Perturbation of the dynamics of C^{1}-diffeomorphisms

Sylvain Crovisier

Recent advances in modern dynamics Warwick, 12-16 december 2011

Survey (in french) ArXiv:0912.2896

Differentiable dynamics

Consider:

- M : compact boundaryless manifold,
- $\operatorname{Diff}^{r}(M), r \geq 1$.

Goal 1: understand the dynamics of "most" $f \in \operatorname{Diff}(M)$. "Most": at least a dense part.

Our viewpoint: describe a generic subset of $\operatorname{Diff}^{1}(M)$. Generic (Baire): countable intersection of open and dense subsets.

Goal 2: identify regions of $\operatorname{Diff}(M)$ with different dyn. behavior.

Examples (1), in dimension 1
On $\mathbb{T}^{1}=\mathbb{R} / \mathbb{Z}$.

Morse-Smale dynamics are open and dense in $\operatorname{Diff}^{r}\left(\mathbb{T}^{1}\right)$.

Examples (2), in any dimension
time-one map of the gradient flow of a Morse function.

Definition

A Morse-Smale diffeomorphism:

- finitely many hyperbolic periodic orbits,
- any other orbit is trapped: it meets $U \backslash f(\bar{U})$ where U open satisfies $f(\bar{U}) \subset U$.
- Stable under perturbations.
- Zero topological entropy.

Examples (3): Hyperbolic diffeomorphisms

$f \in \operatorname{Diff}(M)$ is hyperbolic if there exists $K_{0}, \ldots, K_{d} \subset M$ s.t.:

- each K_{i} is a hyperbolic invariant: $T_{K} M=E^{s} \oplus E^{u}$,
- any orbit in $M \backslash\left(\bigcup_{i} K_{i}\right)$ is trapped.

Good properties: Ω-stability, coding, physical measures,... The set hyp $(M) \subset \operatorname{Diff}^{r}(M)$ of hyperbolic dynamics is open.

Examples (3): Hyperbolic diffeomorphisms

The Smale's horseshoe.

A hyperbolic diffeomorphism has positive topological entropy, iff there is a transverse homoclinic orbit

Examples (3): Hyperbolic diffeomorphisms the Plykin attractor.

Examples (4): robust non-hyperbolic diffeomorphisms

The set $\operatorname{hyp}(M) \subset \operatorname{Diff}^{r}(M)$ of hyperbolic dynamics is not dense, when $\operatorname{dim}(M)=2, r \geq 2$ (Newhouse) or when $\operatorname{dim}(M)>2$ and $r \geq 1$ (Abraham-Smale),

Smale's Conjecture:

The set $\operatorname{hyp}(M) \subset \operatorname{Diff}^{r}(M)$ is dense, when $\operatorname{dim}(M)=2, r=1$.

Goal. Describe a dense set of diffeomorphisms $\mathcal{G} \subset \operatorname{Diff}^{1}(M)$.
Definition. \mathcal{G} is generic (Baire) if it contains a dense G_{δ} set (i.e. a countable intersection of open and dense subsets) of $\operatorname{Diff}^{1}(M)$.
$R k$. $\operatorname{Diff}^{1}(M)$ is a Baire space.
Properties.
$-\mathcal{G}$ is generic $\Rightarrow \mathcal{G}$ is dense.

- \mathcal{G}_{1} and \mathcal{G}_{2} are generic $\Rightarrow \mathcal{G}_{1} \cap \mathcal{G}_{2}$ is generic

Example: Kupka-Smale's Theorem.
Genericaly in $\operatorname{Diff}^{r}(M)$, the periodic orbits are hyperbolic.

$$
\operatorname{Per}(f) \subset \operatorname{Rec}^{+}(f) \subset L^{+}(f) \subset \Omega(f) \subset \mathcal{R}(f)
$$

Definition. x is chain-recurrent iff for every $\varepsilon>0$ it belongs to a periodic ε-pseudo-orbit.
The chain-recurrent set $\mathcal{R}(f)$ is the set of chain-recurrent points.
Property (Conley).
$M \backslash \mathcal{R}(f)$ is the set of points that are trapped.

Definition. $x \sim y$ is the equivalence relation on $\mathcal{R}(f)$:
$" \forall \varepsilon>0, x, y$ belong to a same periodic ε-pseudo-orbit".
The chain-recurrence classes are the equivalence classes of \sim.
Property (Conley).

