Juan Rivera-Letelier

Review

Nice sets and couples Inducing scheme

Exponentia case

Nonexponential rates of mixing

Statistical properties of one-dimensional maps

JUAN RIVERA-LETELIER

PUC - Chile

December 2010

Goal

Statistical properties of onedimensional maps

> JUAN RIVERA-LETELIER

Review

- Nice sets and couples Inducing scheme
- Exponentia case
- Nonexponential rates of mixing

Existence and statistical properties of absolutely continuous invariant measures of:

- Non-degenerate smooth interval maps. We will assume them to be topologically exact and with all cycles hyperbolic repelling.
 - The reference measure will be the $\ensuremath{\mathrm{LEBESGUE}}$ measure on the interval domain.
- A complex rational map f, viewed as dynamical system acting on its JULIA set J(f).
 - When J(f) = C, the reference measure will be spherical measure.
 - When J(f) ≠ C, the reference measure will be a conformal measure of minimal exponent.

> Juan Rivera-Letelier

Review

Nice sets and couples Inducing scheme

Exponentia case

Nonexponential rates of mixing Main goal:

Large Derivatives \Rightarrow super-polynomially mixing a.c.i.p.

First lecture:

Large Derivatives

 $\Rightarrow \mathsf{Backward}\ \mathsf{Contraction}$

 \Rightarrow Super-polynomial Shrinking of Components

Second lecture:

- inducing scheme;
- reduction of the exponential case to the "Key Lemma".

Goals for today:

- complete the proof of the exponential case, by showing the "Key Lemma";
- tail estimates for non-exponential rates.

Overview

> Juan Rivera-Letelier

Review

Nice sets and couples Inducing scheme

Exponentia case

Nonexponential rates of mixing f real or complex one-dimensional map; V subset of the ambient space ([0, 1] or $\overline{\mathbb{C}}$); $m \ge 1$ an integer.

Definition

- A pull-back of V by f^m is a connected component of $f^{-m}(V)$.
- A pull-back W of V by f^m is diffeomorphic if the restriction of f^m to W is a diffeomorphism onto its image.

Observations:

- In this definition V could be disconnected.
- If W is a diffeomorphic pull-back of V by f^m, then f^m(W) is a connected component of V.

Pull-backs

JUAN RIVERA-LETELIER

Review

Nice sets and couples Inducing scheme

Exponentia case

Nonexponential rates of mixin,

Nice sets

f real or complex one-dimensional map.

Nice set for f: an open neighborhood V of Crit'(f) such that every connected component of V contains precisely a critical point of f and such that for $n \ge 1$

 $f^n(\partial V) \cap V = \emptyset.$

For $c \in \operatorname{Crit}'(f)$ we denote by V^c the connected component of V containing c, so that

$$V = \bigsqcup_{c \in \operatorname{Crit}(f)} V^c.$$

Markovian property: For each pull-back W of V

 $W \cap V = \emptyset$ or $W \subset V$;

Nice couples

f a real or complex one-dimensional map. Nice couple for f: a pair of nice sets (\widehat{V}, V) such that $\overline{V} \subset \widehat{V}$

and such that for every
$$n\geq 1$$
 $f^n(\partial V)\cap \widehat{V}= \emptyset.$

Joint Markovian property: for each pull-back W of \widehat{V}

 $W \cap V = \emptyset$ or $W \subset V$.

Statistical properties of onedimensional maps

Juan Rivera-Letelier

Review

Nice sets and couples Inducing scheme

Exponentia case

Nonexponential rates of mixing

Induced map

f a real or complex one-dimensional map; (\widehat{V}, V) nice couple for.

