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Physical measures

X topological space;

T : X → X continuous map, viewed as a discrete time
dynamical system;

µ reference measure on X .

Physical or natural measure: an invariant probability measure ν

T∗ν = ν,

such that for a set of initial condition x0 ∈ X

with positive measure with respect to µ,

1

n

(
δx0 + δT (x0) + · · · + δT n−1(x0)

)
−−−−→
n→+∞

ν,

in the weak* topology.
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Physical measures

1

n

(
δx0 + δT (x0) + · · · + δT n−1(x0)

)
−−−−→
n→+∞

ν

implies that for every continuous

ϕ : X → R,

1

n

(
ϕ(x0) + ϕ(T (x0)) + · · · + ϕ(T n−1(x0))

)
−−−−→
n→+∞

∫
ϕdν.

The time average converges to the space average.
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One-dimensional maps

Two types of maps:

Sufficiently regular interval maps.
The reference measure will be the Lebesgue measure.

Complex rational maps acting on the Julia set.

Usually the reference measure will be a “conformal measure”.
When the Julia set is the whole Riemann sphere C, the
reference measure will be the spherical one (“the Lebesgue

measure”).
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Real maps

A non-injective smooth map

f : [0, 1] → [0, 1]

is non-degenerate if:

• it has finitely many critical points:

Crit(f ) := {c ∈ [0, 1] : f ′(c) = 0} < +∞;

• all of its critical points are non-flat: for each c ∈ Crit(f ) a
high derivative of f is non-zero at c .

For c ∈ Crit(f ) the least integer ℓc > 1 such that f (ℓc )(c) 6= 0
is called the order of c .
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Real maps

1

f

0
0

1

c1 c3c2 c4

Figure: A non-degenerate smooth map and its critical points
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Complex maps

A complex rational map f of degree d ≥ 2,

f (z) =
adzd + ad−1z

d−1 + · · · + a0

bdzd + bd−1zd−1 + · · · + b0
∈ C(z).

The Julia set of f is:

J(f ) := { repelling periodic points }.

We will view f as a dynamical system acting on its Julia set

f : J(f ) → J(f ).
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Complex maps

When J(f ) = C, our reference measure will be the spherical
measure (“the Lebesgue measure”).

When J(f ) 6= C, our reference measure will be a “conformal
measure of minimal exponent”.

Given α > 0 a Borel measure µ on J(f ) is

conformal of exponent α if for each Borel

set A ⊂ J(f ) on which f is injective,

µ(f (A)) =

∫

A

|f ′|αdµ.

In good situations there is a unique conformal measure of
minimal exponent and this measure is very regular.
We will use it as a reference measure.
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One-dimensional maps

Summarizing, the maps we will consider are:

• Non-degenerate smooth interval maps. We will
assume them to be topologically exact and with all cycles
hyperbolic repelling.

• The reference measure will be the Lebesgue measure on
the interval domain.

• A complex rational map f , viewed as dynamical
system acting on its Julia set J(f ).

• When J(f ) = C, the reference measure will be spherical
measure.

• When J(f ) 6= C, the reference measure will be a conformal
measure of minimal exponent.

For interval maps there is a natural defintion of Julia set
(Martes–de Melo–van Strien). When the Julia set is
not an interval, conformal measures of minimal exponent are a
natural choice for reference measures.
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Absolutely continuous invariant
probabilities

For a quadratic interval map an invariant probability measure
that is absolutely continuous with respect to the Lebesgue

measure is automatically a physical measure
(Blokh–Lyubich).

For an interval map with several critical points, such a measure
is a finite convex combination of physical measures
(Ledrappier, Martens, Cai–Li).

A similar result holds for complex maps and for absolutely
continuous invariant probabilities with positive Lyapunov

exponent (Dobbs).
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Physical measures of
one-dimensional maps

For a one-dimensional map, absolutely continuous invariant
measures are a natural source of physical measures. In
contrast, in dimension two and higher, physical measures are
rarely absolutely continuous.

