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α-STABLE TREES

α-stable trees are natural objects:

• scaling limits of conditioned Galton-Watson trees (Aldous,

Duquesne);

• can be described in terms of continuous state branching pro-

cesses (Duquesne/Le Gall);

• can be constructed from Lévy processes (Duquesne/Le Gall);

• and fragmentation processes (Haas/Miermont).

Moreover, the Brownian continuum random tree (α = 2) has

connections with:

• combinatorial trees (Aldous);

• critical percolation clusters in high dimensions (Hara/Slade);

• the Erdős-Rényi random graph at criticality (Addario-Berry/

Broutin/Goldschmidt).



GALTON-WATSON TREE SCALING LIMIT

Fix α ∈ (1,2]. Let Z be a mean 1, aperiodic, random variable

in the domain of attraction of an α-stable law, i.e. for some

an → ∞,

Z[n]− n

an
→ Ξ,

where Z[n] is the sum of n independent copies of Z, and Ξ

satisfies E(e−λΞ) = e−λα. NB. an = n
1
αL(n).

Let Tn be a Galton-Watson branching process with offspring

distribution Z, conditioned to have n vertices, then

n−1anTn → T (α).



BROWNIAN MOTION ON α-STABLE TREES

Let (XTn
t )t≥0 be the discrete time simple random walk on Tn,

then
(

n−1anX
Tn
n2a−1

n t

)

→
(

XT (α)

t

)

t≥0
,

where (XT (α)

t )t≥0 is a strong Markov diffusion on T (α) – the

Brownian motion on the α-stable tree [C.].

We will write ∆(α) for the generator of (XT (α)

t )t≥0 (i.e. its

semigroup is Pt = et∆(α)), and the corresponding Dirichlet form

as:

E(α)(f, g) := −
∫

T (α)
f∆(α)gdµα,

where µα is the natural probability measure on T (α) that arises

as the scaling limit of uniform probability measures on Galton-

Watson trees.



SPECTRUM OF ∆α

We say λ is a (Neumann) eigenvalue for E(α) if: there exists an

f ∈ F(α) such that

E(α)(f, g) = λ
∫

T (α)
fgdµα, ∀g ∈ F(α).

Roughly speaking, −∆(α)f = λf and 0 derivative on ‘boundary’.

The eigenvalue counting function is:

N(α)(λ) := #
{

eigenvalues of E(α) ≤ λ
}

.

From the spectral decomposition of the transition density of

XT (α)
, we have

∫

T (α)
p
(α)
t (x, x)µ(α)(dx) =

∫ ∞

0
e−λtN(α)(dλ),

and so if N(α)(λ) ≈ λγ, then p
(α)
t (x, x) ≈ t−γ.



PLAN

• Introduction to spectral asymptotics.

• Spectral asymptotics of self-similar fractals via renewal ar-

guments.

• Adaptation to random fractals using branching processes.

• Consideration of α-stable trees.

• Application to critical Erdős-Rényi random graph.



CAN ONE HEAR THE SHAPE OF A DRUM?

Suppose D is a domain (with smooth boundary).

Consider the associated Dirichlet problem:

∆u+ λu = 0,

u|∂D = 0.

This has discrete spectrum of eigenvalues: 0 < λ1 ≤ λ2 ≤ . . . .

If D1 and D2 have same eigenvalue sequence, must they be

congruent? (Kac 1966, Bochner, Bers. . . ).



NO!

There exist isospectral pairs of manifolds (Milnor 1964, Witt).

There also exist isospectral pairs of domains in the plane, e.g.

(Gordon/Webb/Wolpert 1992, Buser/Semmler).

So does the spectrum tell us anything about the domain?



WEYL’S FORMULA

(Weyl 1911, 1912, Ivrii 1980) For a d-dimensional compact man-

ifold with smooth boundary, the eigenvalue counting function

N(λ) := #{n ≥ 1 : λn ≤ λ}

satisfies

N(λ) = cd|D|λd/2 −
1

4
cd−1|∂D|d−1λ

(d−1)/2 + o(λ(d−1)/2).

NB. cd are constants that only depend on d.



OUT OF THE CLASSICAL SETTING

Does the same result hold for (self-similar) fractal spaces?