A good time for $x \in V$: an integer $m \ge 1$ such that

 $f^m(x) \in V$

and such that the pull-back of \hat{V} by f^m containing x is diffeomorphic;

 $\begin{array}{rcl} D: \mbox{ the set of points in } V \mbox{ having a good time;} \\ m(x): \mbox{ the least good time of } x \in D; \\ \mbox{canonical induced map associated to } (\widehat{V}, V): \\ F: D \rightarrow V \\ x \mapsto f^{m(x)}(x) \end{array}$

Statistical properties of onedimensional maps

> JUAN RIVERA-LETELIER

Review

Nice sets and couples Inducing scheme

Exponentia case

```
Non-
exponential
rates of mixin
```

Induced map

JUAN RIVERA-LETELIER

Statistical properties of

onedimensional maps

Review

Nice sets and couples Inducing scheme

Exponentia case

Nonexponential rates of mixing

- The set *D* is a disjoint union of diffeomorphic pull-backs of *V*.
- In each connected component *W* of *D* the return time *m* is constant on *W*.

We will denote this number by m(W) and we will denote by c(W) the critical point such that $f^{m(W)}(W) \subset V^{c(W)}$. Then the map

$$f^{m(W)}: W \rightarrow V^{c(W)}$$

extends to a diffeomorphism from a neighborhood of W onto $\widehat{V}^{c(W)}.$

Induced map

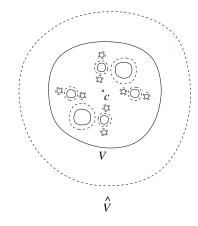


Figure: The domain of the induced map associated to (\hat{V}, V)

Statistical properties of onedimensional maps

> Juan Rivera-Letelier

Review

Nice sets and couples Inducing scheme

Exponentia case

Nonexponential rates of mixin

Bad pull-backs

Statistical properties of onedimensional maps

Juan Rivera-Letelier

Review

Nice sets and couples Inducing scheme

Exponentia case

Nonexponential rates of mixing

Definition

Given an integer $m \ge 1$ we will say that a pull-back \widetilde{W} of \widehat{V} by f^m is a bad pull-back of \widehat{V} of order m if for every

$$m' \in \{1,\ldots,m\}$$

such that $f^{m'}(\widetilde{W}) \subset \widehat{V}$, the pull-back of \widehat{V} containing \widetilde{W} is not diffeomorphic.

Inducing scheme

Lemma

Nice sets a

couples Inducing scheme

Statistical properties of

onedimensional maps JUAN RIVERA-LETELIER

Exponentia case

Nonexponential rates of mixing

Let (\hat{V}, V) be a sufficiently small nice couple and let $F : D \to V$ be the corresponding induced map. Suppose that for some $\alpha \in (0, 1 \text{ or } HD(J(f)))$ we have

$$\sum_{\widetilde{W} ext{ bad pull-back of } \widetilde{V}} ext{diam}(\widetilde{W})^lpha < +\infty.$$

Then

 $HD((V \cap J(f)) \setminus J(F)) < HD(J(f)).$

In particular,

 $\mathsf{HD}(J(F)) = \mathsf{HD}(J(f)).$

> Juan Rivera-Letelier

Review

Nice sets and couples Inducing scheme

Exponentia case

Nonexponential rates of mixing

Inducing scheme

diam $(W)^{\alpha} < +\infty$.

Applying results of MAULDIN–URBANSKI we obtain: Theorem (Conformal measure)

Let (\widehat{V}, V) be a sufficiently small nice couple and let $F : D \to V$ be the corresponding induced map. Suppose that for some $\alpha \in (0, 1 \text{ or HD}(J(f)))$,

W connected component of D

 $\sum_{\widetilde{W} \text{ bad pull-back of } \widehat{V}} \operatorname{diam}(\widetilde{W})^lpha < +\infty,$

Then there is a conformal measure μ for f of exponent HD(J(f)) satisfying HD(μ) = HD(J(f)) and such that $\mu(J(F)) > 0$.

