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Allocation Problems

Given a finite set Y of k points together with a set X ⊂ Rd of Lebesgue
measure k, we look for an ’allocation map’ T : X → Y s.t.

(i) for each ’center’ y ∈ Y the associated ’cell’ T−1(y) has unit volume:

L(T−1(y)) = 1.

(ii) the transportation distance |x − T (x)| is as small as possible, for
instance, such that for some given p ∈ (0,∞)∫

X
|x − T (x)|p dx is minimal.



Allocation Problems

Given a finite set Y of k points together with a set X ⊂ Rd of Lebesgue
measure k, we look for an ’allocation map’ T : X → Y s.t.

(i) for each ’center’ y ∈ Y the associated ’cell’ T−1(y) has unit volume:

L(T−1(y)) = 1.

(ii) the transportation distance |x − T (x)| is as small as possible, for
instance, such that for some given p ∈ (0,∞)∫

X
|x − T (x)|p dx is minimal.



Allocation Problems

What is an appropriate basis for the respective allocation problems?



Point Processes

Poisson point process with unit intensity

µ• : Ω→M(Rd), ω 7→ µω =
∑

y∈Y (ω)

δy

for each Borel set A ⊂ Rd of finite volume the random variable
ω 7→ µω(A) is Poisson distributed with parameter L(A)

for disjoint sets A1, . . .Ak ⊂ Rd the random variables
µω(A1), . . . , µω(Ak) are independent.

B Given a Borel set A ⊂ Rd with finite volume let NA be a Poisson random variable with mean
L(A)

B Throw NA points into A, independent and uniformly distributed

B Patch together such A to cover Rd .



Point Processes

A point process is a measurable map µ• : Ω→M(Rd), ω 7→ µω with
values in the subset of locally finite counting measures on Rd .

The point process µ• will be called translation invariant iff the
distribution of µ• is invariant under push forwards by translations
τz : x 7→ x + z of Rd , that is, iff

(τz)∗µ
• (d)

= µ•

for each z ∈ Rd .

We say that µ• has unit intensity iff E [µ•(A)] = L(A) for all Borel sets
A ⊂ Rd . A translation invariant point process has unit intensity if and
only if its intensity

β = E
[
µ•([0, 1)d)

]
is 1.

E.g. branching process with critical branching rate, started with PPP.



Couplings of Lebesgue Measure and Point Processes

Given two measures ν, µ on Rd , we say that a measure q on Rd ×Rd is a
coupling of ν and µ iff the marginals satisfy

(π1)∗q = ν, (π2)∗q = µ.

That is, q(A× Rd) = ν(A), q(Rd × A) = µ(A) for all A ⊂ Rd .

Note: existence of a coupling requires ν(Rd) = µ(Rd).

A coupling of the Lebesgue measure L ∈ M(Rd) and the point process
µ• : Ω →M(Rd) is a measurable map q• : Ω →M(Rd × Rd) s.t. for
P-a.e. ω ∈ Ω

qω is a coupling of L and µω.
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Couplings of Lebesgue Measure and Point Processes

Stable Marriage (Hoffman/Holroyd/Peres ’06):
qω is unstable iff ∃(x , y), (x ′, y ′) ∈ supp[qω] s.t.

d(x , y ′) < d(x , y) ∧ d(x ′, y ′)



Couplings of Lebesgue Measure and Point Processes

Gravitational Allocation (Chatterjee/Peled/Peres/Romik ’07, to appear
in Annals of Math.):
For d ≥ 3 consider the flow ẋ(t) = Fω(x(t)) in the gravitational field

Fω(x) =
∑

z∈Z(ω)

x − z
|x − z |d

.

Almost every particle x will finally be absorbed by one of the gravitation
centers X (z) = {x ∈ Rd : x(∞) = z}.



Couplings of Lebesgue Measure and Point Processes

Fix a translation invariant point process µ• : ω 7→ µω on Rd with unit
intensity
and consider the cost function c(x , y) = ϑ(|x − y |) for some strictly
increasing, continuous function ϑ : R+ → R+ with ϑ(0) = 0 and
lim

r→∞
ϑ(r) =∞.

