▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

A truly pathwise approach to polymer localization

Warwick, Sept. 2011.

A truly pathwise approach to polymer localization

Francis Comets

Université Paris-Diderot

September 8, 2011

So far, localization statements for directed polymers in random medium deal with the location of the endpoint ("favourite site" for polymer). We introduce a pathwise property, roughly: there exists a "favorite path" depending on the environment as well as the model parameters and time horizon, such that the polymer path has a significant overlap with the favorite path.

In a joint work with Mike Cranston, we establish this property in the parabolic Anderson model. We also obtain complete localization, i.e., the overlap tends to its maximal value 1 as the product (diffusivity \times temperature²) tends to 0.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

2 Replica Overlap

(日) (日) (日) (日) (日) (日) (日)

The Parabolic Anderson Model

 $X = (X(t), t \ge 0)$: symmetric simple random walk in \mathbb{Z}^d with jump rate $\kappa > 0$ starting at 0. $W_x, x \in \mathbb{Z}^d$: i.i.d. Brownian motions. Law P_{κ} , expectation E_{κ} .

Anderson polymer model: the Gibbs measure on $\mathcal{D}_T = \mathcal{D}([0, T], \mathbb{Z}^d)$ with

$$\mu_{\kappa,\beta,T}(f) = \frac{1}{Z_{\kappa,\beta,T}} E_{\kappa} \left[f(X) \exp \left\{ \beta \int_0^T dW_{X(s)}(s) \right\} \right].$$

for $f : \mathcal{D}_T \to \mathbb{R}$. (T > 0 is time horizon.)

The Parabolic Anderson Model

 $X = (X(t), t \ge 0)$: symmetric simple random walk in \mathbb{Z}^d with jump rate $\kappa > 0$ starting at 0. $W_x, x \in \mathbb{Z}^d$: i.i.d. Brownian motions. Law P_{κ} , expectation E_{κ} .

Anderson polymer model: the Gibbs measure on $\mathcal{D}_T = \mathcal{D}([0, T], \mathbb{Z}^d)$ with

$$\mu_{\kappa,\beta,T}(f) = \frac{1}{Z_{\kappa,\beta,T}} E_{\kappa} \left[f(X) \exp \left\{ \beta \int_0^T dW_{X(s)}(s) \right\} \right].$$

for $f : \mathcal{D}_T \to \mathbb{R}$. (T > 0 is time horizon.)

The model has two parameters:

(日) (日) (日) (日) (日) (日) (日)

- inverse temperature β > 0 measuring the fluctuations of the environment,
- diffusivity κ ∈ (0,∞) of the path under the *a priori* measure P_κ.

$$H_{T}(X) = \int_{0}^{T} dW_{X(s)}(s); \quad \text{Then, } Z_{\kappa,\beta,T} = E_{\kappa} \Big[\exp \{\beta H_{T}(X)\} \Big]$$

Lya	apunov exponents	
	N(T, X) = number of jumps of X on [0, T].	
	Proposition (Microcanonical)	
	For $r \ge 0$, the following limit exists a.s. and in L ^p , $p \in [1, \infty)$:	
	$\Gamma(\beta, r) = \lim_{T \to \infty} T^{-1} \ln E_{\kappa} \big[\exp\{\beta H_{T}(X)\} N(T, X) = [rT] \big]$	
	It is deterministic, convex in β , continuous in r, independent of κ , and	
	$\Gamma(\beta, r) = a \Gamma(a^{-1/2}\beta, a^{-1}r), \qquad a > 0.$	

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Parabolic Anderson Model

Falabu	lic Anderson Moder		Folymer Localization	Complete localization as $p \ / \kappa \to \infty$		
Lyapunov exponents						
N(T, X) = number of jumps of X on [0, T].						
	Proposition (Mic	rocanonical)				
	For $r \ge 0$, the fo	llowing limit exists	s a.s. and in $L^p, \ p \in$	$[1,\infty)$:		
	Γ(β, r)	$= \lim_{T \to \infty} T^{-1} \ln t$	$E_{\kappa} \Big[\exp\{\beta H_{T}(X)\} N$	I(T,X)=[rT]]		