> Juan Rivera-Letelier

Review

Nice sets and couples Inducing scheme

Exponentia case

Nonexponential rates of mixin

Inducing scheme

Applying YOUNG's theorem we obtain:

Theorem (A.c.i.p.)

Let (\hat{V}, V) be a sufficiently small nice couple and let $F : D \to V$ be the corresponding induced map. Assume that the hypotheses of the previous theorem are satisfied.

lf

 $\sum_{\substack{W \text{ connected component of } D \\ m(W) \ge n}} \operatorname{diam}(W)^{1 \text{ or } \operatorname{HD}(J(f))}$

is exponentially small with n, then there is an exponentially mixing a.c.i.p.

If it decreases super-polynomially, then there is a super-polynomially mixing a.c.i.p.

> JUAN RIVERA-LETELIER

Review

Nice sets and couples Inducing scheme

Exponential case

Nonexponential rates of mixing

Exponential shrinking of components

Exponential Shrinking of Components:

There are constants $\theta \in (0, 1)$, C > 0 and $\delta_0 > 0$ such that for every $x, \delta \in (0, \delta_0)$, every integer $m \ge 1$ and every connected component W of $f^{-m}(B(x, \delta))$ we have,

 $\operatorname{diam}(W) \leq C\theta^{-m}.$

Exponential Shrinking of Components

 $\Leftrightarrow \textsf{Topological Collet-Eckmann condition}$

> JUAN RIVERA-LETELIER

Review

Nice sets and couples Inducing scheme

Exponential case

Nonexponential rates of mixing

Exponential case

Exponential Shrinking of Components \Rightarrow existence of arbitrarily small nice couples

Furthermore,

 $\sum_{\widetilde{W} ext{ bad pull-back of } \widehat{V}} ext{diam}(\widetilde{W})^lpha < +\infty.$

follows from the counting estimate:

for a given $n \ge 1$ the number of bad pull-backs of V is sub-exponential in n.

> JUAN RIVERA-LETELIER

Review

Nice sets and couples Inducing scheme

Exponential case

Nonexponential rates of mixin **Key Lemma** Suppose f has the Exponential Shrinking of Components property. Then there is $\alpha \in (0, 1 \text{ or } HD(J(f)))$ such that

 $\sum_{W \text{ connected component of } D} ext{diam}(W)^lpha < +\infty.$

As we saw in the previous lecture,

Key Lemma \Rightarrow exponential tail estimate

combined with the previous results we get

Key Lemma \Rightarrow existence of an exponentially mixing a.c.i.p.

Key Lemma

> Juan Rivera-Letelier

Review

Nice sets and couples Inducing scheme

Exponential case

Nonexponential rates of mixing

Structure of the induced map

f real or complex one-dimensional map; (\hat{V}, V) nice couple for f; $F: D \to V$ induced map associated to (\hat{V}, V) . \mathfrak{D} : the collection of connected components of *D*; \mathfrak{D}_0 : the collection of those $W \in \mathfrak{D}$ such that m(W) is the first return time of W to V: $\mathfrak{D}_{\widetilde{W}}$, for a bad pull-back W of \widetilde{V} : the collection of those $W \in \mathfrak{D}$ contained in \widetilde{W} such that $f^{m(W)}(W) \in \mathfrak{D}_0$.

Lemma

$$\mathfrak{D} = \mathfrak{D}_0 \sqcup \bigsqcup_{\widetilde{W} \text{ bad pull-back of } \widehat{V}} \mathfrak{D}_{\widetilde{W}}.$$

> Juan Rivera-Letelier

Review

Nice sets and couples Inducing scheme

Exponential case

Nonexponential rates of mixing

Structure of the induced map

f real or complex one-dimensional map; (\widehat{V}, V) nice couple for f; $F: D \to V$ induced map associated to (\widehat{V}, V) .

 \mathfrak{L}_V := connected components of the complement of $\mathcal{K}(V)$.

It is the collection of connected components of the first landing map to V.

