
Renormalization of Hamiltonians and vector fields
(Notes for a mini-course, Warwick U, Dec 2010)

(H. Koch, UT Austin)

1. Invariant tori and equivalence
2. Why renormalization
3. Special cases and results
4. Scaling
5. Nonresonant modes
6. Reduction to normal form
7. Combining the steps
8. Diophantine frequencies
9. Invariant tori
10. Some open problems

1. Invariant tori and equivalence
Introducing the flow, invariant tori, and equivalence of Hamiltonians.

1.1. Invariant tori

Consider the vector field on M = Td × Rd generated by a differentiable
Hamiltonian H : M → R,

q̇ = ∇pH(q, p) ,

ṗ = −∇qH(q, p) ,

and the corresponding flow Φ,

(
q(t), p(t)

)
= Φt(q0, p0) .

The time-t map Φt is a symplectic map on M, that is, it preserves the
2-form

d∑

j=1

dqj ∧ dpj .

1
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Integrable example: For ω ∈ Rd the Hamiltonian

K(M)(q, p) = ω · p+ 1
2 (Mp) · p , M = M∗ .

The corresponding vector field and flow are

q̇ = ω +Mp ,

ṗ = 0 ,

Ψt(q0, p0) =
(
q0 + t[ω +Mp0], p0

)
.

Notice that M is foliated by invariant tori Td×{p0} with frequency vectors
ω +Mp0 . From now on restrict Ψt to p0 = 0.

By an invariant torus for H, with rotation vector ω, we mean a locally
one-to-one map Γ : Td × {0} → M that satisfies

Φt ◦ Γ = Γ ◦Ψt .

1.2. Persistence of smooth invariant tori

Let β > 0. A nonzero vector ω ∈ Rd is of class Diophantine(β) if there
exists C > 0 such that

|ω · ν| ≥ C‖ν‖1−d−β , ν ∈ Zd \ {0} .

KAM Theorem. If ω is Diophantine, M nonsingular, H analytic and

near K(M), then H has an analytic invariant torus with frequency vector ω.

The proof yields symplectic transformations U1, U2, . . . such that

H ◦ U1 ◦ U2 ◦ . . . ◦ Un → K(0),

on domains shrinking down to Td × {0}. The invariant torus is

Γ = U1 ◦ U2 ◦ . . .

Renormalization does something similar, except that the domain does not
shrink. So one gets a dynamical system on a space of Hamiltonians.
(But this is not the only goal of renormalization.)
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1.3. Symplectic changes of coordinates

Consider symplectic diffeos Λ : M → M that can be decomposed

Λ = T ◦ UΛ = T ◦ UΛ = T ◦ U , T (q, p) =
(
Tq, (T ∗)−1p

)
,

where ±T is an integer matrix in SL(d,Z), and U is homotopic to the
identity.

Under such a change of coordinates,

H̃ = H ◦ Λ , Φ̃t = Λ−1 ◦ Φt ◦ Λ ,

and

Γ̃ = Λ−1 ◦ Γ ◦ T , ω̃ = T−1ωω̃ = T−1ωω̃ = T−1ω . (∗)

Thus, as far as frequencies are concerned,

T is “relevant” (changes frequencies),
U is “irrelevant” (does not change frequencies).

Formal proof that H̃ has an invariant torus as described by (∗), assuming

that H has an invariant ω-torus Γ. Define ω̃ and Γ̃ by equation (∗). For
the linear flows we have

(
T ◦ Ψ̃t

)
(q, 0) = T

(
q + tω̃, 0

)
=

(
T (q + tω̃), 0

)

= (Tq + tω, 0) = Ψt(Tq, 0)

=
(
Ψt ◦ T

)
(q, 0) .

Thus,

Γ̃ ◦ Ψ̃t = Λ−1 ◦ Γ ◦ T ◦ Ψ̃t = Λ−1 ◦ Γ ◦Ψt ◦ T
= Λ−1 ◦ Φt ◦ Γ ◦ T = Φ̃t ◦ Λ−1 ◦ Γ ◦ T
= Φ̃t ◦ Γ̃ ,

which shows that Γ̃ is an invariant ω̃-torus for H̃.
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1.4. Equivalence

Consider the group G of transformations H1 7→ H4 generated by

Scaling of energy/time: (E will be ignored later)

H2 = η−1H1 − E .

Scaling of momenta:

H3 = µ−1H2 ◦ Sµ , Sµ(q, p) = (q, µp) .

Symplectic changes of coordinates:

H4 = H3 ◦ U , U homotopic to I .

This defines an equivalence relation

H4 ∼ H1 (mod G)H4 ∼ H1 (mod G)H4 ∼ H1 (mod G) .

Notice: equivalent Hamiltonians have invariant tori with the same frequency
ratios ωj/ωd .

Interesting question: Can H ◦ T ∼ H hold for some nontrivial H and T?

2. Why renormalization

We describe observations that motivated renormalization, and then give a
formal definition of the RG transformation.

2.1. Golden mean tori

Consider d = 2 and periodic orbits with rotation numbers approximating
the inverse golden mean

an
bn

=
1

1
,
1

2
,
2

3
,
3

5
,
5

8
→ ϑ−1 =

√
5− 1

2
= 0.618033 . . .
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The continued fraction approximants an

bn
for ϑ−1 can be obtained via

[
an
bn

]
=

[
0 1
1 1

]n [
0
1

]
=

[
1
1

]
,

[
1
2

]
,

[
2
3

]
,

[
3
5

]
,

[
5
8

]
, . . .

We are interested in invariant tori with rotation vectors parallel to ω,

ω =

[
ϑ−1

1

]
, Tω = ϑω , T =

[
0 1
1 1

]
.

