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So far, localization statements for directed polymers in random medium deal
with the location of the endpoint (”favourite site” for polymer). We introduce a
pathwise property, roughly: there exists a ”favorite path” depending on the
environment as well as the model parameters and time horizon, such that the
polymer path has a significant overlap with the favorite path.

In a joint work with Mike Cranston, we establish this property in the parabolic
Anderson model. We also obtain complete localization, i.e., the overlap tends
to its maximal value 1 as the product (diffusivity × temperature2) tends to 0.
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The Parabolic Anderson Model

X = (X (t), t ≥ 0): symmetric simple random walk in Zd with jump rate κ > 0
starting at 0. Law Pκ, expectation Eκ.
Wx , x ∈ Zd : i.i.d. Brownian motions. Expectation: E .

Anderson polymer model: the Gibbs measure on DT = D([0,T ],Zd ) with

µκ,β,T (f ) =
1

Zκ,β,T
Eκ
[
f (X ) exp

{
β

∫ T

0
dWX(s)(s)

}]
.

for f : DT → R. (T > 0 is time horizon.)

The model has two parameters:

inverse temperature β > 0 measuring the fluctuations of the
environment,

diffusivity κ ∈ (0,∞) of the path under the a priori measure Pκ.

Denote

HT (X ) =

∫ T

0
dWX(s)(s); Then, Zκ,β,T = Eκ

[
exp {βHT (X )}

]
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Lyapunov exponents

N(T ,X ) = number of jumps of X on [0,T ].

Proposition (Microcanonical)

For r ≥ 0, the following limit exists a.s. and in Lp, p ∈ [1,∞):

Γ(β, r) = lim
T→∞

T−1 ln Eκ
[

exp{βHT (X )}|N(T ,X ) = [rT ]
]

It is deterministic, convex in β, continuous in r , independent of κ, and

Γ(β, r) = a Γ(a−1/2β, a−1r) , a > 0.

Let Iκ be the Cramér transform of the Poisson distribution with parameter κ,

Iκ(r) = r ln(r/κ)− r + κ, r ≥ 0.

Proposition (Variational formula for free energy)

Ψ(κ, β)
∃
= lim

T→∞
T−1 ln Zκ,β,T = sup{Γ(β, r)− Iκ(r); r ≥ 0}
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From scaling relation for Γ,

Ψ(κ, β) = β2Ψ(β−2κ, 1) = κΨ(1, κ−1/2β).

Define Iκ,β ,
Iκ,β(r) = −Γ(β, r) + Iκ(r) + Ψ(κ, β),

a convex function in r .

Theorem (Large deviations principle for the number of jumps)

Then
lim

T→∞,n/T→r
T−1 lnµκ,β,T

(
N(T ,X ) = n

)
= −Iκ,β(r), a.s..

Moreover, for a.e. realization of the environment, and all subsets B ⊂ R+,

− inf
Bo

Iκ,β(r) ≤ lim inf
T→∞

T−1 lnµκ,β,T
(
N(T ,X )/T ∈ B

)
≤ lim sup

T→∞
T−1 lnµκ,β,T

(
N(T ,X )/T ∈ B

)
≤ − inf

B̄
Iκ,β(r).
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Remarks

Literature: R.Carmona-Molchanov ’94 (intermittency)
Biskup, P.Carmona, Cranston, Gärtner, van der Hofstad, den Hollander, Hu,
König, Koralov, Mörters, Mountford, Rovira, Shiga, Tindel, Viens, Zeldovich...
many others!
Totally asymmetric 1-dim, exactly solvable: O’Connell (with Moriarty, Yor)

(i) Annealed bound . By Jensen’s inequality, and since EeβHT (X) = eβ
2/2, both

Ψ(κ, β) ≤ β2/2 and Γ(β, r) ≤ β2/2

hold (∀κ, r ). Then,

Ψ(κ, β) = β2/2 ⇐⇒ Γ(β, κ) = β2/2,

and, in such a case, Iκ,β(r) has a unique minimum at r = κ.