The Sierpinski gasket, for example, has Haus-

dorff dimension ln 3/ ln 2, so is it the case that

N(λ) ∼ cλln 3/2 ln2?

Does boundary appear in second order term?

How about when there is randomness in the construction?

Do we see any effect of this in the spectral

asymptotics, or is the disorder ‘averaged’ out

in a law of large numbers?



RESULTS FOR THE SIERPINSKI GASKET

Rammal/Toulouse 1983, Fukushima/Shima 1992, Kigami/Lapidus

1993, Kigami 2001,

N(λ) = λln 3/ ln 5G(lnλ) +O(1),

where G is a non-constant function with period ln 5. Note that:

1. Spectral dimension

dS := lim
λ→∞

2 lnN(λ)

lnλ
=

ln9

ln 5

is not equal to Hausdorff dimension.

2. Weyl limit limλ→∞ λ−dS/2N(λ) does not exist.

3. Size of second order term corresponds to an intrinsic bound-

ary of the fractal, rather than a Euclidean one.



SIERPINSKI GASKET SELF-SIMILARITY

The Sierpinski gasket K satisfies

K =
3
⋃

i=1

Fi(K).

F(G)
1

F(G)
2

F(G)
3

G

Moreover, the natural Dirichlet form on K satisfies:

E(f, f) =
5

3

3
∑

i=1

E(f ◦ Fi, f ◦ Fi).
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EIGENVALUE COMPARISON #1

Consider two versions of the Dirichlet problem:

ED Ẽ

If f is an e.function of ED with e.value λ, then can check

g :=

{

f ◦ F−1
i , on Fi(K),

0 otherwise,

is a e.function of Ẽ with e.value 5λ. It follows that

3ND(λ/5) ≤ Ñ(λ) ≤ ND(λ).



EIGENVALUE COMPARISON #2

Similarly, if f is an e.function of E with e.value λ, then can check

f ◦ Fi, i = 1,2,3,

are e.functions of E with e.value λ/5. It follows that

N(λ) ≤ 3N(λ/5).

‘Dirichlet-Neumann bracketing’ says ND(λ) ≤ N(λ) ≤ ND(λ)+3,

and so

3ND(λ/5) ≤ ND(λ) ≤ 3ND(λ/5) + 9.



RENEWAL EQUATION

Write

m(t) := e−γtND(et) and u(t) := e−γt
(

ND(et)− 3ND(et/5)
)

.

Then

m(t) = u(t) + 3e−γ ln 5m(t− ln 5)

= u(t) +
∫ ∞

0
m(t− s)3e−γsδln 5(ds)

= u(t) +
∫ ∞

0
m(t− s)δln 5(ds),

where we have chosen γ = ln3/ ln 5. The renewal theorem then

implies

m(t) ∼ G(t),

where G is a ln 5-periodic function. Hence,

N(λ) ∼ ND(λ) ∼ λln 3/ ln 5G(lnλ).



RANDOM SIERPINSKI GASKET [HAMBLY]

Consider a random Sierpinski gasket:

e.g. select from and to build .

We now have a statistical self-similarity for the Dirichlet form:

E(f, f) =
M
∑

i=1

1

Ri
Ei(f ◦ Fi, f ◦ Fi).



RENEWAL EQUATION IN MEAN

This translates to the e.value counting function:

M
∑

i=1

ND
i (λRiµi) ≤ ND(λ) ≤

M
∑

i=1

ND
i (λRiµi) + C.

Let m(t) := e−γtEND(et) and

u(t) := e−γt
E



ND(et)−
M
∑

i=1

ND
i (λRiµi)



 ,

then

m(t) = u(t) +
∫ ∞

0
m(t− s)e−γsν(ds),

where ν([0, t]) = E#{i ≤ M : − lnRiµi ≤ t}. Under a non-lattice

condition, if γ is chosen such that
∫

e−γsν(ds) = 1, then

m(t) → m(∞) ∈ (0,∞).



QUENCHED BRANCHING PROCESS

Let

X(t) := ND(et) and η(t) := ND(et)−
M
∑

i=1

ND
i (λRiµi),

then

X(t) = η(t) +
M
∑

i=1

Xi(t+ lnRiµi).

