A truly pathwise approach to polymer localization
Warwick, Sept. 2011.

A truly pathwise approach to polymer localization

Francis Comets

Université Paris-Diderot
September 8, 2011

So far, localization statements for directed polymers in random medium deal with the location of the endpoint ("favourite site" for polymer). We introduce a pathwise property, roughly: there exists a "favorite path" depending on the environment as well as the model parameters and time horizon, such that the polymer path has a significant overlap with the favorite path.

In a joint work with Mike Cranston, we establish this property in the parabolic Anderson model. We also obtain complete localization, i.e., the overlap tends to its maximal value 1 as the product (diffusivity \times temperature ${ }^{2}$) tends to 0 .

Outline

(1) Parabolic Anderson Model
(2) Replica Overlap

3 Polymer Localization
(4) Complete localization as $\beta^{2} / \kappa \rightarrow \infty$

The Parabolic Anderson Model

$X=(X(t), t \geq 0)$: symmetric simple random walk in \mathbb{Z}^{d} with jump rate $\kappa>0$ starting at 0 . Law P_{κ}, expectation E_{κ}.
$W_{x}, x \in \mathbb{Z}^{d}$: i.i.d. Brownian motions.
Expectation: E.
Anderson polymer model: the Gibbs measure on $\mathcal{D}_{T}=\mathcal{D}\left([0, T], \mathbb{Z}^{d}\right)$ with

$$
\mu_{\kappa, \beta, T}(f)=\frac{1}{Z_{\kappa, \beta, T}} E_{\kappa}\left[f(X) \exp \left\{\beta \int_{0}^{T} d W_{X(s)}(s)\right\}\right] .
$$

for $f: \mathcal{D}_{T} \rightarrow \mathbb{R} .(T>0$ is time horizon.)

The Parabolic Anderson Model

$X=(X(t), t \geq 0)$: symmetric simple random walk in \mathbb{Z}^{d} with jump rate $\kappa>0$ starting at 0 . Law P_{κ}, expectation E_{κ}.
$W_{x}, x \in \mathbb{Z}^{d}$: i.i.d. Brownian motions.
Expectation: E.
Anderson polymer model: the Gibbs measure on $\mathcal{D}_{T}=\mathcal{D}\left([0, T], \mathbb{Z}^{d}\right)$ with

$$
\mu_{\kappa, \beta, T}(f)=\frac{1}{Z_{\kappa, \beta, T}} E_{\kappa}\left[f(X) \exp \left\{\beta \int_{0}^{T} d W_{X(s)}(s)\right\}\right] .
$$

for $f: \mathcal{D}_{T} \rightarrow \mathbb{R} .(T>0$ is time horizon.) The model has two parameters:

- inverse temperature $\beta>0$ measuring the fluctuations of the environment,
- diffusivity $\kappa \in(0, \infty)$ of the path under the a priori measure P_{κ}.

Denote

$$
H_{T}(X)=\int_{0}^{T} d W_{X(s)}(s) ; \quad \text { Then, } Z_{\kappa, \beta, T}=E_{\kappa}\left[\exp \left\{\beta H_{T}(X)\right\}\right]
$$

Lyapunov exponents

$$
N(T, X)=\text { number of jumps of } X \text { on }[0, T]
$$

Proposition (Microcanonical)

For $r \geq 0$, the following limit exists a.s. and in $\mathrm{L}^{p}, p \in[1, \infty)$:

$$
\Gamma(\beta, r)=\lim _{T \rightarrow \infty} T^{-1} \ln E_{\kappa}\left[\exp \left\{\beta H_{T}(X)\right\} \mid N(T, X)=[r T]\right]
$$

It is deterministic, convex in β, continuous in r, independent of κ, and

$$
\Gamma(\beta, r)=a \Gamma\left(a^{-1 / 2} \beta, a^{-1} r\right), \quad a>0
$$

Lyapunov exponents

$$
N(T, X)=\text { number of jumps of } X \text { on }[0, T]
$$

Proposition (Microcanonical)