As a concrete example, consider the Hamiltonians

H(β)(q, p) = ω · p+ 1
2p

2
1 + β

[
cos(q1) + cos(q1 − q2)

]
,

and restrict to a “surface” of fixed energy, say H = 0. This is essentially
the Hamiltonian that was used in [D.F. Escande ’85].

For β = 0, we have an invariant ω-torus at p = 0, and periodic an

bn
-orbits at

p1 =
an
bn

− ϑ−1 ≈ (−ϑ)−n , p2 = −ϑ−1p1 − 1
2p

2
1 .

These orbits accumulate at a rate ϑ−n, in the direction Ω =
[

1
ϑ−1

]
.

By KAM, the ω-torus persists for small β > 0.
So do the an

bn
-orbits, and the asymptotic accumulation ratio remains ϑ−1.
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2.2. Breakup

Observations for Hamiltonian flows [D.F. Escande and F. Doveil ’81, . . .]
and area-preserving maps [L.P. Kadanoff ’81, R.S. MacKay ’82, . . .] are:

Increasing β past a critical β∞ , the golden invariant torus breaks up.

After that, the an

bn
-orbits bifurcate from elliptic to hyperbolic.

These bifurcations occur at values βn ↓ β∞ , and

βn+1 − βn

βn − βn−1
→ δ−1

2 .

At β = β∞ , the an

bn
-orbits accumulate at the ω-torus in an asymptotically

geometric fashion, characterized by scaling constants λ1, λ2, λ3, λ4 .

The scaling values are observed to be universal,

that is, independent of the family β 7→ H(β).

δ2 = 1.6279502 . . .

δ1 = −1/(ϑµ∗)

µ∗ = 0.230460196 . . .

λ1 = ϑ

λ3 = −0.326063 . . .

λ2 = µ∗/λ3

λ4 = µ∗/λ1

Expected explanation in a space A of analytic Hamiltonians:
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The RG transformation R should be hyperbolic and satisfy

R(Σn+1) ⊂ Σn , R(H∗) = H∗ .

2.3. Renormalization: basic ideas

The simplest map R with the property R(Σn+1) ⊂ Σn is

H 7→ H ◦ T , T (q, p) =
(
Tq, (T ∗)−1p

)
.

Namely, if γ is an orbit for H ◦ T with rotation vector w, then T γ is an
orbit for H, with rotation vector Tw.

So, as proposed first by [D.F. Escande and F. Doveil ’81], we want

R(H) ∼ H ◦ T (mod G)R(H) ∼ H ◦ T (mod G)R(H) ∼ H ◦ T (mod G) .
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Re-normalization: Define R(H) to be the unique H̃ ∈ A+ that lies on the
orbit of G through H ◦T . Here, A+ is a subspace of A that is transversal to
the orbits of G. The Hamiltonians in A+ are said to be in “normal form”.

More specifically,

R(H) = 1
ηµ

H ◦ T ◦ Sµ ◦ UR(H) = 1
ηµ

H ◦ T ◦ Sµ ◦ UR(H) = 1
ηµ

H ◦ T ◦ Sµ ◦ U ,

where Sµ(q, p) = (q, µp), and where U is a symplectic change of variables,
homotopic to the identity. The quantities η, µ, and U depend on H.

For a local analysis, U ≈ U for some fixed U , so we can write

R(H0) = H ◦ UH , H =
1

ηµ
H0 ◦ T ◦ Sµ ◦ U ,

with UH close to the identity.

Main issue: Find an appropriate normal form subspace A+ and control the
map H 7→ UH .
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Here, and in what follows, T can be any d× d integer matrix with determi-
nant ±1, whose eigenvalues satisfy

ϑ1 > 1 > |ϑ2| ≥ . . . ≥ |ϑd| .

The largest eigenvalue ϑ = ϑ1 is assumed to be simple. We will also need
the corresponding eigenvectors,

TΩj = ϑjΩj , j = 1, 2, . . . , d .

3. Special cases and results

We start by renormalizing integrable Hamiltonians; then describe results
for near-integrable and near-critical Hamiltonians. The connection with
the commuting maps approach is described as well.

3.1. Integrable Hamiltonians

Start with the simple Hamiltonian

K(m)(q, p) = ω · p+ m

2
(Ωd · p)2 , ω = Ω1 .

If m is chosen nonzero, assume that ϑd is real and simple. Notice that K(m)

is degenerate, but for d = 2 and m 6= 0 it is isoenergetically nondegenerate
(meaning that . . .).

Consider integrable Hamiltonians

H(q, p) = K(m)(q, p) + h(z1, z2, . . . , zd) , zj = Ωj · p .

For such Hamiltonians we can choose U = I in the definition of R.
Then H̃ = R(H) is of the form

H̃(q, p) =
1

ηϑ1
(ω · p) + µ

ηϑ2
d

m

2
(Ωd · p)2 +

1

ηµ
h
(
µϑ−1

1 z1, . . . , µϑ
−1
d zd

)
.
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In particular, K(m) is a fixed point of R with the choice

η = ϑ−1
1 , µ = ϑ−1

1 ϑ2
d .

