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Allocation Problems

Given a finite set Y of k points together with a set X C R? of Lebesgue
measure k, we look for an 'allocation map’ T : X — Y s.t.

(i) for each 'center’ y € Y the associated 'cell’ T~1(y) has unit volume:
YT y) =1

(ii) the transportation distance |x — T(x)| is as small as possible, for
instance, such that for some given p € (0, )

/ |x — T(x)|P dx is minimal.
X
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Allocation Problems

What is an appropriate basis for the respective allocation problems?




Point Processes

Poisson point process with unit intensity

Q= M(RY), we ot = Z dy
YEY (W)

m for each Borel set A C RY of finite volume the random variable
w — ¥ (A) is Poisson distributed with parameter £(A)

m for disjoint sets Aj, ... A, C RY the random variables
u? (A1), ..., u(Ak) are independent.

> Given a Borel set A C RY with finite volume let Np be a Poisson random variable with mean
£(A)

> Throw N4 points into A, independent and uniformly distributed

> Patch together such A to cover R,




Point Processes

A point process is a measurable map p® : Q — M(RY), w — pu* with
values in the subset of locally finite counting measures on RY.

The point process u® will be called translation invariant iff the
distribution of 1° is invariant under push forwards by translations
T,  x — x + z of RY, that is, iff

—
—

(72) et = MK

for each z € R9.

We say that p*® has unit intensity iff E [®(A)] = £(A) for all Borel sets
A C R9. A translation invariant point process has unit intensity if and
only if its intensity

8 =E [p*([0,1))]
is 1.

E.g. branching process with critical branching rate, started with PPP.



Couplings of Lebesgue Measure and Point Processes

Given two measures v, 1 on RY, we say that a measure g on RY x RY is a
coupling of v and p iff the marginals satisfy

(m)sqg=v,  (m).q=p.
That is, g(A x RY) = v(A), q(R? x A) = u(A) for all AC RY.

Note: existence of a coupling requires v(R9) = u(R9).
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A coupling of the Lebesgue measure £ € M(R9) and the point process
p®: Q — M(RY) is a measurable map ¢* : Q — M(R9 x RY) s.t. for
P-ae weQ

w

q“ is a coupling of £ and u®.




Couplings of Lebesgue Measure and Point Processes

Stable Marriage (Hoffman/Holroyd/Peres '06):
q“ is unstable iff 3(x, y), (x',y’) € supp[g*] s.t.

d(x,y") < d(x,y) Nd(X',y")




Couplings of Lebesgue Measure and Point Processes

Gravitational Allocation (Chatterjee/Peled/Peres/Romik '07, to appear
in Annals of Math.):
For d > 3 consider the flow x(t) = F“(x(t)) in the gravitational field

» X—z
F(x) = Z —|x—z|d'
zeZ(w)

Almost every particle x will finally be absorbed by one of the gravitation
centers X(z) = {x e RY: x(c0) = z}.

S \
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Couplings of Lebesgue Measure and Point Processes

Fix a translation invariant point process ® : w +— u* on RY with unit
intensity

and consider the cost function c(x,y) = 9(|x — y|) for some strictly
increasing, continuous function ¥ : Ry — R, with 9(0) = 0 and

lim 9(r) = oo.

r—o0o

Problem 1.  The total cost of transportation will be infinite for each
coupling since the marginals have infinite total mass. J
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Problem 1.  The total cost of transportation will be infinite for each
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Consider the mean cost functional on the set I of all couplings ¢® of
the Lebesgue measure and the point process

O) = u L X — *(x
Q:(q) o 0<£S(Bg<oo ’Q’(B) IE:|:/]R¢’><Bﬁ(| y|)dq( ’y):| . J

The sup... could be replaced by limsup... or by liminf...
B B/]R‘l B/\@d



Existence of a Minimizer

Basic Questions.
1. Is inf €(qg®) finite?
s (g°) fini

2. If yes: Does there exist a minimizer? Is it unique?
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Consider optimal coupling g% of 15,£ and 15, 1~

m Mean transportation cost for g5 should converge to infl_I ¢(q®)
q°c

The optimal couplings g should converge to an 'optimal’
coupling g of £ and u®.




Existence of a Minimizer

Basic Questions.
1. Is inf €(g®) finite?
s (g°) fini

2. If yes: Does there exist a minimizer? Is it unique?

~ Approximation by finite measures

Fix exhausting sequence of cubes B, / R?
Consider optimal coupling ¢ of 15 £ and 1g, u*

m Mean transportation cost for g5 should converge to infl_I ¢(q°®)
q°c

The optimal couplings g% should converge to an 'optimal’
coupling g of £ and u*.

