=n}) and Tnf = 1X̂ ·P

n(f1X̂) (1.2)
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Theorem A. Let X ⊂ Rm be compact subset with νX = 1 and
X̂ ⊂ X is a compact subset of X with ∪n≥0T

nX̂ = X. Let T : M →
M be a map whose first return map with respect to X̂ is T̂ = T τ ,
and B be a Banach space satisfying Assumption B(a) to (d). We
assume the following.

(i) (Lasota-Yorke inequality) There are constants η ∈ (0, 1), D >
0 such that for any f ∈ B,

|P̂f |B ≤ η|f |B +D‖f‖1. (1.3)

(ii) (Spectral radius) There exist B > 0, D1 > 0 and η1 ∈ (0, 1)
such that

‖R(z)nf‖B ≤ |zn|
(
Bηn1 ‖f‖B +D1‖f‖1

)
. (1.4)

(iii) (Mixing) The measure µ given by µ(f) = ν(hf) has only one

ergodic component, where h is a fixed point of P̂.

(iv) (Aperiodicity) The function eitτ given by the return time is
aperiodic, that is, the only solutions for eitτ = f/f ◦ T almost
everywhere with a measurable function f : X̂ → S are f con-
stant almost everywhere.

If for any n ≥ 1, Rn satisfies
∑∞

k=n+1 ‖Rk‖B < O(n−β) for some
β > 1, then there exists C > 0 such that for any function f ∈ B,
g ∈ L∞(X, ν) with supp f, supp g ⊂ X̂,∣∣∣Cov(f, g ◦ T n)−

( ∞∑
k=n+1

µ(τ > k)
)∫

fdµ

∫
gdµ

∣∣∣ ≤ CFβ(n)‖g‖∞‖f‖B,(1.5)

where Fβ(n) = 1/nβ if β > 2, (log n)/n2 if β = 2, and 1/n2β−2 if
2 > β > 1.
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2 Aperiodicity

The proof of Theorem B is based on a result in [?].

A fibred system is a quintuple (X̃,A, ν, T̃ , ξ), where (X̃,A, ν, T̃ )
is a nonsingular transformation on a σ-finite measure space and
ξ ⊂ A is a finite or countable partition (mod ν) such that:

(1) ξ∞ =
∨∞
i=0 T̃

−iξ generates A;

(2) every A ∈ ξ has positive measure;

(3) for every A ∈ ξ, T̃ |A : A→ T̃A is bimeasurable invertible with
nonsingular inverse.

The transformation given in (0.5) is called the skew products over

ξ. Put P̃ = P̃ν×ρ. A fibred system (X,A, ν, T, ξ) with ν finite is
called skew-product rigid if for every invariant function h(x, y) of

P̃ of an arbitrary skew product T̃S, the set {h(·, y) > 0} is almost
open mod ν for almost every y ∈ Y .

A cylinder C of length n0 is called a cylinder of full returns, if for
almost all x ∈ C there exist nk ↗∞ such that T̂ ni+n0ξni+n0(x) = C.

In this case we say that T̂ n0(C) is a recurrent image set.
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Theorem (ADSZ). Let (X,A, µ, T, ξ) be a skew-product rigid mea-
sure preserving fibred system whose image sets are almost open. Let
G be a locally compact Abelian polish group. If γ ◦ φ = λf/f ◦ T
holds almost everywhere, where φ : X → G, ξ measurable, γ ∈ Ĝ,
λ ∈ S, then f is constant on every recurrent image set.

WE CAN PROVE

Skew product rigidity

Lemma 2.1. For any L1(µ× ρ) function h̃ on X̂ × S that satisfies

P̃µ×ρh̃ = h̃, the set {h̃(·, y) > 0} is almost open with respect to µ.

Existence of a recurrence set

Lemma 2.2. There is a recurrent image set J contained in X̂ with
µJ > 0.
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3 Systems on the multidimensional space

The main difficulty in higher dimensional space comes from un-
bounded distortion in the following sense: there are uncountably
many points z such that for any neighborhood V of z, we can find
ẑ ∈ V with the ratio

| detDT−n1 (z)|/| detDT−n1 (ẑ)|

unbounded as n→∞.

