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So far, localization statements for directed polymers in random medium deal
with the location of the endpoint ("favourite site” for polymer). We introduce a
pathwise property, roughly: there exists a “favorite path” depending on the
environment as well as the model parameters and time horizon, such that the
polymer path has a significant overlap with the favorite path.

In a joint work with Mike Cranston, we establish this property in the parabolic
Anderson model. We also obtain complete localization, i.e., the overlap tends
to its maximal value 1 as the product (diffusivity x temperature?) tends to 0.
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Parabolic Anderson Model

The Parabolic Anderson Model

X = (X(t),t > 0): symmetric simple random walk in Z? with jump rate x > 0
starting at 0. Law P., expectation E,.
Wy, x € Z: i.i.d. Brownian motions. Expectation: E.

Anderson polymer model: the Gibbs measure on D7 = D([0, T], Z%) with

Z;ﬁ,rE” [f(X) exp {5/0wax(s)(s)H ,

for f: Dr — R. (T > 0 is time horizon.)

ts,p,7(F) =
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The Parabolic Anderson Model

X = (X(t),t > 0): symmetric simple random walk in Z? with jump rate x > 0
starting at 0. Law P., expectation E,.
Wy, x € Z: i.i.d. Brownian motions. Expectation: E.

Anderson polymer model: the Gibbs measure on D7 = D([0, T], Z%) with

Z;MEN [f(X) exp {B/OTdWX(S)(s)H ,

for f: Dr — R. (T > 0 is time horizon.) The model has two parameters:

ts,p,7(F) =

@ inverse temperature S > 0 measuring the fluctuations of the
environment,

@ diffusivity x € (0, c0) of the path under the a priori measure P..
Denote

)
HT(X):/O Wi (s): Then, Z,,s.7 = Ex [ exp {BHr (X))



Parabolic Anderson Model

Lyapunov exponents

N(T,X) = number of jumps of X on [0, T].

Proposition (Microcanonical)

For r > 0, the following limit exists a.s. and inLP, p € [1,00):

rg,r) = lim T7'InE.[exp{Hr(X)}IN(T,X) = [rT]]

It is deterministic, convex in 3, continuous in r, independent of k, and

r(8,r)=ar(a'?g,a'r), a>o0.




Parabolic Anderson Model

Lyapunov exponents

N(T,X) = number of jumps of X on [0, T].

Proposition (Microcanonical)

For r > 0, the following limit exists a.s. and inLP, p € [1,00):
rg.r) = lim T7'InE[exp{BHr(X)}IN(T,X) = [rT]]
— 00

It is deterministic, convex in 3, continuous in r, independent of k, and

r(8,r)=ar(a'?g,a'r), a>o0.

Let I, be the Cramér transform of the Poisson distribution with parameter x,
l(r)=rin(r/k) — r+ &, r>0.

Proposition (Variational formula for free energy)

W(k, B) = lim T 'InZ. 57 =sup{l(B,r) — l.(r); r >0}




Parabolic Anderson Model

From scaling relation for ',
Y(k, B) = BW(B %k, 1) = wW(1,5~"/2B).

Define |, g,
le,(r) = =T(B,r) + 1(r) + V(k, B),
a convex function in r.



Parabolic Anderson Model

From scaling relation for ',
Y(k, B) = BW(B %k, 1) = wW(1,5~"/2B).

Define |, g,
le,(r) = =T(B,r) + 1(r) + V(k, B),
a convex function in r.

Theorem (Large deviations principle for the number of jumps)

Then
im_ TN pesr(N(T,X) = n) = —l.s(r), as.

T—oo,n/T—r

Moreover, for a.e. realization of the environment, and all subsets B C R.,

—inflog(r) < liminf T-"In . 5.7 (N(T, X)/T € B)
Be T—oo

< limsup T7'In e 6,7 (N(T, X)/T € B) < —inf L 5(r).
B

T—o0




Parabolic Anderson Model

Remarks

R.Carmona-Molchanov '94 (intermittency)
Biskup, P.Carmona, Cranston, Gartner, van der Hofstad, den Hollander, Hu,
Konig, Koralov, Mérters, Mountford, Rovira, Shiga, Tindel, Viens, Zeldovich...
many others!
Totally asymmetric 1-dim, exactly solvable: O’Connell (with Moriarty, Yor)
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(i) Annealed bound. By Jensen’s inequality, and since Ee?H7(%) — ¢5°/2, poth
V(k,f) < 6°/2 and  T(B,r) < °/2
hold (Vk, r). Then,
V(k, B) = /2 <= T(B.r) = °/2,
and, in such a case, |,.,5(r) has a unique minimum at r = x.
(il) Weak versus strong disorder.
(K, B) = /2 <= B°/r < o,
for some critical value T € [0, co) depending only on the dimension.
ed>3 = T:>0

@ d =1,2: T, = 0is expected, in view of results for other models: discrete
models (Lacoin, Vargas,. ..) or continuous (Bertin)



Parabolic Anderson Model

Asymptotics of Lyapunov exponents

Theorem (Asymptotics of free energy)

As 32/ — oo,
aZﬂZ
‘U(K,ﬁ) ~ 4|n(ﬂ2/li)

Ref: R.Carmona-Koralov-Molchanov’01, Cranston-Mountford-Shiga’02;
Also R.Carmona-Molchanov-Viens’96.

a= lim %An, Ar= sup Ha(7).

n—oo ¥iN(n,y)=n

3 limit: sup of Gaussian process indexed by a set with suitably bounded
entropy.



