Optimal Transport from Lebesgue to Poisson

Karl-Theodor Sturm

Universität Bonn

joint with Martin Huesmann

Allocation Problems

Given a finite set Y of k points together with a set $X \subset \mathbb{R}^{d}$ of Lebesgue measure k, we look for an 'allocation map' $T: X \rightarrow Y$ s.t.
(i) for each 'center' $y \in Y$ the associated 'cell' $T^{-1}(y)$ has unit volume:

$$
\mathfrak{L}\left(T^{-1}(y)\right)=1 .
$$

(ii) the transportation distance $|x-T(x)|$ is as small as possible, for instance, such that for some given $p \in(0, \infty)$

$$
\int_{X}|x-T(x)|^{p} d x \quad \text { is minimal. }
$$

Allocation Problems

Given a finite set Y of k points together with a set $X \subset \mathbb{R}^{d}$ of Lebesgue measure k, we look for an 'allocation map' $T: X \rightarrow Y$ s.t.
(i) for each 'center' $y \in Y$ the associated 'cell' $T^{-1}(y)$ has unit volume:

$$
\mathfrak{L}\left(T^{-1}(y)\right)=1 .
$$

(ii) the transportation distance $|x-T(x)|$ is as small as possible, for instance, such that for some given $p \in(0, \infty)$

$$
\int_{X}|x-T(x)|^{p} d x \quad \text { is minimal. }
$$

Allocation Problems

What is an appropriate basis for the respective allocation problems?

Poisson point process with unit intensity

$$
\mu^{\bullet}: \Omega \rightarrow \mathcal{M}\left(\mathbb{R}^{d}\right), \quad \omega \mapsto \mu^{\omega}=\sum_{y \in Y(\omega)} \delta_{y}
$$

- for each Borel set $A \subset \mathbb{R}^{d}$ of finite volume the random variable $\omega \mapsto \mu^{\omega}(A)$ is Poisson distributed with parameter $\mathfrak{L}(A)$
- for disjoint sets $A_{1}, \ldots A_{k} \subset \mathbb{R}^{d}$ the random variables $\mu^{\omega}\left(A_{1}\right), \ldots, \mu^{\omega}\left(A_{k}\right)$ are independent.
\triangleright Given a Borel set $A \subset \mathbb{R}^{d}$ with finite volume let N_{A} be a Poisson random variable with mean $\mathfrak{L}(A)$
\triangleright Throw N_{A} points into A, independent and uniformly distributed
\triangleright Patch together such A to cover $\mathbb{R}^{\boldsymbol{d}}$.

A point process is a measurable map $\mu^{\bullet}: \Omega \rightarrow \mathcal{M}\left(\mathbb{R}^{d}\right), \omega \mapsto \mu^{\omega}$ with values in the subset of locally finite counting measures on \mathbb{R}^{d}.

The point process μ^{\bullet} will be called translation invariant iff the distribution of μ^{\bullet} is invariant under push forwards by translations $\tau_{z}: x \mapsto x+z$ of \mathbb{R}^{d}, that is, iff

$$
\left(\tau_{z}\right)_{*} \mu^{\bullet} \quad \stackrel{(d)}{=} \mu^{\bullet}
$$

for each $z \in \mathbb{R}^{d}$.
We say that μ^{\bullet} has unit intensity iff $\mathbb{E}\left[\mu^{\bullet}(A)\right]=\mathfrak{L}(A)$ for all Borel sets $A \subset \mathbb{R}^{d}$. A translation invariant point process has unit intensity if and only if its intensity

$$
\beta=\mathbb{E}\left[\mu^{\bullet}\left([0,1)^{d}\right)\right]
$$

is 1 .
E.g. branching process with critical branching rate, started with PPP.

