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Differentiable dynamics

Consider:

– M: compact boundaryless manifold,

– Diffr (M), r ≥ 1.

Goal 1: understand the dynamics of “most” f ∈ Diff(M).
“Most”: at least a dense part.

Our viewpoint: describe a generic subset of Diff1(M).
Generic (Baire): countable intersection of open and dense subsets.

Goal 2: identify regions of Diff(M) with different dyn. behavior.



Examples (1), in dimension 1

On T1 = R/Z.

Morse-Smale dynamics are open and dense in Diffr (T1).



Examples (2), in any dimension

time-one map of the gradient flow of a Morse function.

Definition
A Morse-Smale diffeomorphism:

– finitely many hyperbolic
periodic orbits,

– any other orbit is trapped:
it meets U \ f (Ū) where U
open satisfies f (Ū) ⊂ U.

I Stable under perturbations.

I Zero topological entropy.



Examples (3): Hyperbolic diffeomorphisms

f ∈ Diff(M) is hyperbolic if there exists K0, . . . ,Kd ⊂ M s.t.:

– each Ki is a hyperbolic invariant: TKM = E s ⊕ Eu,

– any orbit in M \ (
⋃

i Ki ) is trapped.

Good properties: Ω-stability, coding, physical measures,...

The set hyp(M) ⊂ Diffr (M) of hyperbolic dynamics is open.



Examples (3): Hyperbolic diffeomorphisms

The Smale’s horseshoe.

E u

E s

A hyperbolic diffeomorphism has positive topological entropy, iff
there is a transverse homoclinic orbit



Examples (3): Hyperbolic diffeomorphisms

the Plykin attractor.



Examples (4): robust non-hyperbolic diffeomorphisms

The set hyp(M) ⊂ Diffr (M) of hyperbolic dynamics is not dense,

when dim(M) = 2, r ≥ 2 (Newhouse)

or when dim(M) > 2 and r ≥ 1 (Abraham-Smale),

Smale’s Conjecture:
The set hyp(M) ⊂ Diffr (M) is dense, when dim(M) = 2, r = 1.



C 1-generic dynamics

Goal. Describe a dense set of diffeomorphisms G ⊂ Diff1(M).

Definition. G is generic (Baire) if it contains a dense Gδ set (i.e. a
countable intersection of open and dense subsets) of Diff1(M).

Rk. Diff1(M) is a Baire space.

Properties.

– G is generic ⇒ G is dense.

– G1 and G2 are generic ⇒ G1 ∩ G2 is generic

Example: Kupka-Smale’s Theorem.
Genericaly in Diffr (M), the periodic orbits are hyperbolic.



Decomposition of the dynamics (1)

Per(f ) ⊂ Rec+(f ) ⊂ L+(f ) ⊂ Ω(f ) ⊂ R(f ).

Definition. x is chain-recurrent iff for every ε > 0 it belongs to a
periodic ε-pseudo-orbit.
The chain-recurrent set R(f ) is the set of chain-recurrent points.

Property (Conley).
M \ R(f ) is the set of points that are trapped.



Decomposition of the dynamics (2)

Definition. x ∼ y is the equivalence relation on R(f ):
“∀ε > 0, x , y belong to a same periodic ε-pseudo-orbit”.

The chain-recurrence classes are the equivalence classes of ∼.

Property (Conley).
– The chain-recurrence classes are compact and invariant.

– For any classes K 6= K ′, there exists U open such that K ⊂ U,
K ′ ⊂ M \ U and either f (U) ⊂ U or f −1(U) ⊂ U.

Definition. A quasi-attractor is a class having arbitrarily small
neighborhoods U s.t. f (U) ⊂ U.

I There always exists a quasi-attractor.



C 1-perturbation lemmas (1)

For hyperbolic diffeomorphisms, pseudo-orbits are shadowed.
For arbitrary diffeomorphisms, this becomes false.

I Try to get it after a perturbation of the diffeomorphism!

With C 0-small perturbations, this is easy.

With C 1-small perturbations, this is much more difficult.

With C r -small perturbations, r > 1, this is unknown.



C 1-perturbation lemmas (2)

Theorem (Pugh’s closing lemma).
For any diffeomorphism f and any x ∈ Ω(f ), there exists g close to
f in Diff1(M) such that x is periodic.

Theorem (Hayashi’s connecting lemma).
For any f and any non-periodic x , y , z , if z is accumulated by
forward iterates of x and by backwards iterates of y , then there are
g close to f in Diff1(M) and n ≥ 1 such that y = gn(x).