- The chain-recurrence classes are compact and invariant.
- For any classes $K \neq K^{\prime}$, there exists U open such that $K \subset U$, $K^{\prime} \subset M \backslash U$ and either $f(\bar{U}) \subset U$ or $f^{-1}(\bar{U}) \subset U$.

Definition. A quasi-attractor is a class having arbitrarily small neighborhoods U s.t. $f(\bar{U}) \subset U$.

- There always exists a quasi-attractor.

For hyperbolic diffeomorphisms, pseudo-orbits are shadowed. For arbitrary diffeomorphisms, this becomes false.

- Try to get it after a perturbation of the diffeomorphism!

With C^{0}-small perturbations, this is easy.
With C^{1}-small perturbations, this is much more difficult.
With C^{r}-small perturbations, $r>1$, this is unknown.

Theorem (Pugh's closing lemma).
For any diffeomorphism f and any $x \in \Omega(f)$, there exists g close to f in $\operatorname{Diff}^{1}(M)$ such that x is periodic.

Theorem (Hayashi's connecting lemma).
For any f and any non-periodic x, y, z, if z is accumulated by forward iterates of x and by backwards iterates of y, then there are g close to f in $\operatorname{Diff}^{1}(M)$ and $n \geq 1$ such that $y=g^{n}(x)$.

```
C1
```

Theorem [Bonatti - C] (Connecting lemma for pseudo-orbits). For any f whose periodic orbits are hyperbolic and any x, y, if there exist ε-pseudo-orbits connecting x to y for any $\varepsilon>0$, then there are g close to f in $\operatorname{Diff}^{1}(M)$ and $n \geq 1$ s.t. $y=g^{n}(x)$.

Theorem [C] (Global connecting lemma).
For any f whose periodic orbits are hyperbolic and any x_{0}, \ldots, x_{k}, if there exist ε-pseudo-orbits connecting x_{0}, \ldots, x_{k} for any $\varepsilon>0$, then there is g close to f in $\operatorname{Diff}^{1}(M)$ such that x_{0}, \ldots, x_{k} belong to a same orbit.

For C^{1}-generic diffeomorphisms:

- $\overline{\operatorname{Per}(f)}=\mathcal{R}(f)$.
- Any chain-recurrence class is the Hausdorff limit of a sequence of periodic orbits.
- Weak shadowing lemma: for any $\delta>0$, there exists $\varepsilon>0$ such that any ε-pseudo-orbit $\left\{x_{0}, \ldots, x_{k}\right\}$ is δ-close to a segment of orbit $\left\{x, f(x), \ldots, f^{n}(x)\right\}$ for the Hausdorff distance.
- For any x in a dense G_{δ} set $X \subset M$, the accumulation set of its forward orbit is a quasi-attractor.

Homoclinic classes

Let O be a hyperbolic periodic orbit.
Definition. The homoclinic class $H(O)$ is the closure of the set of transverse homoclinic orbits of O.

$$
H(O)=\overline{W^{s}(O) \pitchfork W^{u}(O)}
$$

- It is a transitive set. Periodic points are dense.
- For hyperbolic diffeomorphisms,
"homoclinic classes $=$ chain-recurrence classes $=$ basic sets."
Theorem $[\mathrm{B}-\mathrm{C}]$ For C^{1}-generic f, the homoclinic classes are the chain-recurrence classes which contain a periodic orbit.
- Homoclinic classes may be described by their periodic orbits.
- The other chain-recurrence classes are called aperiodic classes.

Example of wild C^{1}-generic dynamics

Theorem [Bonatti - Díaz]. When $\operatorname{dim}(M) \geq 3$, there exists $\mathcal{U} \neq \emptyset$ open such that generic diffeomorphisms $f \in \mathcal{U}$:

- have aperiodic classes (carrying odometer dynamics),
- have uncountable many chain-recurrence classes,
- exhibit universal dynamics.

One expects [Potrie]: \mathcal{U}^{\prime} open s.t. generic diffeomorphisms $f \in \mathcal{U}^{\prime}$ have infinitely many homoclinic classes and no aperiodic classes.

A pathology [B-C - Shinohara]. Pesin theory becomes false. There exists $\mathcal{U}^{\prime \prime}$ open such that generic diffeomorphisms $f \in \mathcal{U}$ have hyperbolic ergodic measures whose stables/unstable manifolds are reduced to points, a.e.