Couplings of Lebesgue Measure and Point Processes

Given two measures ν, μ on \mathbb{R}^{d}, we say that a measure q on $\mathbb{R}^{d} \times \mathbb{R}^{d}$ is a coupling of ν and μ iff the marginals satisfy

$$
\left(\pi_{1}\right)_{*} q=\nu, \quad\left(\pi_{2}\right)_{*} \boldsymbol{q}=\mu
$$

That is, $q\left(A \times \mathbb{R}^{d}\right)=\nu(A), \quad q\left(\mathbb{R}^{d} \times A\right)=\mu(A)$ for all $A \subset \mathbb{R}^{d}$.
Note: existence of a coupling requires $\nu\left(\mathbb{R}^{d}\right)=\mu\left(\mathbb{R}^{d}\right)$.

Couplings of Lebesgue Measure and Point Processes

Given two measures ν, μ on \mathbb{R}^{d}, we say that a measure q on $\mathbb{R}^{d} \times \mathbb{R}^{d}$ is a coupling of ν and μ iff the marginals satisfy

$$
\left(\pi_{1}\right)_{*} q=\nu, \quad\left(\pi_{2}\right)_{*} q=\mu
$$

That is, $q\left(A \times \mathbb{R}^{d}\right)=\nu(A), \quad q\left(\mathbb{R}^{d} \times A\right)=\mu(A)$ for all $A \subset \mathbb{R}^{d}$.
Note: existence of a coupling requires $\nu\left(\mathbb{R}^{d}\right)=\mu\left(\mathbb{R}^{d}\right)$.

A coupling of the Lebesgue measure $\mathfrak{L} \in \mathcal{M}\left(\mathbb{R}^{d}\right)$ and the point process $\mu^{\bullet}: \Omega \rightarrow \mathcal{M}\left(\mathbb{R}^{d}\right)$ is a measurable map $q^{\bullet}: \Omega \rightarrow \mathcal{M}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)$ s.t. for \mathbb{P}-a.e. $\omega \in \Omega$

$$
q^{\omega} \text { is a coupling of } \mathfrak{L} \text { and } \mu^{\omega} \text {. }
$$

Couplings of Lebesgue Measure and Point Processes

Stable Marriage (Hoffman/Holroyd/Peres '06): q^{ω} is unstable iff $\exists(x, y),\left(x^{\prime}, y^{\prime}\right) \in \operatorname{supp}\left[q^{\omega}\right]$ s.t.

$$
d\left(x, y^{\prime}\right)<d(x, y) \wedge d\left(x^{\prime}, y^{\prime}\right)
$$

Couplings of Lebesgue Measure and Point Processes

Gravitational Allocation (Chatterjee/Peled/Peres/Romik '07, to appear in Annals of Math.):
For $d \geq 3$ consider the flow $\dot{x}(t)=F^{\omega}(x(t))$ in the gravitational field

$$
F^{\omega}(x)=\sum_{z \in Z(\omega)} \frac{x-z}{|x-z|^{d}} .
$$

Almost every particle x will finally be absorbed by one of the gravitation centers $X(z)=\left\{x \in \mathbb{R}^{d}: x(\infty)=z\right\}$.

Couplings of Lebesgue Measure and Point Processes

Fix a translation invariant point process $\mu^{\bullet}: \omega \mapsto \mu^{\omega}$ on \mathbb{R}^{d} with unit intensity
and consider the cost function $c(x, y)=\vartheta(|x-y|)$ for some strictly increasing, continuous function $\vartheta: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$with $\vartheta(0)=0$ and $\lim _{r \rightarrow \infty} \vartheta(r)=\infty$.

Problem 1. The total cost of transportation will be infinite for each coupling since the marginals have infinite total mass.

Couplings of Lebesgue Measure and Point Processes

Fix a translation invariant point process $\mu^{\bullet}: \omega \mapsto \mu^{\omega}$ on \mathbb{R}^{d} with unit intensity
and consider the cost function $c(x, y)=\vartheta(|x-y|)$ for some strictly increasing, continuous function $\vartheta: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$with $\vartheta(0)=0$ and $\lim _{r \rightarrow \infty} \vartheta(r)=\infty$.

Problem 1. The total cost of transportation will be infinite for each coupling since the marginals have infinite total mass.

