Hyperbolicity of Renormalization for C^r Unimodal Maps A guided tour

Edson de Faria

Department of Mathematics IME-USP

December 13, 2010

(joint work with W. de Melo and A. Pinto) Ann. of Math. **164**(2006), 731–824

History

(日) (四) (三) (三) (三)

 Coullet & Tresser (1978) and Feigenbaum (1978): In one-parameter families of unimodals, they found remarkable universal scaling laws for cascades of period-doubling bifurcations, both in parameter space and in the geometry of the post-critical set of the map at the end of the cascade. Proposed explanation: a period-doubling renomalization operator (with hyperbolic fixed-point).

- Coullet & Tresser (1978) and Feigenbaum (1978): In one-parameter families of unimodals, they found remarkable universal scaling laws for cascades of period-doubling bifurcations, both in parameter space and in the geometry of the post-critical set of the map at the end of the cascade. Proposed explanation: a period-doubling renomalization operator (with hyperbolic fixed-point).
- Lanford (1982): Gave a computer-assisted proof of the existence and hyperbolicity of the fixed-point of the period-doubling operator in a suitable Banach space of real-analytic maps.

- Coullet & Tresser (1978) and Feigenbaum (1978): In one-parameter families of unimodals, they found remarkable universal scaling laws for cascades of period-doubling bifurcations, both in parameter space and in the geometry of the post-critical set of the map at the end of the cascade. Proposed explanation: a period-doubling renomalization operator (with hyperbolic fixed-point).
- Lanford (1982): Gave a computer-assisted proof of the existence and hyperbolicity of the fixed-point of the period-doubling operator in a suitable Banach space of real-analytic maps.
- Campanino & Epstein (1981): Gave a proof of existence of the fixed-point without essential help from computers.

イロト イ理ト イヨト イヨト

- Coullet & Tresser (1978) and Feigenbaum (1978): In one-parameter families of unimodals, they found remarkable universal scaling laws for cascades of period-doubling bifurcations, both in parameter space and in the geometry of the post-critical set of the map at the end of the cascade. Proposed explanation: a period-doubling renomalization operator (with hyperbolic fixed-point).
- Lanford (1982): Gave a computer-assisted proof of the existence and hyperbolicity of the fixed-point of the period-doubling operator in a suitable Banach space of real-analytic maps.
- Campanino & Epstein (1981): Gave a proof of existence of the fixed-point without essential help from computers.

イロト イ理ト イヨト イヨト

History (cont.)

• Lanford & others: Realized that the period-doubling operator is the restriction of a much larger *renormalization operator* and formulated the following.

• Lanford & others: Realized that the period-doubling operator is the restriction of a much larger *renormalization operator* and formulated the following.

Conjecture (Renormalization Conjecture)

The limit set of the renormalization operator (in the space of maps of bounded combinatorial type) is a hyperbolic Cantor set where the operator acts as the full shift in a finite number of symbols.

• Lanford & others: Realized that the period-doubling operator is the restriction of a much larger *renormalization operator* and formulated the following.

Conjecture (Renormalization Conjecture)

The limit set of the renormalization operator (in the space of maps of bounded combinatorial type) is a hyperbolic Cantor set where the operator acts as the full shift in a finite number of symbols.

The challenge: to find a purely conceptual proof of this conjecture.

• Lanford & others: Realized that the period-doubling operator is the restriction of a much larger *renormalization operator* and formulated the following.

Conjecture (Renormalization Conjecture)

The limit set of the renormalization operator (in the space of maps of bounded combinatorial type) is a hyperbolic Cantor set where the operator acts as the full shift in a finite number of symbols.

The challenge: to find a purely conceptual proof of this conjecture.

• Davie (1996): Using hard analysis, extended the hyperbolicity picture (local stable and unstable manifolds) from Lanford's Banach space to the space of $C^{2+\epsilon}$ maps.

Major Breakthroughs

Edson de Faria (IME-USP) Hyperbolicity of Renormalization for C^r Unim

Ξ

イロン イ理ト イヨン イヨン

• Sullivan (1992): Tied the subject to the theory of quadratic-like maps. Established real and complex *a priori* bounds for renormalization. Gave the first conceptual proof of existence of the Cantor limit set (the *attractor* of renormalization), and proved convergence towards the attractor (without a rate).