It is deterministic, convex in β , continuous in r, independent of κ , and

$$\Gamma(\beta, r) = a \, \Gamma(a^{-1/2}\beta, a^{-1}r), \qquad a > 0.$$

Let I $_{\kappa}$ be the Cramér transform of the Poisson distribution with parameter κ ,

$$I_{\kappa}(r) = r \ln(r/\kappa) - r + \kappa, \qquad r \geq 0.$$

Proposition (Variational formula for free energy)

$$\Psi(\kappa,\beta) \stackrel{\exists}{=} \lim_{T \to \infty} T^{-1} \ln Z_{\kappa,\beta,T} = \sup\{\Gamma(\beta,r) - I_{\kappa}(r); r \ge 0\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

From scaling relation for Γ ,

$$\Psi(\kappa,\beta) = \beta^2 \Psi(\beta^{-2}\kappa,1) = \kappa \Psi(1,\kappa^{-1/2}\beta).$$

Define $I_{\kappa,\beta}$,

$$\mathsf{I}_{\kappa,\beta}(r) = -\mathsf{\Gamma}(\beta,r) + \mathsf{I}_{\kappa}(r) + \Psi(\kappa,\beta),$$

a convex function in r.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

From scaling relation for Γ ,

$$\Psi(\kappa,\beta) = \beta^2 \Psi(\beta^{-2}\kappa,1) = \kappa \Psi(1,\kappa^{-1/2}\beta).$$

Define $I_{\kappa,\beta}$,

$$\mathsf{I}_{\kappa,\beta}(r) = -\mathsf{\Gamma}(\beta,r) + \mathsf{I}_{\kappa}(r) + \Psi(\kappa,\beta),$$

a convex function in r.

Theorem (Large deviations principle for the number of jumps)

Then

$$\lim_{T\to\infty,n/T\to r} T^{-1} \ln \mu_{\kappa,\beta,T} (N(T,X)=n) = -I_{\kappa,\beta}(r), \ a.s.$$

Moreover, for a.e. realization of the environment, and all subsets $B \subset \mathbb{R}_+$,

$$\begin{array}{ll} -\inf_{B^{\sigma}}\mathsf{I}_{\kappa,\beta}(r) &\leq & \liminf_{T\to\infty} T^{-1}\ln\mu_{\kappa,\beta,T}\big(\mathsf{N}(T,X)/T\in B\big) \\ &\leq & \limsup_{T\to\infty} T^{-1}\ln\mu_{\kappa,\beta,T}\big(\mathsf{N}(T,X)/T\in B\big)\leq -\inf_{\bar{B}}\mathsf{I}_{\kappa,\beta}(r). \end{array}$$

Parabolic Anderson Model	Replica Overlap	Polymer Localization	Complete localization as $\beta^2/\kappa \to \infty$
Remarks			

Literature: R.Carmona-Molchanov '94 (intermittency) Biskup, P.Carmona, Cranston, Gärtner, van der Hofstad, den Hollander, Hu, König, Koralov, Mörters, Mountford, Rovira, Shiga, Tindel, Viens, Zeldovich...

many others!

(ロ) (同) (三) (三) (三) (三) (○) (○)

Totally asymmetric 1-dim, exactly solvable: O'Connell (with Moriarty, Yor)

Literature: R.Carmona-Molchanov '94 (intermittency)

Biskup, P.Carmona, Cranston, Gärtner, van der Hofstad, den Hollander, Hu, König, Koralov, Mörters, Mountford, Rovira, Shiga, Tindel, Viens, Zeldovich... many others!

Totally asymmetric 1-dim, exactly solvable: O'Connell (with Moriarty, Yor)

(i) Annealed bound. By Jensen's inequality, and since $Ee^{\beta H_T(X)} = e^{\beta^2/2}$, both

 $\Psi(\kappa,\beta) \leq \beta^2/2$ and $\Gamma(\beta,r) \leq \beta^2/2$

hold ($\forall \kappa, r$). Then,

$$\Psi(\kappa,\beta) = \beta^2/2 \iff \Gamma(\beta,\kappa) = \beta^2/2,$$

and, in such a case, $I_{\kappa,\beta}(r)$ has a unique minimum at $r = \kappa$.

(ii) Weak versus strong disorder.

$$\Psi(\kappa,\beta)=eta^2/2\iff eta^2/\kappa\leq \Upsilon_c,$$

for some critical value $\Upsilon_c \in [0, \infty)$ depending only on the dimension.