(ii) Weak versus strong disorder .

Ψ(κ, β) = β2/2 ⇐⇒ β2/κ ≤ Υc ,

for some critical value Υc ∈ [0,∞) depending only on the dimension.
d ≥ 3 =⇒ Υc > 0
d = 1, 2: Υc = 0 is expected, in view of results for other models: discrete
models (Lacoin, Vargas,. . .) or continuous (Bertin)
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Asymptotics of Lyapunov exponents

Theorem (Asymptotics of free energy)

As β2/κ→∞,

Ψ(κ, β) ∼ α2β2

4 ln(β2/κ)

Ref: R.Carmona-Koralov-Molchanov’01, Cranston-Mountford-Shiga’02;
Also R.Carmona-Molchanov-Viens’96.

α = lim
n→∞

1
n

An , An = sup
γ:N(n,γ)=n

Hn(γ) .

∃ limit: sup of Gaussian process indexed by a set with suitably bounded
entropy.
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Sketch: Fix T first:

lim
β→∞

1
βT

ln Eκ
[
eβHT (X)|N(T ,X ) = [rT ]

]
= sup
γ:N(T ,γ)=rT

HT (γ) =: AT ,r .

lim
β→∞

β−1Γ(β, r) = lim
β→∞

lim
T→∞

1
βT

ln Eκ
[
eβHT (X)|N(T ,X ) = [rT ]

]
= lim

T→∞
T−1AT ,r (interchange limits)

=
√

r lim
T→∞

T−1AT (scaling : AT ,r
L
=
√

rAT )

= α
√

r

Then, for κ = 1 and β →∞,

Ψ(1, β) ∼ sup
{
αβ
√

r − I1(r) : r ≥ 0
}

=
α2β2

4 ln(β2)

which yields the case of general κ by scaling.

For the maximizer rmax(κ, β) in Variational Formula, rmax(κ, β) ∼ α2β2

4 ln2(β2/κ)
.

Note : For large β2/κ,

Ψ(κ, β) << β2/2 , rmax(κ, β) >> κ
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Two versions of the Overlap

Localization properties are derived through the overlap between two
independent polymer paths X , X̃ sharing the same environment.
Two versions appear:

Iκ,β,T =
1
T

∫ T

0
µ⊗2
κ,β,t (X (t)= X̃ (t))dt

Jκ,β,T =
1
T

∫ T

0
µ⊗2
κ,β,T (X (t)= X̃ (t))dt = µ⊗2

κ,β,T

( 1
T

∫ T

0
1{X (t)= X̃ (t))}dt︸ ︷︷ ︸

proportion of time together

)

How do they appear: (i) By Itô’s formula,

d ln Zκ,β,t = βµκ,β,t (dWX(t)(t)) +
β2

2

(
1− µ⊗2

κ,β,t (X (t) = X̃ (t))
)

dt ,

and, upon integration we get

1
T

ln Zκ,β,T =
1
T

MT +
β2

2
(1− Iκ,β,T )
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Limits of overlaps and relation with free energy

As T →∞, the martingale term vanishes, so we get (i) below.

Theorem

(i) For all β and κ,

Ĩκ,β,∞ :
∃
= lim

T→∞
Iκ,β,T = 1− 2

β2 Ψ(κ, β)

(j) The limit

J̃κ,β,∞ = lim
T→∞

E [Jκ,β,T ]

exists except for exceptional values of β2/κ, and

J̃κ,β,∞ = 1− β−1 ∂

∂β
Ψ(κ, β).
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Integration by parts

Proof of (j): • Key is the identity

∂

∂β
E [ln Zκ,β,T ] = βT

[
1− E [Jκ,β,T ]

]
(∗)

It comes by integration by parts, like in spin-glass models (cf. Talagrand’s
books). The basic, Gaussian integration by parts formula writes

EgF (g) = σ2EF ′(g) for g ∼ N (0, σ2).