For $r \geq 0$, the following limit exists a.s. and in $L^{p}, p \in[1, \infty)$:

$$
\Gamma(\beta, r)=\lim _{T \rightarrow \infty} T^{-1} \ln E_{\kappa}\left[\exp \left\{\beta H_{T}(X)\right\} \mid N(T, X)=[r T]\right]
$$

It is deterministic, convex in β, continuous in r, independent of κ, and

$$
\Gamma(\beta, r)=a \Gamma\left(a^{-1 / 2} \beta, a^{-1} r\right), \quad a>0
$$

Let I_{κ} be the Cramér transform of the Poisson distribution with parameter κ,

$$
\mathrm{I}_{\kappa}(r)=r \ln (r / \kappa)-r+\kappa, \quad r \geq 0
$$

Proposition (Variational formula for free energy)

$$
\Psi(\kappa, \beta) \stackrel{\exists}{=} \lim _{T \rightarrow \infty} T^{-1} \ln Z_{\kappa, \beta, T}=\sup \left\{\Gamma(\beta, r)-\mathrm{I}_{\kappa}(r) ; r \geq 0\right\}
$$

From scaling relation for Γ,

$$
\Psi(\kappa, \beta)=\beta^{2} \Psi\left(\beta^{-2} \kappa, 1\right)=\kappa \Psi\left(1, \kappa^{-1 / 2} \beta\right) .
$$

Define $\mathrm{I}_{\kappa, \beta}$,

$$
I_{\kappa, \beta}(r)=-\Gamma(\beta, r)+I_{\kappa}(r)+\Psi(\kappa, \beta),
$$

a convex function in r.

From scaling relation for Γ,

$$
\Psi(\kappa, \beta)=\beta^{2} \Psi\left(\beta^{-2} \kappa, 1\right)=\kappa \Psi\left(1, \kappa^{-1 / 2} \beta\right) .
$$

Define $\mathrm{I}_{\kappa, \beta}$,

$$
I_{\kappa, \beta}(r)=-\Gamma(\beta, r)+I_{\kappa}(r)+\Psi(\kappa, \beta),
$$

a convex function in r.

Theorem (Large deviations principle for the number of jumps)

Then

$$
\lim _{T \rightarrow \infty, n / T \rightarrow r} T^{-1} \ln \mu_{\kappa, \beta, T}(N(T, X)=n)=-I_{\kappa, \beta}(r), \text { a.s.. }
$$

Moreover, for a.e. realization of the environment, and all subsets $B \subset \mathbb{R}_{+}$,

$$
\begin{aligned}
-\inf _{B^{\circ}} \mathrm{I}_{\kappa, \beta}(r) & \leq \liminf _{T \rightarrow \infty} T^{-1} \ln \mu_{\kappa, \beta, T}(N(T, X) / T \in B) \\
& \leq \limsup _{T \rightarrow \infty} T^{-1} \ln \mu_{\kappa, \beta, T}(N(T, X) / T \in B) \leq-\inf _{\bar{B}} \mathrm{I}_{\kappa, \beta}(r)
\end{aligned}
$$

Remarks

Literature: R.Carmona-Molchanov '94 (intermittency)
Biskup, P.Carmona, Cranston, Gärtner, van der Hofstad, den Hollander, Hu, König, Koralov, Mörters, Mountford, Rovira, Shiga, Tindel, Viens, Zeldovich... many others!
Totally asymmetric 1-dim, exactly solvable: O'Connell (with Moriarty, Yor)

Remarks

Literature: R.Carmona-Molchanov '94 (intermittency)
Biskup, P.Carmona, Cranston, Gärtner, van der Hofstad, den Hollander, Hu, König, Koralov, Mörters, Mountford, Rovira, Shiga, Tindel, Viens, Zeldovich... many others!
Totally asymmetric 1-dim, exactly solvable: O'Connell (with Moriarty, Yor)
(i) Annealed bound. By Jensen's inequality, and since $E e^{\beta H_{T}(X)}=e^{\beta^{2} / 2}$, both

$$
\Psi(\kappa, \beta) \leq \beta^{2} / 2 \quad \text { and } \quad \Gamma(\beta, r) \leq \beta^{2} / 2
$$

hold $(\forall \kappa, r)$. Then,

$$
\Psi(\kappa, \beta)=\beta^{2} / 2 \Longleftrightarrow \Gamma(\beta, \kappa)=\beta^{2} / 2
$$

and, in such a case, $\mathrm{I}_{\kappa, \beta}(r)$ has a unique minimum at $r=\kappa$.
(ii) Weak versus strong disorder.