- Sullivan (1992): Tied the subject to the theory of quadratic-like maps. Established real and complex *a priori* bounds for renormalization. Gave the first conceptual proof of existence of the Cantor limit set (the *attractor* of renormalization), and proved convergence towards the attractor (without a rate).
- McMullen (1996): Proved that the convergence towards the attractor takes place at an exponential rate.

- Sullivan (1992): Tied the subject to the theory of quadratic-like maps. Established real and complex *a priori* bounds for renormalization. Gave the first conceptual proof of existence of the Cantor limit set (the *attractor* of renormalization), and proved convergence towards the attractor (without a rate).
- McMullen (1996): Proved that the convergence towards the attractor takes place at an exponential rate.
- Lyubich (1999): Established the conjecture in the space of *quadratic-like germs* up to affine equivalence, where the renormalization operator is analytic.

- Sullivan (1992): Tied the subject to the theory of quadratic-like maps. Established real and complex *a priori* bounds for renormalization. Gave the first conceptual proof of existence of the Cantor limit set (the *attractor* of renormalization), and proved convergence towards the attractor (without a rate).
- McMullen (1996): Proved that the convergence towards the attractor takes place at an exponential rate.
- Lyubich (1999): Established the conjecture in the space of *quadratic-like germs* up to affine equivalence, where the renormalization operator is analytic.

- dF, de Melo, Pinto (2006): Established Lanford's conjecture in the space of C^r quadratic unimodal maps. Here r is any real number ≥ 2 + α, where α < 1 is the largest of the Hausdorff dimensions of the post-critical sets of maps in the attractor. The proof combines Lyubich's theorem with Davie's *tour de force*.
- The authors also went beyond the conjecture, proving that the local stable manifolds form a C^0 lamination whose holonomy is $C^{1+\beta}$ for some $\beta > 0$. In particular, every smooth curve which is transversal to such lamination intersects it at a set of constant Hausdorff dimension less than one.

Structure of Proof of Hyperbolicity Conjecture

Normalization: $I = [-1, 1], f : I \rightarrow I$ unimodal, even; f'(0) = 0, f(0) = 1.

Normalization: $I = [-1, 1], f : I \rightarrow I$ unimodal, even; f'(0) = 0, f(0) = 1.

- Underlying Banach spaces:
 - $\mathbb{A}^r = \{ v \in C^r(I) : v \text{ is even and } v(0) = 0 \}$, with C^r norm.
 - $\mathbb{B}^r = \{ v = \varphi \circ q \in C^r(I) : \varphi \in C^r([0,1]), \varphi(0) = 0, q(x) = x^2 \}$, the norm of v being the C^r norm of φ .

- 4 周 ト 4 日 ト 4 日 ト - 日

Normalization: $I = [-1, 1], f : I \rightarrow I$ unimodal, even; f'(0) = 0, f(0) = 1.

- Underlying Banach spaces:
 - $\mathbb{A}^r = \{ v \in C^r(I) : v \text{ is even and } v(0) = 0 \}$, with C^r norm.
 - $\mathbb{B}^r = \{ v = \varphi \circ q \in C^r(I) : \varphi \in C^r([0,1]), \varphi(0) = 0, q(x) = x^2 \}$, the norm of v being the C^r norm of φ .
- Orresponding spaces of unimodal maps:
 - $\mathbb{U}^r \subset 1 + \mathbb{A}^r \subset C^r(I)$ consists of all $f: I \to I$ of the form $f(x) = 1 + v(x), v \in \mathbb{A}^r$ with $v''(0) < 0 \ (r \ge 2)$.
 - $\mathbb{V}^r \subset 1 + \mathbb{B}^r$ consists of those $f = \phi \circ q$ such that $\phi([0,1]) \subseteq (-1,1]$, $\phi(0) = 1$ and $\phi'(x) < 0$ for all $0 \le x \le 1$.

Remark: For each $s \leq r$, the inclusion $\mathbb{B}^r \hookrightarrow \mathbb{A}^s$ is (linear and) continuous.

• $f \in \mathbb{U}^r$ is said to be *renormalizable* if there exist p = p(f) > 1 and $\lambda = \lambda(f) = f^p(0)$ such that $f^p[[-|\lambda|, |\lambda|]$ is unimodal and maps $[-|\lambda|, |\lambda|]$ into itself.