Consider these values fixed for now, in order to simplify the discussion.
For h(z) = zkj we have

DR
(
K(m)

)
h =

1

ηµ

(
µϑ−1

j

)k
h =

ϑ1

ϑj

(
µϑ−1

j

)k−1
h =

ϑ1

ϑj

(
ϑ2
d

ϑ1ϑj

)k−1

h .

expanding directions: For each j > 1, there is an eigenvector h = Ωj ·p with
eigenvalue ϑ1/ϑj . They are in some sense trivial: If the Hamiltonian has
a nondegenerate quadratic part, then these eigenvalues could be eliminated
via p-translations. But it is easier to deal with this “later”.

neutral directions: h = ω · p yields an eigenvalue 1. This eigenvalue can
be eliminated by choosing η appropriately. h = (Ωd · p)2 also yields an
eigenvalue 1. This eigenvalue can be eliminated by choosing µ appropriately.
So the neural directions are trivial and will mostly be ignored.

contracting directions: all others.

Remarks.

◦ The RG analysis will mostly be done with m = 0. Then there is no
restriction on µ. We can take µ as small (but positive) as is convenient.
In particular, h = (Ωd · p)2 then contracts under DR

(
K(0)

)
.

◦ No new spectrum will appear when we extend R to near-integrable
Hamiltonians.

3.2. Near-integrable Hamiltonians

The goal here it to prove KAM-type theorems.
For frequency vectors ω ∈ Rd that admit a periodic continued fractions
expansion

ω = lim
m→∞

cmTmw , T ∈ SL(d,Z) , w ∈ Qd .
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(1) Define R in some neighborhood of a trivial fixed point K.
The infinitely renormalizable Hamiltonians near K are the ones lying
on the local stable manifold of R at K.

(2) Prove that every infinitely renormalizable Hamiltonian has an analytic
ω-torus.
Show that “sufficiently nondegenerate” Hamiltonians in the domain of
R can be p-translated to make them infinitely renormalizable.

Generalizations include: Hamiltonians with shearless tori, Diophantine fre-
quency vectors (see below), Brjuno frequency vectors, Hamiltonians with
shearless tori, non-Hamiltonian vector fields, skew flows, lower dimensional
tori, . . .

Work by: H.K., J. Lopes Dias, J. Abad, K. Khanin, J. Marklof, D. Gai-
dashev, S. Kocić, . . .

Concerning Diophantine frequency vectors:
The continued fractions expansion is of the form

ω = lim
m→∞

cmT1T2 · · ·Tmw , Tn ∈ SL(d,Z) , w ∈ Qd .

For the standard continued fractions expansion in d = 2, applying Tn to[
a
b

]
with 0 < a < b corresponds to prepending a digit kn to r = a/b,

Tn =

[
0 1
1 kn

]
, r = [r1, r2, . . .] 7→ [kn, r1, r2, . . .] =

1

kn + r
.

For practical purposes, a Hamiltonian H0 is infinitely renormalizable if

‖Hn −Kn‖ → 0 , Hn = Rn(Hn−1) ,

where {Kn} is a suitable sequence of trivial Hamiltonians.

More details will be given later.
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3.3. Connection with commuting maps

Consider Hamiltonians

H(q, p) = ω · p+ h(q, z2, . . . , zd) , zj = Ωj · p .

Let ω′ be the expanding eigenvector of T ∗, normalized such that ω ·ω′ = 1.
Then ω′ · Ωj = 0 for all j > 1. Thus,

d

dt
ω′ · q = ω′ · ∇pH = ω′ · ω + ω′ · ∇ph = 1 .

So ω′ · q is “time”. This implies e.g. that the maps

Fj(q, p) = Φ2πω′
j (q − 2πδj , p) , j = 1, 2, . . . , n,

leave the section

X =
{
(q, p) ∈ H−1(0) : ω′ · q = 0

}

invariant. (Here we consider the lift to Rd × Rd.) Furthermore, they com-
mute with each other, and their restriction to X is symplectic. The same
holds for the maps F̃j determined by the renormalized Hamiltonian

H̃ =
ϑ1

µ
H ◦ Λ , Λ = T ◦ Sµ ◦ U .

And a straightforward computation©R shows that

F̃j = Λ−1 ◦ FT1,j

1 ◦ FT2,j

2 ◦ . . . ◦ FTd,j

d ◦ ΛF̃j = Λ−1 ◦ FT1,j

1 ◦ FT2,j

2 ◦ . . . ◦ FTd,j

d ◦ ΛF̃j = Λ−1 ◦ FT1,j

1 ◦ FT2,j

2 ◦ . . . ◦ FTd,j

d ◦ Λ .

In the golden mean case,

T =

[
0 1
1 1

]
,

[
F̃1

F̃2

]
=

[
Λ−1 ◦ F2 ◦ Λ

Λ−1 ◦ F1 ◦ F2 ◦ Λ

]
.

The map (F1, F2) 7→ (F̃1, F̃2) is MacKay’s RG transformation for (commut-
ing) pairs of area-preserving maps.
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3.4. Near-critical Hamiltonians

Restrict to the golden mean case

T =

[
0 1
1 1

]
, ω =

[
ϑ−1

1

]
, Ω =

[
1

−ϑ−1

]
.

Early computations with highly approximate RG transformations:
A. Mehr, D.F. Escande, C. Chandre, M. Govin, H.R. Jauslin, . . .

For simplicity, consider only Hamiltonians of the form

H(q, p) = ω · p+
∑

ν,k

hν,k cos(ν · q)(Ω · p)k .

To find the critical fixed point for R, we decompose

R = N ◦ L ◦ K ,

where K is trivial, L linear, and N close to the identity:

(KH)(q, p) = cHH(q, p/cH) , cH = 2h0,2 ,

LH = ϑµ−1
0 H ◦ T ◦ Sµ0 ◦ U0 ,

N (H) = H ◦ UH .

The construction of UH involves a Newton-type iteration,

UH = U1 ◦ U2 ◦ U3 ◦ . . .