- $d \ge 3 \implies \Upsilon_c > 0$
- d = 1,2: Y_c = 0 is expected, in view of results for other models: discrete models (Lacoin, Vargas,...) or continuous (Bertin)

Asymptotics of Lyapunov exponents

Theorem (Asymptotics of free energy)

As $eta^2/\kappa o \infty$,

$$\Psi(\kappa,eta)\sim rac{lpha^2eta^2}{4\ln(eta^2/\kappa)}$$

Ref: R.Carmona-Koralov-Molchanov'01, Cranston-Mountford-Shiga'02; Also R.Carmona-Molchanov-Viens'96.

$$\alpha = \lim_{n \to \infty} \frac{1}{n} A_n , \quad A_n = \sup_{\gamma: N(n, \gamma) = n} H_n(\gamma) .$$

 \exists limit: sup of Gaussian process indexed by a set with suitably bounded entropy.

・ロト・西・・日・・日・・日・

Sketch: Fix T first:

$$\lim_{\beta \to \infty} \frac{1}{\beta T} \ln E_{\kappa} \left[e^{\beta H_{T}(X)} | N(T, X) = [rT] \right] = \sup_{\gamma: N(T, \gamma) = rT} H_{T}(\gamma) =: A_{T, r}.$$

$$\lim_{\beta \to \infty} \beta^{-1} \Gamma(\beta, r) = \lim_{\beta \to \infty} \lim_{T \to \infty} \frac{1}{\beta T} \ln E_{\kappa} \left[e^{\beta H_{T}(X)} | N(T, X) = [rT] \right]$$
$$= \lim_{T \to \infty} T^{-1} A_{T,r} \quad \text{(interchange limits)}$$
$$= \sqrt{r} \lim_{T \to \infty} T^{-1} A_{T} \quad \text{(scaling : } A_{T,r} \stackrel{\mathcal{L}}{=} \sqrt{r} A_{T} \text{)}$$
$$= \alpha \sqrt{r}$$

Then, for $\kappa = 1$ and $\beta \rightarrow \infty$,

$$\Psi(1,\beta) \sim \sup \left\{ \alpha \beta \sqrt{r} - \mathsf{I}_1(r) : r \ge 0 \right\} = \frac{\alpha^2 \beta^2}{4 \ln(\beta^2)}$$

which yields the case of general κ by scaling.

For the maximizer $r_{\max}(\kappa,\beta)$ in Variational Formula, $r_{\max}(\kappa,\beta) \sim \frac{\alpha^2 \beta^2}{4 \ln^2(\beta^2/\kappa)}$. Note : For large β^2/κ ,

 $\Psi(\kappa,\beta) \ll \beta^2/2$, $r_{\max}(\kappa,\beta) \gg \kappa$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Parabolic Anderson Model

2 Replica Overlap

Two versions of the Overlap

Localization properties are derived through the overlap between two independent polymer paths X, \tilde{X} sharing the same environment. **Two versions appear**:

$$I_{\kappa,\beta,T} = \frac{1}{T} \int_0^T \mu_{\kappa,\beta,t}^{\otimes 2}(X(t) = \widetilde{X}(t)) dt$$

$$J_{\kappa,\beta,T} = \frac{1}{T} \int_0^T \mu_{\kappa,\beta,T}^{\otimes 2}(X(t) = \widetilde{X}(t)) dt = \mu_{\kappa,\beta,T}^{\otimes 2} \left(\underbrace{\frac{1}{T} \int_0^T \mathbf{1}\{X(t) = \widetilde{X}(t)\} dt}_{-\infty} \right)$$

proportion of time together

How do they appear: (i) By Itô's formula,

$$d \ln Z_{\kappa,\beta,t} = \beta \mu_{\kappa,\beta,t} (dW_{X(t)}(t)) + \frac{\beta^2}{2} \left(1 - \mu_{\kappa,\beta,t}^{\otimes 2}(X(t) = \widetilde{X}(t)) \right) dt ,$$

and, upon integration we get

$$\frac{1}{T} \ln Z_{\kappa,\beta,T} = \frac{1}{T} M_T + \frac{\beta^2}{2} \left(1 - I_{\kappa,\beta,T}\right)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Two versions of the Overlap

