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Sherrington-Kirkpatrick model:
Random interactions: Independent centered Gaussians gij; i < j; with variance
1=N;de�ned on (
;F ;P) :
Inverse temperature � > 0; strength h � 0 of the external �eld.
Hamiltonian:

HN;! (�)
def
= �

X
1�i<j�N

gij (!)�i�j + h

NX
i=1

�i; �i 2 f�1; 1g

Partition function:

ZN;!
def
=
X
�

exp [HN;! (�)] :

Gibbs measure on �N :
exp [HN;! (�)]

ZN;!
:

Gibbs-expectations (�xed !) are written as h�i :

mi (!)
def
= h�ii :
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TAP equations (Thouless-Anderson-Palmer):

mi = tanh

�
h + �

XN

j=1
gijmj � �2 (1� q)mi

�
;

where gij = gji; gii = 0; and q = q (�; h) is the (unique for h > 0) solutions of

q =

Z
tanh2 (h + �

p
qx)� (dx) ; � (dx)

def
=

1p
2�
e�x

2=2dx:

Has to be understood in limiting N !1 sense.
The Onsager term �2 (1� q)mi is an Itô type correction: Standard mean-�eld theory:

mi ' tanh
�
h + �

X
j
gijmj

�
:

For SK correct by replacing mj on the rhs by mcut i
j from the system with the connec-

tions to i cut. Expanding in �rst order for the gij:

mcut i
j ' mj � �

�
1�m2

j

�
migij:

Mathematical proofs of TAP only for small � : Talagrand, Chatterjee.
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Free energy:

f (�; h)
def
= lim

N!1

1

N
logZN = lim

N!1

1

N
E logZN :

The replica symmetric �solution�, given by SK:

RS (�; h) =

Z
log cosh (h + �

p
qz)� (dz)

+
�2

4
(1� q)2 + log 2:

Aizenman-Lebowitz-Ruelle (h = 0), Talagrand (h 6= 0):
Theorem For small enough � :

f (�; h) = RS (�; h)

�Small enough �� is believed to mean that the de Almayda�Thouless-condition is
satis�ed:

(AT) : �2
Z

� (dz)

cosh4
�
h + �

p
qz
� � 1:
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Proposal for a direct construction of �solutions� of TAP: Assume h > 0 : Recursive
approximations

n
m
(k)
i

o
1�i�N

: Given (gij)

m
(0)
i

def
= 0; m

(1)
i

def
=
p
q;

m
(k)
i

def
= tanh

�
h + �

X
j
gijm

(k�1)
j � �2 (1� q)m

(k�2)
i

�
; k � 2:

Questions:
� Structure of the dependence of m(k) on (gij)?

� Convergence as k !1?
� Relation to SK?
Second point:
Theorem: (AT) is satis�ed iff

lim
k;k0!1

lim
N!1

E
1

N

NX
i=1

�
m
(k)
i �m

(k0)
i

�2
= 0:
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Proof by an evaluation of

� (j; k)
def
= lim

N!1
E
1

N

NX
i=1

m
(k)
i m

(j)
i :

Theorem

� (k; k) = q; 8k; � (j; k) = �j; 8j < k;

where

�j+1 =  
�
�j
�
; �1

def
=
p
q (0) < q:

 : [0; q]! (0; q] de�ned by

 (t) =

Z
tanh

�
h + �

p
tx1 + �

p
q � tx2

�
tanh

�
h + �

p
tx1 + �

p
q � tx3

�
�
3 (dx) :

 (q) = q:
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Lemma  is increasing and convex on [0; q] : Furthermore

 0 (q) = �2
Z

� (dx)

cosh4
�
h + �

p
qx
�:

 n (�1)! q () (AT)
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Structure of the (gij)-dependence of the m(k) : Alternative representation:

m
(k)
i ' tanh

�
h + �

X
j
g
(k�1)
ij m

(k�1)
j + �

Xk�2

r=1
r�

(r)
i

�
;

r
def
=

�r �
Pr�1

j=1 
2
jq

q �
Pr�1

j=1 
2
j

; �
(r)
i

def
=
X
j

g
(r)
ij m̂

(r)
j :

m̂(1); m̂(2); : : : come from m(1);m(2); : : : via Gram-Schmidt in RN w.r.t. the inner product

hx; yi = 1

N

X
i
xiyi:

Let Fk = �
�
�(1); : : : ; �(k)

�
: m(k); m̂(k) are Fk�1-measurable.