- $f \in \mathbb{U}^r$ is said to be *renormalizable* if there exist p = p(f) > 1 and $\lambda = \lambda(f) = f^p(0)$ such that $f^p[[-|\lambda|, |\lambda|]$ is unimodal and maps $[-|\lambda|, |\lambda|]$ into itself.
- With p smallest possible, the *first renormalization* of f is the map $Rf: [-1,1] \rightarrow [-1,1]$ given by

$$Rf(x) = \frac{1}{\lambda} f^{p}(\lambda x)$$
 (1)

(김희) 김 글 (김) (글) (글)

- $f \in \mathbb{U}^r$ is said to be *renormalizable* if there exist p = p(f) > 1 and $\lambda = \lambda(f) = f^p(0)$ such that $f^p[[-|\lambda|, |\lambda|]$ is unimodal and maps $[-|\lambda|, |\lambda|]$ into itself.
- With p smallest possible, the first renormalization of f is the map $Rf: [-1,1] \rightarrow [-1,1]$ given by

$$Rf(x) = \frac{1}{\lambda} f^{p}(\lambda x)$$
 (1)

• $\Delta_j = f^j([-|\lambda|, |\lambda|])$, for $0 \le j \le p - 1$, are pairwise disjoint and their relative order inside [-1, 1] determines a *unimodal* permutation θ of $\{0, 1, \ldots, p - 1\}$.

- $f \in \mathbb{U}^r$ is said to be *renormalizable* if there exist p = p(f) > 1 and $\lambda = \lambda(f) = f^p(0)$ such that $f^p[[-|\lambda|, |\lambda|]$ is unimodal and maps $[-|\lambda|, |\lambda|]$ into itself.
- With p smallest possible, the first renormalization of f is the map $Rf: [-1,1] \rightarrow [-1,1]$ given by

$$Rf(x) = \frac{1}{\lambda} f^{p}(\lambda x)$$
 (1)

- $\Delta_j = f^j([-|\lambda|, |\lambda|])$, for $0 \le j \le p 1$, are pairwise disjoint and their relative order inside [-1, 1] determines a *unimodal* permutation θ of $\{0, 1, \ldots, p 1\}$.
- The set of all unimodal permutations is denoted **P**.

イロト イポト イヨト イヨト 三日

<ロ>
<ロ>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<=>
<

<ロ> <四> <四> <三> <三> <三> <三> <三> <三> <三> <三</p>

< ロ > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

< ロ > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Edson de Faria (IME-USP)

Hyperbolicity of Renormalization for C^r Unim

December 13, 2010 9 / 31
The set of f ∈ U^r that are renormalizable with the same unimodal permutation θ ∈ P is a connected subset of U^r denoted U^r_θ.

- The set of f ∈ U^r that are renormalizable with the same unimodal permutation θ ∈ P is a connected subset of U^r denoted U^r_θ.
- Hence we have the so-called *renormalization operator*

$$R: \bigcup_{\theta \in \mathbf{P}} \mathbb{U}_{\theta}^{r} \to \mathbb{U}^{r} .$$
⁽²⁾

- The set of f ∈ U^r that are renormalizable with the same unimodal permutation θ ∈ P is a connected subset of U^r denoted U^r_θ.
- Hence we have the so-called renormalization operator

$$R: \bigcup_{\theta \in \mathbf{P}} \mathbb{U}_{\theta}^{r} \to \mathbb{U}^{r} .$$
⁽²⁾

• For $\Theta \subseteq \mathbf{P}$ finite and $\theta_0, \theta_1, \dots, \theta_n, \dots \in \Theta$, write

$$\mathbb{U}_{\theta_0,\theta_1,\cdots,\theta_n,\cdots}^r = \mathbb{U}_{\theta_0}^r \cap R^{-1}\mathbb{U}_{\theta_1}^r \cap \cdots \cap R^{-n}\mathbb{U}_{\theta_n}^r \cap \cdots ,$$

and define

$$\mathcal{D}_{\Theta}^{r} = \bigcup_{(\theta_{0},\theta_{1},\cdots,\theta_{n},\cdots)\in\Theta^{\mathbb{N}}} \mathbb{U}_{\theta_{0},\theta_{1},\cdots,\theta_{n},\cdots}^{r} .$$