Localization properties are derived through the overlap between two independent polymer paths X, \tilde{X} sharing the same environment. Two versions appear:

$$I_{\kappa,\beta,T} = \frac{1}{T} \int_0^T \mu_{\kappa,\beta,t}^{\otimes 2}(X(t) = \widetilde{X}(t)) dt$$

$$J_{\kappa,\beta,T} = \frac{1}{T} \int_0^T \mu_{\kappa,\beta,T}^{\otimes 2}(X(t) = \widetilde{X}(t)) dt = \mu_{\kappa,\beta,T}^{\otimes 2} \left(\underbrace{\frac{1}{T} \int_0^T \mathbf{1}\{X(t) = \widetilde{X}(t)\} dt}_{-\infty} \right)$$

proportion of time together

How do they appear: (i) By Itô's formula,

$$d \ln Z_{\kappa,\beta,t} = \beta \mu_{\kappa,\beta,t} (dW_{X(t)}(t)) + \frac{\beta^2}{2} \left(1 - \mu_{\kappa,\beta,t}^{\otimes 2}(X(t) = \widetilde{X}(t)) \right) dt ,$$

and, upon integration we get

$$\frac{1}{T} \ln Z_{\kappa,\beta,T} = \frac{1}{T} M_T + \frac{\beta^2}{2} \left(1 - I_{\kappa,\beta,T}\right)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Limits of overlaps and relation with free energy

As $\mathcal{T} \rightarrow \infty,$ the martingale term vanishes, so we get (i) below.

Theorem

(i) For all β and κ ,

$$\widetilde{I}_{\kappa,eta,\infty}:\stackrel{\exists}{=}\lim_{T o\infty}I_{\kappa,eta,T}=1-rac{2}{eta^2}\Psi(\kappa,eta)$$

(j) The limit

$$\widetilde{J}_{\kappa,eta,\infty} = \lim_{T o \infty} E\left[J_{\kappa,eta,T}
ight]$$

exists except for exceptional values of β^2/κ , and

$$\widetilde{J}_{\kappa,\beta,\infty} = 1 - \beta^{-1} \frac{\partial}{\partial \beta} \Psi(\kappa,\beta).$$

・ロト・個ト・モト・モト ヨー のへで

Proof of (j): • Key is the identity

$$\frac{\partial}{\partial\beta} E[\ln Z_{\kappa,\beta,T}] = \beta T \big[1 - E[J_{\kappa,\beta,T}] \big] \quad (*)$$

It comes by integration by parts, like in spin-glass models (cf. Talagrand's books). The basic, Gaussian integration by parts formula writes

$$EgF(g) = \sigma^2 EF'(g)$$
 for $g \sim \mathcal{N}(0, \sigma^2)$.

With our Brownian environment, we need the integration by parts formula from Malliavin calculus is: for *F* a smooth function of the $(W_x(t))_{t,x}$ and h(t,x) deterministic, $||h||_2 < \infty$,

$$E\left[F \times \int_0^T h(t,x) dW_x(t)\right] = E\left[\int_0^T h(t,x) D_{t,x}F dt\right]$$

The Malliavin derivative $D_{t,x}$ is heuristically equal to $\frac{\partial}{\partial (dW_x(t))}$.

Integration by parts

$$\begin{aligned} \frac{\partial}{\partial \beta} E[\ln Z_{\kappa,\beta,T}] &= E[\mu_{\kappa,\beta,T}(H_T(X))] \\ &= E\left[\mu_{\kappa,\beta,T}\left(\sum_{x\in\mathbb{Z}^d}\int_0^T dW_x(t)\delta_x(X(t))\right)\right] \\ &= \sum_{x\in\mathbb{Z}^d} E_\kappa \left[E\left[\frac{e^{\beta H_T(X)}}{Z_{\kappa,\beta,T}}\int_0^T dW_x(t)\delta_x(X(t))\right]\right] \end{aligned}$$

Integration by parts

$$\frac{\partial}{\partial\beta} E[\ln Z_{\kappa,\beta,T}] = E[\mu_{\kappa,\beta,T}(H_T(X))]$$

$$= E\left[\mu_{\kappa,\beta,T}\left(\sum_{x\in\mathbb{Z}^d}\int_0^T dW_x(t)\delta_x(X(t))\right)\right]$$

$$= \sum_{x\in\mathbb{Z}^d} E_\kappa \left[E\left[\underbrace{\frac{e^{\beta H_T(X)}}{Z_{\kappa,\beta,T}}}_F\int_0^T dW_x(t)\delta_x(X(t))\right]\right]$$