$$
\Psi(\kappa, \beta)=\beta^{2} / 2 \Longleftrightarrow \beta^{2} / \kappa \leq \Upsilon_{c}
$$

for some critical value $\Upsilon_{c} \in[0, \infty)$ depending only on the dimension.

- $d \geq 3 \Longrightarrow \Upsilon_{c}>0$
- $d=1,2: \Upsilon_{c}=0$ is expected, in view of results for other models: discrete models (Lacoin, Vargas,. ..) or continuous (Bertin)

Asymptotics of Lyapunov exponents

Theorem (Asymptotics of free energy)

As $\beta^{2} / \kappa \rightarrow \infty$,

$$
\Psi(\kappa, \beta) \sim \frac{\alpha^{2} \beta^{2}}{4 \ln \left(\beta^{2} / \kappa\right)}
$$

Ref: R.Carmona-Koralov-Molchanov'01, Cranston-Mountford-Shiga'02; Also R.Carmona-Molchanov-Viens'96.

$$
\alpha=\lim _{n \rightarrow \infty} \frac{1}{n} A_{n}, \quad A_{n}=\sup _{\gamma: N(n, \gamma)=n} H_{n}(\gamma) .
$$

\exists limit: sup of Gaussian process indexed by a set with suitably bounded entropy.

Sketch: Fix T first:

$$
\begin{aligned}
\lim _{\beta \rightarrow \infty} \frac{1}{\beta T} \ln E_{\kappa}\left[e^{\beta H_{T}(X)} \mid N(T, X)=[r T]\right]=\sup _{\gamma: N(T, \gamma)=r T} H_{T}(\gamma)=: A_{T, r} \\
\begin{aligned}
\lim _{\beta \rightarrow \infty} \beta^{-1} \Gamma(\beta, r) & = \\
& =\lim _{\beta \rightarrow \infty} \lim _{T \rightarrow \infty} \frac{1}{\beta T} \ln E_{\kappa}\left[e^{\beta H_{T}(X)} \mid N(T, X)=[r T]\right] \\
& =\lim _{T \rightarrow \infty} T^{-1} A_{T, r} \quad \text { (interchange limits) } \\
& \left.=\sqrt{r} \lim _{T \rightarrow \infty} T^{-1} A_{T} \quad \text { (scaling }: A_{T, r} \stackrel{\mathcal{L}}{=} \sqrt{r} A_{T}\right) \\
& =\alpha \sqrt{r}
\end{aligned}
\end{aligned}
$$

Then, for $\kappa=1$ and $\beta \rightarrow \infty$,

$$
\Psi(1, \beta) \sim \sup \left\{\alpha \beta \sqrt{r}-I_{1}(r): r \geq 0\right\}=\frac{\alpha^{2} \beta^{2}}{4 \ln \left(\beta^{2}\right)}
$$

which yields the case of general κ by scaling.
For the maximizer $r_{\max }(\kappa, \beta)$ in Variational Formula, $r_{\max }(\kappa, \beta) \sim \frac{\alpha^{2} \beta^{2}}{4 \ln ^{2}\left(\beta^{2} / \kappa\right)}$. Note : For large β^{2} / κ,

$$
\Psi(\kappa, \beta) \ll \beta^{2} / 2, \quad r_{\max }(\kappa, \beta) \gg \kappa
$$