Consider the mean cost functional on the set Π of all couplings q^{\bullet} of the Lebesgue measure and the point process

$$
\mathfrak{C}\left(q^{\bullet}\right):=\sup _{0<\mathfrak{L}(B)<\infty} \frac{1}{\mathfrak{L}(B)} \cdot \mathbb{E}\left[\int_{\mathbb{R}^{\boldsymbol{d}} \times B} \vartheta(|x-y|) d q^{\bullet}(x, y)\right] .
$$

The $\sup _{B} \ldots$ could be replaced by $\limsup _{B / \mathbb{R}^{d}} \ldots$ or by $\liminf _{B / \mathbb{R}^{d}} \ldots$

Basic Questions.

1. Is $\inf _{q^{\bullet} \in \Pi} \mathfrak{C}\left(q^{\bullet}\right)$ finite?
2. If yes: Does there exist a minimizer? Is it unique?

Basic Questions.

1. Is $\inf _{q^{\bullet} \in \Pi} \mathfrak{C}\left(q^{\bullet}\right)$ finite?
2. If yes: Does there exist a minimizer? Is it unique?
\rightsquigarrow Approximation by finite measures
■ Fix exhausting sequence of cubes $B_{n} \nearrow \mathbb{R}^{d}$
■ Consider optimal coupling q_{n}^{ω} of $1_{B_{n}} \mathfrak{L}$ and $1_{B_{n}} \mu^{\omega}$
■ Mean transportation cost for q_{n}^{\bullet} should converge to $\inf _{q^{\bullet} \in \Pi} \mathfrak{C}\left(q^{\bullet}\right)$

- The optimal couplings q_{n}^{ω} should converge to an 'optimal' coupling q^{ω} of \mathfrak{L} and μ^{ω}.

Existence of a Minimizer

Basic Questions.

1. Is $\inf _{q^{\bullet} \in \Pi} \mathfrak{C}\left(q^{\bullet}\right)$ finite?
2. If yes: Does there exist a minimizer? Is it unique?
\rightsquigarrow Approximation by finite measures

- Fix exhausting sequence of cubes $B_{n} \nearrow \mathbb{R}^{d}$

■ Consider optimal coupling q_{n}^{ω} of $1_{B_{n}} \mathfrak{L}$ and $1_{B_{n}} \mu^{\omega}$
■ Mean transportation cost for q_{n}^{\bullet} should converge to $\inf _{q^{\bullet} \in \Pi} \mathfrak{C}\left(q^{\bullet}\right)$

- The optimal couplings q_{n}^{ω} should converge to an 'optimal' coupling q^{ω} of \mathfrak{L} and μ^{ω}.

Problem 2. In general, the total masses of the measures $1_{B_{n}} \mathfrak{L}$ and $1_{B_{n}} \mu^{\omega}$ will not coincide. No coupling will exist!

Semicouplings

Given two measures ν, μ on \mathbb{R}^{d} with $\nu\left(\mathbb{R}^{d}\right) \geq \mu\left(\mathbb{R}^{d}\right)$, we say that a measure q on $\mathbb{R}^{d} \times \mathbb{R}^{d}$ is a semicoupling of ν and μ iff the marginals satisfy

$$
\left(\pi_{1}\right)_{*} q \leq \nu, \quad\left(\pi_{2}\right)_{*} \boldsymbol{q}=\mu
$$

In other words, q is a coupling of $\rho \nu$ and μ for some density $0 \leq \rho \leq 1$ on \mathbb{R}^{d}. ('Twofold minimization problem', 'free boundary value problem'.)

Cf. Figalli: 'partial coupling'

Semicouplings

Proposition 1.