Integration by parts

$$\begin{aligned} \frac{\partial}{\partial \beta} E[\ln Z_{\kappa,\beta,T}] &= E[\mu_{\kappa,\beta,T}(H_T(X))] \\ &= E\left[\mu_{\kappa,\beta,T}\left(\sum_{x\in\mathbb{Z}^d} \int_0^T dW_x(t)\delta_x(X(t))\right)\right] \\ &= \sum_{x\in\mathbb{Z}^d} E_\kappa \left[E\left[\frac{e^{\beta H_T(X)}}{Z_{\kappa,\beta,T}} \int_0^T dW_x(t)\delta_x(X(t))\right]\right] \\ &\stackrel{i.b.p.}{=} \sum_{x\in\mathbb{Z}^d} E_\kappa \left[E\int_0^T \left[D_{t,x}\frac{e^{\beta H_T(X)}}{Z_{\kappa,\beta,T}}\right]\delta_x(X(t))\right] dt \end{aligned}$$
$$= \beta E_\kappa \left[E\sum_{x\in\mathbb{Z}^d} \int_0^T \left[\left(\delta_x(X_t)\frac{e^{\beta H_T(X)}}{Z_{\kappa,\beta,T}} - \frac{e^{\beta H_T(X)}}{Z_{\kappa,\beta,T}}\frac{E_\kappa[\delta_x(\tilde{X}_t)e^{\beta H_T(\tilde{X})}]}{Z_{\kappa,\beta,T}}\right)\right]\delta_x(X_t)\right] dt$$

$$=\beta E \sum_{x\in\mathbb{Z}^d} \int_0^T \left[\mu_{\kappa,\beta,T}(\delta_x(X(t))) - \mu_{\kappa,\beta,T}(\delta_x(X(t)))^2 \right] dt = \beta T \left[1 - E[J_{\kappa,\beta,T}] \right].$$

Hence we got the key identity

$$\frac{\partial}{\partial\beta} E[\ln Z_{\kappa,\beta,T}] = \beta T [1 - E[J_{\kappa,\beta,T}]] \quad (*)$$

• By standard convexity arguments: Ψ is differentiable in β outside an at most countable set; At such point we have

$$\begin{aligned} \widetilde{J}_{\kappa,\beta,\infty} : &\stackrel{\exists}{=} \lim_{T \to \infty} E\left[J_{\kappa,\beta,T}\right] \\ &= 1 - \beta^{-1} \frac{\partial}{\partial \beta} \Psi(\kappa,\beta) \end{aligned}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Parabolic Anderson Model	Replica Overlap	Polymer Localization	Complete localization as $\beta^2/\kappa ightarrow \infty$
Outline			

▲□▶▲圖▶▲≣▶▲≣▶ ▲■ のへ⊙

2 Replica Overlap

Polymer Localization

From (i): results in a classical formulation

The critical value corresponds to the localization transition:

$$eta^2/\kappa > \Upsilon_c \iff \widetilde{I}_{\kappa,\beta,\infty} > 0$$

For fixed κ , β , define the favourite site $x^*(t)$ for the polymer at time t by

$$x^*(t) = \arg \max \left\{ E_{\kappa} \left[\exp\{\beta H_t(X)\}; X(t) = x \right] : x \in \mathbb{Z}^d \right\}$$

Theorem

$$\beta^2/\kappa > \Upsilon_c \iff \left\{ \begin{array}{l} \exists C = C(\beta^2/\kappa) > 0:\\ \liminf_{\tau \to \infty} \frac{1}{\tau} \int_0^\tau \mu_{\kappa,\beta,t}(X(t) = x^*(t)) dt \geq C \quad a.s. \end{array} \right.$$

Pointwise result, in the style of Carmona-Hu'02, FC-Shiga-Yoshida'03.

Parabolic Anderson Model	Replica Overlap	Polymer Localization	Complete localization as $\beta^2/\kappa \to \infty$
From (j)			

• The critical value is when localization starts:

$$\Upsilon_{c} = \inf\{\beta^{2}/\kappa : \widetilde{J}_{\kappa,\beta,\infty} > 0\}.$$

Let

$$\mathcal{D}_{\kappa} = \{\beta > \mathbf{0} : \exists \frac{\partial}{\partial \beta} \Psi(\kappa, \beta) , \ \frac{\partial}{\partial \beta} \Psi(\kappa, \beta) < \beta \}$$

We have:

$$\beta \in \mathcal{D}_{\kappa} \Longrightarrow \widetilde{J}_{\kappa,\beta,\infty} > \mathbf{0}.$$