Outline

(1) Parabolic Anderson Model
(2) Replica Overlap

3 Polymer Localization
(4) Complete localization as $\beta^{2} / \kappa \rightarrow \infty$

Two versions of the Overlap

Localization properties are derived through the overlap between two independent polymer paths X, \tilde{X} sharing the same environment.
Two versions appear:

$$
\begin{gathered}
I_{\kappa, \beta, T}=\frac{1}{T} \int_{0}^{T} \mu_{\kappa, \beta, t}^{\otimes 2}(X(t)=\widetilde{X}(t)) d t \\
J_{\kappa, \beta, T}=\frac{1}{T} \int_{0}^{T} \mu_{\kappa, \beta, T}^{\otimes 2}(X(t)=\widetilde{X}(t)) d t=\mu_{\kappa, \beta, T}^{\otimes 2}(\underbrace{\left.\frac{1}{T} \int_{0}^{T} 1\{X(t)=\widetilde{X}(t))\right\} d t}_{\text {proportion of time together }})
\end{gathered}
$$

How do they appear: (i) By Itô's formula,

$$
d \ln Z_{\kappa, \beta, t}=\beta \mu_{\kappa, \beta, t}\left(d W_{X(t)}(t)\right)+\frac{\beta^{2}}{2}\left(1-\mu_{\kappa, \beta, t}^{\otimes 2}(X(t)=\widetilde{X}(t))\right) d t
$$

and, upon integration we get

$$
\frac{1}{T} \ln Z_{\kappa, \beta, T}=\frac{1}{T} M_{T}+\frac{\beta^{2}}{2}\left(1-I_{\kappa, \beta, T}\right)
$$

Two versions of the Overlap

Localization properties are derived through the overlap between two independent polymer paths X, \tilde{X} sharing the same environment.
Two versions appear:

$$
\begin{gathered}
I_{\kappa, \beta, T}=\frac{1}{T} \int_{0}^{T} \mu_{\kappa, \beta, t}^{\otimes 2}(X(t)=\widetilde{X}(t)) d t \\
J_{\kappa, \beta, T}=\frac{1}{T} \int_{0}^{T} \mu_{\kappa, \beta, T}^{\otimes 2}(X(t)=\widetilde{X}(t)) d t=\mu_{\kappa, \beta, T}^{\otimes 2}(\underbrace{\left.\frac{1}{T} \int_{0}^{T} 1\{X(t)=\widetilde{X}(t))\right\} d t}_{\text {proportion of time together }})
\end{gathered}
$$

How do they appear: (i) By Itô's formula,

$$
d \ln Z_{\kappa, \beta, t}=\beta \mu_{\kappa, \beta, t}\left(d W_{X(t)}(t)\right)+\frac{\beta^{2}}{2}\left(1-\mu_{\kappa, \beta, t}^{\otimes 2}(X(t)=\widetilde{X}(t))\right) d t
$$

and, upon integration we get

$$
\frac{1}{T} \ln Z_{\kappa, \beta, T}=\frac{1}{T} M_{T}+\frac{\beta^{2}}{2}\left(1-I_{\kappa, \beta, T}\right)
$$

Limits of overlaps and relation with free energy

As $T \rightarrow \infty$, the martingale term vanishes, so we get (i) below.

Theorem

(i) For all β and κ,

$$
\widetilde{I}_{\kappa, \beta, \infty}: \exists \lim _{T \rightarrow \infty} I_{\kappa, \beta, T}=1-\frac{2}{\beta^{2}} \Psi(\kappa, \beta)
$$

(j) The limit

$$
\widetilde{J}_{\kappa, \beta, \infty}=\lim _{T \rightarrow \infty} E\left[J_{\kappa, \beta, T}\right]
$$

exists except for exceptional values of β^{2} / κ, and

$$
\tilde{J}_{\kappa, \beta, \infty}=1-\beta^{-1} \frac{\partial}{\partial \beta} \Psi(\kappa, \beta) .
$$

Integration by parts

Proof of (j): • Key is the identity

$$
\frac{\partial}{\partial \beta} E\left[\ln Z_{\kappa, \beta, T}\right]=\beta T\left[1-E\left[J_{\kappa, \beta, T}\right]\right] \quad(*)
$$

It comes by integration by parts, like in spin-glass models (cf. Talagrand's books). The basic, Gaussian integration by parts formula writes

$$
E g F(g)=\sigma^{2} E F^{\prime}(g) \text { for } g \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