10 / 31

- The set of f ∈ U^r that are renormalizable with the same unimodal permutation θ ∈ P is a connected subset of U^r denoted U^r_θ.
- Hence we have the so-called renormalization operator

$$R: \bigcup_{\theta \in \mathbf{P}} \mathbb{U}_{\theta}^{r} \to \mathbb{U}^{r} .$$
⁽²⁾

• For $\Theta \subseteq \mathbf{P}$ finite and $\theta_0, \theta_1, \dots, \theta_n, \dots \in \Theta$, write

$$\mathbb{U}_{\theta_0,\theta_1,\cdots,\theta_n,\cdots}^r = \mathbb{U}_{\theta_0}^r \cap R^{-1}\mathbb{U}_{\theta_1}^r \cap \cdots \cap R^{-n}\mathbb{U}_{\theta_n}^r \cap \cdots ,$$

and define

$$\mathcal{D}_{\Theta}^{r} = \bigcup_{(\theta_{0},\theta_{1},\cdots,\theta_{n},\cdots)\in\Theta^{\mathbb{N}}} \mathbb{U}_{\theta_{0},\theta_{1},\cdots,\theta_{n},\cdots}^{r} .$$

The maps in D^r_Θ are *infinitely renormalizable* maps with (bounded) combinatorics belonging to Θ.

Edson de Faria (IME-USP) Hyperbolicity of Renormalization for C^r Unim

H₀(V): real Banach space of holomorphic functions on V which commute with complex conjugation and are continuous up to the boundary of V, with the C⁰ norm.

- H₀(V): real Banach space of holomorphic functions on V which commute with complex conjugation and are continuous up to the boundary of V, with the C⁰ norm.
- ② $A_V \subset \mathcal{H}_0(V)$: closed linear subspace of functions of the form $\varphi = \phi \circ q$, where $q(z) = z^2$ and $\phi : q(V) \to \mathbb{C}$ holomorphic with $\phi(0) = 0$.
- U_V: the set of functions of the form f = 1 + φ, where φ = φ ∘ q ∈ A_V and φ is *univalent* on some neighborhood of [-1,1] contained in V, such that the restriction of f to [-1,1] is unimodal.

Note that $\mathbb{U}_V \subset 1 + \mathbb{A}_V \simeq \mathbb{A}_V$ is open, so \mathbb{U}_V is a Banach manifold. We denote by Ω_a the set of points in the complex plane whose distance from the interval [-1, 1] is smaller than *a*.

Complex Bounds

Edson de Faria (IME-USP) Hyperbolicity of Renormalization for C^r Unim December 13, 2010 12 /

Complex Bounds

• After enough renormalizations, every ∞ -ly renormalizable map $f \in \mathbb{A}_{\Omega}$ becomes quadratic-like with definite modulus.

Theorem (Sullivan's Complex Bounds)

Let $\Theta \subseteq \mathbf{P}$ be a non-empty finite set. Then there exist a > 0, a compact subset $\mathbb{K} = \mathbb{K}_{\Theta} \subseteq \mathbb{A}_{\Omega_a} \cap \mathcal{D}_{\Theta}^{\omega}$ and $\mu > 0$ with the following properties.

Theorem (Sullivan's Complex Bounds)

Let $\Theta \subseteq \mathbf{P}$ be a non-empty finite set. Then there exist a > 0, a compact subset $\mathbb{K} = \mathbb{K}_{\Theta} \subseteq \mathbb{A}_{\Omega_a} \cap \mathcal{D}_{\Theta}^{\omega}$ and $\mu > 0$ with the following properties.

(i) Each $f \in \mathbb{K}$ has a quadratic-like extension with conformal modulus bounded from below by μ .

Theorem (Sullivan's Complex Bounds)

Let $\Theta \subseteq \mathbf{P}$ be a non-empty finite set. Then there exist a > 0, a compact subset $\mathbb{K} = \mathbb{K}_{\Theta} \subseteq \mathbb{A}_{\Omega_a} \cap \mathcal{D}_{\Theta}^{\omega}$ and $\mu > 0$ with the following properties.

- (i) Each $f \in \mathbb{K}$ has a quadratic-like extension with conformal modulus bounded from below by μ .
- (ii) We have R(K) ⊆ K, and the restriction of R to K is a homeomorphism which is topologically conjugate to the two-sided shift σ : Θ^Z → Θ^Z.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Sullivan's Complex Bounds)

Let $\Theta \subseteq \mathbf{P}$ be a non-empty finite set. Then there exist a > 0, a compact subset $\mathbb{K} = \mathbb{K}_{\Theta} \subseteq \mathbb{A}_{\Omega_a} \cap \mathcal{D}_{\Theta}^{\omega}$ and $\mu > 0$ with the following properties.