For each finite set $Z \subset \mathbb{R}^{d}$ there exists a unique semicoupling q of \mathfrak{L} and $\mu=\sum_{z \in Z} \delta_{z}$ which minimizes the cost functional

$$
\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} \vartheta(|x-y|) d q(x, y) .
$$

Moreover, there exists a unique set $A \subset \mathbb{R}^{d}$ and a unique map $T: A \rightarrow \mathbb{R}^{d}$ s.t.

$$
q=(I d, T)_{*}\left(1_{A} \mathfrak{L}\right) .
$$

In particular, $\left(\pi_{1}\right)_{*} q=1_{A} \mathfrak{L}$.
If $\vartheta(r)=r^{2}$ then $T=\nabla \varphi$ for some convex function $\varphi: A \rightarrow \mathbb{R}$.
Equivalently, $T: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d} \cup\{\partial\}$ and $q=(I d, T)_{*} \mathfrak{L}$ on $\mathbb{R}^{d} \times \mathbb{R}^{d}$.

- Fix exhausting sequence of cubes $B_{n} \nearrow \mathbb{R}^{d}$

■ Consider optimal semicoupling q_{n}^{ω} of \mathfrak{L} and $1_{B_{n}} \mu^{\omega}$

- Mean transportation cost for q_{n}^{\bullet} should converge to $\inf _{q^{\bullet} \in \Pi} \mathfrak{C}\left(q^{\bullet}\right)$
- The optimal semicouplings q_{n}^{ω} should converge to an 'optimal' coupling q^{ω} of \mathfrak{L} and μ^{ω}.

- Fix exhausting sequence of cubes $B_{n} \nearrow \mathbb{R}^{d}$
$■$ Consider optimal semicoupling q_{n}^{ω} of \mathfrak{L} and $1_{B_{n}} \mu^{\omega}$
- Mean transportation cost for q_{n}^{\bullet} should converge to $\inf _{q^{\bullet} \in \Pi} \mathfrak{C}\left(q^{\bullet}\right)$
- The optimal semicouplings q_{n}^{ω} should converge to an 'optimal' coupling q^{ω} of \mathfrak{L} and μ^{ω}.

The asymptotic mean transportation cost is given by

$$
\mathfrak{c}_{\infty}=\lim _{n \rightarrow \infty} \inf _{q^{\bullet} \in \Pi_{s}} 2^{-n d} \cdot \mathbb{E}\left[\int_{\mathbb{R}^{d} \times\left[0,2^{n}\right)^{d}} \vartheta(|x-y|) d q^{\bullet}(x, y)\right]
$$

where Π_{s} denotes the set of all semicouplings q^{\bullet} of the Lebesgue measure and the point process.

Main Results

Theorem 1.

Whenever the asymptotic mean transportation cost is finite, there exists a unique translation invariant minimizer of the mean cost functional ("optimal coupling").

Theorem 2. Let μ^{\bullet} be a Poisson point process of unit intensity and $\vartheta(r)=r^{p}$ for some $p \in(0, \infty)$.

The asymptotic mean transportation cost \mathfrak{c}_{∞} is finite if and only if

$$
p<\bar{p}:= \begin{cases}\infty, & \text { for } d \geq 3 \\ 1, & \text { for } d=2 \\ \frac{1}{2}, & \text { for } d=1\end{cases}
$$

Finiteness of Asymptotic Cost for PPP

Theorem 2.a Assume $d \geq 3$.

There exists a constant $0<\kappa<\infty$ s.t.

$$
\limsup _{r \rightarrow \infty} \frac{\log \vartheta(r)}{r^{d}}<\kappa \quad \Longrightarrow \quad \mathfrak{c}_{\infty}<\infty \quad \Longrightarrow \quad \liminf _{r \rightarrow \infty} \frac{\log \vartheta(r)}{r^{d}} \leq \kappa .
$$

That is, $\vartheta(r)=\exp \left(C \cdot r^{d}\right)$ is borderline.

Theorem 2.b Assume $d \leq 2$.

For any concave $\hat{\vartheta}:[1, \infty) \rightarrow \mathbb{R}$ dominating ϑ

$$
\int_{1}^{\infty} \frac{\hat{\vartheta}(r)}{r^{1+d / 2}} d r<\infty \quad \Longrightarrow \quad \mathfrak{c}_{\infty}<\infty \quad \Longrightarrow \quad \liminf _{r \rightarrow \infty} \frac{\vartheta(r)}{r^{d / 2}}=0
$$

That is, $\vartheta(r)=r^{d / 2}$ is borderline.