Parabolic Anderson Model	Replica Overlap	Polymer Localization	Complete localization as $\beta^2 / \kappa \to \infty$
From (j)			

• The critical value is when localization starts:

$$\Upsilon_{c} = \inf\{\beta^{2}/\kappa : \widetilde{J}_{\kappa,\beta,\infty} > 0\}.$$

$$\mathcal{D}_{\kappa} = \{\beta > \mathbf{0} : \exists \frac{\partial}{\partial \beta} \Psi(\kappa, \beta) , \ \frac{\partial}{\partial \beta} \Psi(\kappa, \beta) < \beta \}$$

We have:

$$\beta \in \mathcal{D}_{\kappa} \Longrightarrow \widetilde{J}_{\kappa,\beta,\infty} > 0.$$

Clearly, $\mathcal{D}_{\kappa} \subset [\kappa^{1/2} \Upsilon_{c}, \infty)$. Conjecture: $\mathcal{D}_{\kappa} = (\kappa^{1/2} \Upsilon_{c}, \infty)$.

Parabolic Anderson Model	Replica Overlap	Polymer Localization	Complete localization as $\beta^2/\kappa \to \infty$
From (i)			

• The critical value is when localization starts:

$$\Upsilon_{c} = \inf\{\beta^{2}/\kappa : \widetilde{J}_{\kappa,\beta,\infty} > 0\}.$$

Let

$$\mathcal{D}_{\kappa} = \{\beta > \mathbf{0} : \exists \frac{\partial}{\partial \beta} \Psi(\kappa, \beta) , \ \frac{\partial}{\partial \beta} \Psi(\kappa, \beta) < \beta \}$$

We have:

$$\beta \in \mathcal{D}_{\kappa} \Longrightarrow \widetilde{J}_{\kappa,\beta,\infty} > \mathbf{0}.$$

Clearly, $\mathcal{D}_{\kappa} \subset [\kappa^{1/2} \Upsilon_{c}, \infty)$. Conjecture: $\mathcal{D}_{\kappa} = (\kappa^{1/2} \Upsilon_{c}, \infty)$.

Weaker statements on the (larger) set of increase of β → β²/2-Ψ(κ, β): for such a β, ∃β_n → β such that

$$\lim_{T\to\infty} E\mu_{\kappa,\beta_n,T}^{\otimes 2}\left(\frac{1}{T}\int_0^T \mathbf{1}_{X(t)=\tilde{X}(t)}dt\right) > 0.$$

On the contrary, for β where the difference is locally constant, then the limit is 0 at β and around.

A D F A 同 F A E F A E F A Q A

For fixed κ , β , define the "favourite path" y_T^* for the polymer with time horizon T as the function

$$y_T^*(t) = rg \max\left\{ E_\kappa \left(\exp\{eta H_T(X)\}; X(t) = y
ight); y \in \mathbb{Z}^d
ight\}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

For fixed κ, β , define the "favourite path" y_T^* for the polymer with time horizon T as the function

$$y_T^*(t) = \arg \max \left\{ E_{\kappa} \left(\exp\{\beta H_T(X)\}; X(t) = y \right); y \in \mathbb{Z}^d \right\}$$

Theorem (FC-Cranston'11)

$$\beta \in \mathcal{D}_{\kappa} \Longrightarrow \liminf_{T \to \infty} E \mu_{\kappa,\beta,T} \left(\frac{1}{T} \int_0^T \mathbf{1} \{ X(t) = y_T^*(t) \} dt \right) \ge C(\beta,\kappa) > 0.$$

For fixed κ, β , define the "favourite path" y_T^* for the polymer with time horizon T as the function

$$y_T^*(t) = rg \max\left\{ E_\kappa \left(\exp\{eta H_T(X)\}; X(t) = y
ight); y \in \mathbb{Z}^d
ight\}$$

Theorem (FC-Cranston'11)

$$\beta \in \mathcal{D}_{\kappa} \Longrightarrow \liminf_{T \to \infty} E \mu_{\kappa,\beta,T} \left(\frac{1}{T} \int_0^T \mathbf{1} \{ X(t) = y_T^*(t) \} dt \right) \ge C(\beta,\kappa) > 0.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Provides an information on the path itself.