From now on we will be interested on the existence

and statistical properties of absolutely continuous

invariant measures of real and complex

one-dimensional maps.
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Correlations

f a real or complex one-dimensional map as before;

ν an invariant probability measure for f .

Definition
Given real functions ϕ,ψ and n ≥ 1 we put

Cn(ϕ,ψ) :=

∣∣∣∣
∫
ϕ ◦ f n · ψdν −

∫
ϕdν ·

∫
ψdν

∣∣∣∣ .

Roughly speaking it measures the (lack of) independence of the
random variables ϕ ◦ f n and ψ on the probability space defined
by ν.
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Decay of correlations

f a real or complex one-dimensional map as before;

ν an invariant probability measure for f .

We will say ν is:

• exponentially mixing, if for every pair of Hölder

continuous real functions ϕ,ψ the correlations Cn(ϕ,ψ) at
least exponentially with n;

• polynomially mixing of exponent γ > 0, if for every pair of
Hölder continuous real functions ϕ,ψ there is a
constant C > 0 such that for every n ≥ 1,

Cn(ϕ,ψ) ≤ Cn−γ ;

• super-polinomially mixing, if for every γ > 0 it is
polynomially mixing of exponent γ.



Statistical
properties of

one-
dimensional

maps

Juan

Rivera-

Letelier

The problem

Physical
measures

The maps

A.c.i.p.s

Results

Results for real
maps

Results for
complex maps

Backward
contraction

Shrinking of
components

Misiurewicz’ condition

The first general sufficient condition for the existence of
a.c.i.p.s for a non-degenerate smooth map was given by
Misiurewicz (1981):

Misiurewicz’ condition. There is δ > 0 such that for

every critical value v of f and each n ≥ 1

dist(f n(v),Crit(f )) > δ.
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Collet–Eckmann condition
Collet–Ekcmann condition. There are η > 1 and

C > 0 such that for every critical value v of f and

every n ≥ 1
|Df n(v)| > Cηn.

In other words, the lower Lyaupunov exponent of each
critical value v is positive:

lim inf
n→+∞

1

n
ln |Df n(v)| > 0.

Collet–Eckmann (1983) showed this condition implies the
existence of an a.c.i.p. for interval maps with one critical point
(Nowicki removed some hypotheses):

Collet–Eckmann condition ⇒ existence of an a.c.i.p.
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Collet–Eckmann condition

Keller–Nowicki (1992) and Young (1992) showed
independently that for an interval map with one critical point:

Collet–Eckmann condition

⇒ existence of an exponentially mixing a.c.i.p.

Nowicki–Sands (1998) proved the reverse implication for
maps with one critical point:

Collet–Eckmann condition

⇔ existence of an exponentially mixing a.c.i.p.



Statistical
properties of

one-
dimensional

maps

Juan

Rivera-

Letelier

The problem

Physical
measures

The maps

A.c.i.p.s

Results

Results for real
maps

Results for
complex maps

Backward
contraction

Shrinking of
components

Collet–Eckmann condition
For interval maps with several critical points of the same order
Bruin–Luzzatto–van Strien (2003) showed:

Collet–Eckmann condition

⇒ existence of an exponentially mixing a.c.i.p.

The assumption on the critical orders is not necessary
(Przytycki–R-L, 2007).

The reverse implication holds replacing the
Collet–Eckmann condition for a weaker condition, called
the “Topological Collet–Eckmann condition”
(Przytycki–R-L, 2007):

Topological Collet–Eckmann condition

⇔ existence of an exponentially mixing a.c.i.p.
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Summability condition

A weaker sufficient condition for the existence of an a.c.i.p.
was given by Nowicki–van Strien (1991) for interval maps
with one critical point and by Bruin–van Strien (2001) for
maps with several critical points:

Summability condition. For every c ∈ Crit(f ),

+∞∑

n=1

1

|Df n(f (c))|1/ℓmax
< +∞.