Finiteness of Asymptotic Cost for PPP

CLT fluctuations

$\triangleright r^{d}=$ average number of Poisson particles in box $[0, r)^{d}$
$\triangleright r^{d / 2}=$ fluctuations of particle number
$\triangleright \epsilon \cdot r^{d-1}=$ volume of ϵ-neighborhood of box, $\epsilon=r^{1-d / 2}$

Transportation cost per unit mass for $\vartheta(r)=r^{p}$:

$$
\epsilon^{p} \quad \text { if } p \geq 1, \quad \quad r^{p-d / 2} \quad \text { if } p \leq 1 .
$$

Large deviations

$\mathbb{P}\left(\right.$ No particle in box $\left.[0, r)^{d}\right)=\exp \left(-r^{d}\right)$
If $\vartheta(r) \gg \exp \left(r^{d}\right)$ then cost of transporting Lebesgue measure from inside $[0, r)^{d}$ to exterior $\nearrow \infty$.

Finiteness of Asymptotic Cost for PPP

For each box B the mean transportation cost on B

$$
\mathfrak{c}(B)=\inf _{q^{\bullet} \in \Pi} \frac{1}{\mathfrak{L}(B)} \cdot \mathbb{E}\left[\int_{\mathbb{R}^{\boldsymbol{d}} \times B} \vartheta(|x-y|) d q^{\bullet}(x, y)\right]
$$

can be estimated in terms of the modified cost $\widehat{\mathfrak{c}}(B)$:
Proposition 2. $\mathfrak{c}(B) \leq \widehat{\mathfrak{c}}(B)+\epsilon(|B|), \quad \epsilon(|B|) \searrow 0$.

Finiteness of Asymptotic Cost for PPP

For each box B the mean transportation cost on B

$$
\mathfrak{c}(B)=\inf _{q^{\bullet} \in \Pi} \frac{1}{\mathfrak{L}(B)} \cdot \mathbb{E}\left[\int_{\mathbb{R}^{\boldsymbol{d}} \times B} \vartheta(|x-y|) d q^{\bullet}(x, y)\right]
$$

can be estimated in terms of the modified cost $\widehat{\mathfrak{c}}(B)$:
Proposition 2. $\mathfrak{c}(B) \leq \widehat{\mathfrak{c}}(B)+\epsilon(|B|), \quad \epsilon(|B|) \searrow 0$.

Finiteness of Asymptotic Cost for PPP

For each box B the mean transportation cost on B

$$
\mathfrak{c}(B)=\inf _{q^{\bullet} \in \Pi} \frac{1}{\mathfrak{L}(B)} \cdot \mathbb{E}\left[\int_{\mathbb{R}^{d} \times B} \vartheta(|x-y|) d q^{\bullet}(x, y)\right]
$$

can be estimated in terms of the modified cost $\widehat{\mathfrak{c}}(B)$:

$$
\text { Proposition 2. } \quad \mathfrak{c}(B) \leq \widehat{\mathfrak{c}}(B)+\epsilon(|B|), \quad \epsilon(|B|) \searrow 0 .
$$

Finiteness of Asymptotic Cost for PPP

For each box B the mean transportation cost on B

$$
\mathfrak{c}(B)=\inf _{q^{\bullet} \in \Pi} \frac{1}{\mathfrak{L}(B)} \cdot \mathbb{E}\left[\int_{\mathbb{R}^{d} \times B} \vartheta(|x-y|) d q^{\bullet}(x, y)\right]
$$

can be estimated in terms of the modified cost $\widehat{\mathfrak{c}}(B)$:
Proposition 2. $\mathfrak{c}(B) \leq \widehat{\mathfrak{c}}(B)+\epsilon(|B|), \quad \epsilon(|B|) \searrow 0$.

Finiteness of Asymptotic Cost for PPP

For boxes $B_{n}=\left[0,2^{n}\right)^{d}$
Proposition 3. $\widehat{\mathfrak{c}}\left(B_{n+1}\right) \leq \widehat{\mathfrak{c}}\left(B_{n}\right)+2^{-C n}$.