EXAMPLE
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We let M ⊂ R2 and near the fixed point p = (0, 0), the map T
has the form

T (x, y) =
(
x(1 + x2 + y2), y(1 + x2 + y2)2

)
(3.1)

up to order O(|z|4), where z = (x, y) and |z| =
√
x2 + y2.

It is easy to see that

DT (x, y) =

(
1 + 3x2 + y2 +O(|z|4) 2xy +O(|z|4)
4xy +O(|z|4) 1 + 2x2 + 6y2 +O(|z|4)

)
,(3.2)

and

detDT (x, y) = 1 + 5x2 + 7y2 +O(|z|4), (3.3)

Take z′ = (x0, 0) and denote z′n = T−nz′. One can show that

|z′n| ∼
1√
2n

and | detDT−n(z′)| ≤ D′

n5/2
for some D′ > 0. On

the other hand if we take z′′ = (0, y0) and denote z′′n = T−nz′′,

then |z′′n| ∼
1√
4n

and | detDT−n(z′′)| ≥ D′′

n7/4
for some D′′ > 0. So

| detDT−n(z′′)|
| detDT−n(z′)|

→ ∞ as n→∞.

We take a curve from z′ to z′′ that does not contain the origin. If
for every z on the curve, there is a neighborhood V such that for all
ẑ ∈ V , the ratio of the determinants is bounded for all n > 0, then
the ratio | detDT−n(z′′)|/| detDT−n(z′)| should be bounded. This
contradicts the above fact. So we know that there are some points
on the curve at which distortion is unbounded.
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Let X ⊂ Rm, m ≥ 1, be a compact subset with intX = X, d the
Euclidean distance, and ν the Lebesgue measure on X with νX = 1.

Assume taht T : X → X is a map satisfying the following as-
sumptions.

Assumption T′′. (a) (Piecewise smoothness) There are finitely many
disjoint open sets U1, · · · , UK with piesewise smooth boundary
such that X =

⋃K
i=1 Ui and for each i, Ti := T |Ui can be ex-

tended to a C1+α diffeomorphism Ti : Ũi → Bε1(TiUi), where
Ũi ⊃ Ui, α ∈ (0, 1) and ε1 > 0.

(b) (Fixed point) There is a fixed point p ∈ U1 and a neighborhood
V of p such that T−nV /∈ ∂Uj for any j = 1, . . . , K and for any
n ≥ 0.

For any ε0 > 0, denote

GU(x, ε, ε0) = 2
K∑
j=1

ν(T−1
j Bε(∂TUj) ∩B(1−s)ε0(x))

ν(B(1−s)ε0(x))
;
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Remark 3.1. For smooth boundaries

GU(ε, ε0) ≤ 2NUY
γm−1

γm

sε

(1− s)ε0

(
1 + o(1)

)
, where NU is the maximal number of smooth components of the
boundary of all Ui that meet in one point and γm is the volume of
the unit ball in Rm.

For any x ∈ Ui, we define s(x) as the inverse of the slowest
expansion near x, that is,

s(x) = min
{
s : d(x, y) ≤ sd(Tx, Ty).

when x, y are close.
Take a neighborhood Q of p such that TQ ⊂ U1, and denote

Q0 = TQ \Q. Then let

s = s(Q) = max{s(x) : x ∈ X\Q}. (3.4)

Let T̂ = T̃Q be the first return map with respect to X̂ = X̂Q =

X \ Q. Then for any x ∈ Uj, we have T̂ (x) = Tj(x) if Tj(x) /∈ Q,

and T̂ (x) = T i1Tj(x) for some i > 0 if Tj(x) ∈ Q. Denote T̂ij = T i1Tj
for i ≥ 0. Further, we denote U01 = U1 \ Q, U0j = Uj \ T−1

j Q0 if

j > 1, and Uij = T̂−1
ij Q for i > 0.

For 0 < ε ≤ ε0, we denote

GQ(x, ε, ε0) = 2
K∑
j=1

∞∑
i=0

ν(T̂−1
ij Bε(∂G0) ∩B(1−s)ε0(x))

ν(B(1−s)ε0(x))
,

and then denote

G(ε, ε0) = sup
x∈X
{GU(x, ε, ε0) +GQ(x, ε, ε0)}. (3.5)
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Assumption T′′. (c) (Expansion) T satisfies 0 < s(x) < 1 ∀x ∈
X \ {p}.
Moreover, there exists an open region Q with p ∈ Q ⊂ Q ⊂
TQ ⊂ TQ ⊂ U1 and a constants α ∈ (0, 1), η0 ∈ (0, 1), such
that all ε0 small,

sα + λ ≤ η0 < 1,

where s is defined in (3.4) and

λ = 2 sup
ε≤ε0

G(ε, ε0)

εα
εα0 .