With our Brownian environment, we need the integration by parts formula from Malliavin calculus is: for F a smooth function of the $\left(W_{x}(t)\right)_{t, x}$ and $h(t, x)$ deterministic, $\|h\|_{2}<\infty$,

$$
E\left[F \times \int_{0}^{T} h(t, x) d W_{x}(t)\right]=E\left[\int_{0}^{T} h(t, x) D_{t, x} F d t\right]
$$

The Malliavin derivative $D_{t, x}$ is heuristically equal to $\frac{\partial}{\partial\left(d W_{x}(t)\right)}$.

Integration by parts

$$
\begin{aligned}
\frac{\partial}{\partial \beta} E\left[\ln Z_{\kappa, \beta, T}\right] & =E\left[\mu_{\kappa, \beta, T}\left(H_{T}(X)\right)\right] \\
& =E\left[\mu_{\kappa, \beta, T}\left(\sum_{x \in \mathbb{Z}^{d}} \int_{0}^{T} d W_{x}(t) \delta_{x}(X(t))\right)\right] \\
& =\sum_{x \in \mathbb{Z}^{d}} E_{\kappa}\left[E\left[\frac{e^{\beta H_{T}(X)}}{Z_{\kappa, \beta, T}} \int_{0}^{T} d W_{x}(t) \delta_{x}(X(t))\right]\right]
\end{aligned}
$$

Integration by parts

$$
\begin{aligned}
\frac{\partial}{\partial \beta} E\left[\ln Z_{\kappa, \beta, T]}\right. & =E\left[\mu_{\kappa, \beta, T}\left(H_{T}(X)\right)\right] \\
& =E\left[\mu_{\kappa, \beta, T}\left(\sum_{x \in \mathbb{Z}^{d}} \int_{0}^{T} d W_{x}(t) \delta_{x}(X(t))\right)\right] \\
& =\sum_{x \in \mathbb{Z}^{d}} E_{\kappa}[E[\underbrace{\left.\frac{e^{\beta H}(x)}{Z_{\kappa, \beta, T}} \int_{0}^{T} d W_{x}(t) \delta_{x}(X(t))\right]}_{F}]
\end{aligned}
$$

Integration by parts

$$
\begin{aligned}
& \frac{\partial}{\partial \beta} E\left[\ln Z_{\kappa, \beta, T}\right]=E\left[\mu_{\kappa, \beta, T}\left(H_{T}(X)\right)\right] \\
& =E\left[\mu_{\kappa, \beta, T}\left(\sum_{x \in \mathbb{Z}^{d}} \int_{0}^{T} d W_{x}(t) \delta_{x}(X(t))\right)\right] \\
& =\sum_{x \in \mathbb{Z}^{d}} E_{\kappa}\left[E\left[\frac{e^{3 H_{T}(X)}}{Z_{\kappa, \beta, T}} \int_{0}^{T} d W_{x}(t) \delta_{x}(X(t))\right]\right] \\
& \text { i...p. } \sum_{x \in \mathbb{Z}^{d}} E_{\kappa}\left[E \int_{0}^{T}\left[D_{t, x} \frac{e^{\beta H T_{T}(X)}}{Z_{\kappa, \beta, T}}\right] \delta_{X}(X(t))\right] d t \\
& =\beta E_{\kappa}\left[E \sum_{x \in \mathbb{Z}^{d}} \int_{0}^{T}\left[\left(\delta_{x}\left(X_{t}\right) \frac{e^{\beta H_{T}(X)}}{Z_{\kappa, \beta, T}}-\frac{e^{\beta H_{T}(X)}}{Z_{\kappa, \beta, T}} \frac{E_{\kappa}\left[\delta_{x}\left(\tilde{X}_{t}\right) e^{\beta H_{T}(\tilde{X})}\right]}{Z_{\kappa, \beta, T}}\right)\right] \delta_{X}\left(X_{t}\right)\right] d t \\
& =\beta E \sum_{x \in Z^{d}} \int_{0}^{T}\left[\mu_{\kappa, \beta, T}\left(\delta_{x}(X(t))\right)-\mu_{\kappa, \beta, T}\left(\delta_{x}(X(t))\right)^{2}\right] d t=\beta T\left[1-E\left[J_{\kappa, \beta, T, T]]} .\right.\right.
\end{aligned}
$$