L
�
g(k)
��Fk�2� Gaussian, and g(k) is conditionally independent of Fk�1:

(AT) ()
X1

r=1
2r = q
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(AT) () 1

N

X
i

hX
j
g
(k�1)
ij m

(k�1)
j

i2
!k!1 0:

Using this representation, one can prove the claims by iteratively applying the LLN,
conditionally successively on Fk�2;Fk�3; : : : .
For that one needs the conditional covariance structure of the �(k) :

E
�
�
(k)
i �

(k)
j

���Fk�1� = ( 1 +O
�
N�1� for i = j;

m̂
(k)
i m̂

(k)
j

N � 1
N

Pk�1
r=1

m̂
(r)
i m̂

(r)
j

N +O
�
N�2� for i 6= j:

Illustration from the �rst steps:

m
(1)
i =

p
q; m

(2)
i = tanh

�
h + �

p
q�
(1)
i

�
; �

(1)
i

def
=
X

j
gij;

1

N

XN

i=1
m
(2)
i '

Z
tanh (h + �

p
qx)� (dx) = 1;

1

N

XN

i=1
m
(2)2
i '

Z
tanh2 (h + �

p
qx)� (dx) = q;

are evident from LLN.
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m
(3)
i = tanh

�
h + �

X
j
gijm

(2)
j � �2 (1� q)

p
q
�
:

Here one does the shift from g to g(2) which is independent of �(1): Essentially

g
(2)
ij ' gij �N�1

�
�
(1)
i + �

(1)
j

�
:

The correction inside the tanh of m(3)
i :

�N�1
X
j

�
�
(1)
i + �

(1)
j

�
m
(2)
j ' �1�

(1)
i + �

Z
x tanh (h + �

p
qx)� (dx)

= �1�
(1)
i + �2

p
q (1� q) :

=) m
(3)
i ' tanh

�
h + �

X
j
g
(2)
ij m

(2)
j + ��

(1)
i

�
:

In the general case: g ! g(2) ! g(3) � � � successively eats up the Onsager term and
produces the r�

(r) terms.
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Open problem: Behavior beyond the (AT) line ofX
j
g
(k�1)
ij m

(k�1)
j :

Original motivation: (Re)prove f (�; h) = RS (�; h) hopefully up to (AT), by a change
of measure argument:

2�NZN =
X
�

exp [�H (�)]P coin�toss (�) :

ptiltmi
(�i) =

exp [hi�i]

cosh (hi)
pcoin�toss (�i) ; mi = tanh (hi) :

The mi from the TAP approximations.
1

N
logZN =

1

N
log
X
�

exp
h
�H (�)�

X
i
hi�i

i
P tilt (�) + log 2

+
1

N

X
i

log cosh (hi)| {z }
'
R
log cosh(h+�x)�(dx)

:
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After some computationsX
�

exp
h
�H (�)�

X
i
hi�i

i
P tilt (�) ' exp

�
�2N

4
(1� q)2

�

�
X
�

exp

24�X
i<j

gij�̂i�̂j �
�2

2N

X
i<j

�̂2i �̂
2
j

35P tilt (�) ;
where �̂i

def
= �i �mi: For the latter factor one should get (by second moment)

lim
N!1

1

N
log [�] = 0:

For small �; this is o.k., but not up to (AT).
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My favorite spin glass: Perceptron: gij; 1 � i; j � N i.i.d. Gaussian with variance
N�1:

H (�)
def
=

NX
i=1

f
�XN

j=1
gij�j| {z }

y�;i

�
= N

Z
f (x)LN;� (dx)

LN;�
def
=
1

N

NX
i=1

�y�;i:

Question: Is there a quenched LDP in the sense that

# f� : LN;� � �g � 2N exp [�NJ (�)] ; a:s:

A natural question: Given the gij; is there a typical law of those �'s for which LN;� � �?