(d) (Distortion) For any b > 0, there exist J > 0 such that for any
small ε0 and ε ∈ (0, ε0), we can find 0 < N = N(ε) ≤ ∞ with

| detDT−n1 (y)|
| detDT−n1 (x)|

≤ 1+Jεα ∀y ∈ Bε(x), x ∈ Bε0(Q0), n ∈ (0, N],

and

∞∑
n=N

sup
y∈Bε(x)

| detDT−n1 (y)| ≤ bεm+α ∀x ∈ Bε4(Q0).
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LOCAL BEHAVIORS

To estimate the decay rates, we also assume that there are con-
stants γ′ > γ > 0, Ci, C

′
i > 0, i = 0, 1, 2, such that in a neighborhood

of the indifferent fixed point p = 0,

|x|
(
1− C ′0|x|γ +O(|x|γ′)

)
≤ |T−1

1 x| ≤ |x|
(
1− C0|x|γ +O(|x|γ′)

)
,(3.6)

1− C ′1|x|γ ≤‖DT−1
1 (x)‖ ≤ 1− C1|x|γ, (3.7)

C ′2|x|γ−1 ≤‖D2T−1
1 (x)‖ ≤ C2|x|γ−1. (3.8)

FUNCTIONAL SPACES

Take f ∈ L1(X̂, ν) function f ; define the oscillation

osc(f,Ω) = Esup
Ω

f − Einf
Ω

f.

For 0 < α < 1 and ε0 > 0, we define a seminorm of f as

|f |V = |f |Vαε0 = sup
0<ε≤ε0

ε−α
∫
Rm

osc(f,Bε(x))dν(x), (3.9)

and take the space of the functions as

V = Vαε0 =
{
f ∈ L1(X̂, ν) : |f |V <∞

}
and then equip Vαε0 with the norm

‖ · ‖V = ‖ · ‖1 + | · |V .
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For an open set O, let H = Hα
ε1

= Hα
ε1

(O,H) be the set of Hölder
functions f over O that satisfies |f(x) − f(y)| ≤ Hd(x, y)α for any
x, y ∈ O with d(x, y) ≤ ε1.

Let h be a fixed point of the transfer operator P̂, which will
be unique under the assumption of the theorem below. We define
B = Bαε0,ε1 by

B =
{
f ∈ Vαε0 : ∃H > 0 s.t. (f/h)|VI ∈ Hα

ε1
(VI , H) ∀I ∈ I

}
,

and for any f ∈ B, let

|f |H = |f |Hαε1 = inf{H : (f/h)|VI ∈ Hα
ε1

(VI , H) ∀I ∈ I}.

Let us assume that h > 0 on all Vij, then we define the norm in B
by

‖ · ‖B= ‖ · ‖1 + | · |V + | · |H. (3.10)

Clearly, Bαε0,ε1 ⊂ V
α
ε0

and ‖f‖B ≥ ‖f‖V if f ∈ B.

Let sn = max | detDT n(T−n(x)|−1 : x ∈ Bε(Q0), j = 2, · · ·K}.
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Theorem D. Let X̂, T̂ and B are defined as above. Suppose T
satisfies Assumption T (a) to (d) and Assumption T ′′ (a) to (d).
Then there exist ε0 ≥ ε1 > 0 such that Assumption B(a) to (e)
and Condition (i) to (iv) in Theorem A are satisfied and ‖Rn‖ ≤
O(s

m/(m+α)
n ). Hence, if s

m/(m+α)
n ≤ O(n−1/β) for some β > 1, then

there exists C > 0 such that for any functions f ∈ B, g ∈ L∞(X, ν)
with supp f, supp g ⊂ X̂, (1.5) holds.