C 1-perturbation lemmas (3)

Theorem [Bonatti – C] (Connecting lemma for pseudo-orbits).
For any f whose periodic orbits are hyperbolic and any x , y ,
if there exist ε-pseudo-orbits connecting x to y for any ε > 0,
then there are g close to f in Diff1(M) and n ≥ 1 s.t. y = gn(x).

Theorem [C] (Global connecting lemma).
For any f whose periodic orbits are hyperbolic and any x0, . . . , xk ,
if there exist ε-pseudo-orbits connecting x0, . . . , xk for any ε > 0,
then there is g close to f in Diff1(M) such that x0, . . . , xk belong
to a same orbit.



C 1-generic consequences

For C 1-generic diffeomorphisms:

– Per(f ) = R(f ).

– Any chain-recurrence class is the Hausdorff limit of a sequence
of periodic orbits.

– Weak shadowing lemma: for any δ > 0, there exists ε > 0
such that any ε-pseudo-orbit {x0, . . . , xk} is δ-close to a
segment of orbit {x , f (x), . . . , f n(x)} for the Hausdorff
distance.

– For any x in a dense Gδ set X ⊂ M, the accumulation set of
its forward orbit is a quasi-attractor.



Homoclinic classes

Let O be a hyperbolic periodic orbit.

Definition. The homoclinic class H(O) is the closure of the set of
transverse homoclinic orbits of O.

H(O) = W s(O) |∩ W u(O).

I It is a transitive set. Periodic points are dense.

I For hyperbolic diffeomorphisms,
“homoclinic classes = chain-recurrence classes = basic sets.”

Theorem [B – C] For C 1-generic f , the homoclinic classes are the
chain-recurrence classes which contain a periodic orbit.

I Homoclinic classes may be described by their periodic orbits.

I The other chain-recurrence classes are called aperiodic classes.



Example of wild C 1-generic dynamics

Theorem [Bonatti – D́ıaz]. When dim(M) ≥ 3, there exists U 6= ∅
open such that generic diffeomorphisms f ∈ U :

I have aperiodic classes (carrying odometer dynamics),

I have uncountable many chain-recurrence classes,

I exhibit universal dynamics.

One expects [Potrie]: U ′ open s.t. generic diffeomorphisms f ∈ U ′
have infinitely many homoclinic classes and no aperiodic classes.

A pathology [B – C – Shinohara]. Pesin theory becomes false.
There exists U ′′ open such that generic diffeomorphisms f ∈ U
have hyperbolic ergodic measures whose stables/unstable
manifolds are reduced to points, a.e.



Perturbation of the dynamics of
C 1-diffeomorphisms

1. General C 1-generic properties.

2. Role of the homoclinic tangencies.

3. Role of the heterodimensional cycles.

Survey (in french) ArXiv:0912.2896



Decomposition of the diffeomorphism space: phenomenon/mecanisms

Goal. Split the space Diff(M) according to the dynamical behavior.

I We look for subclasses of systems which:

– either can be globally well described (phenomenon),
– or exhibit a very simple local configuration, that generates rich

instabilities (mecanisms).

I We are mostly interested by classes of systems that are open.



Decomposition of the diffeomorphism space: simple/intricate dynamics.

Example of decomposition:

Theorem. There exists two disjoint open sets MS,H ⊂ Diff1(M)
whose union is dense:

– MS: Morse-Smale diffeomorphisms,

– H: diffeomorphism exhibiting a transverse homoclinic
intersection.

dim(M) = 2: Pujals-Sambarino,
dim(M) = 3: Bonatti-Gan-Wen,
dim(M) ≥ 4: C.



Example of mechanism: homoclinic tangencies.

p

Homoclinic tangency
associated to a hyperbolic
periodic point p.

I This mechanism is fragile
(one-codimensional).

Definition. f ∈ Diffr (M) exhibits a C r -robust homoclinic tangency
if there is a transitive hyperbolic set K s.t. for any g C r -close to f ,
W s(x) and W u(y) have a tangency for some x , y ∈ Kg .

Theorem (Newhouse). C r -robust homoclinic tangency exist when:

– dim(M) = 2 and r ≥ 2,

– dim(M) ≥ 3 and r ≥ 1.



Homoclinic tangencies generate wild dynamics (1): Newhouse phenomenon

Property (Newhouse, Palis-Viana).
– When dim(M) = 2, for any open set U ⊂ Diffr (M) exhibiting a
robust homoclinic tangency, generic diffeomorphisms in U have
infinitely many sinks (hence chain-recurrence classes).

– When dim(M) ≥ 3, still true if the tangency is “sectionally
dissipative”.