If furthermore for each critical value v of f the derivative f n(v)
grows super-polynomially with n, Bruin–Luzzatto–van

Strien (2003) showed that the a.c.i.p. is super-polynomially
mixing.
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Large derivatives condition

Theorem (Shen–R-L, arXiv 2010)

Let f be a non-degenerate and topologically exact smooth map.

Assume that for each critical value v of f ,

lim
n→+∞

|Df n(v)| = +∞.

Then f has a super-polynomially mixing a.c.i.p.

Under the same hypotheses the existence was shown
by Bruin–Shen–van Strien (2003) for maps with one
critical point and by Bruin–R-L–Shen–van Strien (2008)
for maps with several critical points.
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Large derivatives condition

We also have the following quantitative version.

Theorem (Shen–R-L, arXiv 2010)

For each ℓ > 1 and γ > 1 there is K (ℓ, γ) > 0 such that, if f is

a non-degenerate and topologically exact smooth map such

that the order of each critical point is at most ℓ and such that

for all c ∈ Crit(f )

lim inf
n→+∞

|Df n(f (c))| ≥ K (ℓ, γ),

then f has an mixing a.c.i.p., which is polynomially mixing of

exponent γ.
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Strong summability condition
Let f be a complex rational map.
Graczyk–Smirnov (2009) showed that if for a sufficiently
small α ∈ (0, 1) we have for every critical value v ∈ J(f ) of f :

+∞∑

n=1

1

|Df n(v)|α
< +∞,

then there is a unique conformal measure of minimal exponent
that this measure is non-atomic, ergodic and of dimension
equal to HD(J(f )).

They also showed that, if in addition for every critical value v ,

+∞∑

n=1

n

|Df n(v)|α
< +∞,

then there is an a.c.i.p.
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Large derivatives condition

Theorem (Shen–R-L, arXiv 2010)

Suppose that f is a non-renormalizable polynomial without

neutral cycles such that for every critical value v ∈ J(f )

lim
n→+∞

|Df n(v)| = +∞.

Then there is a unique conformal measure of minimal exponent

that this measure is non-atomic, ergodic and of dimension

equal to HD(J(f )).
Furthermore there is an super-polynomially mixing a.c.i.p.
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Large derivatives condition

• This result applies to the quadratic Fibonacci map (this
map fails the Graczyk–Smirnov strong summability
condition).

• It also holds for complex rational maps without neutral
periodic points such that for every critical value v ∈ J(f ),

+∞∑

n=1

1

|Df n(v)|
< +∞.

• For each p ∈ (0, ℓmax/(ℓmax − 1)) the density belongs to
the space Lp (for interval maps this follows from the paper
by Bruin–R-L–Shen–van Strien).
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Large derivatives condition

• For each ε > 0 the conformal measure of minimal
exponent µ has the following regularity: for every
sufficiently small δ > 0 we have for every x ∈ J(f )

δHD(J(f ))+ε ≤ µ(B(x , δ)) ≤ δHD(J(f ))−ε.

The lower bound was shown by Shen–Li (2008).

• Several notions of dimension coincide for J(f ).

• The Julia set is locally connected when connected, of
Hausdorff dimension strictly less than 2 when different
from C and holomorphically removable when f is a
polynomial.
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Backward contraction

In the previous results, an intermediate condition holds called
“Backward contraction”.

To define it, for c ∈ Crit(f ) and δ > 0 let B̃(c , δ) be the
connected component of f −1(B(f (c), δ)) containing c .

~
B(c,  )δ

f

f(c)c

B(f(c),  )δ

δ

We define Crit′(f ) := Crit(f ) ∩ J(f ) if f is complex
and Crit′(f ) := Crit(f ) if f is real.
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Backward contraction

Definition
For r > 1 a real or complex one-dimensional map f is backward
contracting with constant r if the following property holds:
For every sufficiently small δ > 0, c ∈ Crit′(f ), every
integer m ≥ 1 and every connected component W

of f −m(B̃(c , rδ)) we have

dist(W , f (Crit(f ))) < δ ⇒ diam(W ) < δ.