This R was investigated numerically in [J. Abad, H.K., P. Wittwer ’98].

Theorem. [H.K. ’04] Existence of a nontrivial fixed point H∗ for R. Bound

from p.6 on µ∗ .

Theorem. [H.K. ’07] If H is near H∗ and Rn(H) → H∗ exponentially, then

H has a non-smooth golden invariant torus; that is, Γ is not differentiable.

Bounds from p.6 on λ1 , . . . , λ4 .
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And for completeness . . .

Theorem [G. Arioli, H.K. ’09]. MacKay’s RG transformation for pairs

of area-preserving maps has a fixed point (F∗, G∗). The maps F∗ and G∗

are analytic, area-preserving, reversible, and they commute. The associated

scaling is

Λ∗ =

[
−0.7067956691 . . . 0

0 −0.3260633966 . . .

]
.

The proofs of these theorems are computer-assisted.

Other cases:
• One expects similar results with T =

[
0 1
1 k

]
.

• Possibly also for d× d matrices with a real contracting eigenvalue.
• For the spiral mean, a 3×3 matrix with non-real contracting eigenvalue-
pair, a very rough RG analysis by [C. Chandre, H.R. Jauslin, G. Ben-
fatto ’99] suggests the existence of a strange non-chaotic RG attractor.

• Critical phenomena were observed for shearless golden tori [D. Del-
Castillo-Negrete, J.M. Greene, P.J. Morrison, A. Apte, A. Wurm, . . .]
A numerical RG analysis [D. Gaidashev, H.K. ’04] yields a RG period
12.

4. Scaling

The goal here is to control the scaling

H 7→ 1

ηµ
H ◦ T ◦ Sµ .

for “resonant” Hamiltonians. To simplify notation, let

Tµ = T ◦ Sµ , Tµ(q, p) =
(
Tq, µ(T ∗)−1p

)
.
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4.1. Analytic Hamiltonians

We need to make a technical choice between

(A) Renormalization with fixed T . Then it makes sense e.g. to use eigen-
vectors. Or an RG that preserves the size of p-quadratic term. Then
we cannot take |µ| > 0 small.

(B) Other cases, including RG sequences with varying matrices Tn . We
can assume that ‖T‖ is large; if not, replace T by some power of T .

We choose here (B), and |µ| > 0 small.

We consider Hamiltonians that are analytic on

Dρ =
{
(q, p) ∈ Cd × Cd : |Im qj | < ρ , |pj | < ρ , ∀j

}
.

Problem: Tµ does not map Dρ into itself: Some q-direction gets expanded
by T . So if H is analytic on Dρ then H ◦ Tµ need not be.

Given any ρ > 0, denote by Aρ the space of functions

H(q, p) =
∑

(ν,α)∈I

Hν,αe
iν·qpα , pα = pα1

1 pα2
2 · · · pαd

d ,

where I = Zd × Nd, equipped with the norm

‖H‖ρ =
∑

(ν,α)∈I

|Hν,α|eρ|ν|ρ|α| , |α| =
∑

j

|αj | .

Notice: If r > ρ then the inclusion map from Ar into Aρ is compact.

Define for J ⊂ I the projection

(P(J)H)(q, p) =
∑

(ν,α)∈J

Hν,αe
iν·qpα .

Special cases: the torus-average E0 and

(EkH)(q, p) =
∑

|α|≥k

H0,αp
α .



16 H. KOCH

Convention. Throughout the analysis,
restrict c < ρ ≤ r < c−1 for some fixed positive c < 1.
Furthermore, the dimension d is considered fixed. With this in mind,
C denotes a universal constant that may vary from one place to another.

4.2. Resonant modes

For a single “mode” H(q, p) = eiν·qpα, we have

H ◦ Tµ = ei(T
∗ν)·q

(
µ(T ∗)−1p

)α
,

and

‖H ◦ Tµ‖r ≤ eA‖H‖ρ , A = r|T ∗ν| − ρ|ν|+ |α| ln
(
NT |µ| rρ

)
.

So the mode is “nice” if |µ| is sufficiently small, and
either |T ∗ν| ≪ |ν| or |T ∗ν| ≪ |α|. We call these modes “resonant” . . .

Definition. Given a positive τ ≪ 1 the resonant modes are those indexed

by

I
+
=

{
(ν, α) ∈ I : |T ∗ν| ≤ τ |ν| or |T ∗ν| ≤ Cτ |α||T ∗ν| ≤ τ |ν| or |T ∗ν| ≤ Cτ |α||T ∗ν| ≤ τ |ν| or |T ∗ν| ≤ Cτ |α|

}
.

The resonant projection is defined as I
+
= P(I

+
).

Consider r ≥ ρ. Fix γ > 0. Assume that (ν, α) belongs to I
+
.

Case 1: ν = 0.

Here eA is bounded by
(
CNT |µ|

)|α|
.

Case 2: 0 < |T ∗ν| ≤ τ |ν|.
Here |ν| ≥ τ−1, and we gain a small factor e−Cτ−1

.

Case 3: 0 < τ |ν| < |T ∗ν| ≤ Cτ |α|.
Here |α| > C−1. For small |µ| we gain a factor

(
CNT |µ|

)γ
.

So under a smallness condition on τ and |µ| like

e−Cτ−1

<
(
CNT |µ|

)γ
< 1 ,
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we obtain the

Proposition. H 7→ H ◦ Tµ is compact from I
+Aρ to Ar . For H ∈ I

+Aρ ,

‖EkH ◦ Tµ‖r ≤ C
(
CNT |µ|

)k‖EkH‖ρ ,∥∥[(I− E0)H] ◦ Tµ
∥∥
r
≤ C

(
CNT |µ|

)γ∥∥(I− E0)H
∥∥
ρ
.