Finiteness of Asymptotic Cost for PPP

For boxes $B_{n}=\left[0,2^{n}\right)^{d}$
Proposition 3. $\widehat{\mathfrak{c}}\left(B_{n+1}\right) \leq \widehat{\mathfrak{c}}\left(B_{n}\right)+2^{-C n}$.

Finiteness of Asymptotic Cost for PPP

For boxes $B_{n}=\left[0,2^{n}\right)^{d}$
Proposition 3. $\widehat{\mathfrak{c}}\left(B_{n+1}\right) \leq \widehat{\mathfrak{c}}\left(B_{n}\right)+2^{-C n}$.

Existence of a Minimizer

Now let μ^{\bullet} be an arbitrary translation invariant point process of intensity $\beta \leq 1$ and with finite asymptotic cost \mathfrak{c}_{∞}.

■ Fix exhausting sequence of cubes $B_{n} \nearrow \mathbb{R}^{d}$
■ Consider optimal semicoupling q_{n}^{ω} of \mathfrak{L} and $1_{B_{n}} \mu^{\omega} \checkmark$
■ The q_{n}^{ω} should converge to optimal coupling q^{ω} of \mathfrak{L} and μ^{ω}.

Problem 3.

No tightness; no lower bound for the marginals of q^{ω}, only upper bounds $\left(\pi_{1}\right)_{*} q^{\omega} \leq \mathfrak{L},\left(\pi_{2}\right)_{*} q^{\omega} \leq \mu^{\omega}$.

■ Choose sequence $\left(B_{n}\right)_{n}$ randomly, starting at given B_{0}, in the n-th step adding $2^{d}-1$ copies of B_{n-1} at arbitrary sides of it.
■ For given $n \in \mathbb{N}$ the initial box B_{0} has each possible "relative position within $B_{n}{ }^{\prime \prime}$ with equal probability.

- Choose sequence $\left(B_{n}\right)_{n}$ randomly, starting at given B_{0}, in the n-th step adding $2^{d}-1$ copies of B_{n-1} at arbitrary sides of it.
■ For given $n \in \mathbb{N}$ the initial box B_{0} has each possible "relative position within $B_{n}{ }^{\prime \prime}$ with equal probability.

■ Choose sequence $\left(B_{n}\right)_{n}$ randomly, starting at given B_{0}, in the n-th step adding $2^{d}-1$ copies of B_{n-1} at arbitrary sides of it.

- For given $n \in \mathbb{N}$ the initial box B_{0} has each possible "relative position within $B_{n}{ }^{\prime \prime}$ with equal probability.

■ Choose sequence $\left(B_{n}\right)_{n}$ randomly, starting at given B_{0}, in the n-th step adding $2^{d}-1$ copies of B_{n-1} at arbitrary sides of it.

- For given $n \in \mathbb{N}$ the initial box B_{0} has each possible "relative position within $B_{n}{ }^{\prime \prime}$ with equal probability.

■ Choose sequence $\left(B_{n}\right)_{n}$ randomly, starting at given B_{0}, in the n-th step adding $2^{d}-1$ copies of B_{n-1} at arbitrary sides of it.

- For given $n \in \mathbb{N}$ the initial box B_{0} has each possible "relative position within $B_{n}{ }^{\prime \prime}$ with equal probability.

Let $\Gamma=\left(\{0,1\}^{d}\right)^{\mathbb{N}}$ and $\nu=$ Bernoulli measure ('uniform distribution') on it. For each $z \in \mathbb{Z}^{d}, \gamma \in \Gamma$ and $n \in \mathbb{N}$ put

$$
B_{n}(z, \gamma)=z-\sum_{k=1}^{n} 2^{k-1} \gamma_{k}+\left[0,2^{n}\right)^{d}
$$

and let $q_{B_{n}(z, \gamma)}^{\omega}$ denote the minimizer of

$$
\int_{\mathbb{R}^{d} \times B_{n}(z, \gamma)} \vartheta(|x-y|) d q^{\omega}(x, y)
$$

which coincides with the optimal semicoupling of \mathfrak{L} and $1_{B_{n}(z, \gamma)} \mu^{\omega}$ as constructed previously.