In particular, if T satisfies (3.6) to (3.8) near p, then
∞∑

k=n+1

µ(τ >

k) has the order n−(m/γ−1). In this case, if sn = O(n−β
′
) for some

β′ > 1 and

β′ · m

m+ α
≥ m

γ
, (3.11)

then

Cov(f, g ◦ T n) ≈
∞∑

k=n+1

µ(τ > k)

∫
fdµ

∫
gdµ = O(1/nm/γ−1).(3.12)
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3.1 Examples

Example 1. Assume m = 3, and near the fixed point p = (0, 0, 0),
the map T has the form

T (w) =
(
x(1+|w|2+O(|w|3)), y(1+|w|2+O(|w|3)), z(1+2|w|2+O(|w|3)

)
where w = (x, y, z) and |w| =

√
x2 + y2 + z2.

Denote wn = T−n1 w. Clearly, |w| + |w|3 + O(|w|4) ≤ |T (w)| ≤
|w|+ 2|w|3 +O(|w|4). By standard arguments we know that

1√
4n

+O
( 1√

n3

)
≤ |wn| ≤

1√
2n

+O
( 1√

n3

)
. Since it is in three dimensional space, it follows that ν(τ > k) =

O
( 1

k3/2

)
, and therefore

∞∑
k=n+1

ν(τ > k) = O
( 1

n1/2

)
.

It is easy to see that DT (w) has the form1 + 3x2 + y2 + z2 2xy 2xz
2xy 1 + x2 + 3y2 + z2 2yz
4xz 4yz 1 + 2x2 + 2y2 + 6z2

+O(|w|3)

and hence

detDT (w) = 1 + 6x2 + 6y2 + 8z2 +O(|w|3).

We have ||Rn|| ∼ 1
n9/4 and a decay rates of order O(1/

√
n).

19



Example 2. Assume m = 2, and near the fixed point p = (0, 0),
the map T has the form

T (z) =
(
x(1 + |z|γ +O(|z|γ′)), y(1 + 2|z|γ +O(|z|γ′))

)
where z = (x, y), |z| =

√
x2 + y2, γ ∈ (0, 1) and γ′ > γ.

Denote zn = T−n1 z. Since |z| + |z|1+γ + O(|z|γ′) ≤ |T (z)| ≤
|z|+ 2|z|γ +O(|z|γ′),

1

(2γn)1/γ
+O

( 1

nδ

)
≤ |zn| ≤

1

(γn)1/γ
+O

( 1

nδ

)
for some δ > 1/γ (see also Lemma 3.1 in [?]). It follows that ν(τ >

k) = O
( 1

k2/γ

)
, and therefore

∞∑
k=n+1

ν(τ > k) = O
( 1

n2/γ−1

)
.

Also,

DT (z) =

 1 +
(1 + γ)x2 + y2

|z|2−γ
γxy

|z|2−γ
2γxy

|z|2−γ
1 +

2x2 + 2(1 + γ)y2

|z|2−γ

+O(|z|γ′)

and hence

detDT (z) = 1 +
(3 + γ)x2 + (3 + 2γ)y2

|z|2−γ
+O(|z|γ′).

We have ||Rn|| ∼ 1

n
(1+ 3

γ ) 23
and a decay rates of order O(1/n

2
γ
−1).
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Example 3. Assume m = 2, and near the fixed point p = (0, 0),
the map T has the form

T (x, y) =
(
x(1 + x2 + y2), y(1 + x2 + y2)2

)
(3.13)

up to order O(|z|4), where z = (x, y) and |z| =
√
x2 + y2.

The map allows an infinite absolutely continuous invariant mea-
sure. However, the map can be arranged in a way that there is an
invariant component that supports a finite absolutely continuous in-
variant measure µ. Near the fixed point, the region of the component
is of the form

{z = (x, y) : |y| < x2}.

Since |zn| = O(1/
√
n) and for z = (x, y), |y| ≤ x2, we have

ν(τ > k) = O
( 1

k3/2

)
, and

∞∑
k=n+1

ν(τ > k) = O
( 1

n1/2

)
.

On the other hand, a similar computation gives detDT (z) =
1 + 5x2 + 7y2 + O(|z|4). Since |y| ≤ x2, |z| = |x| + O(|z|2). Hence
detDT (z) = 1 + 5|z|2 + O(|z|4), and therefore | detDT−n1 (z)| =
O(1/n5/2).

We have ||Rn|| ∼ 1
n5/3 and a decay rates of order O(1/

√
n).
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