Recall that

R(H) =
1

ηµ
H ◦ Tµ ◦ U .

The above proposition shows that the first RG step H 7→ 1
ηµ

H ◦ Tµ
is analyticity-improving on the subspace of resonant Hamiltonians.
Furthermore, the second bound implies that the q-dependent parts of H
contract strongly under renormalization. This fact will be used e.g. in the
construction of invariant tori.

The idea is to use “resonant” as our “normal form”.

5. Nonresonant modes
Converting a Hamiltonian to “normal form” means eliminating nonresonant
modes. The following Basic Fact is crucial for this procedure.

Definition. The nonresonant modes are those indexed by

I
−
=

{
(ν, α) ∈ I : |T ∗ν| > τ |ν| and |T ∗ν| > Cτ |α||T ∗ν| > τ |ν| and |T ∗ν| > Cτ |α||T ∗ν| > τ |ν| and |T ∗ν| > Cτ |α|

}
.

The nonresonant projection is I
−
= P(I

−
).

Notice that I
−∪ I

+
= I and I

−
+ I

+
= I.

The constant 0 < τ < 1 is mainly determined by the following.

Assume that there exists some nonzero ω ∈ Rd such that
√
d T ∗ contracts

distances in ω⊥ by a factor at least 1
2τ . Choose σ > 0 such that

√
d ‖T ∗‖ ≤ 1

2σ
−1τ .
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Basic Fact. On I
−Aρ , all derivatives are bounded by ω · ∇q , and . . .

Proof, ignoring factors like C and
√
d. Let (ν, α) ∈ I

−
. Consider the

decomposition ν = ν‖ + ν⊥ into a vector ν‖ parallel to ω and a vector ν⊥

perpendicular to ω. Using the contraction property of T ∗, and ‖T ∗ν‖ >
τ‖ν‖, we get

‖T ∗ν⊥‖ ≤ τ

2
‖ν⊥‖ ≤ τ

2
‖ν‖ <

1

2
‖T ∗ν‖ .

Thus,

1
2‖T ∗ν‖ ≤ ‖T ∗ν‖‖ ≤ ‖T ∗‖‖ν‖‖ ≤ 1

2σ
−1τ‖ν‖‖ = 1

2σ
−1τ‖ω · ν‖ .

Combined with the definition of I
−
, this yields

|ω · ν| > Cσ|ν| , |ω · ν| > Cσ|α| ,

Thus, on I
−Aρ we have

∥∥∥∥
∇q

ω · ∇q

∥∥∥∥ ≤ |ν|
|ω · ν| ≤

1

Cσ
, ρ

∥∥∥∥
∇p

ω · ∇q

∥∥∥∥ ≤ |α|
|ω · ν| ≤

1

Cσ
.

QED

6. Reduction to normal form

We consider the problem of reducing a near-resonant Hamiltonian to nor-
mal (resonant) form via a small change of coordinates. This is done more
generally for vector fields.

The vector field defined by a Hamiltonian H is

XH = J∇H =

[
∇qH
−∇pH

]
.
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6.1. Vector fields

Denote by Aρ the space of analytic vector fields on Dρ ,

X(q, p) =
∑

ν,α

Xν,αe
iν·qzα , ‖X‖ρ =

∑

ν,α

‖Xν,α‖eρ|ν|ρ|α| ,

where ‖.‖ denotes the ℓ∞ norm on Cd × Cd.
Some basic properties are

Proposition. Let Y ∈ Ar and Z ∈ Aρ with 0 ≤ ρ ≤ r. Then

(a) ‖(DY )Z‖ρ ≤ (r − ρ)−1‖Y ‖r‖Z‖ρ if ρ < r.
(b) ‖Y ◦ [I + Z]‖ρ ≤ ‖Y ‖r if ρ+ ‖Z‖ρ ≤ r.

The flow t 7→ Φt
Y
associated with a vector field is obtained by solving

d

dt
Φt

Y
= Y ◦ Φt

Y
, Φ0

Y
= I .

Converting this to an integral equation for Z(t) = Φt
Y
− I,

and using property (b) above, one obtains

Proposition. Let ρ, r, θ > 0 with ρ+ θ‖Y ‖r < r. Then

‖Φt
Y
− I‖ρ ≤ ‖tY ‖r , |t| ≤ θ .

If X is a vector field, defined on the range of a diffeomorphism Φ, then the
pullback of X under Φ is given by

Φ∗X = (DΦ)−1(X ◦ Φ) .

For the time-t map Φt
Y
associated with a vector field Y ,

(Φt
Y
)∗X = etŶ X =

∑

n

1

n!

(
tŶ

)n
X ,

where
Ŷ X = [Y,X] = (DX)Y − (DY )X .
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Denote by A′
r the space of all Y ∈ Ar such that DY is a bounded linear

operator on Ar , equipped with the norm

‖Y ‖′r = ‖Y ‖r + ‖DY ‖r .

Proposition. Let 0 < δ < r and ε < 1
6 and ‖Y ‖′r ≤ δε. Then

∥∥(Φ1
Y
)∗X −X

∥∥
r−δ

≤ Cε‖X‖r ,
∥∥(Φ1

Y
)∗X −X − [Y,X]

∥∥
r−δ

≤ Cε2‖X‖r .

Proof sketch. To estimate 1
n! (Ŷ )nX, we use up a domain δ/n for each

operator Ŷ . This gives a factor (δ + n)ε per operator, and thus a factor

1

n!
(δ + n)nεn ≤ 1

2
eδ(eε)n .