With our Brownian environment, we need the integration by parts formula
from Malliavin calculus is: for F a smooth function of the (Wx (t))t,x and
h(t , x) deterministic, ‖h‖2 <∞,

E
[
F ×

∫ T

0
h(t , x)dWx (t)

]
= E

[ ∫ T

0
h(t , x) Dt,x F dt

]
The Malliavin derivative Dt,x is heuristically equal to ∂

∂(dWx (t))
.
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Integration by parts

∂

∂β
E [ln Zκ,β,T ] = E [µκ,β,T (HT (X ))]

= E

µκ,β,T
∑

x∈Zd

∫ T

0
dWx (t)δx (X (t))


=

∑
x∈Zd

Eκ
[
E
[

eβHT (X)

Zκ,β,T

∫ T

0
dWx (t)δx (X (t))

]]
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Integration by parts

∂

∂β
E [ln Zκ,β,T ] = E [µκ,β,T (HT (X ))]

= E

µκ,β,T
∑

x∈Zd

∫ T

0
dWx (t)δx (X (t))



=
∑
x∈Zd

Eκ

E

eβHT (X)

Zκ,β,T︸ ︷︷ ︸
F

∫ T

0
dWx (t)δx (X (t))



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Integration by parts

∂

∂β
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∫ T
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=

∑
x∈Zd

Eκ
[
E
[

eβHT (X)

Zκ,β,T

∫ T

0
dWx (t)δx (X (t))

]]
i.b.p.
=

∑
x∈Zd

Eκ
[
E
∫ T

0

[
Dt,x

eβHT (X)

Zκ,β,T

]
δx (X (t))

]
dt

= βEκ

E
∑
x∈Zd

∫ T

0

[(
δx (Xt )

eβHT (X)

Zκ,β,T
− eβHT (X)

Zκ,β,T
Eκ[δx (X̃t )eβHT (X̃)]

Zκ,β,T

)]
δx (Xt )

 dt

= βE
∑
x∈Zd

∫ T

0

[
µκ,β,T (δx (X (t)))−µκ,β,T (δx (X (t)))2

]
dt = βT [1− E [Jκ,β,T ]] .
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Hence we got the key identity

∂

∂β
E [ln Zκ,β,T ] = βT

[
1− E [Jκ,β,T ]

]
(∗)

• By standard convexity arguments: Ψ is differentiable in β outside an at
most countable set; At such point we have

J̃κ,β,∞ :
∃
= lim

T→∞
E [Jκ,β,T ]

= 1− β−1 ∂

∂β
Ψ(κ, β)



Parabolic Anderson Model Replica Overlap Polymer Localization Complete localization as β2/κ → ∞

Outline

1 Parabolic Anderson Model

2 Replica Overlap

3 Polymer Localization

4 Complete localization as β2/κ→∞



Parabolic Anderson Model Replica Overlap Polymer Localization Complete localization as β2/κ → ∞

From (i): results in a classical formulation

The critical value corresponds to the localization transition:

β2/κ > Υc ⇐⇒ Ĩκ,β,∞ > 0

For fixed κ, β, define the favourite site x∗(t) for the polymer at time t by

x∗(t) = arg max
{

Eκ [exp{βHt (X )}; X (t) = x ] : x ∈ Zd
}

Theorem

β2/κ > Υc ⇐⇒
{
∃C = C(β2/κ) > 0 :

lim infT→∞ 1
T

∫ T
0 µκ,β,t (X (t) = x∗(t))dt ≥ C a.s.

Pointwise result, in the style of Carmona-Hu’02, FC-Shiga-Yoshida’03.
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From (j)

The critical value is when localization starts:

Υc = inf{β2/κ : J̃κ,β,∞ > 0}.

Let
Dκ = {β > 0 : ∃ ∂

∂β
Ψ(κ, β) ,

∂

∂β
Ψ(κ, β) < β}

We have:
β ∈ Dκ =⇒ J̃κ,β,∞ > 0.

