Perturbation of the dynamics of C^1 -diffeomorphisms

Sylvain Crovisier

Recent advances in modern dynamics Warwick, 12-16 december 2011

Survey (in french) ArXiv:0912.2896

Differentiable dynamics

Consider:

- M: compact boundaryless manifold,
- Diff $^r(M)$, $r \ge 1$.

Goal 1: understand the dynamics of "most" $f \in Diff(M)$. "Most": at least a dense part.

Our viewpoint: describe a *generic* subset of $Diff^1(M)$. *Generic* (Baire): countable intersection of open and dense subsets.

Goal 2: *identify regions of* Diff(*M*) *with different dyn. behavior.*

Examples (1), in dimension 1 On $\mathbb{T}^1=\mathbb{R}/\mathbb{Z}$.

Morse-Smale dynamics are open and dense in $Diff^r(\mathbb{T}^1)$.

Examples (2), in any dimension

time-one map of the gradient flow of a Morse function.

Definition

A Morse-Smale diffeomorphism:

- finitely many hyperbolic periodic orbits,
- any other orbit is trapped: it meets $U \setminus f(\bar{U})$ where U open satisfies $f(\bar{U}) \subset U$.

- Stable under perturbations.
- ► Zero topological entropy.

Examples (3): Hyperbolic diffeomorphisms

 $f \in \mathsf{Diff}(M)$ is *hyperbolic* if there exists $K_0, \ldots, K_d \subset M$ s.t.:

- each K_i is a hyperbolic invariant: $T_K M = E^s \oplus E^u$,
- any orbit in $M \setminus (\bigcup_i K_i)$ is trapped.

Good properties: Ω -stability, coding, physical measures,... The set $hyp(M) \subset \text{Diff}^r(M)$ of hyperbolic dynamics is open.

Examples (3): Hyperbolic diffeomorphisms

The Smale's horseshoe.

A hyperbolic diffeomorphism has positive topological entropy, iff there is a *transverse homoclinic orbit*

Examples (3): Hyperbolic diffeomorphisms the Plykin attractor.

Examples (4): robust non-hyperbolic diffeomorphisms

The set $hyp(M) \subset \text{Diff}^r(M)$ of hyperbolic dynamics is *not dense*, when $\dim(M) = 2$, $r \geq 2$ (*Newhouse*) or when $\dim(M) > 2$ and $r \geq 1$ (*Abraham-Smale*),

Smale's Conjecture:

The set $hyp(M) \subset Diff^r(M)$ is *dense*, when dim(M) = 2, r = 1.

C^1 -generic dynamics

Goal. Describe a **dense** set of diffeomorphisms $\mathcal{G} \subset \mathsf{Diff}^1(M)$.

Definition. \mathcal{G} is *generic* (Baire) if it contains a dense G_{δ} set (i.e. a countable intersection of open and dense subsets) of Diff¹(M).

Rk. Diff¹(M) is a Baire space.

Properties.

- $-\mathcal{G}$ is generic $\Rightarrow \mathcal{G}$ is dense.
- \mathcal{G}_1 and \mathcal{G}_2 are generic $\Rightarrow \mathcal{G}_1 \cap \mathcal{G}_2$ is generic

Example: Kupka-Smale's Theorem.

Generically in $Diff^r(M)$, the periodic orbits are hyperbolic.

Decomposition of the dynamics (1)

$$Per(f) \subset Rec^+(f) \subset L^+(f) \subset \Omega(f) \subset \mathcal{R}(f).$$

Definition. x is *chain-recurrent* iff for every $\varepsilon > 0$ it belongs to a periodic ε -pseudo-orbit.

The *chain-recurrent set* $\mathcal{R}(f)$ is the set of chain-recurrent points.

Property (Conley).

 $M \setminus \mathcal{R}(f)$ is the set of points that are *trapped*.

Decomposition of the dynamics (2)

Definition. $x \sim y$ is the equivalence relation on $\mathcal{R}(f)$: " $\forall \varepsilon > 0$, x,y belong to a same periodic ε -pseudo-orbit". The chain-recurrence classes are the equivalence classes of \sim .

Property (Conley).