Iterating, it is possible to write:

X(t) =
∑

i∈Σ

ηi(t+ lnRiµi),

the sum of a random characteristic over the elements of a con-

tinuous time branching process. It follows that

ND(λ) = λγW + o(λγ),

where the random variable W represents a limiting ‘mass’.



SELF-SIMILARITY OF THE BROWNIAN CRT

It is known that T = T (2) is self-similar (Aldous 1994):

- Pick 2 random points from Brownian CRT.

- Split tree at branch-point of root and these.

Results in a three copies of original tree with masses Dirichlet

(12,
1
2,

1
2) distribution, and lengths scaled by square-root of these.

Can apply recursively to code Brownian CRT as a random self-

similar fractal that is almost-surely homeomorphic to a deter-

ministic fractal [C., Hambly].



MEAN AND ALMOST-SURE FIRST ORDER

BEHAVIOUR [C., HAMBLY]

From the renewal equation, we are able to prove: for some

deterministic C ∈ (0,∞),

EN(λ) = Cλ2/3 +O(1).

Using invariance under re-rooting, this implies:

Ept(ρ, ρ) = E

∫

T
pt(x, x)µ(dx) = C′t−2/3 +O(1).

Moreover, from the branching process argument, we have that:

P-a.s.,

N(λ) = Cλ2/3 + o(λ2/3).

Also trace of semigroup is asymptotically smooth (cf. log-

logarithmic fluctuations that occur in pt(ρ, ρ), almost surely, [C.])



SECOND ORDER BEHAVIOUR

Let Y (t) := e−2t/3X(t) − m(t). Can use a renewal equation to
show that:

et/3EY (t)2 → y(∞).

One can then use the (approximate) stochastic self-similarity,

Y (t) ≈
∑

i∈Λεt

DiYi(t+
3

2
lnDi),

to prove a central limit theorem, saying that:

N(2)(λ)− Cλ2/3

λ1/3
→ N (0, y(∞)).

Conjecture: y(∞) 6= 0, which would imply second order fluc-
tuations are of an order that is strictly bigger than the second
order of O(1) determined by the boundary (and which was seen
in the mean behaviour).



α-STABLE TREES, α ∈ (1,2)

Spinal decomposition (Haas/Pitman/Winkel 2009):

- Choose two points at random.

- Split tree along arc between these.

Results in a countable number of copies of original tree with

masses given by a Poisson-Dirichlet distribution.

Can use this self-similarity property to deduce (C./Hambly 2010):

EN(λ) = Cλ
α

2α−1 +O

(

λ
1

2α−1+ε
)

.

First term also seen P-a.s. and second term in probability.

Imply short-time heat kernel asymptotics of order t
− α

2α−1.



CRITICAL ERDŐS-RÉNYI RANDOM GRAPH

G(N, p) is obtained via bond percolation with parameter p on

the complete graph with N vertices. We concentrate on critical

window: p = N−1 + λN−4/3. e.g. N = 100, p = 0.01:

All components have:

- size Θ(N2/3) and surplus Θ(1) (Erdős/Rényi, Aldous),

- diameter Θ(N1/3) (Nachmias/Peres).



CONSTRUCTION OF SCALING LIMIT FROM

BROWNIAN CRT

(Addario-Berry/Broutin/Goldschmidt) If CN1 is the largest con-

nected component of G(N, p) (in the critical window), then

N−1/3CN1 → M,

for some random metric space M. Moreover, associated random

walks can be rescaled to a diffusion on M [C.].

Conditional on the number of loops, J say, and its mass, M can

be constructed by:

- choosing 3-regular graph with 3(J − 1) edges.

(Formula is slightly different if J = 0,1.)
- placing independent Brownian CRTs along edges, with masses

determined by a Dirichlet (12, . . . ,
1
2) distribution.



SPECTRAL ASYMPTOTICS FOR CRITICAL

RANDOM GRAPH

Using Dirichlet-Neumann bracketing, can show

NM(λ) ∼
2(J−1)

∑

i=1

NTi(λ).

It follows that:

ENM(λ) = CEZ1λ
2/3 +O(1),

and also P-a.s.,

λ−2/3NM(λ) → CZ1.

Moreover, in distribution,

NM(λ)− CZ1λ
2/3

Z
1/2
1 λ1/3

→ N (0, y(∞)).