- (i) Each $f \in \mathbb{K}$ has a quadratic-like extension with conformal modulus bounded from below by μ .
- (ii) We have R(K) ⊆ K, and the restriction of R to K is a homeomorphism which is topologically conjugate to the two-sided shift σ : Θ^Z → Θ^Z.
- (iii) For all $g \in \mathcal{D}_{\Theta}^{r} \cap \mathbb{V}^{r}$, with $r \geq 2$, there exists $f \in \mathbb{K}$ with the property that $||R^{n}(g) R^{n}(f)||_{C^{0}(I)} \to 0$ as $n \to \infty$.

イロト イポト イヨト イヨト 三日

Theorem (Sullivan's Complex Bounds)

Let $\Theta \subseteq \mathbf{P}$ be a non-empty finite set. Then there exist a > 0, a compact subset $\mathbb{K} = \mathbb{K}_{\Theta} \subseteq \mathbb{A}_{\Omega_a} \cap \mathcal{D}_{\Theta}^{\omega}$ and $\mu > 0$ with the following properties.

- (i) Each $f \in \mathbb{K}$ has a quadratic-like extension with conformal modulus bounded from below by μ .
- (ii) We have R(K) ⊆ K, and the restriction of R to K is a homeomorphism which is topologically conjugate to the two-sided shift σ : Θ^Z → Θ^Z.
- (iii) For all $g \in \mathcal{D}_{\Theta}^{r} \cap \mathbb{V}^{r}$, with $r \geq 2$, there exists $f \in \mathbb{K}$ with the property that $||R^{n}(g) R^{n}(f)||_{C^{0}(I)} \to 0$ as $n \to \infty$.

イロト イポト イヨト イヨト 三日

Remark:

Item (ii) above means that there exists a homeomorphism $H: \mathbb{K} \to \Theta^{\mathbb{Z}}$ such that the diagram

commutes.

13 / 31

McMullen proved that the convergence towards $\mathbb K$ takes place at an exponential rate in the C^0 topology.

∃ → 3

< A → <

McMullen proved that the convergence towards \mathbb{K} takes place at an exponential rate in the C^0 topology.

Theorem (McMullen)

If f and g are infinitely renormalizable quadratic-like maps with the same bounded combinatorial type in $\Theta \subset P$, and with conformal moduli greater than or equal to μ , we have

$$\|R^n f - R^n g\|_{C^0(I)} \le C\lambda^n$$

for all $n \ge 0$ where $C = C(\mu, \Theta) > 0$ and $0 < \lambda = \lambda(\Theta) < 1$.

McMullen proved that the convergence towards \mathbb{K} takes place at an exponential rate in the C^0 topology.

Theorem (McMullen)

If f and g are infinitely renormalizable quadratic-like maps with the same bounded combinatorial type in $\Theta \subset P$, and with conformal moduli greater than or equal to μ , we have

$$\|R^n f - R^n g\|_{C^0(I)} \le C\lambda^n$$

for all $n \ge 0$ where $C = C(\mu, \Theta) > 0$ and $0 < \lambda = \lambda(\Theta) < 1$.

Lyubich endowed the space \mathcal{QG} of quadratic-like germs (modulo affine equivalence) with a complex manifold structure modeled in a topological vector space (arising as the direct limit of a certain net of Banach spaces of analytic functions). The attractor \mathbb{K} is naturally embedded in \mathcal{QG} as a compact set.

Theorem (Lyubich)

In the space QG, the renormalization operator is complex-analytic, and its limit set \mathbb{K} is a hyperbolic basic set.

This deep theorem is the crowning jewel of this theory.

Theorem (Hyperbolicity in a real Banach space)

There exist a > 0, an open set $\mathbb{O} \subset \mathbb{A} = \mathbb{A}_{\Omega_a}$ containing $\mathbb{K} = \mathbb{K}_{\Theta}$ and a positive integer N with the following property. There exists a real analytic operator $T : \mathbb{O} \to \mathbb{A}$ having \mathbb{K} as a hyperbolic basic set with co-dimension one stable manifolds at each point, such that $T(f)|[-1,1] = \mathbb{R}^N(f|[-1,1])$, for all $f \in \mathbb{O}$, is the N-th iterate of the renormalization operator.