The collection of first return domains \mathfrak{D}_0 is equal to the pull-back of \mathfrak{L}_V by f|V.

For a bad pull-back \widetilde{W} of \widehat{V} , the collection $\mathfrak{D}_{\widetilde{W}}$ is the pull-back of \mathfrak{L}_V by $f^{m(\widetilde{W})+1}|\widetilde{W}$.

> Juan Rivera-Letelier

Review

Nice sets and couples Inducing scheme

Exponential case

Nonexponential rates of mixing

Discrete density

Let $\mathbb{R} := \mathbb{R} \cup \{\infty\}$ be the projective real line, so we have a natural action of group of (real) $M\ddot{O}BIUS$ maps on \mathbb{R} .

Given $\alpha > 0$ and a family \mathfrak{F} of subsets of \mathbb{R} or \mathbb{C} we put $\|\mathfrak{F}\|_{\alpha} := \sup \left\{ \sum_{W \in \mathfrak{F}} \operatorname{diam}(\varphi(W))^{\alpha} : \varphi \text{ M\"OBIUS map} \right\}.$

$$\operatorname{supp}(\mathfrak{F}) := \bigcup_{W \in \mathfrak{F}} W.$$

Lemma

$$\sum_{W\in\mathfrak{F}}\mathsf{diam}(W)^lpha\leq \|\mathfrak{F}\|_lpha\,\mathsf{diam}(\mathsf{supp}(\mathfrak{F}))^lpha.$$

> JUAN RIVERA-LETELIER

Review

Nice sets and couples Inducing scheme

Exponential case

Nonexponential rates of mixing

Discrete density

f real or complex one-dimensional map; V nice set for f.

Lemma

If f is uniformly expanding on K(V), then there is α between HD(K(V)) and 1 or HD(J(f)) such that

$$\sum_{\mathcal{W}\in\mathfrak{L}_{\mathcal{V}}}\mathsf{diam}(\mathcal{W})^lpha<+\infty.$$

l

Furthermore,

 $\|\mathfrak{L}_V\|_{\alpha} < +\infty.$

JUAN RIVERA-LETELIER

Review

Nice sets and couples Inducing scheme

Exponential case

Nonexponential rates of mixing

Discrete density

f real or complex one-dimensional map; (\widehat{V}, V) nice couple for f.

Given a bad pull-back \widetilde{W} of \widehat{V} of order *n*, let $\ell(\widetilde{W})$ be the number of those $m \in \{1, \ldots, n\}$ such that

 $f^m(\widetilde{W}) \subset \widehat{V}.$

Geometric Lemma

$$\|\mathfrak{D}_0\|_{\alpha} < +\infty.$$

• There is a constant C > 0 such that for every bad pull-back \widetilde{W} of \widehat{V}

$$\|\mathfrak{D}_{\widetilde{W}}\|_{lpha} \leq C^{\ell(\widetilde{W})}\|\mathfrak{D}_{\mathsf{0}}\|_{lpha}.$$

> Juan Rivera-Letelier

Review

Nice sets and couples Inducing scheme

Exponential case

Nonexponential rates of mixing

Proof of the Key Lemma

$$\begin{split} \sum_{W \in \mathfrak{D}} \operatorname{diam}(W)^{\alpha} \\ &\leq \sum_{W \in \mathfrak{D}_{0}} \operatorname{diam}(W)^{\alpha} + \sum_{\widetilde{W} \text{ bad pull-back of } \widetilde{V}} \sum_{W \in \mathfrak{D}_{\widetilde{W}}} \operatorname{diam}(\widetilde{W})^{\alpha} \\ &\leq \|\mathfrak{D}_{0}\|_{\alpha} \sum_{c} \operatorname{diam}(V^{c})^{\alpha} \\ &+ \|\mathfrak{D}_{0}\|_{\alpha} \sum_{\widetilde{W} \text{ bad pull-back of } \widetilde{V}} C^{\ell(\widetilde{W})} \operatorname{diam}(\widetilde{W})^{\alpha} < +\infty. \end{split}$$