Rk (Bonatti-Viana). When dim(M) ≥ 3, there can exist simultaneously

(other kind of) robust tangencies and only finitely many classes.



Homoclinic tangencies generate wild dynamics (2): universal dynamics

Definition. f ∈ Diffr (Md) is C r -universal, if for any orientation
preserving C r embedding g : Bd → int(Bd), there exists:

– g ′ close to g ,
– a ball B ⊂ M and n ≥ 1, such that f n(B) ⊂ B,

satisfying f n
|B = g ′.

Theorem (Bonatti-D́ıaz). Assume d ≥ 3 and r = 1.
Any f exhibiting “enough” C 1-robust homoclinic tangencies admits
a C 1-neighborhood where C 1-universal dynamics is generic.

Theorem (Turaev). Assume d = 2 and r ≥ 2.
Any f with a transitive hyperbolic set K such that:

– K has C r -robust homoclinic tangency,
– K contains periodic points with Jacobian > 0 and < 0,

admits a C r -neighborhood where C r -universal dynamics is generic.



Homoclinic tangencies generate wild dynamics (2): universal dynamics

Definition. f ∈ Diffr (Md) is C r -universal, if for any orientation
preserving C r embedding g : Bd → int(Bd), there exists:

– g ′ close to g ,
– a ball B ⊂ M and n ≥ 1, such that f n(B) ⊂ B,

satisfying f n
|B = g ′.

I Produces:

– uncountable many chain-recurrence classes,
– aperiodic classes (odometer type).



Weak form of hyperbolicity

Consider an invariant set K .

Definition. An invariant splitting TKM = E ⊕ F is dominated if
there is N ≥ 1 s.t. for any x ∈ K and any unitary u ∈ Ex , v ∈ Fx ,

‖Dx f N .u‖ ≤ 1

2
‖Dx f N .v‖.

Properties. – still holds on the closure of K ,

– still holds for invariant sets K ′ in a neighborhood U of K ,

– prevents the existence in U of a periodic orbit O with stable
dimension = dim(E ) exhibiting a homoclinic tangency.



Partial hyperbolicity/homoclinic tangencies

T : the set of diffeomorphisms having a homoclinic tangency.

Theorem [C – Sambarino – D.Yang]. For generic f ∈ Diff1(M) \ T ,
each chain-recurrence class Λ admits a dominated splitting

TΛM = E s ⊕ E c
1 ⊕ · · · ⊕ E c

k ⊕ Eu,

where: – each E c
i is one-dimensional,

– E s is uniformly contracted,
– Eu is uniformly expanded.

Theorem [C – Pujals – Sambarino]. Under the same setting,
if Λ is not a sink or a source, then E s ,Eu are non-degenerated.



Characterization of the Newhouse phenomenon

Consequence.
Any C 1-generic diffeomorphism which admits infinitely many sinks
or sources is limit in Diff1(M) of diffeomorphisms exhibiting a
homoclinic tangency.

Finiteness conjecture (Bonatti).
Any C 1-generic diffeomorphism which admits infinitely many
chain-recurrence classes is limit in Diff1(M) of diffeomorphisms
exhibiting a homoclinic tangency.



Far from homoclinic tangencies (1): invariant measures

Assume that f is not limit in Diff1(M) of diffeomorphisms
exhibiting a homoclinic tangency.

Theorem (Mañé-Wen-Gourmelon).
Any limit set K of a sequence of periodic orbits (On) with stable
dimension s has a dominated splitting

TKM = E ⊕ F , dim(E ) = s.

Corollary.
The support of any ergodic measure µ has a dominated splitting:

Tsupp(µ)M = Ecs ⊕ Ec ⊕ Ecu,

Along Ecs ,Ec ,Ecu the Lyapunov exponents of µ are < 0, 0, > 0,
The dimension of Ec is 0 or 1.



Far from homoclinic tangencies (2): minimal sets

Theorem (Gan–Wen–D.Yang). Consider f ∈ Diff1(M) \ T .
Any minimal set K has a dominated splitting

TKM = E s ⊕ E c
1 ⊕ E c

2 ⊕ · · · ⊕ E c
k ⊕ Eu,

each E c
i has dimension 1 and E s ,Eu are uniform.

Proved by interpolation of the dominated splittings on K , using:

Theorem (Liao). Consider any f ∈ Diff1(M) and K invariant s.t.
– K has a dominated splitting TKM = E ⊕ F ,
– E is not uniformly contracted,
– on any K ′ ⊂ K , the function log |Df | has negative average

for some invariant measure µ on K ′,
then any neighborhood of K contains periodic orbits whose
maximal Lyapunov exponent along E is < 0 and close to 0.