Problem 1. The total cost of transportation will be infinite for each
coupling since the marginals have infinite total mass.

Consider the mean cost functional on the set Π of all couplings q• of
the Lebesgue measure and the point process

C(q•) := sup
0<L(B)<∞

1
L(B)

· E
[∫

Rd×B
ϑ(|x − y |) dq•(x , y)

]
.

The sup
B
. . . could be replaced by lim sup

B↗Rd
. . . or by lim inf

B↗Rd
. . .
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Existence of a Minimizer

Basic Questions.
1. Is inf

q•∈Π
C(q•) finite?

2. If yes: Does there exist a minimizer? Is it unique?

 Approximation by finite measures

Fix exhausting sequence of cubes Bn ↗ Rd

Consider optimal coupling qωn of 1BnL and 1Bnµ
ω

Mean transportation cost for q•n should converge to inf
q•∈Π

C(q•)

The optimal couplings qωn should converge to an ’optimal’
coupling qω of L and µω.

Problem 2. In general, the total masses of the measures 1BnL

and 1Bnµ
ω will not coincide. No coupling will exist!

 Semicoupling
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Semicouplings

Given two measures ν, µ on Rd with ν(Rd) ≥ µ(Rd), we say that a
measure q on Rd × Rd is a semicoupling of ν and µ iff the marginals
satisfy

(π1)∗q ≤ ν, (π2)∗q = µ.

In other words, q is a coupling of ρν and µ for some density 0 ≤ ρ ≤ 1
on Rd . (’Twofold minimization problem’, ’free boundary value problem’.)

Cf. Figalli: ’partial coupling’



Semicouplings

Proposition 1.

For each finite set Z ⊂ Rd there exists a unique semicoupling q of L and
µ =

∑
z∈Z δz which minimizes the cost functional∫

Rd×Rd
ϑ(|x − y |) dq(x , y).

Moreover, there exists a unique set A ⊂ Rd and a unique map T : A→ Rd

s.t.
q = (Id ,T )∗(1AL).

In particular, (π1)∗q = 1AL.

If ϑ(r) = r2 then T = ∇ϕ for some convex function ϕ : A→ R.

Equivalently, T : Rd → Rd ∪ {ð} and q = (Id ,T )∗L on Rd × Rd .

p=1 p=2 p=4



Existence of a Minimizer

Fix exhausting sequence of cubes Bn ↗ Rd

Consider optimal semicoupling qωn of L and 1Bnµ
ω

Mean transportation cost for q•n should converge to inf
q•∈Π

C(q•)

The optimal semicouplings qωn should converge to an ’optimal’
coupling qω of L and µω.



Existence of a Minimizer

Fix exhausting sequence of cubes Bn ↗ Rd

Consider optimal semicoupling qωn of L and 1Bnµ
ω

Mean transportation cost for q•n should converge to inf
q•∈Π

C(q•)

The optimal semicouplings qωn should converge to an ’optimal’
coupling qω of L and µω.

The asymptotic mean transportation cost is given by

c∞ = lim
n→∞

inf
q•∈Πs

2−nd · E

[∫
Rd×[0,2n)d

ϑ(|x − y |) dq•(x , y)

]

where Πs denotes the set of all semicouplings q• of the Lebesgue
measure and the point process.



Main Results

Theorem 1.
Whenever the asymptotic mean transportation cost is finite, there exists a
unique translation invariant minimizer of the mean cost functional ("op-
timal coupling").

Theorem 2. Let µ• be a Poisson point process of unit intensity and
ϑ(r) = rp for some p ∈ (0,∞).

The asymptotic mean transportation cost c∞ is finite if and only if

p < p :=


∞, for d ≥ 3
1, for d = 2
1
2 , for d = 1.



Finiteness of Asymptotic Cost for PPP

Theorem 2.a Assume d ≥ 3.
There exists a constant 0 < κ <∞ s.t.

lim sup
r→∞

log ϑ(r)

rd < κ =⇒ c∞ <∞ =⇒ lim inf
r→∞

log ϑ(r)

rd ≤ κ.