Hence we got the key identity

$$
\frac{\partial}{\partial \beta} E\left[\ln Z_{\kappa, \beta, T}\right]=\beta T\left[1-E\left[J_{\kappa, \beta, T}\right] \quad \quad(*)\right.
$$

- By standard convexity arguments: ψ is differentiable in β outside an at most countable set; At such point we have

$$
\begin{aligned}
\tilde{J}_{\kappa, \beta, \infty}: & \stackrel{\exists}{=} \lim _{T \rightarrow \infty} E\left[J_{\kappa, \beta, T}\right] \\
& =1-\beta^{-1} \frac{\partial}{\partial \beta} \Psi(\kappa, \beta)
\end{aligned}
$$

Outline

(1) Parabolic Anderson Model
(2) Replica Overlap

3 Polymer Localization

4 Complete localization as $\beta^{2} / \kappa \rightarrow \infty$

From (i): results in a classical formulation

The critical value corresponds to the localization transition:

$$
\beta^{2} / \kappa>\Upsilon_{c} \Longleftrightarrow \tilde{I}_{\kappa, \beta, \infty}>0
$$

For fixed κ, β, define the favourite site $x^{*}(t)$ for the polymer at time t by

$$
x^{*}(t)=\arg \max \left\{E_{\kappa}\left[\exp \left\{\beta H_{t}(X)\right\} ; X(t)=x\right]: x \in \mathbb{Z}^{d}\right\}
$$

Theorem

$$
\beta^{2} / \kappa>\Upsilon_{C} \Longleftrightarrow\left\{\begin{array}{l}
\exists C=C\left(\beta^{2} / \kappa\right)>0: \\
\liminf _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} \mu_{\kappa, \beta, t}\left(X(t)=x^{*}(t)\right) d t \geq C \quad \text { a.s. }
\end{array}\right.
$$

Pointwise result, in the style of Carmona-Hu'02, FC-Shiga-Yoshida'03.

From (j)

- The critical value is when localization starts:

$$
\Upsilon_{c}=\inf \left\{\beta^{2} / \kappa: \widetilde{J}_{\kappa, \beta, \infty}>0\right\}
$$

- Let

$$
\mathcal{D}_{\kappa}=\left\{\beta>0: \exists \frac{\partial}{\partial \beta} \Psi(\kappa, \beta), \frac{\partial}{\partial \beta} \Psi(\kappa, \beta)<\beta\right\}
$$

We have:

$$
\beta \in \mathcal{D}_{\kappa} \Longrightarrow \widetilde{\mathcal{J}}_{\kappa, \beta, \infty}>0
$$

From (j)

- The critical value is when localization starts:

$$
\Upsilon_{c}=\inf \left\{\beta^{2} / \kappa: \widetilde{J}_{\kappa, \beta, \infty}>0\right\}
$$

- Let

$$
\mathcal{D}_{\kappa}=\left\{\beta>0: \exists \frac{\partial}{\partial \beta} \Psi(\kappa, \beta), \frac{\partial}{\partial \beta} \Psi(\kappa, \beta)<\beta\right\}
$$

We have:

$$
\beta \in \mathcal{D}_{\kappa} \Longrightarrow \widetilde{J}_{\kappa, \beta, \infty}>0
$$

Clearly, $\mathcal{D}_{\kappa} \subset\left[\kappa^{1 / 2} \Upsilon_{c}, \infty\right)$. Conjecture: $\mathcal{D}_{\kappa}=\left(\kappa^{1 / 2} \Upsilon_{c}, \infty\right)$.