Problem 2.  In general, the total masses of the measures 15 £
and 1g, u* will not coincide. No coupling will exist!

~+ Semicoupling



Semicouplings

Given two measures v, i on RY with v(R?) > p(RY), we say that a
measure g on R? x R? is a semicoupling of v and y iff the marginals
satisfy

(m)g=v,  (m)iq=p
In other words, g is a coupling of pr and p for some density 0 < p <1
on R9. ("Twofold minimization problem’, 'free boundary value problem’.)
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Cf. Figalli: "partial coupling’



Semicouplings

For each finite set Z C RY there exists a unique semicoupling g of £ and
B = ,c7 0, which minimizes the cost functional

L, =y date.y).

Moreover, there exists a unique set A C R and a unique map 7 : A — RY
s.t.

g =(Id, T),(148).

In particular, (71).q = 1a£.

If 9(r) = r? then T = V¢ for some convex function ¢ : A — R.

Equivalently, T:R? — R4 U {8} and g = (Id, T).£ on RY x RY.




Existence of a Minimizer

Fix exhausting sequence of cubes B, / R?

Consider optimal semicoupling g% of £ and 15, *

m Mean transportation cost for g7 should converge to im‘l_I ¢(q°®)
q°c

The optimal semicouplings g should converge to an 'optimal’
coupling g of £ and u*.




Existence of a Minimizer

Fix exhausting sequence of cubes B, / R?

Consider optimal semicoupling ¢¥ of £ and 1 u*

Mean transportation cost for g should converge to infl_I ¢(q°®)
q°e

The optimal semicouplings g% should converge to an 'optimal’
coupling g of £ and u*.

The asymptotic mean transportation cost is given by

to = lim inf 27" .E
n—oo q®€llg

/ 8(1x — y]) da”(x, )
Rd x[0,27)d

where Ig denotes the set of all semicouplings g® of the Lebesgue
measure and the point process.

v




Main Results

Whenever the asymptotic mean transportation cost is finite, there exists a
unique translation invariant minimizer of the mean cost functional ("op-
timal coupling").

Theorem 2. Let p® be a Poisson point process of unit intensity and

¥(r) = rP for some p € (0, ).
The asymptotic mean transportation cost ¢ is finite if and only if
oo, ford>3
p<p:=< 1, ford=2
i, ford=1




Finiteness of Asymptotic Cost for PPP

Theorem 2.a Assume d > 3.

There exists a constant 0 < kK < 00 s.t.

log ¥ .. log?d
IimsupOg—d(r)<n = (<0 = ||m|nfg—d(r)§/£

r—oo r r—oo r

That is, ¥(r) = exp(C - r“") is borderline.

Theorem 2.b Assume d < 2.

For any concave 9 : [1,00) — R dominating o

9(r) o)
/1 md" <0 = (<0 — ||rr1!>r<1>f m =0.

That is, 9(r) = (/2 is borderline.

Ajtai/Komlés/Tusnady '84, Talagrand '94, Holroyd/Peres '05, Hoffman/Holroyd/Peres '06.



Finiteness of Asymptotic Cost for PPP

CLT fluctuations

d

> r

= average number of Poisson particles in box [0, r)¢

/2 — fluctuations of particle number

> e-r?=1 = volume of e-neighborhood of box, ¢ = r1=9/2

> r

Transportation cost per unit mass for ¥(r) = rP:

e if p>1, rP=d/2 if p<1.

Large deviations

P (No particle in box [0, r)?) = exp(—r?)

If 9(r) > exp(r?) then cost of transporting Lebesgue measure from inside
[0, )9 to exterior /" co.




Finiteness of Asymptotic Cost for PPP

For each box B the mean transportation cost on B

(8) = ol gz E| [, 0x - e (en)

can be estimated in terms of the modified cost ¢(B):

Proposition 2.  ¢(B) < ¢(B) + €(|B|), e(|B]) \\ 0. J
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Finiteness of Asymptotic Cost for PPP

For boxes B, = [0,2")¢
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For boxes B, = [0,2")¢
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Existence of a Minimizer

Now let pu® be an arbitrary translation invariant point process of
intensity 5 < 1 and with finite asymptotic cost ¢oo.

m Fix exhausting sequence of cubes B, ~ R?
m Consider optimal semicoupling ¢¥ of £ and 1g,u~ v/
m The g¥ should converge to optimal coupling ¢* of £ and u“.

Problem 3.

> No tightness; no lower bound for the marginals of g*, only
upper bounds (71).q¥ < £, (m2).q¥ < u®.