That is, ϑ(r) = exp(C · rd ) is borderline.

Theorem 2.b Assume d ≤ 2.

For any concave ϑ̂ : [1,∞)→ R dominating ϑ∫ ∞
1

ϑ̂(r)

r1+d/2 dr <∞ =⇒ c∞ <∞ =⇒ lim inf
r→∞

ϑ(r)

rd/2 = 0.

That is, ϑ(r) = rd/2 is borderline.

Ajtai/Komlós/Tusnády ’84, Talagrand ’94, Holroyd/Peres ’05, Hoffman/Holroyd/Peres ’06.



Finiteness of Asymptotic Cost for PPP

CLT fluctuations

B rd = average number of Poisson particles in box [0, r)d

B rd/2 = fluctuations of particle number

B ε·rd−1 = volume of ε-neighborhood of box, ε = r1−d/2

Transportation cost per unit mass for ϑ(r) = rp:

εp if p ≥ 1, rp−d/2 if p ≤ 1.

Large deviations

P
(
No particle in box [0, r)d

)
= exp(−rd)

If ϑ(r)� exp(rd) then cost of transporting Lebesgue measure from inside
[0, r)d to exterior ↗∞.



Finiteness of Asymptotic Cost for PPP

For each box B the mean transportation cost on B

c(B) = inf
q•∈Π

1
L(B)

· E
[∫

Rd×B
ϑ(|x − y |) dq•(x , y)

]
can be estimated in terms of the modified cost ĉ(B):

Proposition 2. c(B) ≤ ĉ(B) + ε(|B|), ε(|B|)↘ 0.
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Finiteness of Asymptotic Cost for PPP

For boxes Bn = [0, 2n)d

Proposition 3. ĉ(Bn+1) ≤ ĉ(Bn) + 2−C n.
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Existence of a Minimizer

Now let µ• be an arbitrary translation invariant point process of
intensity β ≤ 1 and with finite asymptotic cost c∞.

Fix exhausting sequence of cubes Bn ↗ Rd

Consider optimal semicoupling qωn of L and 1Bnµ
ω X

The qωn should converge to optimal coupling qω of L and µω.

Problem 3.
B No tightness; no lower bound for the marginals of qω, only

upper bounds (π1)∗qω ≤ L, (π2)∗qω ≤ µω.

 Second Randomization



Second Randomization

Choose sequence (Bn)n randomly, starting at given B0, in the
n-th step adding 2d − 1 copies of Bn−1 at arbitrary sides of it.
For given n ∈ N the initial box B0 has each possible "relative
position within Bn" with equal probability.
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Second Randomization

Let Γ = ({0, 1}d )N and ν = Bernoulli measure (’uniform
distribution’) on it. For each z ∈ Zd , γ ∈ Γ and n ∈ N put

Bn(z , γ) = z −
n∑

k=1

2k−1γk + [0, 2n)d .

and let qωBn(z,γ) denote the minimizer of∫
Rd×Bn(z,γ)

ϑ(|x − y |) dqω(x , y)

which coincides with the optimal semicoupling of L and 1Bn(z,γ)µ
ω

as constructed previously.



Annealed Limits

For z fixed put

qωn =

∫
Γ
qωBn(z,γ) dν(γ).

Problem 4. Does qωn → qω converge for a.e. ω?

Instead of qωn → qω for P-a.e. ω ∈ Ω in the sense of convergence of
measures on Rd × Rd we consider convergence Qn → Q of
measures on Rd × Rd × Ω. Here

dQn(x , y , ω) = dqωn (x , y) dP(ω).

(Vice versa, qωn is obtained from Qn via disintegration.)



Annealed Limits

Theorem.
Whenever the asymptotic mean transportation cost is finite, there
exists a measure Q s.t.

Qn −→ Q vaguely as n→∞.

The limit measure Q = q• P
is translation-invariant
is a semicoupling of L and µ•P
is asymptotically optimal, i.e. it is a minimizer of the mean
asymptotic cost.