QED

6.2. Eliminating nonresonant modes

The RG transformation for vector fields is

R(X0) = U∗
X
X , X = η−1T ∗

µ X0 .

As for Hamiltonians, if X0 ∈ Aρ is resonant, then X ∈ Ar for some r > ρ.

Consider now the step X 7→ U∗
X
X. The goal is to eliminate all nonreso-

nant modes, so the renormalized vector field R(X) is again in normal form
(meaning resonant).

Let I
−
= I− I

+
. Given a vector field X with a small nonresonant part I

−
X,

we will construct a change of variables

UX = ΦY ◦ ΦY ′ ◦ ΦY ′′ ◦ . . . ,
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such that
I
−U∗

X
X = 0 .

For the first step, find a small nonresonant Y that solves

I
−(

X + [Y,X]
)
= 0 . (∗)

Changing variables with Φ1
Y
reduces the nonresonant part of X to

I
−
(Φ1

Y
)∗X = I

−(
X + [Y,X] + small2

)
= small2 .

Then iterate . . .

The equation (∗) and its formal solution can be written as

I
−
X̂Y = I

−
X , Y =

(
I
−
X̂
)−1

I
−
X .

Proposition. If X ∈ A′
r is sufficiently close to K =

[
ω
0

]
, then

I
−
X̂ : I

−A′
r → I

−Ar has a bounded inverse, and . . .

Proof. Let Y, Z ∈ A′
r . Then

∥∥ẐY
∥∥
r
≤ ‖Z‖′r‖Y ‖′r .

Assume Y is nonresonant. Notice that K̂ = ω · ∇q . According to “Basic
Fact” we have ∥∥Y ‖′r ≤ Cσ−1

∥∥I−K̂Y
∥∥
r
.

Thus, if X = K + Z with ‖Z‖′r sufficiently small,

∥∥I−X̂Y
∥∥
r
≥

∥∥I−K̂Y
∥∥
r
−

∥∥I−ẐY
∥∥
r
≥

(
σC−1 − ‖Z‖′r

)
‖Y ‖′r .

QED

Combining this with our earlier bounds, we get
∥∥I−(Φ1

Y
)∗X

∥∥
r−δ

=
∥∥I−

(
(Φ1

Y
)∗X −X − [Y,X]

)∥∥
r−δ

≤ Cε2‖X‖r ,

with

ε =
1

r
‖Y ‖′r =

1

r

∥∥(I−X̂)−1I
−
X
∥∥′
r
≤ 2C

rσ
‖I−X‖r .
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7. Combining the steps

Apply the above with r = ρ+ δ and δ > 0 small.
Assuming X0 ∈ Aρ is resonant,

X = η−1T ∗
µ X0 ∈ A′

r .

And if ‖X0 −K‖ρ is sufficiently small, then

R(X0) = U∗
X
X ∈ Aρ .

Given that the iterative procedures converge absolutely, we have

Theorem. Given ρ > 0 there exists an open neighborhood B of K =
[
ω
0

]
,

such that R is well defined, analytic, and compact, as a map from B to Aρ .

In addition, all eigenvectors of DR(K) belong to the subspace E0Aρ of
vector fields X0(q, p) that only depend on p. These “integrable” vector
fields are resonant, so UX is the identity.

Remarks.

◦ For matrices T with large norm, τ is of the order ‖T‖−c with 0 < c < 1,
and σ is of the order ‖T‖−1−c.

◦ µ can be taken to be of the order σ1+ε

◦ The domain B contains a ball whose radius is of the order σ2.

8. Diophantine frequencies

We sketch a multi-dimensional continued fractions expansion

ωn = η−1
n T−1

n ωn−1 , n = 1, 2, . . .

for Diophantine frequency vectors ω0 ∈ Rn, and then describe the corre-
sponding renormalization procedure.
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8.1. Continued fractions expansion

The following multidimensional continued fractions expansion has been de-
veloped by [K. Khanin, J. Lopes Dias, J. Marklof ’05]. It is based on work
by [J.C. Lagarias ’94] and [D.Y. Kleinbock, G.A. Margulis ’98].

Consider the group SL(d,R) and the 1-parameter subgroup

Et = diag
(
e−t, . . . , e−t, e(d−1)t

)
.

To a given Diophantine vector ω0 =
[
w
1

]
in Rd−1 × R associate

W0 =

[
I w
0 1

]
∈ SL(d,R) .

Consider

W0E
t =

[
e−tI e(d−1)tw
0 e(d−1)t

]
, t ≥ 0.

Choose a fundamental domain F ∋ W0 for the left action of SL(d,Z) on
SL(d,R), and define P (t) ∈ SL(d,Z) by

W (t) ∈ F , W (t) = P (t)W0E
t .

Roughly speaking, P (t) is the “integer part” of the inverse of W0E
t.

Now pick appropriate “stopping times” 0 = t0 < t1 < t2 < . . . and set

Pn = P (tn) , Tn = Pn−1P
−1
n , ωn = c−1

n Pnω0 ,

with cn chosen e.g. such that ‖ωn‖ = 1.

Let now ω ∈ Diophantine(β), and define θ = β/(d+ β).

Theorem [KLM]. For t ≥ 0,

∥∥W (t)
∥∥ ≤ c1e

(d−1)θt ,
∥∥W (t)−1

∥∥ ≤ c2e
θt .

Corollary. Useful bounds on Pn , P
−1
n , Tn , T

−1
n .
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Recall that
Wn = PnW0E

tn , Pn = WnE
−tnW−1

0 .