- The chain-recurrence classes are compact and invariant.
- For any classes $K \neq K'$, there exists U open such that $K \subset U$, $K' \subset M \setminus U$ and either $f(\overline{U}) \subset U$ or $f^{-1}(\overline{U}) \subset U$.

Definition. A *quasi-attractor* is a class having arbitrarily small neighborhoods U s.t. $f(\overline{U}) \subset U$.

► There always exists a quasi-attractor.

C^1 -perturbation lemmas (1)

For hyperbolic diffeomorphisms, pseudo-orbits are *shadowed*. For arbitrary diffeomorphisms, this becomes false.

Try to get it after a perturbation of the diffeomorphism!

With C^0 -small perturbations, this is easy.

With C^1 -small perturbations, this is much more difficult.

With C^r -small perturbations, r > 1, this is unknown.

C^1 -perturbation lemmas (2)

Theorem (Pugh's closing lemma).

For any diffeomorphism f and any $x \in \Omega(f)$, there exists g close to f in $\mathrm{Diff}^1(M)$ such that x is periodic.

Theorem (Hayashi's connecting lemma).

For any f and any non-periodic x, y, z, if z is accumulated by forward iterates of x and by backwards iterates of y, then there are g close to f in $\mathrm{Diff}^1(M)$ and $n \geq 1$ such that $y = g^n(x)$.

C^1 -perturbation lemmas (3)

Theorem [Bonatti - C] (Connecting lemma for pseudo-orbits).

For any f whose periodic orbits are hyperbolic and any x,y, if there exist ε -pseudo-orbits connecting x to y for any $\varepsilon>0$, then there are g close to f in $\mathrm{Diff}^1(M)$ and $n\geq 1$ s.t. $y=g^n(x)$.

Theorem [C] (Global connecting lemma).

For any f whose periodic orbits are hyperbolic and any x_0, \ldots, x_k , if there exist ε -pseudo-orbits connecting x_0, \ldots, x_k for any $\varepsilon > 0$, then there is g close to f in $\mathsf{Diff}^1(M)$ such that x_0, \ldots, x_k belong to a same orbit.

C¹-generic consequences

For C^1 -generic diffeomorphisms:

- $\overline{Per(f)} = \mathcal{R}(f).$
- Any chain-recurrence class is the Hausdorff limit of a sequence of periodic orbits.
- Weak shadowing lemma: for any $\delta > 0$, there exists $\varepsilon > 0$ such that any ε -pseudo-orbit $\{x_0, \ldots, x_k\}$ is δ -close to a segment of orbit $\{x, f(x), \ldots, f^n(x)\}$ for the Hausdorff distance.
- For any x in a dense G_{δ} set $X \subset M$, the accumulation set of its forward orbit is a quasi-attractor.

Homoclinic classes

Let O be a hyperbolic periodic orbit.

Definition. The *homoclinic class* H(O) is the closure of the set of transverse homoclinic orbits of O.

$$H(O) = \overline{W^s(O) \cap W^u(O)}.$$

- ▶ It is a transitive set. Periodic points are dense.
- For hyperbolic diffeomorphisms,
 "homoclinic classes = chain-recurrence classes = basic sets."

Theorem [B-C] For C^1 -generic f, the homoclinic classes are the chain-recurrence classes which contain a periodic orbit.

- ▶ Homoclinic classes may be described by their periodic orbits.
- ▶ The other chain-recurrence classes are called *aperiodic classes*.

Example of wild C^1 -generic dynamics

Theorem [Bonatti – Díaz]. When $\dim(M) \geq 3$, there exists $\mathcal{U} \neq \emptyset$ open such that generic diffeomorphisms $f \in \mathcal{U}$:

- have aperiodic classes (carrying odometer dynamics),
- have uncountable many chain-recurrence classes,
- exhibit universal dynamics.

One expects [Potrie]: \mathcal{U}' open s.t. generic diffeomorphisms $f \in \mathcal{U}'$ have infinitely many homoclinic classes and no aperiodic classes.

A pathology [B – C – Shinohara]. Pesin theory becomes false. There exists \mathcal{U}'' open such that generic diffeomorphisms $f \in \mathcal{U}$ have *hyperbolic* ergodic measures whose stables/unstable manifolds are reduced to points, a.e.