We will say that f is backward contracting if it is backward
contracting for every r > 1.
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Backward contraction

δ

B(f(c’),  )

f(c’)

δ

B(c, r  )
~

δ

~
B(c,  )δ

c

f m

W
δ

Figure: The backward contraction condition
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Backward contraction
A map f is known to be backward contracting if:

• f is a non-degenerate and topologcially exact smooth
interval map without neutral periodic points such that for
every critical value v

lim
n→+∞

|Df n(v)| = +∞;

• f is a non-renormalizable complex polynomial without
neutral periodic points such that for every critical
value v ∈ J(f )

lim
n→+∞

|Df n(v)| = +∞;

• f is a complex rational map without neutral periodic
points and such that for every critical value v ∈ J(f )

+∞∑

n=1

1

|Df n(v)|
< +∞.
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Large Derivatives

⇒ Backward Contraction

⇒ super-polynomially mixing a.c.i.p.

The Large Derivatives condition is only used to prove Backward
Contraction.

For interval maps Shen–Li (2010) showed that Backward
Contraction is equivalent to the Large Derivatives condition.
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Plan

To prove

Backward Contraction ⇒ super-polynomially mixing a.c.i.p.

we will use an inducing scheme (build a Young tower and do a
tail estimate), developped by Przytycki–R-L (2007, 2010).

This is done in several steps.

A. Show ‘‘Super-polynomial Shrinking of

Components’’.

B. Construct ‘‘nice sets’’ at small scales

C. Bound the ‘‘badness exponent’’

D. Tail estimates
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Shrinking of components

Exponential Shrinking of Components:

There are constants θ ∈ (0, 1), C > 0 and δ0 > 0
such that for every x, δ ∈ (0, δ0), every integer m ≥ 1
and every connected component W of f −m(B(x , δ))
we have,

diam(W ) ≤ Cθ−m.

Exponential Shrinking of Components

⇔ Topological Collet–Eckmann condition

⇔ existence of an exponentially mixing a.c.i.p.
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Shrinking of components

Polynomial Shrinking of Components of

exponent β > 0:

There are δ0 > 0 and C > 0 such that for every x,

δ ∈ (0, δ0), every integer m ≥ 1 and every connected

component W de f −m(B(x , δ)) we have,

diam(W ) ≤ Cm−β .

Super-polynomial Shrinking of Components:

Polynomial Shrinking of Components for each β > 0.
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Shrinking of components

Definition
A map f is expanding away from critical points if for every
neighborhood V of Crit′(f ) the map f is uniformly expanding
on the maximal invariant set of the complement of V .

Theorem
A backward contracting map that is expanding away from

critical points has the Super-polynomial Shrinking of

Components property.
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Shrinking of components

Sketch of the proof of:

Backward Contraction + expansion away from critical points

⇒ Super-polynomial Shrinking of Components

δ > 0

c a critical point of f in J(f );

m ≥ 1 an integer;

W a connected component of f −m(B̃(c , δ)).

We would like to prove that W is (super-)polynomially small
with m.

Using the expansion away from critical points we reduce to the
case where W intersects B̃(Crit(f ), δ).
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Shrinking of components

ν := #
{

j ∈ {0, . . . ,m − 1} | the component of f −(n−j)(W )

containing f j(W ) intersects B̃(Crit′(f ), δ)
}
.

There polynomial upper bound for diam(W ) is obtained by
combining the following estimates:

• by Backward Contraction diam(W ) is exponentially small
with ν;

• by the expansion away from critical points there
are C , ε > 0 such that:

diam(W ) ≤ C exp

(
−ε

1

ℓνmax

m

)
.
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