Perturbation of the dynamics of C^{1}-diffeomorphisms

1. General C^{1}-generic properties.
2. Role of the homoclinic tangencies.
3. Role of the heterodimensional cycles.

Survey (in french) ArXiv:0912.2896

Decomposition of the diffeomorphism space: phenomenon/mecanisms

Goal. Split the space $\operatorname{Diff}(M)$ according to the dynamical behavior.

- We look for subclasses of systems which:
- either can be globally well described (phenomenon),
- or exhibit a very simple local configuration, that generates rich instabilities (mecanisms).
- We are mostly interested by classes of systems that are open.

Decomposition of the diffeomorphism space: simple/intricate dynamics.

Example of decomposition:
Theorem. There exists two disjoint open sets $\mathcal{M S}, \mathcal{H} \subset \operatorname{Diff}^{1}(M)$ whose union is dense:

- MS: Morse-Smale diffeomorphisms,
- \mathcal{H} : diffeomorphism exhibiting a transverse homoclinic intersection.
$\operatorname{dim}(M)=2:$ Pujals-Sambarino, $\operatorname{dim}(M)=3$: Bonatti-Gan-Wen, $\operatorname{dim}(M) \geq 4:$.

Homoclinic tangency associated to a hyperbolic periodic point p.

- This mechanism is fragile (one-codimensional).

Definition. $f \in \operatorname{Diff}^{r}(M)$ exhibits a C^{r}-robust homoclinic tangency if there is a transitive hyperbolic set K s.t. for any $g C^{r}$-close to f, $W^{s}(x)$ and $W^{u}(y)$ have a tangency for some $x, y \in K_{g}$.

Theorem (Newhouse). Cr-robust homoclinic tangency exist when:
$-\operatorname{dim}(M)=2$ and $r \geq 2$,
$-\operatorname{dim}(M) \geq 3$ and $r \geq 1$.

Property (Newhouse, Palis-Viana).

- When $\operatorname{dim}(M)=2$, for any open set $\mathcal{U} \subset \operatorname{Diff}^{r}(M)$ exhibiting a robust homoclinic tangency, generic diffeomorphisms in \mathcal{U} have infinitely many sinks (hence chain-recurrence classes).
- When $\operatorname{dim}(M) \geq 3$, still true if the tangency is "sectionally dissipative".

Rk (Bonatti-Viana). When $\operatorname{dim}(M) \geq 3$, there can exist simultaneously (other kind of) robust tangencies and only finitely many classes.

Definition. $f \in \operatorname{Diff}^{r}\left(M^{d}\right)$ is C^{r}-universal, if for any orientation preserving C^{r} embedding $g: B^{d} \rightarrow \operatorname{int}\left(B^{d}\right)$, there exists:
$-g^{\prime}$ close to g,

- a ball $B \subset M$ and $n \geq 1$, such that $f^{n}(B) \subset B$, satisfying $f_{\mid B}^{n}=g^{\prime}$.

Theorem (Bonatti-Díaz). Assume $d \geq 3$ and $r=1$.
Any f exhibiting "enough" C^{1}-robust homoclinic tangencies admits a C^{1}-neighborhood where C^{1}-universal dynamics is generic.

Theorem (Turaev). Assume $d=2$ and $r \geq 2$.
Any f with a transitive hyperbolic set K such that:
-K has Cr-robust homoclinic tangency,
-K contains periodic points with Jacobian >0 and <0, admits a C^{r}-neighborhood where C^{r}-universal dynamics is generic.

Homoclinic tangencies generate wild dynamics (2): universal dynamics

Definition. $f \in \operatorname{Diff}^{r}\left(M^{d}\right)$ is C^{r}-universal, if for any orientation preserving C^{r} embedding $g: B^{d} \rightarrow \operatorname{int}\left(B^{d}\right)$, there exists:
$-g^{\prime}$ close to g,

- a ball $B \subset M$ and $n \geq 1$, such that $f^{n}(B) \subset B$,
satisfying $f_{\mid B}^{n}=g^{\prime}$.
- Produces:
- uncountable many chain-recurrence classes,
- aperiodic classes (odometer type).