If β = 1 then Q is indeed a coupling of L and µ•P.



Quenched Limits

Let q• be the disintegration of Q w.r.t. P, i.e.
dqω(x , y) dP(ω) = dQ(x , y , ω).

Corollary.

For every z ∈ Zd

dqωBn(z,γ)(x , y)→ dqω(x , y) vaguely as n→∞

in probability w.r.t. (ω, γ) ∈ Ω× Γ.

More precisely, each of the semicouplings is induced by a transport
map s.t. for every z ∈ Zd

Tω
n,z,γ(x)→ Tω(x) as n→∞

in measure w.r.t. (x , ω, γ) ∈ Rd × Ω× Γ.

Indeed, the sequence is finally stationary.



Local Optimality

Given a coupling qω of Ld and µω for fixed ω ∈ Ω, the following
are equivalent:

For all bounded Borel sets A ⊂ Rd , the measure 1Rd×Aqω

is the unique optimal coupling between its marginals qω(.,A)
and 1Aµ

ω.
There exists a cyclically monotone map Tω : Rd → Rd

such that
qω = (Id ,Tω)∗ L.

A coupling q• of Lebesgue measure and the point process is called
locally optimal iff the previous properties are satisfied for P-a.e.
ω ∈ Ω.



Optimality

A semicoupling q• of Lebesgue measure and the point process is
called optimal iff

it is translation invariant: the distribution of the
measure-valued random variable qω(x , y) is invariant under
translations (x , y) 7→ (x + z , y + z) of Rd × Rd and
it is asymptotically optimal: it minimizes the asymptotic
mean transportation cost.

Examples.

The map T : x 7→ bxc − 100 defines a locally optimal + trans-
lation invariant coupling of L and

∑
y∈Z δy .

Any local perturbation/re-arrangement of an asymptotical op-
timal (semi-)coupling is again asymptotically optimal.



Optimality

A semicoupling q• of Lebesgue measure and the point process is
called optimal iff

it is translation invariant: the distribution of the
measure-valued random variable qω(x , y) is invariant under
translations (x , y) 7→ (x + z , y + z) of Rd × Rd and
it is asymptotically optimal: it minimizes the asymptotic
mean transportation cost.

Theorem.

Optimal =⇒ locally optimal.



Uniqueness

Theorem.
There exists at most one optimal semicoupling.

Proof. Assume two optimal semicouplings q•1 and q•2
⇒ q• := 1

2q•1 + 1
2q•2 optimal semicoupling

⇒ q•1 , q•2 and q• locally optimal
⇒ ∃ maps Tω

1 ,T
ω
2 ,T

ω s.t. on Rd × Rd for a.e. ω:

dδTω(x)(y) dL(x) = dqω(x , y) = d
(
1
2
qω1 (x , y) +

1
2
qω2 (x , y)

)
= d

(
1
2
δTω

1 (x)(y) +
1
2
δTω

2 (x)(y)

)
dL(x)

⇒ Tω
1 (x) = Tω

2 (x) for a.e. x ∈ Rd and thus qω1 = qω2 .



Summary

For each translation invariant point process µ• with (sub-)unit
intensity consider asymptotic mean cost

c∞ = lim
n→∞

inf
q•∈Πs

2−nd · E

[∫
Rd×[0,2n)d

ϑ(|x − y |) dq•(x , y)

]

If c∞ <∞ then ∃! optimal (semi-)coupling q• of L and µ•:
(i) translation invariant

(ii) minimizing supB
1

L(B) · E
[∫

Rd×B ϑ(|x − y |) dq•(x , y)
]

(which is independent of B under (i))
It is given in terms of a unique transport map T : Rd 7→ Rd (∪{ð}).



Summary

For the Poisson point process with intensity β ≤ 1:
If d ≥ 3 or β < 1:

c∞ <∞ ⇐⇒ ϑ(r) / exp(C rd )

If d ≤ 2 and β = 1:

c∞ <∞ ⇐⇒ ϑ(r)� rd/2.