> JUAN RIVERA-LETELIER

Review

Nice sets and couples Inducing scheme

Exponentia case

Nonexponential rates of mixing

Badness exponent

f real or complex one-dimensional map.Badness exponent of a nice \widehat{V} for f: $\delta_{\text{bad}}(\widehat{V}) = \inf \left\{ t > 0 : \sum_{\widetilde{W} \text{ bad pull-back of } \widehat{V}} \text{diam}(\widetilde{W})^t < +\infty \right\}.$

Badness exponent of f:

$$\delta_{\mathsf{bad}}(f) = \inf \left\{ \delta_{\mathsf{bad}}(\widehat{V}) : \widehat{V} \text{ nice set for } f \right\}.$$

Juan Rivera-Letelier

Review

Nice sets and couples Inducing scheme

Exponentia case

Nonexponential rates of mixing

Theorem

If f is backward contracting, then f has arbitrarily small nice couples and

 $\delta_{bad}(f) = 0.$

Badness exponent

> JUAN RIVERA-LETELIER

Review

Nice sets and couples Inducing scheme

Exponentia case

Nonexponential rates of mixing

Non-exponential tail estimates

We will say that a sequence of positive numbers $(\theta_m)_{m=1}^{+\infty}$ is slowly varying if

$$\lim_{n\to+\infty}\frac{\theta_{m+1}}{\theta_m}=1.$$

Definition

Let $\Theta := (\theta_m)_{m=1}^{+\infty}$ be a non-increasing and slowly varying sequence of positive numbers. Then we will say that a map fhas the Θ -Shrinking of Components property if there are constants C > 0 and $\delta_0 > 0$ such that for every x, every $\delta \in (0, \delta_0)$, every m and every pull-back W of $B(x, \delta)$ by f^m ,

diam(W) $\leq C\theta_m$.

> Juan Rivera-Letelier

Review

Nice sets and couples Inducing scheme

Exponentia case

Nonexponential rates of mixing

Non-exponential tail estimates

Theorem Let f be such that $\delta_{bad}(f) < 1$ or HD(J(f)) and fix

 $t \in (\delta_{bad}(f), 1 \text{ or } HD(J(f))).$

Put $\Theta := (\theta_n)_{n=1}^{+\infty}$ a slowly varying and non-increasing sequence of positive numbers and assume that f has the Θ -Shrinking of Components property.

Then for every sufficiently small nice couple (\hat{V}, V) there is C > 0 and $\alpha \in (0, 1 \text{ or } HD(J(f)))$ such that for every $m \ge 1$

$$\sum_{\substack{W \in \text{ connected component of } D \\ m(W) \geq m}} \operatorname{diam}(W)^{\alpha} \leq C \sum_{n=m}^{+\infty} \theta_n^{\alpha-t}.$$

1 . . .

JUAN RIVERA-LETELIER

Review

Nice sets and couples Inducing scheme

Exponentia case

Nonexponential rates of mixing

Polynomially mixing a.c.i.p.s

Taking $\Theta := (n^{-\beta})_{n=1}^{+\infty}$ in the previous theorem we obtain: Corollary

Let f have Polynomial shrinking of components of exponent $\beta > 0$. If

$$\beta(1-\delta_{bad}(f))>2$$

then for every

$$p < eta(1 - \delta_{\mathit{bad}}(f)) - 2$$

the map f possesses a polynomially mixing a.c.i.p. of exponent p.

> JUAN RIVERA-LETELIER

Review

Nice sets and couples Inducing scheme

Exponentia case

Nonexponential rates of mixing

Pollynomially mixing a.c.i.p.s

Question *Does*

Super-polynomial Shrinking of Components $\Rightarrow \ \delta_{bad}(f) = 0 \ ?$