Perturbation of the dynamics of C^1 -diffeomorphisms

- 1. General C^1 -generic properties.
- 2. Role of the homoclinic tangencies.
- 3. Role of the heterodimensional cycles.

Survey (in french) ArXiv:0912.2896

Decomposition of the diffeomorphism space: phenomenon/mecanisms

Goal. Split the space Diff(M) according to the dynamical behavior.

- We look for subclasses of systems which:
 - either can be globally well described (phenomenon),
 - or exhibit a very simple local configuration, that generates rich instabilities (mecanisms).
- ▶ We are mostly interested by classes of systems that are **open**.

Decomposition of the diffeomorphism space: simple/intricate dynamics.

Example of decomposition:

Theorem. There exists two disjoint open sets $\mathcal{MS}, \mathcal{H} \subset \mathsf{Diff}^1(M)$ whose union is dense:

- MS: Morse-Smale diffeomorphisms,
- H: diffeomorphism exhibiting a transverse homoclinic intersection.

```
dim(M) = 2: Pujals-Sambarino,

dim(M) = 3: Bonatti-Gan-Wen,

dim(M) \ge 4: C.
```

Example of mechanism: homoclinic tangencies.

Homoclinic tangency associated to a hyperbolic periodic point *p*.

 This mechanism is fragile (one-codimensional).

Definition. $f \in \text{Diff}^r(M)$ exhibits a C^r -robust homoclinic tangency if there is a transitive hyperbolic set K s.t. for any g C^r -close to f, $W^s(x)$ and $W^u(y)$ have a tangency for some $x, y \in K_g$.

Theorem (Newhouse). C^r -robust homoclinic tangency exist when:

- $-\dim(M)=2$ and $r\geq 2$,
- $-\dim(M) \geq 3$ and $r \geq 1$.

Homoclinic tangencies generate wild dynamics (1): Newhouse phenomenon

Property (Newhouse, Palis-Viana).

- When dim(M) = 2, for any open set $\mathcal{U} \subset Diff^r(M)$ exhibiting a robust homoclinic tangency, generic diffeomorphisms in \mathcal{U} have infinitely many sinks (hence chain-recurrence classes).
- When $dim(M) \ge 3$, still true if the tangency is "sectionally dissipative".

Rk (Bonatti-Viana). When $\dim(M) \ge 3$, there can exist simultaneously (other kind of) robust tangencies and only finitely many classes.

Homoclinic tangencies generate wild dynamics (2): universal dynamics

Definition. $f \in \text{Diff}^r(M^d)$ is C^r -universal, if for any orientation preserving C^r embedding $g: B^d \to int(B^d)$, there exists:

- -g' close to g,
- a ball $B\subset M$ and $n\geq 1$, such that $f^n(B)\subset B$, satisfying $f^n_{|B}=g'.$

Theorem (Bonatti-Díaz). Assume $d \ge 3$ and r = 1. Any f exhibiting "enough" C^1 -robust homoclinic tangencies admits a C^1 -neighborhood where C^1 -universal dynamics is generic.

Theorem (Turaev). Assume d = 2 and $r \ge 2$.

Any f with a transitive hyperbolic set K such that:

- K has C^r-robust homoclinic tangency,
- K contains periodic points with Jacobian > 0 and < 0, admits a C^r -neighborhood where C^r -universal dynamics is generic.

Homoclinic tangencies generate wild dynamics (2): universal dynamics

Definition. $f \in \text{Diff}^r(M^d)$ is C^r -universal, if for any orientation preserving C^r embedding $g: B^d \to int(B^d)$, there exists:

- -g' close to g,
- a ball $B \subset M$ and $n \ge 1$, such that $f^n(B) \subset B$, satisfying $f_{|B}^n = g'$.

Produces:

- uncountable many chain-recurrence classes,
- aperiodic classes (odometer type).

Weak form of hyperbolicity

Consider an invariant set K.

Definition. An invariant splitting $T_K M = E \oplus F$ is dominated if there is $N \ge 1$ s.t. for any $x \in K$ and any unitary $u \in E_x$, $v \in F_x$,

$$||D_x f^N . u|| \le \frac{1}{2} ||D_x f^N . v||.$$

Properties. – still holds on the closure of K,

- still holds for invariant sets K' in a neighborhood U of K,
- prevents the existence in U of a periodic orbit O with stable dimension = dim(E) exhibiting a homoclinic tangency.