Theorem (Hyperbolicity in a real Banach space)

There exist a > 0, an open set $\mathbb{O} \subset \mathbb{A} = \mathbb{A}_{\Omega_a}$ containing $\mathbb{K} = \mathbb{K}_{\Theta}$ and a positive integer N with the following property. There exists a real analytic operator $T : \mathbb{O} \to \mathbb{A}$ having \mathbb{K} as a hyperbolic basic set with co-dimension one stable manifolds at each point, such that $T(f)|[-1,1] = \mathbb{R}^N(f|[-1,1])$, for all $f \in \mathbb{O}$, is the N-th iterate of the renormalization operator.

Proof Ingredients: Lyubich's theorem + the complex bounds + skew-product renormalization.

イロト イポト イヨト イヨト 三日

Hyperbolicity in C^r

Edson de Faria (IME-USP) Hyperbolicity of Renormalization for C^r Unin December 13, 2010 17 / 31

• The renormalization operator is not Fréchet differentiable in C^r.

∃ → 3

- The renormalization operator is *not* Fréchet differentiable in C^r.
- So, what does it mean to say that it is hyperbolic?

- The renormalization operator is *not* Fréchet differentiable in C^r.
- So, what does it mean to say that it is hyperbolic?
- Well, we can still talk about the *hyperbolic picture* (stable and unstable manifolds).

- The renormalization operator is *not* Fréchet differentiable in C^r.
- So, what does it mean to say that it is hyperbolic?
- Well, we can still talk about the *hyperbolic picture* (stable and unstable manifolds).
- More precisely, let $T : \mathcal{O} \to \mathcal{B}$ be a continuous operator, with \mathcal{B} Banach, $\mathcal{O} \subset \mathcal{B}$ open and $\mathbb{K} \subset \mathcal{O}$ a compact invariant set.

- The renormalization operator is *not* Fréchet differentiable in C^r.
- So, what does it mean to say that it is hyperbolic?
- Well, we can still talk about the *hyperbolic picture* (stable and unstable manifolds).
- More precisely, let $T : \mathcal{O} \to \mathcal{B}$ be a continuous operator, with \mathcal{B} Banach, $\mathcal{O} \subset \mathcal{B}$ open and $\mathbb{K} \subset \mathcal{O}$ a compact invariant set.

Definition (Hyperbolic Picture)

We say that the hyperbolic picture holds true for T (and \mathbb{K}) if there exists $0 < \theta < 1$ such that:

- (i) For all $x \in \mathbb{K}$, $W^{s}_{\epsilon}(x)$ and $W^{u}_{\epsilon}(x)$ are Banach submanifolds of \mathcal{B} .
- (ii) If $y \in W^s(x)$ then

$$||T^{n}(x) - T^{n}(y)|| \leq C\theta^{n}||x - y||$$
.

Moreover, $T(W^u_{\epsilon}(x)) \supseteq W^u_{\epsilon}(T(x))$, the restriction of T to $W^u_{\epsilon}(x)$ is one-to-one and for all $y \in W^u_{\epsilon}(x)$ we have

$$\left\| T^{-n}(x) - T^{-n}(y) \right\| \leq C \theta^n \|x - y\|$$
.

- (iii) If $y \in \mathcal{B}(x, \epsilon)$ is such that $T^{i}(y) \in \mathcal{B}(T^{i}(x), \epsilon)$ for $i \leq n$ then $\operatorname{dist}(T^{n}(y), W^{u}_{\epsilon}(T^{n}(x))) \leq C\theta^{n}$, as well as $\operatorname{dist}(y, W^{s}_{\epsilon}(x)) \leq C\theta^{n}$.
- (iv) The family of local stable manifolds (and also the family of local unstable manifolds) form a C^0 lamination: the tangent spaces to the leaves vary continuously.

Theorem (Hyperbolic Picture in \mathbb{U}^r)

If $r \ge 2 + \alpha$, where $\alpha > 0$ is close to one, then the hyperbolic picture holds true for the renormalization operator acting on \mathbb{U}^r . Furthermore,

- (i) the local unstable manifolds are real analytic curves;
- (ii) the local stable manifolds are of class C^1 , and together they form a continuous lamination whose holonomy is $C^{1+\beta}$ for some $\beta > 0$;

The proof is long, but not painful.