~+ Second Randomization



Second Randomization

m Choose sequence (B,), randomly, starting at given By, in the
n-th step adding 29 — 1 copies of B,_; at arbitrary sides of it.

m For given n € N the initial box By has each possible "relative
position within B," with equal probability.
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Second Randomization

Let I = ({0,1}9)N and v = Bernoulli measure ("uniform
distribution’) on it. For each z € Z9, v € T and n € N put

n
Ba(z,y) = z—> 2"y +[0,27)7
k=1

w S
and let 9B,(27) denote the minimizer of

/ 3(x — y]) dg”(x.y)
RdXB,,(z,'y)

which coincides with the optimal semicoupling of £ and 1g (; ,)u*
as constructed previously.



Annealed Limits

For z fixed put
pt :/qué,,(zﬁ) dv(7).

Problem 4. Does g% — g“ converge for a.e. w?

Instead of q¥ — g“ for P-a.e. w € Q in the sense of convergence of
measures on R? x RY we consider convergence Q, — Q of
measures on R x RY x Q. Here

dQn(x, y,w) = dq; (x,y) dP(w).

(Vice versa, g% is obtained from Q, via disintegration.)



Annealed Limits

Theorem.

Whenever the asymptotic mean transportation cost is finite, there
exists a measure @ s.t.

Qg — @ vaguely as n — oo.

The limit measure Q@ = g°* P
m is translation-invariant
m is a semicoupling of £ and u°*P

m is asymptotically optimal, i.e. it is a minimizer of the mean
asymptotic cost.

If 3 =1 then Q is indeed a coupling of £ and u°P.




Quenched Limits

Let g* be the disintegration of Q w.r.t. P, i.e.
dg*(x, y) dP(w) = dQ(x,y,w).

For every z € Z¢

dqg,,(z,'y)(xhy) — dq“(x,y) vaguely as n — oo

in probability w.r.t. (w,v) € Q xT.

More precisely, each of the semicouplings is induced by a transport
map s.t. for every z € Z¢

Thz~(x) = T¥(x) as n — oo

in measure w.r.t. (x,w,7) € RY x Q xT.

Indeed, the sequence is finally stationary.



Local Optimality

Given a coupling g¥ of £ and p® for fixed w € Q, the following

are equivalent:
m For all bounded Borel sets A C RY, the measure 1ga, 4q*
is the unique optimal coupling between its marginals g“(., A)
and 1ap“.
m There exists a cyclically monotone map T¢ : RY — RY
such that

¢ = (Id, T), £.

A coupling g* of Lebesgue measure and the point process is called
locally optimal iff the previous properties are satisfied for P-a.e.
w € Q.



Optimality

A semicoupling g* of Lebesgue measure and the point process is
called optimal iff

m it is translation invariant: the distribution of the
measure-valued random variable g“(x, y) is invariant under
translations (x,y) + (x 4+ z,y + z) of RY x R9 and

m it is asymptotically optimal: it minimizes the asymptotic
mean transportation cost.

m The map T : x — |x] — 100 defines a IocaIIy optimal + trans-
lation invariant coupling of £ and )

yeZ
m Any local perturbation/re-arrangement of an asymptotical op-
timal (semi-)coupling is again asymptotically optimal.




Optimality

A semicoupling g® of Lebesgue measure and the point process is
called optimal iff

m it is translation invariant: the distribution of the
measure-valued random variable ¢“(x, y) is invariant under
translations (x,y) + (x + z,y + z) of RY x R9 and

m it is asymptotically optimal: it minimizes the asymptotic
mean transportation cost.

Optimal = locally optimal.




Uniqueness
There exists at most one optimal semicoupling. I

Proof. Assume two optimal semicouplings g7 and g3
= q°:= %q{ + %qg optimal semicoupling

= g7, g5 and g° locally optimal

= dmaps T{°, Ty, T¥ s.t. on RY x RY for a.e. w:

doTe(¥)dE(x) = dg“(x,y) = d (%qi’(x,y)Jr%qé”(Xay))

1 1
= d(3m) + 3o 9200

= T{¢(x) = T¥(x) for ae. x € RY and thus ¢¥ = g5.



For each translation invariant point process p® with (sub-)unit
intensity consider asymptotic mean cost

/ 3(x — y)) dq'(x,y)]
R4 x[0,27)d

o = lim inf 27" .E
n—oo q®€llg

If c0o < 00 then 3! optimal (semi-)coupling g°® of £ and p°:
(i) translation invariant
(i) minimizing supg S(B [fRde I(|x —yl|) qu(X,y)}
(which is independent of B under (i))
It is given in terms of a unique transport map T : RY — RY(U{d}).




For the Poisson point process with intensity 8 < 1:
mifd>3o0rg<l:

(o <00 = I(r) Sexp(Cr?)
mifd<2and §=1:

(o <00 = I(r) < ri/?