Hyperbolicity follows from

T ∗
nξ =

(
P−1
n

)∗
P ∗
n−1ξ

=
(
W−1

n

)∗
EtnW ∗

0

(
Wn−1E

−tn−1W−1
0

)∗
ξ

=
(
W−1

n

)∗
Etn−tn−1W ∗

n−1ξ

= e−(tn−tn−1)
(
W−1

n

)∗
W ∗

n−1ξ , if ξ ⊥ ωn−1 ,

by choosing t1 ≪ t2 ≪ . . . appropriately. Notice that θ < 1.

Here we have used that
◦ Wn−1 maps the expanding subspace of Et into the direction ωn−1 .
◦ So W ∗

n−1 maps ω⊥
n−1 into the contracting subspace of Et.

A typical cutting sequence is

tn = a(1 + b)n ,

with a, b > 0 chosen in such a way that ‖T ∗
nξ‖ ≪ ‖ξ‖ for ξ ⊥ ωn−1 .

8.2. Infinite renormalizability

The above can be applied to renormalize Hamiltonians [K. Khanin, J. Lopes
Dias, J. Marklof ’05] and more general vector fields [H.K., S. Kocić ’08].

For each n > 0, after choosing proper RG parameters τn , σn , µn , we define
an RG transformation Rn in some neighborhood of

Kn−1 =

[
ωn−1

0

]
.

Using that the projections Ek in the contraction bound are the same for
each transformation Rn , it is possible to (prove and) apply a
stable manifold theorem for the sequence of maps R = (R1,R2, . . .).
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More precisely, there exists an analytic manifold Ws of finite codimension,
passing through K0 =

[
ω0

0

]
, such that

‖Xn −Kn‖ρ → 0 , Xn = Rn(Xn−1) .

exponentially, whenever X0 belongs to Ws.

Remarks.

◦ The largest set of frequency vectors for which KAM-type theorems have
been proved are the “Brjuno vectors”. However, appropriate bounds
on the multidimensional continued fractions expansion are still missing.
So the above does not (yet) generalize to Brjuno frequencies.

◦ The matrices P (t) ∈ SL(d,Z) can be viewed as integer approximations

to the real matrices
(
W0E

t
)−1

. If one is willing to allow frequency
lattices other than Zd, then one could renormalize with real matrices
instead. No continued fractions expansion would be needed.

◦ Such an RG analysis has been carried out for Brjuno vectors by [H.K.,
S. Kocić ’10].

9. Invariant tori
For simplicity, we restrict again to Hamiltonians. In the near-integrable
case, the goal is to construct an invariant ω0-torus for every H0 lying on
the (local) strong R-stable manifold Ws at K0 . Here,

Kn(q, p) = ωn · p , ωn = η−1
n T−1

n ωn−1 .

Critical tori will be discussed at the end.

9.1. The torus equation

When using fixed time-normalization factors η−1
n , the R-stable manifold

Ws at K0 is of codimension d, with the d unstable directions being the
linear functions (q, p) 7→ w · p with w ∈ Rd.

If H is a sufficiently nondegenerate Hamiltonian near Ws, then we can
perform a p-translation to move it on Ws.
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If we choose the time-normalization factors η−1
n in the RG procedure ap-

propriately (depending on the Hamiltonian), then the number of unstable
directions reduces to d − 1. In this case, any sufficiently isoenergetically
nondegenerate Hamiltonian near Ws can be p-translated onto Ws.

Consider now a fixed H0 ∈ Ws and its RG iterates Hn = Rn(Hn−1). Recall
that Hn is of the form

Hn =
1

ηnµn

Hn−1 ◦ Λn , Λn = Tn ◦ Sµn
◦ Un .

The equation for an invariant ωn-torus Γn for Hn is

Φt
n ◦ Γn = Γn ◦Ψt

n ,

where Φn and Ψn are the flows for Hn and Kn , respectively.
Using the two “basic identities”

Λn ◦ Φt
n = Φ

η−1
n t

n−1 ◦ Λn , Tn ◦Ψt
n = Ψ

η−1
n t

n−1 ◦ Tn .
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one easily gets the

Proposition. If Γn is an invariant ωn-torus for Hn , taking values in in

the domain of Λn , then Γn−1 = Mn−1(Γn) is an invariant ωn−1-torus for

Hn−1 , where

Mn−1(F ) = Λn ◦ F ◦ T −1
n .

So from an invariant torus Γm for Hm one gets a sequence of invariant tori

Γn = Mn(Γn+1)Γn = Mn(Γn+1)Γn = Mn(Γn+1) , n = 0, 1, . . . ,m− 1 .

9.2. Solving the equations

The idea is to construct a sequence Γ0,Γ1, . . . via inverse limits

Γn,m =
(
Mn ◦Mn+1 ◦ . . . ◦Mm−1

)
(Fm)

m→∞−−−−→Γn ,

that are hopefully independent of the sequence {Fm}. Then show that Γn

is an invariant torus for Hn .

Since we want Γn = I + γn with γn(q, 0) periodic, consider

Nn(f) = Mn(I + f)− I .

The problem is that the maps Nn are not typically contractions on a fixed
space, except under special circumstances (see below).

In particular, Tn is expanding in one q-direction, and so the same is to be
expected for Λn = Tn ◦ Sµn

◦ Un . For an RG analysis of near-integrable
Hamiltonians, this can be solved by choosing a sequence of spaces Fn such
that Nn : Fn+1 → Fn is a contraction. (Use norms that increase with n.)
This is possible due to the fast convergence of Hn −Kn → 0.