Parabolic Anderson Model

Sketch: Fix T first:

im InE.[TOINT,X) = [T]] = sup  Hr(7) = Ar., .
oo BT ViN(T,y)=rT
N I I BHr(X) _
BIL)mooﬁ rg,r) = ﬂlew TI|_>mOc 5T InE.[e IN(T, X) = [rT]]
= lim T7'Ar, (interchange limits)
T—o0
= Vrlm T'Ar (scaling : Ar,, £ VA7)
—00
Then, fork =1 and 8 — oo,
a252
(1,8) ~sup {aBvVr —li(r): r >0} I ()
which yields the case of general « by scaling. O
For the maximizer rmax(k, ) in Variational Formula, rmax(x, 8) ~ %

Note : For large 5%/,
V(k,B) << B°/2,  Fow(K, B) >> K
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Replica Overlap

Two versions of the Overlap

Localization properties are derived through the overlap between two
independent polymer paths X, X sharing the same environment.
Two versions appear:

car =3 [ U =Xy

JepT = T/ uE% (X0 =X(1)dt = u?ﬁ; T / HX()= t))}df)

proportion of time together

How do they appear: (i) By Itd’s formula,

ﬂZ
dIn Z. 5.t = B st (Wi (0) + - (1= % (X(0) = X(1))) et

and, upon integration we get

2

— In ZKBT_ fMT+?(1 — /H,ﬂyT)
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Two versions of the Overlap

Localization properties are derived through the overlap between two
independent polymer paths X, X sharing the same environment.
Two versions appear:

lnr =1 [ 5O =X(O)a

JrpT = T/ nE2 L(X(H)= (t))dt:u% T / 1H{X(t) = t))}dt)

proportion of time together

How do they appear: (i) By Itd’s formula,

52
dIn Z. .t = B p.t(Waio (1) + - (1= 1% (X(0) = X(1))) et

and, upon integration we get

2

— In ZNBT_ fMT+?(1 — /H,B,T)



Replica Overlap

Limits of overlaps and relation with free energy

As T — oo, the martingale term vanishes, so we get (i) below.

Theorem
(i) For all g and k,

. 2
/n,ﬁ,oo :é T|L>moo IH,B,T =1-— ?‘U(K’aﬂ)

(i) The limit
Jpoo = lim E[Jep ]
T— oo
exists except for exceptional values of 3° /x, and

~ 4 0
Jepoo=1-8 13*5"’(*’"’5)'




Replica Overlap

Integration by parts

Proof of (j): e Key is the identity
0
%E[In ZN,HYT] = ﬁT“ — E[Jﬁ7g77']] (*)

It comes by integration by parts, like in spin-glass models (cf. Talagrand’s
books). The basic, Gaussian integration by parts formula writes

EgF(g) = 0®EF'(g) for g~ N(0,0%).
With our Brownian environment, we need the integration by parts formula
from Malliavin calculus is: for F a smooth function of the (Wx(t)):x and
h(t, x) deterministic, ||h||2 < oo,
Fx/ h(t, x)dWi(t)] = / h(t, X) DexF o]

The Malliavin derivative D; x is heuristically equal to me).



Replica Overlap

Integration by parts

Elp,p.7(Hr(X))]

- Elum<2 / oW (1)5(X (t»)

- Tele[Z [ mosw)]

erd

1o}
%E[In Zn,ﬁ,T]




Replica Overlap

Integration by parts

%E[Inz&ﬁ,ﬂ = Elp s r(Hr(X))]

E [,W,T ( / dWi(t) 5X(X(t))>

oBHr(X
/ AW (1)55(X
n 8,T

erd



Replica Overlap

Integration by parts

Elpw,p,7(Hr(X))]

_ [uwr<2/dwx ox(X )))

_ ZEK{ [eBHT /dwx )5 (X (t))”

T
xezd 2 o

0
%E[In Zn,B,T]

ePHr(X)

e g { / {D’ng }@(X(t))} at

xezd

at

eBHT(X) ePHr(X) Eﬂ[gx(j(t)eﬁHT()ﬂ()]
_ X
~ GE. [EZ [ [(5 x5 e 1) | s

Ze3T
xezd KB

=0 S [ [henr XD e 5 X(O)] o = 5T 11~ EVe 1)

xezd



Replica Overlap

Hence we got the key identity
0
%E[ln Zm,ﬁ,T] = ﬁT“ — E[Jn,B,T]] (*)

e By standard convexity arguments: V is differentiable in 8 outside an at
most countable set; At such point we have

3 .
Jm,B,oo = T|I~>moo E[Jﬁyﬁ’r]

— 1o 5—‘%%, 5)
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Polymer Localization

From (i): results in a classical formulation

The critical value corresponds to the localization transition:

B2/ >To <= lepoo >0

For fixed k, 8, define the favourite site x*(t) for the polymer at time t by

x*(t) = argmax {Eﬁ [exp{BHI(X)}: X(t) = x] : x € Zd}

3C=C(8%/k) >0:
liminfro e + [ pes(X(t) = x*(t)dt > C  as.