- Starting from the hyperbolicity of *T* = *R^N* in *A* (our Banach space of *C^ω* maps), we first extend the hyperbolic splitting (stable and unstable subspaces) at each point of the attractor from *A* to *A^r*. This *linear* part depends on the notion of *compatibility*.
- Second, we prove that the stable sets of points of K in A^r are graphs of C¹ functions defined over the corresponding extended stable subspaces obtained in the first step. This *non-linear* part depends on the notion of *robustness*.

The notion of compatibility involves the following data.

- Banach spaces A ⊂ B ⊂ C (typically, each inclusion compact with a dense image).
- A C^1 operator $T : \mathcal{O} \to \mathcal{A}$ ($\mathcal{O} \subset \mathcal{A}$ open) with a hyperbolic basic set $\mathbb{K} \subset \mathcal{O}$.

For each $x \in \mathbb{K}$, we want to extend DT(x) and its hyperbolic splitting from \mathcal{A} to \mathcal{B} .

The basic principle at work here is: boundedness in C yields pre-compactness in B.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Compatibility (cont.)

Definition

Let $\theta < \rho < \lambda$ where θ, λ are the contraction and expansion exponents of $T|\mathbb{K}$. The pair $(\mathcal{B}, \mathcal{C})$ is ρ -compatible with (T, \mathbb{K}) if:

- The inclusions $\mathcal{A} \to \mathcal{B} \to \mathcal{C}$ are compact operators.
- 2 There exists M > 0 such that each linear operator $L_x = DT(x)$ extends to a linear operator $\hat{L}_x : C \to C$ with

$$\left\| \hat{L}_x
ight\|_{\mathcal{C}} < M \;, \; \hat{L}_x(\mathcal{B}) \subset \mathcal{B} \;, \; ext{and} \; \left\| \hat{L}_x(v)
ight\|_{\mathcal{B}} < M \|v\|_{\mathcal{B}} \;.$$

- **3** The map $\tilde{L} : \mathbb{K} \to \mathcal{L}(\mathcal{B}, \mathcal{C})$ given by $\tilde{L}_x = \hat{L}_x | \mathcal{B}$ is continuous.
- There exists $\Delta > 1$ such that $\mathcal{B}(\Delta) \cap \mathcal{A}$ is \mathcal{C} -dense in $\mathcal{B}(1)$.
- Solution There exist K > 1 and a positive integer m such that

$$\left\| \hat{L}_x^{(m)}(v)
ight\|_{\mathcal{B}} \leq \max\left\{ rac{
ho^m}{2(1+\Delta)} \|v\|_{\mathcal{B}}, K\|v\|_{\mathcal{C}}
ight\} \; .$$

Theorem

If $(\mathcal{B}, \mathcal{C})$ is ρ -compatible with $(\mathcal{T}, \mathbb{K})$, then there exists a continuous splitting $\mathcal{B} = \hat{E}_x^u \oplus \hat{E}_x^s$ such that

- \hat{E}^u_x is the inclusion of $E^u_x \subset \mathcal{A}$ in \mathcal{B} .
- The splitting is invariant under \hat{L}_{x} .
- We have $\|\hat{L}_{x}^{n}(v)\|_{\mathcal{B}} \geq C\lambda^{n}\|v\|_{\mathcal{B}}$, for all $v \in \hat{E}_{x}^{u}$.
- We have $\|\hat{L}_x^n(v)\|_{\mathcal{B}} \leq C\hat{\theta}^n \|v\|_{\mathcal{B}}$, for all $v \in \hat{E}_x^s$ and some $0 < \hat{\theta} < \rho$.

Remark: In particular, if $\rho \leq 1$, then $\hat{\theta} < 1$, and so therefore the hyperbolic splitting in \mathcal{A} remains hyperbolic in \mathcal{B} .

Theorem

Let T and K be as above, and let λ be the expansion constant of T|K.

- For all α > 0 the pair of spaces (A^{2+α}, A⁰) is 1-compatible with (T, K).
- For all 1 < ρ < λ there exists α > 0 sufficiently small such that (A^{2-α}, A⁰) is ρ-compatible with (T, K).