Annealed Limits

For z fixed put

$$
q_{n}^{\omega}=\int_{\Gamma} q_{B_{n}(z, \gamma)}^{\omega} d \nu(\gamma)
$$

Problem 4. Does $q_{n}^{\omega} \rightarrow q^{\omega}$ converge for a.e. ω ?
Instead of $q_{n}^{\omega} \rightarrow q^{\omega}$ for \mathbb{P}-a.e. $\omega \in \Omega$ in the sense of convergence of measures on $\mathbb{R}^{d} \times \mathbb{R}^{d}$ we consider convergence $Q_{n} \rightarrow Q$ of measures on $\mathbb{R}^{d} \times \mathbb{R}^{d} \times \Omega$. Here

$$
d Q_{n}(x, y, \omega)=d q_{n}^{\omega}(x, y) d \mathbb{P}(\omega)
$$

(Vice versa, q_{n}^{ω} is obtained from Q_{n} via disintegration.)

Annealed Limits

Theorem.

Whenever the asymptotic mean transportation cost is finite, there exists a measure Q s.t.

$$
Q_{n} \quad \longrightarrow \quad Q \quad \text { vaguely as } n \rightarrow \infty
$$

The limit measure $Q=q^{\bullet} \mathbb{P}$

- is translation-invariant

■ is a semicoupling of \mathfrak{L} and $\mu \bullet \mathbb{P}$
■ is asymptotically optimal, i.e. it is a minimizer of the mean asymptotic cost.

If $\beta=1$ then Q is indeed a coupling of \mathfrak{L} and $\mu \bullet \mathbb{P}$.

Quenched Limits

Let q^{\bullet} be the disintegration of Q w.r.t. \mathbb{P}, i.e. $d q^{\omega}(x, y) d \mathbb{P}(\omega)=d Q(x, y, \omega)$.

Corollary.

For every $z \in \mathbb{Z}^{d}$

$$
d q_{B_{n}(z, \gamma)}^{\omega}(x, y) \rightarrow d q^{\omega}(x, y) \quad \text { vaguely as } n \rightarrow \infty
$$

in probability w.r.t. $(\omega, \gamma) \in \Omega \times \Gamma$.

More precisely, each of the semicouplings is induced by a transport map s.t. for every $z \in \mathbb{Z}^{d}$

$$
T_{n, z, \gamma}^{\omega}(x) \rightarrow T^{\omega}(x) \quad \text { as } n \rightarrow \infty
$$

in measure w.r.t. $(x, \omega, \gamma) \in \mathbb{R}^{d} \times \Omega \times \Gamma$.
Indeed, the sequence is finally stationary.

Local Optimality

Given a coupling q^{ω} of \mathfrak{L}^{d} and μ^{ω} for fixed $\omega \in \Omega$, the following are equivalent:

■ For all bounded Borel sets $A \subset \mathbb{R}^{d}$, the measure $1_{\mathbb{R}^{d} \times A} q^{\omega}$ is the unique optimal coupling between its marginals $q^{\omega}(., A)$ and $1_{A} \mu^{\omega}$.

- There exists a cyclically monotone map $T^{\omega}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ such that

$$
q^{\omega}=\left(I d, T^{\omega}\right)_{*} \mathfrak{L} .
$$

A coupling q^{\bullet} of Lebesgue measure and the point process is called locally optimal iff the previous properties are satisfied for \mathbb{P}-a.e. $\omega \in \Omega$.

Optimality

A semicoupling q^{\bullet} of Lebesgue measure and the point process is called optimal iff

■ it is translation invariant: the distribution of the measure-valued random variable $q^{\omega}(x, y)$ is invariant under translations $(x, y) \mapsto(x+z, y+z)$ of $\mathbb{R}^{d} \times \mathbb{R}^{d}$ and
■ it is asymptotically optimal: it minimizes the asymptotic mean transportation cost.