BP/r>Te < {

Pointwise result, in the style of Carmona-Hu’02, FC-Shiga-Yoshida'03.



Polymer Localization

@ The critical value is when localization starts:
T =inf{B%/k : Jr.p.00 > O}.
o Let

0

D, = 32
{>0: 98

V(k, B), 55V(x,B) < B}

We have: B
B €D = Je g0 >0.
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o Let
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D, = 3z
{>0: 95
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We have: _
B €D = Je g0 >0.

Clearly, D C [s'/?T¢,00). Conjecture: D,, = (k'/2To,



Polymer Localization

@ The critical value is when localization starts:
T =inf{B%/k : Jr.p.00 > O}.

o Let
15}

D, = 32
{>0: 95

V(k, B), 55V(x,B) < B}

We have: _
B €D = Je g0 >0.

Clearly, D,. C ['/?T¢,00). Conjecture: D, = (k'27T, 00).

@ Weaker statements on the (larger) set of increase of g — 62/2—\11(/-@, B):
for such a 8, 38, — B such that

1 T
I|m Euw T (7/0 1)«:):5((:)‘”) >0

On the contrary, for 5 where the difference is locally constant, then the
limitis 0 at 8 and around.



Polymer Localization

From (j): favourite path

For fixed k, 3, define the "favourite path” y7 for the polymer with time horizon
T as the function

yi(t) = arg max {Eﬁ (exp{BHr(X)}: X(t) = y);y € zd}
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From (j): favourite path

For fixed k, 3, define the "favourite path” y7 for the polymer with time horizon
T as the function

yi(t) = argmax {Eﬁ (exp{BHr(X)L: X() = y):y € zd}

Theorem (FC-Cranston’11)

;
B € D, = liminf Ep, 5.7 (l/ 1{X(t) = y?(t)}dt) > C(B,k) > 0.
T—oo T 0




Polymer Localization
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T as the function
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Provides an information on the path itself.



Polymer Localization

From (j): favourite path

For fixed k, 3, define the "favourite path” y7 for the polymer with time horizon
T as the function

yi(t) = argmax {Eﬁ (exp{BHr(X)L: X() = y):y € zd}

Theorem (FC-Cranston’11)

;
B € D, = liminf Ep, 5.7 (l/ 1{X(t) = y?(t)}dt) > C(B,k) > 0.
T—oo T 0

Provides an information on the path itself.

Similar to above, a weaker form holds on the set of increase of the difference.



Polymer Localization

On favourite attributes

What are those favourite attributes ? x* and y7:

Both depend on «, g (also T) and on the environment W.

Both have long jumps: in particular the "favourite path” is not a path...
y7 and x™ are equal at time t = T, but they are not related otherwise.

: The mapping t — x*(t) has oscillations at those
times t when there are many maximizers: the set of jump times then looks
locally like the set of zeros of Brownian motion. In contrast, from
differentiability below, we see that t — y7(t) has no oscillations, typically.
The favourite path is much smoother than the favourite end-point.

Proposition

(i) The function t — E,. [exp{BH:(X)}dx(X(t))] is a.s. Hélder continuous of
every order less than 1 /2.

(i) The function t — E,; [exp{BHr(X)}ox(X(t))] is almost surely of C' class
on [0, T].




Polymer Localization

O (i) Z(t, x) = Ex [exp{BH:(X)}ox(X(t))] solves the stochastic heat equation
dZ(t,x) = kAZdt + SZ o dWi(1).

It has the regularity of Brownian motion.

(i) On the other hand,

E.. [exp{BHr(X)}ox(X(1))] x exp —SW:(T)

is (continuously) differentiable at t when z = x. O
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2

Complete localization as 3% / i

@ Recall that W(k, 8) ~ 572/ < f32/2, and moreover, that

2 2__ 2 ~
G V) = G ad 2 (- W(8)) = e

@ This implies that both 75,5,00 and Jﬁ,g,w tend to 1 at rate O(1/In(5%/k)).

Since 1 is the maximal value, the localization is complete.
@ Similarly,

lim sup lT / .t (X(1) # X7 (1)) dt = O(1/In(5 /)

T—oo

]
imsup Ep 7 (7 [ 1UX(O £ yi(0) ) = 001/ In(5/)

T—o0

(No need to restrict 5 € Dy..)

/e —>

oo



Complete localization as 8 / k

Conclusion

@ When the discrepancy between quenched and annealed free energy
increases, the random path sticks to the favourite one for a significant
fraction of the time.

The fraction of times grows to 1 as diffusivity x temperature? vanishes.

@ Path localization and complete localization also hold in other models.
We proved that for Parabolic Anderson model, but this works as soon as
the environment is Gaussian.

Another example: Brownian polymer in Poissonian medium
(FC-Yoshida). Poisson variable have a nice integration by parts formula.
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