Partial hyperbolicity/homoclinic tangencies

 \mathcal{T} : the set of diffeomorphisms having a homoclinic tangency.

Theorem [C – Sambarino – D.Yang]. For generic $f \in \text{Diff}^1(M) \setminus \overline{\mathcal{T}}$, each chain-recurrence class Λ admits a dominated splitting

$$T_{\Lambda}M = E^s \oplus E_1^c \oplus \cdots \oplus E_k^c \oplus E^u$$
,

where: - each E_i^c is one-dimensional,

- E^s is uniformly contracted,
- $-E^{u}$ is uniformly expanded.

Theorem [C – Pujals – Sambarino]. Under the same setting, if Λ is not a sink or a source, then E^s , E^u are non-degenerated.

Characterization of the Newhouse phenomenon

Consequence.

Any C^1 -generic diffeomorphism which admits infinitely many sinks or sources is limit in $Diff^1(M)$ of diffeomorphisms exhibiting a homoclinic tangency.

Finiteness conjecture (Bonatti).

Any C^1 -generic diffeomorphism which admits infinitely many chain-recurrence classes is limit in $\mathrm{Diff}^1(M)$ of diffeomorphisms exhibiting a homoclinic tangency.

Far from homoclinic tangencies (1): invariant measures

Assume that f is not limit in $Diff^1(M)$ of diffeomorphisms exhibiting a homoclinic tangency.

Theorem (Mañé-Wen-Gourmelon).

Any limit set K of a sequence of periodic orbits (O_n) with stable dimension s has a dominated splitting

$$T_K M = E \oplus F$$
, $\dim(E) = s$.

Corollary.

The support of any ergodic measure μ has a dominated splitting:

$$T_{supp(\mu)}M = E_{cs} \oplus E_c \oplus E_{cu},$$

Along E_{cs} , E_c , E_{cu} the Lyapunov exponents of μ are < 0, 0, > 0, The dimension of E_c is 0 or 1. Far from homoclinic tangencies (2): minimal sets

Theorem (Gan–Wen–D.Yang). Consider $f \in \text{Diff}^1(M) \setminus \overline{\mathcal{T}}$. Any minimal set K has a dominated splitting

$$T_K M = E^s \oplus E_1^c \oplus E_2^c \oplus \cdots \oplus E_k^c \oplus E^u$$
,

each E_i^c has dimension 1 and E^s , E^u are uniform.

Proved by *interpolation* of the dominated splittings on K, using:

Theorem (Liao). Consider any $f \in \text{Diff}^1(M)$ and K invariant s.t.

- K has a dominated splitting $T_K M = E \oplus F$,
- E is not uniformly contracted,
- on any $K' \subset K$, the function $\log |Df|$ has negative average for some invariant measure μ on K',

then any neighborhood of K contains periodic orbits whose maximal Lyapunov exponent along E is < 0 and close to 0.

Far from homoclinic tangencies (3): chain-recurrence classes

Theorem [C – Sambarino – D.Yang]. For generic $f \in \text{Diff}^1(M) \setminus \overline{\mathcal{T}}$, each chain-recurrence class Λ admits a dominated splitting

$$T_{\Lambda}M = E^s \oplus E_1^c \oplus \cdots \oplus E_k^c \oplus E^u$$
,

where: - each E_i^c is one-dimensional,

- E^s is uniformly contracted,
- $-E^u$ is uniformly expanded.

Proved by extension of the dominated splittings of subsets.

Perturbation of the dynamics of C^1 -diffeomorphisms

- 1. General C^1 -generic properties.
- 2. Role of the homoclinic tangencies.
- 3. Role of the heterodimensional cycles.

Survey (in french) ArXiv:0912.2896

Heterodimensional cycles: definition

Heterodimensional cycle associated to hyperbolic periodic point p, q.

 This mechanism is fragile (one-codimensional).