From (j)

- The critical value is when localization starts:

$$
\Upsilon_{c}=\inf \left\{\beta^{2} / \kappa: \widetilde{J}_{\kappa, \beta, \infty}>0\right\} .
$$

- Let

$$
\mathcal{D}_{\kappa}=\left\{\beta>0: \exists \frac{\partial}{\partial \beta} \Psi(\kappa, \beta), \frac{\partial}{\partial \beta} \Psi(\kappa, \beta)<\beta\right\}
$$

We have:

$$
\beta \in \mathcal{D}_{\kappa} \Longrightarrow \tilde{J}_{\kappa, \beta, \infty}>0
$$

Clearly, $\mathcal{D}_{\kappa} \subset\left[\kappa^{1 / 2} \Upsilon_{c}, \infty\right)$. Conjecture: $\mathcal{D}_{\kappa}=\left(\kappa^{1 / 2} \Upsilon_{c}, \infty\right)$.

- Weaker statements on the (larger) set of increase of $\beta \mapsto \beta^{2} / 2-\Psi(\kappa, \beta)$: for such a $\beta, \exists \beta_{n} \rightarrow \beta$ such that

$$
\lim _{T \rightarrow \infty} E \mu_{\kappa, \beta_{n}, T}^{\otimes 2}\left(\frac{1}{T} \int_{0}^{T} \mathbf{1}_{X(t)=\tilde{X}(t)} d t\right)>0 .
$$

On the contrary, for β where the difference is locally constant, then the limit is 0 at β and around.

From (j): favourite path

For fixed κ, β, define the "favourite path" y_{T}^{*} for the polymer with time horizon T as the function

$$
y_{T}^{*}(t)=\arg \max \left\{E_{\kappa}\left(\exp \left\{\beta H_{T}(X)\right\} ; X(t)=y\right) ; y \in \mathbb{Z}^{d}\right\}
$$

From (j): favourite path

For fixed κ, β, define the "favourite path" y_{T}^{*} for the polymer with time horizon T as the function

$$
y_{T}^{*}(t)=\arg \max \left\{E_{\kappa}\left(\exp \left\{\beta H_{T}(X)\right\} ; X(t)=y\right) ; y \in \mathbb{Z}^{d}\right\}
$$

Theorem (FC-Cranston'11)

$$
\beta \in \mathcal{D}_{\kappa} \Longrightarrow \liminf _{T \rightarrow \infty} E \mu_{\kappa, \beta, T}\left(\frac{1}{T} \int_{0}^{T} 1\left\{X(t)=y_{T}^{*}(t)\right\} d t\right) \geq C(\beta, \kappa)>0 .
$$

From (j): favourite path

For fixed κ, β, define the "favourite path" y_{T}^{*} for the polymer with time horizon T as the function

$$
y_{T}^{*}(t)=\arg \max \left\{E_{\kappa}\left(\exp \left\{\beta H_{T}(X)\right\} ; X(t)=y\right) ; y \in \mathbb{Z}^{d}\right\}
$$

Theorem (FC-Cranston'11)

$$
\beta \in \mathcal{D}_{\kappa} \Longrightarrow \liminf _{T \rightarrow \infty} E \mu_{\kappa, \beta, T}\left(\frac{1}{T} \int_{0}^{T} 1\left\{X(t)=y_{T}^{*}(t)\right\} d t\right) \geq C(\beta, \kappa)>0
$$

Provides an information on the path itself.

From (j): favourite path

For fixed κ, β, define the "favourite path" y_{T}^{*} for the polymer with time horizon T as the function

$$
y_{T}^{*}(t)=\arg \max \left\{E_{\kappa}\left(\exp \left\{\beta H_{T}(X)\right\} ; X(t)=y\right) ; y \in \mathbb{Z}^{d}\right\}
$$

Theorem (FC-Cranston'11)

$$
\beta \in \mathcal{D}_{\kappa} \Longrightarrow \liminf _{T \rightarrow \infty} E \mu_{\kappa, \beta, T}\left(\frac{1}{T} \int_{0}^{T} 1\left\{X(t)=y_{T}^{*}(t)\right\} d t\right) \geq C(\beta, \kappa)>0
$$

Provides an information on the path itself.
Similar to above, a weaker form holds on the set of increase of the difference.