Furthermore, T −1
n is expanding in many directions, so f 7→ f ◦ Tn is “bad”

for smooth functions f . This can be solved by considering spaces of low-
regularity functions. The drawback is that the so-constructed tori are not
known to be smooth. More on this later . . .
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Once the sequence {Γn} has been constructed, we need to show that Γn

is an invariant ωn-torus for the Hamiltonian Hn . To simplify notation,
assume that Tn = T and ηn = η < 1 for all n. Then

Γn,m = Λn+1 ◦ . . . ◦ Λm ◦ Fm ◦ T −m+n .

By using the “basic identities” we obtain

Φt
n ◦ Γn,mΨ−t

n = Λn+1 ◦ . . . ◦ Λm ◦
[
Φηm−nt

m ◦ Fm ◦Ψ−ηm−nt
]
◦ T −m+n

=
(
Mn ◦ . . . ◦Mm

)
(Gm) ,

where
Gm = Φηm−nt

m ◦ Fm ◦Ψ−ηm−nt .

Taking m → ∞ we see that Γn is an invariant torus for Hn .

9.3. Analytic tori

Consider the near-integrable case.
The above procedure yields a torus ΓH for each H on the R-stable manifold
Ws at K0 . This torus ΓH belongs to some low-regularity space.
However, the map H 7→ ΓH is analytic on Ws.

To prove that Γ is in fact analytic, consider translations

JvH = H ◦ Jv , Jv(q, p) = (q − v, p) .

First, one verifies that R is “covariant” for real v,

R ◦ Jv = JT−1v ◦ R .

In particular, Ws is invariant under Jv . Here, one uses that K0 is invariant
under Jv . The next step is to verify that (by construction)

ΓH◦Jv
= J−1

v ◦ ΓH ◦ Jv . v ∈ Rd .

This identity implies that for real v,

ΓH(q) = EqΓH = E0

(
ΓH ◦ Jq

)
= JqE0ΓH◦Jq

, (∗)
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where Eqf = f(q, 0).
Now we can use that the map H 7→ ΓH is analytic on Ws near K0 . Then
the equation (∗) yields an analytic continuation of ΓH .

9.4. Critical tori

Consider the golden mean RG, where T =
[
0 1
1 1

]
.

The analysis in this case is restricted to Hamiltonians

H(q, p) = ω · p+
∑

ν,k

hν,k cos(ν · q)zk , z = Ω · p ,

where ω and Ω are the expanding and contracting eigenvectors, respectively,
of T . The ω-torus for the critical fixed point H∗ of R is obtained as a fixed
point of M∗ ,

M∗(F ) = Λ∗ ◦ F ◦ T −1 , Λ∗ = Tµ ◦ U∗ .

Since ω′ · q evolves linearly in time, coordinate changes like U∗ can be taken
of the special form

U = I + u , u(q, p) =
(
q +QΩ(q, z)Ω, P (q, z)

)
,

with QΩ odd and P even in q. Similarly, it suffices to consider the torus-
equation for functions F = I + f of the same form, restricted to z = 0. In
particular, f has a zero component in the expanding direction of Tµ . As
a result, f 7→ Λ∗ ◦ f is a contraction on a fixed space of (low-regularity)
functions. In fact, the contraction is substantial.

So it is not hard to show (via computer-assisted proof) that M∗ has a fixed
point Γ∗ . In addition, following the procedure sketched above, one can
construct an invariant ω-torus Γ0 for every Hamiltonian H0 on the (local)
strong stable manifold of R at H∗ .

Furthermore, Γ0 can be shown to be non-differentiable.
In the case of Γ∗ , the basic idea is the following.

The invariant ω-torus Γ∗ for H∗ satisfies the equation

Γ∗ ◦ T = Λ∗ ◦ Γ∗ . (∗)
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In particular, p∗ = Γ∗(0) is a fixed point of Λ∗ . Assume for contradiction
that g(t) = Γ∗(tΩ, 0) is differentiable at t = 0. After excluding the case
g′(0) = 0, the conjugacy (∗) implies that DΛ∗(p∗) must have an eigenvalue
−ϑ−1 = −0.618033 . . . with eigenvector (Ω, 0). But our bound on this
eigenvalue (λ2 = −0.706795 . . .) shows that this is not the case.

10. Some open problems

Directly related open problems.

• Hyperbolicity of R at H∗ .
• Hyperbolicity of the commuting-maps RG in the space of “all” re-

versible pairs.
• Other “quadratic” rotation vectors in R2, starting with T =

[
0 1
1 k

]
for

large N .
• Find out what “really” happens for the spiral mean ϑ3 − ϑ− 1 = 0.
• Breakup of shearless invariant tori.

Diophantine or Brjuno rotation vectors.

KAM-type results were proved for one rotation vector at a time. These
vectors ω have full measure, but . . .

• Do families intersect all these stable manifolds Ws
ω in a set of large

measure?
• Same question for lower dimensional tori, including some PDEs.

But restrict to arithmetically interesting cases.

Different dynamical systems.

Not mentioning systems whose nonlinearities are purely “algebraic”,

like some cocycles [R. Krikorian, A. Avila, . . .]
and some parabolic flows [G. Forni, . . .]

• Proof without computer (so far exist only for maps on 1-dim spaces)
for a nontrivial RG problem in 2 or more dimensions.

• Hamiltonian systems with nonholonomic constraints.
• RG for nonlinear flows on other surfaces, manifolds, groups?
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Figures and References can be found e.g. in the notes

H. Koch, Renormalization of vector fields, in: Holomorphic Dynamics
and Renormalization, M. Lyubich and M. Yampolsky (eds.), Fields
Institute Communications, AMS(2008) 269–330.
ftp://ftp.ma.utexas.edu/pub/papers/koch/toronto7.pdf