Weak form of hyperbolicity

Consider an invariant set K.
Definition. An invariant splitting $T_{K} M=E \oplus F$ is dominated if there is $N \geq 1$ s.t. for any $x \in K$ and any unitary $u \in E_{x}, v \in F_{x}$,

$$
\left\|D_{x} f^{N} \cdot u\right\| \leq \frac{1}{2}\left\|D_{x} f^{N} \cdot v\right\| .
$$

Properties. - still holds on the closure of K,

- still holds for invariant sets K^{\prime} in a neighborhood U of K,
- prevents the existence in U of a periodic orbit O with stable dimension $=\operatorname{dim}(E)$ exhibiting a homoclinic tangency.

Partial hyperbolicity/homoclinic tangencies

\mathcal{T} : the set of diffeomorphisms having a homoclinic tangency.
Theorem [C - Sambarino - D.Yang]. For generic $f \in \operatorname{Diff}^{1}(M) \backslash \overline{\mathcal{T}}$, each chain-recurrence class \wedge admits a dominated splitting

$$
T_{\Lambda} M=E^{s} \oplus E_{1}^{c} \oplus \cdots \oplus E_{k}^{c} \oplus E^{u}
$$

where: - each E_{i}^{c} is one-dimensional,

- E^{s} is uniformly contracted,
- E^{u} is uniformly expanded.

Theorem [C - Pujals - Sambarino]. Under the same setting, if Λ is not a sink or a source, then E^{s}, E^{u} are non-degenerated.

Characterization of the Newhouse phenomenon

Consequence.
Any C^{1}-generic diffeomorphism which admits infinitely many sinks or sources is limit in $\operatorname{Diff}^{1}(M)$ of diffeomorphisms exhibiting a homoclinic tangency.

Finiteness conjecture (Bonatti).
Any C^{1}-generic diffeomorphism which admits infinitely many chain-recurrence classes is limit in $\operatorname{Diff}^{1}(M)$ of diffeomorphisms exhibiting a homoclinic tangency.

Assume that f is not limit in $\operatorname{Diff}^{1}(M)$ of diffeomorphisms exhibiting a homoclinic tangency.

Theorem (Mañé-Wen-Gourmelon).
Any limit set K of a sequence of periodic orbits $\left(O_{n}\right)$ with stable dimension s has a dominated splitting

$$
T_{K} M=E \oplus F, \quad \operatorname{dim}(E)=s
$$

Corollary.
The support of any ergodic measure μ has a dominated splitting:

$$
T_{\text {supp }(\mu)} M=E_{c s} \oplus E_{c} \oplus E_{c u}
$$

Along $E_{c s}, E_{c}, E_{c u}$ the Lyapunov exponents of μ are $<0,0,>0$, The dimension of E_{c} is 0 or 1 .

Far from homoclinic tangencies (2): minimal sets

Theorem (Gan-Wen-D.Yang). Consider $f \in \operatorname{Diff}^{1}(M) \backslash \overline{\mathcal{T}}$. Any minimal set K has a dominated splitting

$$
T_{K} M=E^{s} \oplus E_{1}^{c} \oplus E_{2}^{c} \oplus \cdots \oplus E_{k}^{c} \oplus E^{u},
$$

each E_{i}^{c} has dimension 1 and E^{s}, E^{u} are uniform.

Proved by interpolation of the dominated splittings on K, using:
Theorem (Liao). Consider any $f \in \operatorname{Diff}^{1}(M)$ and K invariant s.t.

- K has a dominated splitting $T_{K} M=E \oplus F$,
- E is not uniformly contracted,
- on any $K^{\prime} \subset K$, the function $\log |D f|$ has negative average for some invariant measure μ on K^{\prime},
then any neighborhood of K contains periodic orbits whose maximal Lyapunov exponent along E is <0 and close to 0 .

Theorem [C - Sambarino - D.Yang]. For generic $f \in \operatorname{Diff}^{1}(M) \backslash \overline{\mathcal{T}}$, each chain-recurrence class \wedge admits a dominated splitting

$$
T_{\Lambda} M=E^{s} \oplus E_{1}^{c} \oplus \cdots \oplus E_{k}^{c} \oplus E^{u}
$$

where: - each E_{i}^{c} is one-dimensional,

- E^{s} is uniformly contracted,
- E^{u} is uniformly expanded.

Proved by extension of the dominated splittings of subsets.

Perturbation of the dynamics of C^{1}-diffeomorphisms

1. General C^{1}-generic properties.
2. Role of the homoclinic tangencies.
3. Role of the heterodimensional cycles.

Survey (in french) ArXiv:0912.2896

Heterodimensional cycle

 associated to hyperbolic periodic point p, q.- This mechanism is fragile (one-codimensional).