Definition. f exhibits a robust heterodimensional cycle associated to p,q if there are transitive hyperbolic sets K_p, K_q containing p,q s.t. for any g C^1 -close to f, $W^s(x) \cap W^u(y) \neq \emptyset$ for some $(x,y) \in K_p \times K_q$ and also for some $(x,y) \in K_q \times K_p$.

▶ Robust heterodimensional cycles do exist when $dim(M) \ge 3$.

Heterodimensional cycles: consequences

Consider a C^1 -generic f and two hyperbolic periodic points p, q with different stable dimension inside a same chain-recurrence class.

- ▶ Genericity ⇒ robustness (Bonatti-Díaz). For any diffeomorphism C^1 -close to f one has H(p) = H(q) and there exists a robust heterodimensioonal cycle associated to p, q.
- ► Non-hyperbolic measures (Díaz-Gorodetsky). *f* has an *ergodic* measure with one Lyapunov exponent equal to 0.

The *C*^r-hyperbolicity conjecture

Conjecture (Palis). Any $f \in \text{Diff}^r(M)$ can be approximated by a hyperbolic diffeomorphism or by a diffeomorphism exhibiting a homoclinic bifurcation (tangency or cycle).

This holds when dim(M) = 1. (Morse-Smale systems are dense.)

Theorem (Pujals-Sambarino).

The conjecture holds for C^1 -diffeomorphisms of surfaces.

The C^1 -hyperbolicity conjecture

Conjecture (Bonatti-Díaz). Any $f \in \text{Diff}^1(M)$ can be approximated by a hyperbolic diffeomorphism or by a diffeomorphism exhibiting a heterodimensional cycle.

This would imply Smale's conjecture on surfaces.

Theorem (C). The conjecture holds for volume-preserving diffeomorphisms in dimension ≥ 3 .

Conjectured panorama of C^1 -dynamics

universal

cycles and tangencies # classes $= \infty$

cycles and tangencies # classes $< \infty$

 $\begin{array}{c} {\rm cycles} \\ \# \; {\rm classes} < \infty \end{array}$

 ${\it hyperbolic}$

Morse - Smale

other

Non-degenerated extremal bundles

Theorem (C-Pujals-Sambarino). Consider $f \in \text{Diff}^2(M)$. Let K with a dominated splitting $T_K M = E \oplus F$, $\dim(F) = 1$ s.t.

- all periodic points in K are hyperbolic, no sink,
- there is no invariant curve in K tangent to F, then F is uniformly expanded.

Goes back to a theorem by Mañé, for one-dimensional dynamics.

Chain-hyperbolicity

Theorem (C).

For $f \in \text{Diff}^1(M)$ generic, not limit of a homoclinic bifurcation:

Any aperiodic class has a dominated splitting

$$T_K M = E^s \oplus E^c \oplus E^u, \quad dim(E^c) = 1,$$

and the Lyapunov exponent along E^c is 0 for any measure.

Any homoclinic class has a dominated splitting

$$T_K M = E^s \oplus E^c_1 \oplus E^c_2 \oplus E^u, \quad dim(E^c_i) \leq 1.$$

All periodic orbits have stable dimension $dim(E^s + E_1^c)$. If $dim(E_i^c) = 1$, there exists periodic orbits in K with a Lyapunov exponent along E_i^c close to 0.

Essential hyperbolicity

Theorem (C-Pujals).

Any C^1 generic diffeomorphism that can not be approximated by a homoclinic bifurcation is essentially hyperbolic.

Definition of essential hyperbolicity. There exist hyperbolic attractors A_1, \ldots, A_k and repellors R_1, \ldots, R_ℓ s.t.:

- the union of the basins of the A_i is (open and) dense in M,
- the union of the basins of the R_i is (open and) dense in M,

Theorem (Bonatti-C-Pujals).

Consider f and a hyperbolic set K with a dominated splitting

$$T_K M = (E^{ss} \oplus E^c) \oplus E^u$$
.

Then,

- ▶ either K is contained in a submanifold tangent to $E^c \oplus E^u$,
- ▶ or there are g $C^{1+\alpha}$ -close to f and $p \in K_g$ periodic with a strong connection:

$$W^{ss}(p) \cap W^{uu}(p) \setminus \{p\} \neq \emptyset.$$