Examples.

■ The map $T: x \mapsto\lfloor x\rfloor-100$ defines a locally optimal + translation invariant coupling of \mathfrak{L} and $\sum_{y \in \mathbb{Z}} \delta_{y}$.

- Any local perturbation/re-arrangement of an asymptotical optimal (semi-)coupling is again asymptotically optimal.

Optimality

A semicoupling q^{\bullet} of Lebesgue measure and the point process is called optimal iff

- it is translation invariant: the distribution of the measure-valued random variable $q^{\omega}(x, y)$ is invariant under translations $(x, y) \mapsto(x+z, y+z)$ of $\mathbb{R}^{d} \times \mathbb{R}^{d}$ and
- it is asymptotically optimal: it minimizes the asymptotic mean transportation cost.

Theorem.

Optimal $\quad \Longrightarrow \quad$ locally optimal.

Theorem.

There exists at most one optimal semicoupling.

Proof. Assume two optimal semicouplings q_{1}^{\bullet} and q_{2}^{\bullet}
$\Rightarrow \quad q^{\bullet}:=\frac{1}{2} q_{1}^{\bullet}+\frac{1}{2} q_{2}^{\bullet}$ optimal semicoupling
$\Rightarrow \quad q_{1}^{\bullet}, q_{2}^{\bullet}$ and q^{\bullet} locally optimal
$\Rightarrow \quad \exists \operatorname{maps} T_{1}^{\omega}, T_{2}^{\omega}, T^{\omega}$ s.t. on $\mathbb{R}^{d} \times \mathbb{R}^{d}$ for a.e. ω :

$$
\begin{aligned}
d \delta_{T^{\omega}(x)}(y) d \mathfrak{L}(x) & =d q^{\omega}(x, y)=d\left(\frac{1}{2} q_{1}^{\omega}(x, y)+\frac{1}{2} q_{2}^{\omega}(x, y)\right) \\
& =d\left(\frac{1}{2} \delta_{T_{1}^{\omega}(x)}(y)+\frac{1}{2} \delta_{T_{2}^{\omega}(x)}(y)\right) d \mathfrak{L}(x)
\end{aligned}
$$

$\Rightarrow \quad T_{1}^{\omega}(x)=T_{2}^{\omega}(x)$ for a.e. $x \in \mathbb{R}^{d}$ and thus $q_{1}^{\omega}=q_{2}^{\omega}$.

Summary

For each translation invariant point process μ^{\bullet} with (sub-)unit intensity consider asymptotic mean cost

$$
\mathfrak{c}_{\infty}=\lim _{n \rightarrow \infty} \inf _{q^{\bullet} \in \Pi_{s}} 2^{-n d} \cdot \mathbb{E}\left[\int_{\mathbb{R}^{d} \times\left[0,2^{n}\right)^{d}} \vartheta(|x-y|) d q^{\bullet}(x, y)\right]
$$

If $\mathfrak{c}_{\infty}<\infty$ then \exists ! optimal (semi-)coupling q^{\bullet} of \mathfrak{L} and μ^{\bullet} :
(i) translation invariant
(ii) minimizing $\sup _{B} \frac{1}{\mathfrak{L}(B)} \cdot \mathbb{E}\left[\int_{\mathbb{R}^{d} \times B} \vartheta(|x-y|) d q^{\bullet}(x, y)\right]$ (which is independent of B under (i))
It is given in terms of a unique transport map $T: \mathbb{R}^{d} \mapsto \mathbb{R}^{d}(\cup\{\partial\})$.

Summary

For the Poisson point process with intensity $\beta \leq 1$:

- If $d \geq 3$ or $\beta<1$:

$$
\mathfrak{c}_{\infty}<\infty \quad \Longleftrightarrow \quad \vartheta(r) \lesssim \exp \left(C r^{d}\right)
$$

- If $d \leq 2$ and $\beta=1$:

$$
\mathfrak{c}_{\infty}<\infty \quad \Longleftrightarrow \quad \vartheta(r) \ll r^{d / 2}
$$