Definition. f exhibits a robust heterodimensional cycle associated to p, q if there are transitive hyperbolic sets K_{p}, K_{q} containing p, q s.t. for any $g C^{1}$-close to $f, W^{s}(x) \cap W^{u}(y) \neq \emptyset$ for some $(x, y) \in K_{p} \times K_{q}$ and also for some $(x, y) \in K_{q} \times K_{p}$.

- Robust heterodimensional cycles do exist when $\operatorname{dim}(M) \geq 3$.

Consider a C^{1}-generic f and two hyperbolic periodic points p, q with different stable dimension inside a same chain-recurrence class.

- Genericity \Rightarrow robustness (Bonatti-Díaz). For any diffeomorphism C^{1}-close to f one has $H(p)=H(q)$ and there exists a robust heterodimensioonal cycle associated to p, q.
- Non-hyperbolic measures (Díaz-Gorodetsky). f has an ergodic measure with one Lyapunov exponent equal to 0 .

The C^{r}-hyperbolicity conjecture

Conjecture (Palis). Any $f \in \operatorname{Diff}^{r}(M)$ can be approximated by a hyperbolic diffeomorphism or by a diffeomorphism exhibiting a homoclinic bifurcation (tangency or cycle).

This holds when $\operatorname{dim}(M)=1$. (Morse-Smale systems are dense.)
Theorem (Pujals-Sambarino).
The conjecture holds for C^{1}-diffeomorphisms of surfaces.

The C^{1}-hyperbolicity conjecture

Conjecture (Bonatti-Díaz). Any $f \in \operatorname{Diff}^{1}(M)$ can be approximated by a hyperbolic diffeomorphism or by a diffeomorphism exhibiting a heterodimensional cycle.

This would imply Smale's conjecture on surfaces.

Theorem (C). The conjecture holds for volume-preserving diffeomorphisms in dimension ≥ 3.

Conjectured panorama of C^{1}-dynamics

Theorem (C-Pujals-Sambarino). Consider $f \in \operatorname{Diff}^{2}(M)$.
Let K with a dominated splitting $T_{K} M=E \oplus F, \operatorname{dim}(F)=1$ s.t.

- all periodic points in K are hyperbolic, no sink,
- there is no invariant curve in K tangent to F, then F is uniformly expanded.

Goes back to a theorem by Mañé, for one-dimensional dynamics.

Chain-hyperbolicity

Theorem (C).
For $f \in \operatorname{Diff}^{1}(M)$ generic, not limit of a homoclinic bifurcation:

- Any aperiodic class has a dominated splitting

$$
T_{K} M=E^{s} \oplus E^{c} \oplus E^{u}, \quad \operatorname{dim}\left(E^{c}\right)=1
$$

and the Lyapunov exponent along E^{c} is 0 for any measure.

- Any homoclinic class has a dominated splitting

$$
T_{K} M=E^{s} \oplus E_{1}^{c} \oplus E_{2}^{c} \oplus E^{u}, \quad \operatorname{dim}\left(E_{i}^{c}\right) \leq 1
$$

All periodic orbits have stable dimension $\operatorname{dim}\left(E^{s}+E_{1}^{c}\right)$. If $\operatorname{dim}\left(E_{i}^{c}\right)=1$, there exists periodic orbits in K with a Lyapunov exponent along E_{i}^{c} close to 0 .

Theorem (C-Pujals).
Any C^{1} generic diffeomorphism that can not be approximated by a homoclinic bifurcation is essentially hyperbolic.

Definition of essential hyperbolicity. There exist hyperbolic attractors A_{1}, \ldots, A_{k} and repellors $R_{1} \ldots, R_{\ell}$ s.t.:

- the union of the basins of the A_{i} is (open and) dense in M,
- the union of the basins of the R_{i} is (open and) dense in M,

Geometric argument: the hyperbolic case

Theorem (Bonatti-C-Pujals).
Consider f and a hyperbolic set K with a dominated splitting

$$
T_{K} M=\left(E^{s s} \oplus E^{c}\right) \oplus E^{u}
$$

Then,

- either K is contained in a submanifold tangent to $E^{c} \oplus E^{u}$,
- or there are $g C^{1+\alpha}$-close to f and $p \in K_{g}$ periodic with a strong connection:

$$
W^{s s}(p) \cap W^{u u}(p) \backslash\{p\} \neq \emptyset .
$$