For fixed κ, β , define the "favourite path" y_T^* for the polymer with time horizon T as the function

$$y_T^*(t) = rg \max\left\{ E_\kappa \left(\exp\{eta H_T(X)\}; X(t) = y
ight); y \in \mathbb{Z}^d
ight\}$$

Theorem (FC-Cranston'11)

$$\beta \in \mathcal{D}_{\kappa} \Longrightarrow \liminf_{T \to \infty} E \mu_{\kappa,\beta,T} \left(\frac{1}{T} \int_0^T \mathbf{1} \{ X(t) = y_T^*(t) \} dt \right) \ge C(\beta,\kappa) > 0.$$

Provides an information on the path itself.

Similar to above, a weaker form holds on the set of increase of the difference.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

On favourite attributes

What are those favourite attributes ? x^* and y_T^* :

Both depend on κ , β (also *T*) and on the environment \mathcal{W} . Both have long jumps: in particular the "favourite path" is not a path... y_T^* and x^* are equal at time t = T, but they are not related otherwise.

Fundamental difference: The mapping $t \mapsto x^*(t)$ has oscillations at those times *t* when there are many maximizers: the set of jump times then looks locally like the set of zeros of Brownian motion. In contrast, from differentiability below, we see that $t \mapsto y_T^*(t)$ has no oscillations, typically. *The favourite path is much smoother than the favourite end-point.*

Proposition

(*i*) The function $t \mapsto E_{\kappa} [\exp\{\beta H_t(X)\}\delta_x(X(t))]$ is a.s. Hölder continuous of every order less than 1/2. (*ii*) The function $t \mapsto E_{\kappa} [\exp\{\beta H_T(X)\}\delta_x(X(t))]$ is almost surely of C^1 class on [0, T]. Parabolic Anderson Model Replica Overlap Polymer Localization Complete localization as $\beta^2/\kappa \to \infty$

 $\Box \text{ (i) } Z(t, x) = E_{\kappa} \left[\exp\{\beta H_t(X)\} \delta_x(X(t)) \right] \text{ solves the stochastic heat equation} \\ dZ(t, x) = \kappa \Delta Z dt + \beta Z \circ dW_x(t).$

It has the regularity of Brownian motion.

(ii) On the other hand,

 $E_{\kappa} \left[\exp\{\beta H_{T}(X)\} \delta_{X}(X(t)) \right] \times \exp-\beta W_{Z}(T)$

is (continuously) differentiable at t when z = x.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

2 Replica Overlap

Parabolic Anderson Model Replica Overlap Polymer Localization Complete localization as $\beta^2/\kappa \to \infty$ As $\beta^2/\kappa \to \infty$:

• Recall that $\Psi(\kappa,\beta)\sim \frac{\alpha^2\beta^2}{4\ln(\beta^2/\kappa)}\ll \beta^2/2$, and moreover, that

$$\frac{\beta^2}{2} - \Psi(\kappa,\beta) = \frac{\beta^2}{2} \widetilde{I}_{\kappa,\beta,\infty}, \quad \text{and } \frac{\partial}{\partial\beta} \left(\frac{\beta^2}{2} - \Psi(\kappa,\beta) \right) = \beta \widetilde{J}_{\kappa,\beta,\infty}.$$

- This implies that both *l*_{κ,β,∞} and *J*_{κ,β,∞} tend to 1 at rate O(1/ln(β²/κ)).
 Since 1 is the maximal value, the localization is complete.
- Similarly,

$$\limsup_{T \to \infty} \frac{1}{T} \int_0^T \mu_{\kappa,\beta,t} (X(t) \neq x^*(t)) dt = \mathcal{O}(1/\ln(\beta^2/\kappa))$$
$$\limsup_{T \to \infty} E\mu_{\kappa,\beta,T} \left(\frac{1}{T} \int_0^T \mathbf{1} \{X(t) \neq y_T^*(t)\} dt\right) = \mathcal{O}(1/\ln(\beta^2/\kappa))$$

(No need to restrict $\beta \in \mathcal{D}_{\kappa}$.)

(ロ) (同) (三) (三) (三) (三) (○) (○)

Conclusion

- When the discrepancy between quenched and annealed free energy increases, the random path sticks to the favourite one for a significant fraction of the time.
 The fraction of times grows to 1 as diffusivity × temperature² vanishes.
- Path localization and complete localization also hold in other models. We proved that for Parabolic Anderson model, but this works as soon as the environment is Gaussian.

Another example: Brownian polymer in Poissonian medium (FC-Yoshida). Poisson variable have a nice integration by parts formula.