Far from homoclinic tangencies (3): chain-recurrence classes

Theorem [C – Sambarino – D.Yang]. For generic f ∈ Diff1(M) \ T ,
each chain-recurrence class Λ admits a dominated splitting

TΛM = E s ⊕ E c
1 ⊕ · · · ⊕ E c

k ⊕ Eu,

where: – each E c
i is one-dimensional,

– E s is uniformly contracted,
– Eu is uniformly expanded.

Proved by extension of the dominated splittings of subsets.
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Heterodimensional cycles : definition

p q

Heterodimensional cycle
associated to hyperbolic
periodic point p, q.

I This mechanism is fragile
(one-codimensional).

Definition. f exhibits a robust heterodimensional cycle associated
to p, q if there are transitive hyperbolic sets Kp,Kq containing p, q
s.t. for any g C 1-close to f , W s(x) ∩W u(y) 6= ∅ for some
(x , y) ∈ Kp × Kq and also for some (x , y) ∈ Kq × Kp.

I Robust heterodimensional cycles do exist when dim(M) ≥ 3.



Heterodimensional cycles : consequences

Consider a C 1-generic f and two hyperbolic periodic points p, q
with different stable dimension inside a same chain-recurrence
class.

I Genericity ⇒ robustness (Bonatti-D́ıaz). For any
diffeomorphism C 1-close to f one has H(p) = H(q) and there
exists a robust heterodimensioonal cycle associated to p, q.

I Non-hyperbolic measures (D́ıaz-Gorodetsky). f has an ergodic
measure with one Lyapunov exponent equal to 0.



The C r -hyperbolicity conjecture

Conjecture (Palis). Any f ∈ Diffr (M) can be approximated by a
hyperbolic diffeomorphism or by a diffeomorphism exhibiting a
homoclinic bifurcation (tangency or cycle).

This holds when dim(M) = 1. (Morse-Smale systems are dense.)

Theorem (Pujals-Sambarino).
The conjecture holds for C 1-diffeomorphisms of surfaces.



The C 1-hyperbolicity conjecture

Conjecture (Bonatti-D́ıaz). Any f ∈ Diff1(M) can be
approximated by a hyperbolic diffeomorphism or by a
diffeomorphism exhibiting a heterodimensional cycle.

This would imply Smale’s conjecture on surfaces.

Theorem (C). The conjecture holds for volume-preserving
diffeomorphisms in dimension ≥ 3.



Conjectured panorama of C 1-dynamics

# classes =∞

ot
h
er

?

hyperbolic

cycles and tangencies

cycles and tangencies
# classes <∞

# classes <∞

universal

cycles

Morse - Smale



Non-degenerated extremal bundles

Theorem (C-Pujals-Sambarino). Consider f ∈ Diff2(M).
Let K with a dominated splitting TKM = E ⊕ F , dim(F ) = 1 s.t.

– all periodic points in K are hyperbolic, no sink,
– there is no invariant curve in K tangent to F ,

then F is uniformly expanded.

Goes back to a theorem by Mañé, for one-dimensional dynamics.



Chain-hyperbolicity

Theorem (C).
For f ∈ Diff1(M) generic, not limit of a homoclinic bifurcation:

I Any aperiodic class has a dominated splitting

TKM = E s ⊕ E c ⊕ Eu, dim(E c) = 1,

and the Lyapunov exponent along E c is 0 for any measure.

I Any homoclinic class has a dominated splitting

TKM = E s ⊕ E c
1 ⊕ E c

2 ⊕ Eu, dim(E c
i ) ≤ 1.

All periodic orbits have stable dimension dim(E s + E c
1 ).

If dim(E c
i ) = 1, there exists periodic orbits in K with a

Lyapunov exponent along E c
i close to 0.



Essential hyperbolicity

Theorem (C-Pujals).
Any C 1 generic diffeomorphism that can not be approximated by a
homoclinic bifurcation is essentially hyperbolic.

Definition of essential hyperbolicity. There exist hyperbolic
attractors A1, . . . ,Ak and repellors R1 . . . ,R` s.t.:

– the union of the basins of the Ai is (open and) dense in M,

– the union of the basins of the Ri is (open and) dense in M,



Geometric argument: the hyperbolic case

Theorem (Bonatti-C-Pujals).
Consider f and a hyperbolic set K with a dominated splitting

TKM = (E ss ⊕ E c)⊕ Eu.

Then,

I either K is contained in a submanifold tangent to E c ⊕ Eu,

I or there are g C 1+α-close to f and p ∈ Kg periodic with a
strong connection:

W ss(p) ∩W uu(p) \ {p} 6= ∅.