Clearly, Dκ ⊂ [κ1/2Υc ,∞). Conjecture: Dκ = (κ1/2Υc ,∞).

Weaker statements on the (larger) set of increase of β 7→ β2/2−Ψ(κ, β):
for such a β, ∃βn → β such that

lim
T→∞

Eµ⊗2
κ,βn,T

(
1
T

∫ T

0
1X(t)=X̃(t)dt

)
> 0.

On the contrary, for β where the difference is locally constant, then the
limit is 0 at β and around.
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From (j): favourite path

For fixed κ, β, define the ”favourite path” y∗T for the polymer with time horizon
T as the function

y∗T (t) = arg max
{

Eκ (exp{βHT (X )}; X (t) = y) ; y ∈ Zd
}

Theorem (FC-Cranston’11)

β ∈ Dκ =⇒ lim inf
T→∞

Eµκ,β,T
(

1
T

∫ T

0
1{X (t) = y∗T (t)}dt

)
≥ C(β, κ) > 0.

Provides an information on the path itself.

Similar to above, a weaker form holds on the set of increase of the difference.
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On favourite attributes

What are those favourite attributes ? x∗ and y∗T :
Both depend on κ, β (also T ) and on the environmentW.
Both have long jumps: in particular the ”favourite path” is not a path...
y∗T and x∗ are equal at time t = T , but they are not related otherwise.

Fundamental difference: The mapping t 7→ x∗(t) has oscillations at those
times t when there are many maximizers: the set of jump times then looks
locally like the set of zeros of Brownian motion. In contrast, from
differentiability below, we see that t 7→ y∗T (t) has no oscillations, typically.
The favourite path is much smoother than the favourite end-point.

Proposition

(i) The function t 7→ Eκ [exp{βHt (X )}δx (X (t))] is a.s. Hölder continuous of
every order less than 1/2.
(ii) The function t 7→ Eκ [exp{βHT (X )}δx (X (t))] is almost surely of C1 class
on [0,T ].
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� (i) Z (t , x) = Eκ [exp{βHt (X )}δx (X (t))] solves the stochastic heat equation

dZ (t , x) = κ∆Zdt + βZ ◦ dWx (t).

It has the regularity of Brownian motion.

(ii) On the other hand,

Eκ [exp{βHT (X )}δx (X (t))]× exp−βWz(T )

is (continuously) differentiable at t when z = x .
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Outline

1 Parabolic Anderson Model

2 Replica Overlap

3 Polymer Localization

4 Complete localization as β2/κ→∞
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As β2/κ→ ∞ :

Recall that Ψ(κ, β) ∼ α2β2

4 ln(β2/κ)
<< β2/2 , and moreover, that

β2

2
−Ψ(κ, β) =

β2

2
Ĩκ,β,∞, and

∂

∂β

(
β2

2
−Ψ(κ, β)

)
= βJ̃κ,β,∞.

This implies that both Ĩκ,β,∞ and J̃κ,β,∞ tend to 1 at rate O(1/ ln(β2/κ)).
Since 1 is the maximal value, the localization is complete.

Similarly,

lim sup
T→∞

1
T

∫ T

0
µκ,β,t (X (t) 6= x∗(t))dt = O(1/ ln(β2/κ))

lim sup
T→∞

Eµκ,β,T
(

1
T

∫ T

0
1{X (t) 6= y∗T (t)}dt

)
= O(1/ ln(β2/κ))

(No need to restrict β ∈ Dκ.)
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Conclusion

When the discrepancy between quenched and annealed free energy
increases, the random path sticks to the favourite one for a significant
fraction of the time.
The fraction of times grows to 1 as diffusivity × temperature2 vanishes.

Path localization and complete localization also hold in other models.
We proved that for Parabolic Anderson model, but this works as soon as
the environment is Gaussian.

Another example: Brownian polymer in Poissonian medium
(FC-Yoshida). Poisson variable have a nice integration by parts formula.
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