On favourite attributes

What are those favourite attributes ? x^{*} and y_{T}^{*} :
Both depend on κ, β (also T) and on the environment \mathcal{W}.
Both have long jumps: in particular the "favourite path" is not a path... y_{T}^{*} and x^{*} are equal at time $t=T$, but they are not related otherwise.

Fundamental difference: The mapping $t \mapsto x^{*}(t)$ has oscillations at those times t when there are many maximizers: the set of jump times then looks locally like the set of zeros of Brownian motion. In contrast, from differentiability below, we see that $t \mapsto y_{T}^{*}(t)$ has no oscillations, typically. The favourite path is much smoother than the favourite end-point.

Proposition

(i) The function $t \mapsto E_{\kappa}\left[\exp \left\{\beta H_{t}(X)\right\} \delta_{x}(X(t))\right]$ is a.s. Hölder continuous of every order less than $1 / 2$.
(ii) The function $t \mapsto E_{\kappa}\left[\exp \left\{\beta H_{T}(X)\right\} \delta_{X}(X(t))\right]$ is almost surely of \mathcal{C}^{1} class on $[0, T]$.
\square (i) $Z(t, x)=E_{\kappa}\left[\exp \left\{\beta H_{t}(X)\right\} \delta_{x}(X(t))\right]$ solves the stochastic heat equation

$$
d Z(t, x)=\kappa \Delta Z d t+\beta Z \circ d W_{x}(t) .
$$

It has the regularity of Brownian motion.
(ii) On the other hand,

$$
E_{\kappa}\left[\exp \left\{\beta H_{T}(X)\right\} \delta_{x}(X(t))\right] \times \exp -\beta W_{z}(T)
$$

is (continuously) differentiable at t when $z=x$.

Outline

(1) Parabolic Anderson Model
(2) Replica Overlap

3 Polymer Localization

4 Complete localization as $\beta^{2} / \kappa \rightarrow \infty$

- Recall that $\Psi(\kappa, \beta) \sim \frac{\alpha^{2} \beta^{2}}{4 \ln \left(\beta^{2} / \kappa\right)} \ll \beta^{2} / 2$, and moreover, that

$$
\frac{\beta^{2}}{2}-\Psi(\kappa, \beta)=\frac{\beta^{2}}{2} \widetilde{I}_{\kappa, \beta, \infty}, \quad \text { and } \frac{\partial}{\partial \beta}\left(\frac{\beta^{2}}{2}-\Psi(\kappa, \beta)\right)=\tilde{\mathcal{J}}_{\kappa, \beta, \infty} .
$$

- This implies that both $\widetilde{I}_{\kappa, \beta, \infty}$ and $\widetilde{J}_{\kappa, \beta, \infty}$ tend to 1 at rate $\mathcal{O}\left(1 / \ln \left(\beta^{2} / \kappa\right)\right)$. Since 1 is the maximal value, the localization is complete.
- Similarly,

$$
\begin{gathered}
\limsup _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} \mu_{\kappa, \beta, t}\left(X(t) \neq x^{*}(t)\right) d t=\mathcal{O}\left(1 / \ln \left(\beta^{2} / \kappa\right)\right) \\
\limsup _{T \rightarrow \infty} E \mu_{\kappa, \beta, T}\left(\frac{1}{T} \int_{0}^{T} 1\left\{X(t) \neq y_{T}^{*}(t)\right\} d t\right)=\mathcal{O}\left(1 / \ln \left(\beta^{2} / \kappa\right)\right)
\end{gathered}
$$

(No need to restrict $\beta \in \mathcal{D}_{\kappa}$.)

Conclusion

- When the discrepancy between quenched and annealed free energy increases, the random path sticks to the favourite one for a significant fraction of the time.
The fraction of times grows to 1 as diffusivity \times temperature 2 vanishes.
- Path localization and complete localization also hold in other models. We proved that for Parabolic Anderson model, but this works as soon as the environment is Gaussian.

Another example: Brownian polymer in Poissonian medium (FC-Yoshida). Poisson variable have a nice integration by parts formula.