An operator T is *robust* if:

- It acts on four Banach spaces simultaneously: $\mathcal{A} \subset \mathcal{B} \subset \mathcal{C} \subset \mathcal{D}$.
- In \mathcal{A} , \mathcal{T} has a hyperbolic basic set \mathbb{K} (with expansion contant λ).
- $(\mathcal{B}, \mathcal{D})$ is 1-compatible with $(\mathcal{T}, \mathbb{K})$
- $(\mathcal{C}, \mathcal{D})$ is ρ -compatible with $(\mathcal{T}, \mathbb{K})$ for some $\rho < \lambda$.
- As a map from \mathcal{B} to \mathcal{C} , T is \mathcal{C}^1 .
- T satisfies a uniform Gateaux condition in C for directions in \mathcal{B} .
- The extension of *DT* to *B* is a *reasonably good approximation* of *T* near K.

Theorem

Let $T : \mathcal{O}_{\mathcal{A}} \to \mathcal{A}$ be a C^k with $k \ge 2$ (or real analytic) hyperbolic operator over $\mathbb{K} \subset \mathcal{O}_{\mathcal{A}}$, and robust with respect to $(\mathcal{B}, \mathcal{C}, \mathcal{D})$. Then the hyperbolic picture holds true T acting on \mathcal{B} . The local unstable manifolds are C^k with $k \ge 2$ (or real analytic) curves, and the local stable manifolds are of class C^1 and form a C^0 lamination.

The proof is long and painful. Uncountably many norm estimates.
Theorem

Let $T = R^N : \mathbb{O} \to \mathbb{A}$ be the renormalization operator in the Banach space of C^{ω} maps constructed before. If $s > s_0$ with $s_0 < 2$ sufficiently close to 2 and r > s + 1 not an integer, then T is a robust operator with respect to $(\mathbb{A}^r, \mathbb{A}^s, \mathbb{A}^0)$.

Remark: Here, we can take $s_0 = 1 + D$, where $D = \sup_{f \in \mathbb{K}} HD(\mathcal{I}_f)$, where \mathcal{I}_f is the post-critical set of f.

The proof that the renormalization operator T satisfies both *compatibility* and *robustness* depends on two key estimates concerning the geometry of the post-critical set of maps in the attractor. These come into play when we analyze the (formal) derivative of a power of T at $f \in \mathbb{K}$, namely:

$$DT^{k}(f)v = \frac{1}{\lambda_{k}} \sum_{j=0}^{p_{k}-1} Df^{j}(f^{p_{k}-j}(\lambda_{k}x))v(f^{p_{k}-j-1}(\lambda_{k}x)) + \frac{1}{\lambda_{f}} [x(T^{k}f)'(x) - T^{k}f(x)] \sum_{j=0}^{p_{k}-1} Df^{j}(f^{p_{k}-j}(0))v(f^{p_{k}-j-1}(0)) ,$$

29 / 31

From bounded geometry (the real bounds), the terms appearing in the expression of $DT^{k}(f)$ can be estimated using the lengths of renormalization intervals $\Delta_{j,k}$ at level k. Thus:

$$|Df^{j}(f^{p_{k}-j}(\lambda_{k}x))| \asymp \frac{|\Delta_{0,k}|}{|\Delta_{p_{k}-j,k}|}$$
(3)

and also

$$|Df^{p_k-j-1}(\lambda_k x)| \le C |\Delta_{0,k}| \frac{|\Delta_{p_k-j-1,k}|}{|\Delta_{1,k}|}$$
(4)

for all $0 \leq j \leq p_k - 1$.

Key Geometric Estimates (cont.)

Given those facts, to verify compatibility and robustness one needs the following (where $D = \sup_{f \in \mathbb{K}} HD(\mathcal{I}_f)$).

Theorem

• For each $\alpha > 0$ there exist constants C_0 and $0 < \mu < 1$ such that

$$\sum_{i=0}^{p_k-1} \frac{|\Delta_{i,k}|^{2+\alpha}}{|\Delta_{i+1,k}|} \le C_0 \mu^k .$$
(5)

 For each μ > 1 close to one, there exist 0 < α < 1 − D close to zero and C₁ > 0 such that for all f ∈ K we have

$$\sum_{i=0}^{p_k-1} \frac{|\Delta_{i,k}|^{2-\alpha}}{|\Delta_{i+1,k}|} \le C_1 \mu^k \; .$$